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Abstract. With the greater application of machine learning models in
educational contexts, it is important to understand where such meth-
ods perform well as well as how they may be improved. As such, it
is important to identify the factors that contribute to prediction error
in order to develop targeted methods to enhance model accuracy and
mitigate risks of algorithmic bias and unfairness. Prior works have led
to the development and application of automated assessment methods
that leverage machine learning and natural language processing. The
performance of these methods have often been reported as being posi-
tive, but other prior works have identified aspects on which they may
be improved. Particularly in the context of mathematics, the presence
of non-linguistic characters and expressions have been identified to con-
tribute to observed model error. In this paper, we build upon this prior
work by observing a developed automated assessment model for open-
response questions in mathematics. We develop a new approach which
we call the “Math Term Frequency” (MTF) model to address this issue
caused by the presence of non-linguistic terms and ensemble it with the
previously-developed assessment model. We observe that the inclusion of
this approach notably improves model performance. Finally, we observe
how well this ensembled method extrapolates to student responses in
the context of Algorithms, a domain similarly characterized by a large
number of non-linguistic terms and expressions. This work represents an
example of practice of how error analyses can be leveraged to address
model limitations.

Keywords: Online learning platforms · Math-terms · Open-ended re-
sponses · Automated assessment · Machine Learning · Natural Language
Processing · Mathematics.

1 Introduction

Advancements in artificial intelligence and machine learning research have led
to greater integration of prediction models into educational contexts through
computer-based learning systems. Often emerging from learning theory or for
the purpose of addressing an identified problem of practice, machine learning
models are being used to direct teacher attention to students in need [16, 8], aid
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in assessment [11, 32, 23, 6, 1], and track student learning over time [10, 14, 20,
24]. As these methods and models of student learning become deeply integrated
into normal instructional and educational practices, it becomes increasingly im-
portant to understand the strengths and weaknesses in their application. Within
this, it is important to not only identify areas where existing student models un-
derperform, but similarly important to develop targeted methods to improve
such models to mitigate risks to fairness.

Several prior works have leveraged machine learning methods to automate
assessment for student work [21, 30]; many of these methods have emerged to help
teachers save time in providing feedback to students and allow them to focus their
attention on helping students who are in most need of aid. It is not surprising,
given the ubiquitous challenges posed by assessment across educational contexts,
that automated assessment methods have been proposed, developed, and applied
in a range of domains. They commonly address one of two types of problems:
close-ended and open-ended. In the case of close-ended problems, where there
is a finite number of accepted correct answers, auto-scoring methods can apply
simple matching techniques to compare the student answer with the list of correct
answers and consistently achieve near-perfect accuracy. In regard to open-ended
problems, however, the correctness of student responses is more subjective, where
teachers commonly assess students based on an explicit or implicit rubric that
identifies key points that must be included in a student response to sufficiently
demonstrate comprehension. Due to the numerous challenges that this poses
to automated assessment, existing methods commonly apply natural language
processing (NLP) to build a high-dimensional representation of student responses
that is then combined with various machine learning approaches (e.g. [28, 33, 9,
13]).

In consideration of the challenges in assessing open-ended problems, mathe-
matics-based domains make developing automated assessment models even more
difficult. In such domains, including mathematics, statistics, physics, chemistry,
and even computer science, student responses often exhibit a combination of
natural language and various non-linguistic terms such as numbers, mathemat-
ical expressions and operators; this makes automatic assessment more difficult
as most traditional NLP techniques were not designed for such a context, with
a few recent exceptions [1, 18, 25, 29]. Recent work has identified that the exis-
tence of non-linguistic terms is positively correlated with model prediction error
in models that have outperformed existing benchmarks in this context [2].

Students who are being assessed by these automated methods in practice
are in danger of being unfairly penalized due to the number of non-linguistic
terms they use in their responses. While systems have attempted to mitigate
this risk by involving the teacher in the assessment process (e.g. [1]), this work
attempts to do better by developing a simple, targeted method to resolve this
problem. Drawing inspiration from closed-ended assessment methods, we call this
proposed method the “Math Term Frequency” (MTF) model and demonstrate
how it can be combined with previously-developed assessment models to improve
performance. Specifically, this work addresses the following research questions:
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1. How does accounting for non-linguistic terms through our MTF model affect
the performance of auto-assessment methods on existing benchmarks?

2. Does our MTF method reduce the correlation between non-lingustic terms
and model prediction error?

3. How well does our MTF method extrapolate to other domains where student
responses contain non-linguistic terms?

2 Background

As briefly introduced in the previous section, there are many prior works that
have focused on automating the assessment (i.e. grading or scoring) of student
answers to open-ended questions. Much of this work has leveraged varying ap-
proaches that leverage NLP and machine learning. Methods such as C-rater
[19] uses techniques to normalize student responses that vary across syntactic,
morphological structure, pronouns, and synonyms to estimate the correctness of
student responses to open-ended questions. Other approaches have explored the
use of clustering approaches to grade student responses [4, 5]. Recent approaches
have used deep learning methods that use high-dimensional representations of
student work and compare them to exemplar samples, such as in [28] and [33].

While not universally the case, a majority of recent works in NLP have lever-
aged or expanded upon this idea of creating high-dimensional representations,
referred to as embeddings, of student answers (e.g. Word2Vec [22] and GloVe
[26]). However, word embeddings can often lose information about the context
of words within the sentence, leading to developments in sentence embedding
methods such as Universal Sentence Encoders [7] and SBERT [27]; the later of
these was built from Bidirectional Encoder Representations from Transformers
(BERT; [12]).

This work observes a recent automatic assessment method that draws from
many these methods and concepts [2]. This method, referred to as the SBERT-
Canberra model, utilizes a similarity-matching approach using pre-trained SBERT
embeddings. Outperforming previous benchmarks in predicting teacher-provided
scores for student answers to mathematics open-response problems, this method
works by identifying “similar” student answers using a measure of Canberra dis-
tance [17] between embeddings; predicted scores are then produced by taking the
given score for the most-similar student answer from a pool of historic responses.

In that prior work, an error analysis was conducted, identifying three key
takeaways: 1) problem-level factors explained the majority of variance of pre-
diction error (beyond that of answer- and teacher-level factors), 2) the presence
of images in student answers had the highest correlation with prediction er-
ror among answer-level factors, and 3) the presence of non-linguistic terms (i.e.
numbers, equations, and mathematic expressions) exhibited the second-highest
correlation with prediction error among answer-level factors. This work explores
the first and third points to develop simple approaches to target and mitigate
these weaknesses.
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3 Methodology

3.1 Dataset

To explore and examine the methods proposed in this work, we observe two
datasets consisting of student answers to mathematics open-response questions.
These datasets were collected from the BLINDED SYSTEM [3] and contains
150,477 student responses from 27,199 students for 2,076 open-ended math prob-
lems scored by 970 unique teachers (where each response was scored by a single
teacher); this dataset is the same used to establish benchmark results [1] and is
used to directly compare performance against models presented in prior work[1,
2]. Teachers scored responses based on a 5-point integer scale ranging from 0 to
4 , with a 4 indicating a very strong and a 0 indicating a very weak response.
In this dataset, all the empty student responses and responses containing only
images are omitted when training and evaluating the model.

The second dataset used in this paper was similarly used in prior work to
conduct an error analysis to identify factors that correlate with prediction error
[2]. This dataset is similarly comprised of student open responses collected using
the BLINDED TOOL and contains 30,371 scored student responses from 1,628
students for 915 unique open-response questions assessed by 12 different teachers.
In addition to the student answers and teacher-provided scores, this dataset
was expanded in that prior work to include other measures describing student
answers including the length of the response, the average length of words (in
characters) in the response, a count of numeric terms, a count of mathematical
operators, the percent of the response (the proportion of words) containing non-
linguistic terms1, and whether the answer contains an image (e.g. usually a
picture taken of student work and uploaded as part of their response).

3.2 The SBERT-MTF Model

The methods presented in this work target the specific problem of non-linguistic
terms contributing to prediction error. The previously-developed SBERT-Canberra
model outperformed previous decision-tree- and deep-learning-based approaches
[1] by leveraging pre-trained Sentence-BERT embeddings. The use of pre-trained
embeddings provides several advantages in that they are commonly built using
very large corpuses of data; by training such embedding methods on such sources
as Wikipedia or online news sources, the models can learn the semantic meaning
of words and sentences based on their proximity to other words and sentences
within observed documents. In short, pre-trained models can learn language rep-
resentation from large datasets that can then be used to increase the predictive
power in smaller datasets. The challenge, however, is that only a finite number

1 This feature is named as “equation percent” in the prior work and referred to in this
paper with the same name for consistency, though we clarify that it is a proportion
of all non-lingustic terms rather than being limited to just equations as the name
suggests.
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Fig. 1. The design of the ensembled SBERT-MTF method, that suggests scores for
student open responses.

of words (and sentences, by extension) can be recognized by these methods; tra-
ditionally, unrecognized words and phrases may be given a default embedding.
When observing non-lingustic terms such as numbers and expressions, many
such terms may not be represented within the embeddings (e.g. representing
“the answer is 4.3333” with the same embedding as, for example, “the answer
is 2.987” if neither of the numbers are recognized). Particularly in mathematics
contexts, such non-numeric terms are likely to greatly inform the correctness of
the student response. As such, one possible solution is to expand the embed-
ding space to include such terms; while plausible, this would likely require large
datasets of mathematics responses, but even then would not be able to represent
every possible number or expression (given that these are infinite).

Instead, we propose the “Math Term Frequency” (MTF) method which takes
a much simpler approach, drawing inspiration from assessment methods ap-
plied for close-ended problems. The goal of this method is to supplement the
previously-developed SBERT-Canberra model through ensembling, resulting in
what we are calling the “SBERT-MTF” model, as illustrated in Figure 1.

The MTF method works by first parsing student answers to identify non-
linguistic terms. The function2 works through a sequence of steps, which includes
splitting a student answer by spaces, removing alphabet-only terms (accounting
for commas, uncommon punctuation, and contractions), combining equations
separated by spaces, removing extraneous parentheses, and rounding off dec-

2 All code used in this work is available at url blinded for review
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imals, among other optimizations. Much of this pruning is done with regular
expressions.

Once the non-linguistic terms have been identified, the MTF method in-
volves identifying the most frequently-occurring terms for each possible integer
score as a means of learning a kind of rubric. It is hypothesized that the correct
student answers are likely to exhibit a smaller number of certain terms, with
lower scores exhibiting a larger variety of terms. There will likely be some terms
that are common throughout all scored answers (e.g. if the students reference
a number from the problem text), but there are likely to be some terms that
demonstrate high comprehension; similarly, students exhibiting common miscon-
ceptions may arrive at a similar set of incorrect answers. With this in mind, we
select the five most-frequent terms, a1, a2, a3, a4, a5, from the list of parsed non-
linguistic terms. For each student response s in the training data for problem
p, let S denote the set of mathematical terms in s. The input associated with
s is the 5-vector 〈1S(a1),1S(a2),1S(a3),1S(a4),1S(a5)〉, where 1S denotes the
indicator function for a term in s. In other words, features used in this method
indicate whether a newly-observed student response contains any of the most
frequent terms most commonly associated with each given score. These features
are used in a multinomial logistic regression (treating each score as an inde-
pendent category, following previous works) that is trained separately for each
problem.

The score predictions from the MTF model are then ensembled with the
SBERT-Canberra predictions using another logistic regression model, referred to
as the SBERT-MTF model; to clarify, this ensemble regression model observes
ten features corresponding to the probability estimates produced for each of
the five possible scores for each of the two observed models. The goal of this is
to combine the semantic representation captured by the SBERT method, while
taking advantage of the non-linguistic term matching from the MTF method.

4 SBERT-MTF Model Performance

As to directly compare the existing method to the prior works, we use similar
evaluation method and dataset used in [2, 1]. This evaluation method utilizes a 2-
parameter Rasch model to compare model estimates. The model predictions are
used as covariates within the Rasch model [31] which additionally learns a param-
eter representing student ability and another for problem difficulty (commonly
used in item response theory, or IRT, models in educational measurement); the
number of words in the response is also added as a covariate in this evaluation
model in an attempt to further compare models on their ability to interpret stu-
dent answers rather than be based on other more superficial response features.
This evaluation method allows for a fair comparison that accounts for factors
that likely impact score that are external to the observed text of the student re-
sponse. For comparison to previous works, we evaluate our method using three
metrices: AUC score (calculated as an average AUC over each individual score
category similar to [15]), Root Mean Squared Error (RMSE; calculated using
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model estimates as a continuous-valued integer scale), and multi-class Cohen’s
Kappa.

The Rasch model performance of the Math terms frequency model as com-
pared to the performance of the prior models for scoring open-ended responses is
presented in Table 1. The results suggests that the proposed SBERT-MTF model
outperforms the previous highest-performing SBERT-Canberra model across all
three evaluation metrics.

Table 1. Rasch Model Performance compared to the models developed in prior works
related to auto-scoring of student open responses in mathematics.

Model AUC RMSE Kappa

Current Paper

Rasch* + SBERT-MTF 0.871 0.524 0.508

Prior Works

Baseline Rasch 0.827 0.709 0.370

Rasch* + Random Forest 0.850 0.615 0.430

Rasch* + SBERT-Canberra 0.856 0.577 0.476

*These rasch models also included the number of words.

5 Error Analysis of SBERT-MTF

The proposed MTF method was designed to address a very targeted problem
exhibited by the previously-developed SBERT-Canberra model. We therefore
conduct a similar error analysis to observe whether this method impacts the
observed positive correlation between the presence of non-linguistic terms and
model error. For this analysis, we use the second dataset as described in Sec-
tion 3.1 for a direct comparison with the previous work. While the modeling
task treats scoring as a categorization task, we convert the model predictions to
a continuous-valued integer value (i.e. 0-4). We calculate model prediction error
as the absolute value of the teacher-provided score (treated as ground truth)
minus the predicted score. In this way, positive values correspond with higher
error and values close to 0 represent low error (high performance). We calcu-
late the answer-level features as introduced in Section 3.1 and conduct a linear
regression observing absolute error as the dependent variable.

We compare three models within this analysis to identify how two modeling
decisions presented in this work correspond with observed changes in feature
coefficients. The first model observed is that of the SBERT-Canberra model
reported in [2] as a baseline for comparison. The second model uses the same
SBERT-Canberra method, but trains a logistic regression per problem with the
model predictions as covariates (e.g. similar to the ensembled method described
earlier, without MTF); the intuition here is that problem-specific adjustments
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Table 2. The resulting model coefficients for the uni-level linear regression model of
absolute error for SBERT Canberra, Logistic SBERT and MTF model.

SBERT-Canberra Logistic SBERT SBERT-MTF

B Std. Error B Std. Error B Std. Error

Intercept 0.581*** 0.017 0.738*** 0.017 0.776*** 0.070

Answer Length -0.008*** 0.001 -0.008*** 0.001 -0.009*** 0.001

Avg. Word Length -0.014*** 0.003 -0.013*** 0.003 -0.014*** 0.003

Numbers Count <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

Operators Count -0.006*** 0.001 0.001 0.001 0.004** 0.001

Equation Percent 0.443*** 0.018 -0.062*** 0.019 -0.128*** 0.019

Presence of Images 2.248*** 0.021 2.058*** 0.022 2.018*** 0.022

*p <0.05 **p<0.01 ***p<0.001

may itself help to account for error in the model. Finally, we observe the ensem-
bled SBERT-MTF model to observe any potential impacts beyond these other
two methods.

The results of the error analysis is presented in Table 2. The results indicate
that the linear model for both Logistic SBERT and SBERT-MTF explains 34.8%
of the variance of the outcome as given by r-squared; this alone suggests that
there is a large portion of variance in the error unexplained by the observed fea-
tures. Among the observed features, similar to the results from [2], nearly all were
statistically reliable in predicting the model error. However, it is arguable that
from the relatively small scale of most coefficients, two of the features exhibit
more meaningful impacts in comparison to the others: the presence of mathe-
matical expression and presence of images in the student answers. However, with
the introduction of a logistic regression model that follows the SBERT-Canberra
method, the coefficient value of presence of mathematical terms has changed; it
would appear that accounting for problem-level adjustments alone removes much
of the impact of non-linguistic terms in the dataset. Most notably, however, is
that the addition of our MTF method exhibits an even stronger negative corre-
lation between the presence of non-linguistic terms and model error; what once
was a weakness now appears to be a potential strength of the model.

6 Extrapolation of SBERT-MTF model To Student
Responses in Algorithms

Following the improved performance observed from our SBERT-MTF method,
we conduct a final analysis to explore how well this method extrapolates be-
yond the mathematics domain to a similar context where non-linguistic terms
are common: computer science education. Similar to the mathematics domain,
introductory computer science courses commonly observe open-ended problems
where students utilize non-linguistic terms alongside natural language; if the
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Table 3. Example of student responses given to open-ended questions in Algorithms
class and their corresponding non-linguistic terms parsed using the developed parsing
method.

Example Non linguistic terms

O(n*logn) [‘O(n*logn)’]

Because heapSort starts from the bottom up &

doesn’t take a[0] and put it at a[0], it starts it

at a[1] with sink() and swim() methods.

[‘&’, ‘a[0]’, ‘a[0]’, ‘a[1]’]

”if (left > mid) { a[k] = aux[right++]; }”

means that if the left still has elements,

an element from the auxiliary array will be

added to the array a.

[‘>’, ‘{’, ‘a[k]=}’]

Table 4. Model Performance of Ensembled SBERT-MTF model applied on the dataset
of student open responses in Algorithms class.

Model AUC RMSE Kappa

SBERT-Canberra 0.691 0.424 0.304

SBERT-MTF 0.711 0.408 0.364

model extrapolates well to this new context, it suggests that the benefits of us-
ing our simple MTF method could help improve automated assessment models
in a range of other contexts as well.

We took a dataset of student open-responses from an undergraduate-level Al-
gorithms course. This dataset consists of 1,802 student responses to 13 different
computer algorithm problems from an introductory Algorithms class taught to
undergraduate students at the BLINDED UNIVERSITY. The average length of
student responses in this dataset is about 61.21 words, with an average of 20%
of these being non-linguistic terms. A few example of the student responses with
the extracted non linguistic terms from this dataset is presented in Table 3.

We applied a 10-fold cross validation to get the predictions based on both the
SBERT-Canberra method and the SBERT-MTF models and calculated the same
three metrics as used in the prior analysis (note that this did not use the Rasch
model evaluation). The results of these methods are presented in Table 4. Based
on the results, Math terms frequency model outperforms the SBERT-Canberra
method across all three metrices.

7 Discussion and Future Work

The results of all of the presented analyses illustrate MTF (specifically, SBERT-
MTF) as a promising method to mitigate model error attributed to the presence
of non-linguistic terms. The MTF method represents an intentionally-simple ap-
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proach to address a targeted weakness observed in previously-developed models
and seemingly led to positive impacts.

With that, there are still several areas in which these models could be im-
proved, in addition to improving the accuracy of the parsing function. Most
notably, is the remaining correlation between the presence of images and model
error. While this is not surprising, as the models do nothing to account for im-
ages, this remains an unhandled case that cannot be ignored (i.e. student answers
sometimes contain images, and current results suggest that this may lead to dif-
ferential model performance across students more inclined to include images).
As it is also the case that some students include mixtures of natural language,
non-linguistic terms, and images all in the same answer, developing methods to
handle such cases fairly is an important problem that is not addressed in the
current work.

Similarly, the error analysis suggests that there is a large amount of vari-
ance in model error left unexplained. Previous work [2] identified problem- and
teacher-level factors that seemingly account for much of this unexplained error,
but this does not provide clear guidance as to how to account for these external
factors fairly within an automatic assessment model.

The results of our method when applied to the Algorithms dataset provide
promise for the generalization of these methods to domains beyond mathematics.
As has been discussed, there are several fields where non-linguistic terms are
common within student responses. This work highlights how state-of-the-art
methods such as SBERT may be used in conjunction with simpler methods to
draw from their respective strengths.

8 Conclusion

In this paper, we proposed an approach based on the occurrence of frequent
math terminologies in student responses in predicting scores to student open-
responses, and upon combining this approach with the prior works based on
SBERT-Canberra model, we were able to see improvements in the models perfor-
mance across all observed metrics. Through an observed error analysis, we were
able to show that the proposed model improves specifically in the area of equation
percentage. Further, we looked into the applicability of this method by extend-
ing it to a new domain similar to mathematics of college-level Algorithms class.
We found that this method outperformed the existing state-of-the-art method in
this new domain of Algorithms. As, such this method could be further expanded
to be included in other domains that exhibit similar non-linguistic terms. Simi-
lar methods could be extended in auto-assessment of open-responses to provide
formative feedback to students in an automated manner. We hope that this work
acts as a step for future researchers towards how error analyses can be leveraged
to address model limitations and further improve machine learning models.
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