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Abstract

Simulations of horizontal ribbon growth of silicon using a high-order finite

element method were used to assess the sensitivity of results to the coe�cients

used in the solidification kinetics model. The position of the leading edge of

the silicon sheet showed little sensitivity to the kinetic coe�cient of roughened

growth or step propagation. However, there was a significant di↵erence in the

leading edge position and maximum pull speed predictions between three corre-

lations of two-dimensional nucleation of silicon proposed in the literature. The

deviation between the results using the three correlations increased with in-

creasing pull speed. The significant sensitivity of results to two-dimensional

nucleation coe�cient indicates the importance of accurate modeling of the two-

dimensional nucleation for horizontal ribbon growth of silicon and the possi-

bility of using HRG experiments to help improve models of two-dimensional

nucleation.
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1. Introduction

Experimental studies of horizontal ribbon growth (HRG) of silicon have

shown formation of a {111} facet near the leading edge of the sheet [1–3].

The formation of this facet is associated with the kinetic mechanisms of two-

dimensional (2D) nucleation and step propagation along the facet [4–6]. 2D5

nucleation has proven di�cult to model and there is a lot of uncertainty in

predictions of 2D nucleation. For example, Edwards [7], Voronkov [8], and Abe

[9] all estimated the supercooling associated with 2D nucleation in Czochralski

growth and the predictions ranged from 1.5 to 9 K. There are also several dif-

ferent 2D nucleation kinetic models proposed in the literature [5, 10, 11]. These10

models vary significantly in their dependence on the supercooling temperature

and are used for simulation of faceted crystals grown from melt using various

growth techniques [1, 5, 12–19].

To simulate HRG, Helenbrook et al. [1] used the solidification kinetics model

proposed by Weinstein and Brandon [5], which includes terms that model 2D15

nucleation and step propagation as well as roughened growth. They were able

to predict the existence of a facet near the triple phase junction(TPJ), where

the cooling helium jet, liquid and solid silicon meet. Helenbrook et al. [1] also

showed a maximum pull speed limit dictated by solidification kinetics as a result

of a turning point in the response of leading edge position to pull speed. Beyond20

the maximum pull speed steady solutions cease to exist. This limit is a result

of kinetics; HRG models without kinetics concluded that there was no upper

bound for pull speed [20–23] or that it was determined by other e↵ects [24, 25].

The purpose of this paper is to assess the sensitivity of HRG simulation

results to the values of kinetic coe�cients of roughened growth, step propa-25

gation, and three di↵erent correlations proposed for 2D nucleation of silicon

[5, 10, 11, 26, 27]. The main point of comparison will be the position of the

leading edge of growth as a function of pull speed. This has been measured

experimentally, so can help determine which models better predict reality. A

further goal of the paper is to assess the dependence of the predicted maximum30
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pull speed on the kinetic parameters. Accurately predicting this pull speed is

critical to assessing the commercial viability of HRG.

2. Methods

The HRG experiment and corresponding numerical model are described in

[1, 2, 28]. Here, we just give a brief overview, mainly focusing on the kinetics35

model and the parameters therein. The experiment detailed in [1, 2] had sections

for replenishment, growth, thickness control, separation and removal of silicon

sheets consecutively. As in [1, 28] only the growth section of the experiment

was modeled.

A schematic of the growth section and an adapted mesh comprised of a40

liquid region ⌦l and a solid region ⌦s are shown in Fig. 1a-b. The depth of the

domain is d = 13 mm. The cooling needed for solidification was provided by a

helium jet impinging on the top of the domain, which was modeled as a heat

flux boundary condition on the top surface. This heat flux was obtained from a

curve fit to the results of helium jet impingement simulations as a combination45

of two Gaussian distributions and a constant (see [1]).

The convection-di↵usion equation was solved for the temperature, T , in the

solid. The velocity of the solid silicon only had a horizontal component, us,1,

equal to the constant pull speed. For liquid, in addition to the convection-

di↵usion equation, continuity and Navier-Stokes equations of an incompressible50

Newtonian fluid were solved.

At the solidification interface, conservation of mass and energy were imposed.

The solidification kinetics was based on the model in [5]

�T = K(�T, ✓m)Vg (1)

where the supercooling temperature�T = Tm�T , T is the supercooled interface

temperature and Tm = 1685 K is the equilibrium melting temperature of silicon,55

and Vg is the solidification growth velocity. The kinetic coe�cient, K(�T, ✓m)

is a function of �T , and the misalignment angle, ✓m, from the {111} facet
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Figure 1: Steady state solution for case 1 with correlation 2 for K2DN at us,1 = 3.8 mm/s (a)

The schematic, sample mesh and the temperature contours at 10 K intervals (b) Zoomed-in

view of temperature contours and mesh near the TPJ with temperature contours at 2.5 K

intervals (c) The misalignment angle of the solid-liquid interface from {111} facet as a function

of position

direction. The {111} plane is about 55� from the horizontal axis assuming that

the growth initiated with [1̄00] and [011] directions pointing upward and aligned

with the growth direction respectively.60

The interface was assumed to be dislocation-free [29] and the overall kinetic

coe�cient was defined as
8
><

>:

K = K2DN , TPJ

K =
⇣
K4

rough +K4
step

⌘1/4
, elsewhere

(2)

where the kinetic coe�cient of two-dimensional nucleation (2DN), which deter-

mines the supercooling occurring at the TPJ, is given by:

K2DN = B�1e
A

�T �Tn

Three sets of values for A, B and n from literature were used as given in Table 1.65
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Table 1: Values of constants A, B and n in 2D nucleation correlation

Correlation A (K) B n Reference

1 46.67 2.22⇥ 10�1 m/(s ·K2/3) 1
3 [10, 26, 27]

2 140 1.5⇥ 1010 m/(s ·K) 0 [5]

3 14.64 3.42⇥ 10�1 m/(s ·K2/3) 1
3 [11]

Correlation 1 is based on a nucleation rate determined from Monte Carlo simula-

tions in [10], with the corrected correlation given in [27], and the polynuclear 2D

nucleation expression of [30] with simplifications given in [26]. Correlation 2 is

from [5] which simplifies the original analytically derived equation of [8, 31, 32]

by approximating n = 5/6 in the original equation with n = 1. Correlation70

3 is obtained from a 2D nucleation rate estimated from molecular dynamics

simulations and the the polynuclear 2D nucleation expression of [30].

The kinetic coe�cient of the step propagation mechanism Kstep was given

by:

Kstep =
KSN

|sin(✓m)|+ ✏step

where KSN = 1/0.63 K s/m [8] and the value of ✏step was set to machine75

precision to avoid dividing by zero. At large misalignment angles the kinetic

coe�cient of roughened growth, Krough = 1/0.122 K s/m [33], becomes domi-

nant.

Compared to the formulation in [1], there are a few minor changes. As

described in [28], a growth angle at the TPJ was added to the model. For sim-80

plicity Marangoni and buoyancy e↵ects (investigated in [28]) were not included.

All remaining boundary conditions were set the same as [28]. For the thermal

boundary condition on the top of the domain, which models the helium jet, the

three heat flux cases 1 to 3 in Ref. [1] were simulated corresponding to three

di↵erent experiments. The peak convective heat flux of each case is given in85

Table 2.

A high-order finite element method (hp-FEM) was used with fourth-degree

basis functions, and an arbitrary-Lagrangian-Eulerian (ALE) moving mesh with
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Table 2: The peak heat flux of helium jet heat fluxes studied corresponding to three experi-

mental cases in [1]

Case qpeak (MW/m2)

1 2.53

2 3.50

3 3.75

mesh adaptation was used to track the solid-liquid interface [34]. This method

provides fifth order spatial accuracy if the solution in the solid and liquid domain90

is smooth.

3. Results and Discussion

The steady state contours of temperature are shown in Fig 1a-b at us,1 =

3.8 mm/s for case 1 using correlation 2 for K2DN . This was the greatest pull

speed for which a solution was obtained and corresponds to the turning point95

behavior discussed in [1]. The TPJ is the coldest point on the interface, and this

is where 2D nucleation is assumed to occur. The step propagation mechanism

dominates near the TPJ where a vicinal surface with a small misalignment angle

is formed as shown in Fig. 1c. After the small facet, there is sharp increase in

the misalignment angle and the solidification kinetics becomes dominated by100

roughened growth.

3.1. Grid Validation

Before examining the kinetic coe�cients, a grid convergence study was per-

formed to evaluate the sensitivity of the TPJ position to grid resolution for case

1 with correlation 2 for K2DN . The target truncation error used for mesh adap-105

tation was reduced by a factor of 10 for each finer mesh. At us,1 = 3.8 mm/s,

corresponding to the turning point, the position of TPJ was at x1/d of 0.01751,

0.01736, and 0.01704 for the coarse, medium and fine meshes with about 4000,

8700 and 20000 degrees of freedom respectively. This is about 1.9% di↵erence
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Figure 2: The sensitivity of position of TPJ to the kinetic coe�cient of rough growth, Krough

for case 1 with correlation 2 for K2DN

between the medium and fine grids. At lower pull speed the solution was even110

less sensitive to the grid resolution. This is not significant relative to the sensi-

tivities to kinetics parameters discussed below. For the cases discussed below,

the target error was set equal to that of the medium mesh.

3.2. Krough

Fig. 2 shows the sensitivity of the position of TPJ to the kinetic coe�cient115

for roughened growth, Krough when it was decreased or increased by a factor

of 10 with correlation 2 for K2DN . There is only a small deviation in xTPJ at

greater pull speeds for the case with the value of Krough increased by a factor

of 10. The shape of the interface was not significantly changed as well by these

changes in Krough. When using the other two correlations for 2D nucleation120

they were similarly insensitive to Krough. Thus, uncertainties in the value of

Krough should not significantly change the solution.

3.3. Kstep

The sensitivity of xTPJ to the kinetic coe�cient of the step propagation

mechanism, Kstep is illustrated in Fig. 3 for case 1 with correlation 2. Reducing125

the coe�cient by an order of magnitude barely changes the xTPJ as shown in

Fig. 3. However, using a smaller KSN made it more di�cult to obtian converged
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Figure 3: The sensitivity of position of TPJ to the kinetic coe�cient of step propagation

mechanism, Kstep =
KSN

| sin ✓m| for case 1 with correlation 2 for K2DN

solutions, especially at lower pull speeds. The main deviation of the case with

10 times larger KSN is seen at higher pull speeds where the xTPJ is predicted

further upstream. This caused an increased pull speed at the turning point.130

The sensitivity of the solution to Kstep at higher pull speeds was slightly

dependent on the correlation used for K2DN . The correlations 1 and 3 were

respectively least and most sensitive to variations in Kstep. For instance, an

increase in KSN by a factor 10 for case 1, resulted in the maximum pull speed of

correlations 1 to 3 increase by about 4%, 5% and 15 % respectively. The results135

of correlation 2 are shown here as they showed an intermediate sensitivity to

Kstep.

Changing the value of KSN changed the length or existence of the facet as

shown in Fig. 4, which shows the misalignment angle as a function of x1/d. The

facet is the region where the misalignment angle is near 0. At the decreased140

value of KSN the length of the facet slightly increased followed by a sharper

increase in misalignment angle at the end of the facet. At the increased value

of KSN the facet basically disappeared. We note that although increasing KSN

makes this problem easier to converge, making KSN artificially large as we did

in [28] can significantly change the behavior because the facet disappears.145

8



0 0.01 0.02 0.03 0.04 0.05

-50

-40

-30

-20

-10

0

Figure 4: The sensitivity of the misalignment angle, characterizing the solidification interface

shape, to the step propagation mechanism, Kstep =
KSN

| sin ✓m| for case 1 with correlation 2 for

K2DN

3.4. K2DN

Fig. 5 shows the sensitivity of xTPJ to the kinetic coe�cient of 2D nucle-

ation. Three di↵erent correlations with constants given in Table 1 were used.

Fig. 5a-c correspond to cases 1 to 3 from Ref. [1] with three di↵erent values

of maximum helium jet cooling as tabulated in Table 2. There is a significant150

di↵erence between predictions of xTPJ among three correlations. The 2D nu-

cleation determines the maximum supercooling at the TPJ and therefore can

significantly change the solution near the TPJ. For all three cases correlations

1 and 3 predicted the lowest and highest pull speeds for the turning point.

Fig. 5 also shows experimental data from [1] with error bars. The error155

bars are based on the accuracy of optically determining the position of the

solidification leading edge. There are also errors in determining the experimental

operating conditions such as heat fluxes, pull speeds, and gas flow rates which

are propagated to the model predictions. In addition, the current model does

not include Marangoni, buoyancy, or gas flow e↵ects on the heat transfer. Our160

previous study showed that with the Marangoni e↵ects are included at a given

pull speed the TPJ moves further downstream by about 0.1- 0.2 mm at a given

pull speed, and the maximum pull speed attainable reduces (see Fig. 13 in [1]).

In our recent work [28], we also showed that Marangoni and buoyancy e↵ects
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lead to flow instabilities that result in variations in triple junction position on the165

order of a tenth of millimeter. In spite of these di↵erences, all three correlations’

predictions are close to the experimental data because the sensitivity is less at

low pull speeds. The deviations among the correlations in Fig. 5 increase at

higher pull speeds.

For all three correlations shown in Fig. 5 at a given pull speed, the TPJ170

position moved further upstream going from case 1 to 2 to 3. The cooling

profiles were characterized by the peak cooling flux, qpeak as given in Table 2

and a parameter in the Gaussian cooling profile corresponding to the width of

the jet (see [1, 28]). The peak heat flux increased by 38% and 7% from case 1

to 2 and from case 2 to 3 respectively. Moreover, the parameter corresponding175

to the width of the jet decreased by about 10% each time going from case 1

to 3. The movement of xTPJ further upstream at a given pull speed and the

increase in the maximum pull speed from case 1 to 3 for all three correlations

mainly is a result of the increase in qpeak. Between cases 2 and 3 the e↵ect

of a sharper temperature gradient in case 3 is reflected in greater disparity180

between the di↵erent correlations at lower pull speeds. This greater sensitivity

of case 3 makes it a better choice than other two configurations for studying 2D

nucleation.

Due to simplifying assumptions in the model and the limited experimental

data no conclusions can be drawn about the accuracy of these 2D nucleation185

correlations. However, the sensitivity of the results to these 2D nucleation

correlations where there is a factor of 2 di↵erence between the pull speed of

the turning point, shows the importance of an accurate correlation for 2D nu-

cleation. This high sensitivity makes HRG experiments potentially useful for

investigating 2D nucleation models if careful experiments can be done at higher190

pull speeds.

The size of the facet, and the amount of supercooling were sensitive to the

kinetic coe�cient of 2D nucleation. Fig. 6 shows that the facet size increased for

correlations 1 to 3 respectively. At 2.5 mm/s, which is near the turning point

for case 1, the facet lengths for correlations 1 to 3 shown in Fig. 6 are about195
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Figure 5: The sensitivity of the position of xTPJ to the correlation for kinetic coe�cient of

2D nucleation and experimental data from [1] for (a) case 1 (b) case 2 (c) case 3

0.066, 0.036, and 0.017 mm, which is about a factor of 4 change in facet length.

Figure 7 shows supercooling in terms of the growth rate calculated at the

triple junction. Additionally, experimental data of supercooling versus growth

rate from Czochralski growth [7–9] and float-zone growth [35] are also shown.

An average growth rate is used for [9, 35] since only a range of growth rates are200

given for the estimated supercooling. The supercooling values in these papers

are roughly determined based on an estimated temperature gradient near the
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shape, to the K2DN correlation for case 1 at us,1 = 2.5 mm/s
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Figure 7: The growth velocity as a function of supercooling for three di↵erent correlations of

2D nucleations. The experimental data are from Refs. [7–9, 35]

TPJ with the assumption that the temperature of the non-faceted portion of

the interface is the equilibrium melting temperature. The figure shows that

correlations 1 to 3 respectively predicted the greatest to smallest supercooling205

at the TPJ. Prediction of correlation 1 is close to experimental data from [35],

2 is close to [35], and 3 is close to [7]. The scatter in the experimental data

illustrates the need for more accurate experiments.
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4. Conclusions

The sensitivity of numerical simulations of horizontal ribbon growth to the210

modeling of 2D nucleation, step propagation and roughened growth was stud-

ied. The results showed almost no sensitivity to the value of kinetic coe�cient

of roughened growth and a small sensitivity to the kinetic coe�cient of step

propagation at higher pull speeds. The main sensitivity was to the 2D nu-

cleation coe�cients. This a↵ected the position of the TPJ as a function of215

pull speed, the maximum pull speed, the size of the leading edge facet, and the

amount of supercooling. Unfortunately the experiments were not precise enough

to determine which correlation was more physically accurate, but these results

do indicate that modeling 2D nucleation accurately is essential for accurately

predicting the behavior of HRG.220
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