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Abstract

Simulations of horizontal ribbon growth of silicon using a high-order finite
element method were used to assess the sensitivity of results to the coefficients
used in the solidification kinetics model. The position of the leading edge of
the silicon sheet showed little sensitivity to the kinetic coefficient of roughened
growth or step propagation. However, there was a significant difference in the
leading edge position and maximum pull speed predictions between three corre-
lations of two-dimensional nucleation of silicon proposed in the literature. The
deviation between the results using the three correlations increased with in-
creasing pull speed. The significant sensitivity of results to two-dimensional
nucleation coeflicient indicates the importance of accurate modeling of the two-
dimensional nucleation for horizontal ribbon growth of silicon and the possi-
bility of using HRG experiments to help improve models of two-dimensional
nucleation.
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1. Introduction

Experimental studies of horizontal ribbon growth (HRG) of silicon have
shown formation of a {111} facet near the leading edge of the sheet [1H3].
The formation of this facet is associated with the kinetic mechanisms of two-
dimensional (2D) nucleation and step propagation along the facet [4H6]. 2D
nucleation has proven difficult to model and there is a lot of uncertainty in
predictions of 2D nucleation. For example, Edwards [7], Voronkov [8], and Abe
[9] all estimated the supercooling associated with 2D nucleation in Czochralski
growth and the predictions ranged from 1.5 to 9 K. There are also several dif-
ferent 2D nucleation kinetic models proposed in the literature [5l [10, [11]. These
models vary significantly in their dependence on the supercooling temperature
and are used for simulation of faceted crystals grown from melt using various
growth techniques [11 [5, 12H19].

To simulate HRG, Helenbrook et al. [1] used the solidification kinetics model
proposed by Weinstein and Brandon [5], which includes terms that model 2D
nucleation and step propagation as well as roughened growth. They were able
to predict the existence of a facet near the triple phase junction(TPJ), where
the cooling helium jet, liquid and solid silicon meet. Helenbrook et al. [1] also
showed a maximum pull speed limit dictated by solidification kinetics as a result
of a turning point in the response of leading edge position to pull speed. Beyond
the maximum pull speed steady solutions cease to exist. This limit is a result
of kinetics; HRG models without kinetics concluded that there was no upper
bound for pull speed [20H23] or that it was determined by other effects [24] [25].

The purpose of this paper is to assess the sensitivity of HRG simulation
results to the values of kinetic coefficients of roughened growth, step propa-
gation, and three different correlations proposed for 2D nucleation of silicon
[5, 10, 11} 26 27]. The main point of comparison will be the position of the
leading edge of growth as a function of pull speed. This has been measured
experimentally, so can help determine which models better predict reality. A

further goal of the paper is to assess the dependence of the predicted maximum
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pull speed on the kinetic parameters. Accurately predicting this pull speed is

critical to assessing the commercial viability of HRG.

2. Methods

The HRG experiment and corresponding numerical model are described in
[1, 2 28]. Here, we just give a brief overview, mainly focusing on the kinetics
model and the parameters therein. The experiment detailed in [1},[2] had sections
for replenishment, growth, thickness control, separation and removal of silicon
sheets consecutively. As in [I, 28] only the growth section of the experiment
was modeled.

A schematic of the growth section and an adapted mesh comprised of a
liquid region €; and a solid region €, are shown in Fig. [lh-b. The depth of the
domain is d = 13 mm. The cooling needed for solidification was provided by a
helium jet impinging on the top of the domain, which was modeled as a heat
flux boundary condition on the top surface. This heat flux was obtained from a
curve fit to the results of helium jet impingement simulations as a combination
of two Gaussian distributions and a constant (see [I]).

The convection-diffusion equation was solved for the temperature, T, in the
solid. The velocity of the solid silicon only had a horizontal component, w1,
equal to the constant pull speed. For liquid, in addition to the convection-
diffusion equation, continuity and Navier-Stokes equations of an incompressible
Newtonian fluid were solved.

At the solidification interface, conservation of mass and energy were imposed.

The solidification kinetics was based on the model in [5]
AT = K(AT, 0,,)V, (1)

where the supercooling temperature AT = T,,,—T, T is the supercooled interface
temperature and T, = 1685 K is the equilibrium melting temperature of silicon,
and Vj is the solidification growth velocity. The kinetic coefficient, K (AT, 6,,)

is a function of AT, and the misalignment angle, 6,,, from the {111} facet
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Figure 1: Steady state solution for case 1 with correlation 2 for Kopn at us,1 = 3.8 mm/s (a)
The schematic, sample mesh and the temperature contours at 10 K intervals (b) Zoomed-in
view of temperature contours and mesh near the TPJ with temperature contours at 2.5 K
intervals (c¢) The misalignment angle of the solid-liquid interface from {111} facet as a function

of position

direction. The {111} plane is about 55° from the horizontal axis assuming that
the growth initiated with [100] and [011] directions pointing upward and aligned
with the growth direction respectively.

The interface was assumed to be dislocation-free |29] and the overall kinetic

coefficient was defined as

K = Kopn, TPJ o)

step

1/4
K= (Kfough + K4 ) , elsewhere

where the kinetic coefficient of two-dimensional nucleation (2DN), which deter-

mines the supercooling occurring at the TPJ, is given by:
Kopy = B~ ledr AT"

Three sets of values for A, B and n from literature were used as given in Table[T}
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Table 1: Values of constants A, B and n in 2D nucleation correlation

Correlation A (K) B n  Reference
1 46.67 222x 107! m/(s-K¥?) 1 [10,126]27]
2 140 1.5 x 10 m/(s - K) 0 5]
3 1464 342x 107! m/(s-K?*/3) 1 [11]

Correlation 1 is based on a nucleation rate determined from Monte Carlo simula-
tions in [10], with the corrected correlation given in [27], and the polynuclear 2D
nucleation expression of [30] with simplifications given in [26]. Correlation 2 is
from [5] which simplifies the original analytically derived equation of [8], 31}, 132]
by approximating n = 5/6 in the original equation with n = 1. Correlation
3 is obtained from a 2D nucleation rate estimated from molecular dynamics
simulations and the the polynuclear 2D nucleation expression of [30].

The kinetic coefficient of the step propagation mechanism K., was given

by:

Ksn
Ks ep — T A N
P Isin(0m)| + €step
where Kgy = 1/0.63 K s/m [§] and the value of ey, was set to machine

precision to avoid dividing by zero. At large misalignment angles the kinetic
coefficient of roughened growth, K,y = 1/0.122 K s/m [33], becomes domi-
nant.

Compared to the formulation in [I], there are a few minor changes. As
described in 28], a growth angle at the TP.J was added to the model. For sim-
plicity Marangoni and buoyancy effects (investigated in [28]) were not included.
All remaining boundary conditions were set the same as [28]. For the thermal
boundary condition on the top of the domain, which models the helium jet, the
three heat flux cases 1 to 3 in Ref. [1] were simulated corresponding to three
different experiments. The peak convective heat flux of each case is given in
Table 21

A high-order finite element method (hp-FEM) was used with fourth-degree

basis functions, and an arbitrary-Lagrangian-Eulerian (ALE) moving mesh with
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Table 2: The peak heat flux of helium jet heat fluxes studied corresponding to three experi-

mental cases in [1]

Case  gpear (MW /m?)

1 2.53
2 3.50
3 3.75

mesh adaptation was used to track the solid-liquid interface [34]. This method
provides fifth order spatial accuracy if the solution in the solid and liquid domain

is smooth.

3. Results and Discussion

The steady state contours of temperature are shown in Fig —b at us1 =
3.8 mm/s for case 1 using correlation 2 for Kopy. This was the greatest pull
speed for which a solution was obtained and corresponds to the turning point
behavior discussed in [I]. The TPJ is the coldest point on the interface, and this
is where 2D nucleation is assumed to occur. The step propagation mechanism
dominates near the TP.J where a vicinal surface with a small misalignment angle
is formed as shown in Fig. [[k. After the small facet, there is sharp increase in
the misalignment angle and the solidification kinetics becomes dominated by

roughened growth.

3.1. Grid Validation

Before examining the kinetic coefficients, a grid convergence study was per-
formed to evaluate the sensitivity of the TPJ position to grid resolution for case
1 with correlation 2 for Koppy. The target truncation error used for mesh adap-
tation was reduced by a factor of 10 for each finer mesh. At u,; = 3.8 mm/s,
corresponding to the turning point, the position of TPJ was at x1/d of 0.01751,
0.01736, and 0.01704 for the coarse, medium and fine meshes with about 4000,
8700 and 20000 degrees of freedom respectively. This is about 1.9% difference
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Figure 2: The sensitivity of position of TPJ to the kinetic coefficient of rough growth, Koy gn

for case 1 with correlation 2 for Kop

between the medium and fine grids. At lower pull speed the solution was even
less sensitive to the grid resolution. This is not significant relative to the sensi-
tivities to kinetics parameters discussed below. For the cases discussed below,

the target error was set equal to that of the medium mesh.

3.2. Kyough

Fig. |2| shows the sensitivity of the position of TPJ to the kinetic coefficient
for roughened growth, K,,.4, when it was decreased or increased by a factor
of 10 with correlation 2 for Kopn. There is only a small deviation in x7p; at
greater pull speeds for the case with the value of K441 increased by a factor
of 10. The shape of the interface was not significantly changed as well by these
changes in K,ougn. When using the other two correlations for 2D nucleation
they were similarly insensitive to Kjougn. Thus, uncertainties in the value of

K, ougn should not significantly change the solution.

3.3, Katep

The sensitivity of z7ps to the kinetic coefficient of the step propagation
mechanism, K is illustrated in Fig. [3| for case 1 with correlation 2. Reducing
the coefficient by an order of magnitude barely changes the x7p; as shown in

Fig.|3l However, using a smaller Kgx made it more difficult to obtian converged
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Figure 3: The sensitivity of position of TPJ to the kinetic coefficient of step propagation

Ksn

—=2N_ for case 1 with correlation 2 for Koppn
[ sin 6y, |

mechanism, Kstep =
solutions, especially at lower pull speeds. The main deviation of the case with
10 times larger Kgy is seen at higher pull speeds where the x7p; is predicted
further upstream. This caused an increased pull speed at the turning point.

The sensitivity of the solution to K, at higher pull speeds was slightly
dependent on the correlation used for Kopy. The correlations 1 and 3 were
respectively least and most sensitive to variations in Kgep. For instance, an
increase in Kgn by a factor 10 for case 1, resulted in the maximum pull speed of
correlations 1 to 3 increase by about 4%, 5% and 15 % respectively. The results
of correlation 2 are shown here as they showed an intermediate sensitivity to
Kitep-

Changing the value of Kgn changed the length or existence of the facet as
shown in Fig. |4l which shows the misalignment angle as a function of 21 /d. The
facet is the region where the misalignment angle is near 0. At the decreased
value of Kgn the length of the facet slightly increased followed by a sharper
increase in misalignment angle at the end of the facet. At the increased value
of Kgn the facet basically disappeared. We note that although increasing Kgn
makes this problem easier to converge, making K gy artificially large as we did

in [28] can significantly change the behavior because the facet disappears.
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Figure 4: The sensitivity of the misalignment angle, characterizing the solidification interface

shape, to the step propagation mechanism, Kstep = Hﬁ%l for case 1 with correlation 2 for
m

Kapn

3.4. Kopn

Fig. [5| shows the sensitivity of xrp; to the kinetic coefficient of 2D nucle-
ation. Three different correlations with constants given in Table [I] were used.
Fig. [5p-c correspond to cases 1 to 3 from Ref. [1] with three different values
of maximum helium jet cooling as tabulated in Table |2 There is a significant
difference between predictions of x7p; among three correlations. The 2D nu-
cleation determines the maximum supercooling at the TPJ and therefore can
significantly change the solution near the TPJ. For all three cases correlations
1 and 3 predicted the lowest and highest pull speeds for the turning point.

Fig. [5| also shows experimental data from [1] with error bars. The error
bars are based on the accuracy of optically determining the position of the
solidification leading edge. There are also errors in determining the experimental
operating conditions such as heat fluxes, pull speeds, and gas flow rates which
are propagated to the model predictions. In addition, the current model does
not include Marangoni, buoyancy, or gas flow effects on the heat transfer. Our
previous study showed that with the Marangoni effects are included at a given
pull speed the TPJ moves further downstream by about 0.1- 0.2 mm at a given
pull speed, and the maximum pull speed attainable reduces (see Fig. 13 in [I).

In our recent work [28], we also showed that Marangoni and buoyancy effects
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lead to flow instabilities that result in variations in triple junction position on the
order of a tenth of millimeter. In spite of these differences, all three correlations’
predictions are close to the experimental data because the sensitivity is less at
low pull speeds. The deviations among the correlations in Fig. [5] increase at
higher pull speeds.

For all three correlations shown in Fig. |5[ at a given pull speed, the TPJ
position moved further upstream going from case 1 to 2 to 3. The cooling
profiles were characterized by the peak cooling flux, gpeqr as given in Table
and a parameter in the Gaussian cooling profile corresponding to the width of
the jet (see [1I, 28]). The peak heat flux increased by 38% and 7% from case 1
to 2 and from case 2 to 3 respectively. Moreover, the parameter corresponding
to the width of the jet decreased by about 10% each time going from case 1
to 3. The movement of xpp; further upstream at a given pull speed and the
increase in the maximum pull speed from case 1 to 3 for all three correlations
mainly is a result of the increase in gpeqr. Between cases 2 and 3 the effect
of a sharper temperature gradient in case 3 is reflected in greater disparity
between the different correlations at lower pull speeds. This greater sensitivity
of case 3 makes it a better choice than other two configurations for studying 2D
nucleation.

Due to simplifying assumptions in the model and the limited experimental
data no conclusions can be drawn about the accuracy of these 2D nucleation
correlations. However, the sensitivity of the results to these 2D nucleation
correlations where there is a factor of 2 difference between the pull speed of
the turning point, shows the importance of an accurate correlation for 2D nu-
cleation. This high sensitivity makes HRG experiments potentially useful for
investigating 2D nucleation models if careful experiments can be done at higher
pull speeds.

The size of the facet, and the amount of supercooling were sensitive to the
kinetic coefficient of 2D nucleation. Fig.[6]shows that the facet size increased for
correlations 1 to 3 respectively. At 2.5 mm/s, which is near the turning point

for case 1, the facet lengths for correlations 1 to 3 shown in Fig. [6] are about

10
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Figure 5: The sensitivity of the position of x7p; to the correlation for kinetic coefficient of

2D nucleation and experimental data from [1] for (a) case 1 (b) case 2 (c) case 3

0.066, 0.036, and 0.017 mm, which is about a factor of 4 change in facet length.

Figure [7] shows supercooling in terms of the growth rate calculated at the
triple junction. Additionally, experimental data of supercooling versus growth
rate from Czochralski growth [7H9] and float-zone growth [35] are also shown.
An average growth rate is used for [9, 35] since only a range of growth rates are
given for the estimated supercooling. The supercooling values in these papers

are roughly determined based on an estimated temperature gradient near the

11
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Figure 7: The growth velocity as a function of supercooling for three different correlations of

2D nucleations. The experimental data are from Refs. [7H9, [35]

TPJ with the assumption that the temperature of the non-faceted portion of
the interface is the equilibrium melting temperature. The figure shows that
correlations 1 to 3 respectively predicted the greatest to smallest supercooling
at the TPJ. Prediction of correlation 1 is close to experimental data from [35],
2 is close to [35], and 3 is close to [7]. The scatter in the experimental data

illustrates the need for more accurate experiments.

12
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4. Conclusions

The sensitivity of numerical simulations of horizontal ribbon growth to the
modeling of 2D nucleation, step propagation and roughened growth was stud-
ied. The results showed almost no sensitivity to the value of kinetic coefficient
of roughened growth and a small sensitivity to the kinetic coefficient of step
propagation at higher pull speeds. The main sensitivity was to the 2D nu-
cleation coefficients. This affected the position of the TPJ as a function of
pull speed, the maximum pull speed, the size of the leading edge facet, and the
amount of supercooling. Unfortunately the experiments were not precise enough
to determine which correlation was more physically accurate, but these results
do indicate that modeling 2D nucleation accurately is essential for accurately

predicting the behavior of HRG.
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