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Abstract

Unsteady simulations of horizontal ribbon growth of silicon were performed

that included both Marangoni and buoyancy e↵ects. A chaotic flow was ob-

served dominated by strong Marangoni-driven jets emerging near the local tem-

perature minima on the free surface. This oscillatory flow caused the vertical

position of the leading edge of the sheet to fluctuate, resulting in corrugations

on the top surface of the ribbon. Additionally, larger amplitude and wave-

length nonuniformities appeared on the bottom of the sheet resulting in a sheet

with varying thickness. Lastly, the unsteady flow caused temporal variations in

growth rate, which when converted to distance using the pull speed, matched

the wavelengths observed on the top surface. All three of these phenomena have

been observed experimentally: The median of the surface wavelengths and am-

plitudes decreased with increasing temperature sensitivity of surface tension and

had wavelengths on the same order as experiments for a sensitivity correspond-

ing to uncontaminated silicon. Oscillations in growth rate have been observed

using passive antimony demarcation and thickness variations have been mea-

sured after sheet removal. These results indicate that the chaotic flow makes

producing thin uniform sheets using HRG challenging.
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1. Introduction

Horizontal ribbon growth (HRG) has been studied for several decades with

the aim of producing lower-cost silicon sheets for solar cells than the Czochralski

method, which involves losses due to squaring and sawing the ingots [1–19]. A

major issue in the successful growth of silicon sheets by HRG is achieving steady5

conditions so that a sheet of constant thickness can be produced.

Flow instabilities can pose a major challenge in achieving such steady con-

ditions in crystal growth from melts. The importance of flow instabilities due

to buoyancy and surface tension gradients (Marangoni e↵ects) was first inves-

tigated in floating zone (FZ) crystal growth [20–22]. Such flow instabilities,10

which can cause striations on the grown crystal, was investigated numerically

by Chang and Wilcox [20, 21] and demonstrated experimentally by Schwabe et

al. [22]. Schwabe et al. [22] studied buoyancy and Marangoni convection due

to both temperature gradients (thermocapillary e↵ect) and concentration gra-

dients (solutocapillary e↵ect) and showed that oscillatory buoyancy-Marangoni15

convection can dominate the flow. Furthermore, Schwabe et al. [23] and Chun

and Wuest [24] performed experiments on FZ with small Bond numbers (ratio of

gravity to surface tension forces) and showed the existence of steady Marangoni

convection up to a critical Marangoni number (ratio of Marangoni convection

to thermal di↵usion) beyond which the flow became unsteady. A review of20

Marangoni e↵ects in various crystal growth methods can be found in Ref. [25].

Buoyancy-related convective instabilities in cavities have been studied as

related to horizontal Bridgeman crystal growth [26, 27]. The main parameters

characterizing such instabilities are the Prandtl number, the Rayleigh number,

and the aspect ratio of the cavity. A review of buoyancy-related instabilities25

in bottom-heated cavities is given in [28]. Buoyancy-related instabilities also

appear in laterally-heated cavities where a Hadley circulation can form and

become unstable. A review of such instabilities is given in [29].

Schwabe et al. [22, 23] and Bates and Jewett [6] noted that flow instabili-

ties due to buoyancy and surface tension gradients could lead to variations in30
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heat flux during HRG. Daggolu et al. [8, 10] developed a numerical model of

HRG including buoyancy, Marangoni, and free surface motion but neglecting

the kinetics of solidification. They reported strong Marangoni flows and weaker

buoyancy-driven ones but still steady solutions.

Helenbrook et al. [12] developed a model of HRG that included Marangoni35

e↵ects and the kinetics of solidification but neglected buoyancy e↵ects. They

showed that the inclusion of solidification kinetics is essential to accurately pre-

dict the faceted solidification near the tri-phase junction (TPJ), where silicon

melt, solid, and the cold helium jet meet and significant supercooling was ob-

served. They also found steady solutions with flow speeds induced by Marangoni40

stresses two orders of magnitude larger than the pull speeds.

In experiments by Kellerman et al. [13], corrugations on the top surface

of the ribbon were observed with a wavelength of roughly 10 µm for the same

setup modeled by Helenbrook et al.[12]. They attributed these ridges on the

surface to solidification kinetics (i.e. alternating slow facet growth and fast45

roughened growth) through a heuristic limit cycle theory. They ruled out flow

instabilities due to Marangoni and buoyancy forces because they postulated

that the corrugation wavelengths caused by flow instabilities should vary in

proportion to the pull speed and this was not observed.

Sun et al. [15], duplicated the model of Helenbrook et al. [12] in COMSOL R�
50

and observed a chain of vortices in their steady solutions due to Marangoni ef-

fect, similar to that reported by Helenbrook et al. [12]. They noted that these

vortices became stronger as the cooling heat flux increased. Sun et al. [16], then

simulated HRG in a simplified model with no solidification kinetics or realistic

solid-liquid interface, but included buoyancy in addition to Marangoni e↵ects55

and looked into the unsteady solution and oscillations caused by flow instabili-

ties. Their results indicated Marangoni and buoyancy can cause oscillations in

velocity and temperature with little dependence on the pull speed.

The main purpose of this paper is to investigate the flow during HRG due to

the combination of buoyancy and Marangoni e↵ects, and see if we can explain60

some of the experimental observations [12, 13, 19]. Most previous models did not
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include kinetics which changes the temperature field significantly [2–5, 7–10, 14].

Our own previous work did not include buoyancy [12]. We also note that the

surface tension temperature sensitivity coe�cient used in our own previous work

and others [15] was probably too low as the measured value is highly sensitive65

to the presence of oxygen and other impurities [30]. A numerical model of the

experiments reported by Kellerman et al. [13], similar to the work of Helenbrook

et al. [12], was employed with buoyancy and TPJ growth angle physics added.

The results, most of which are compared to experimental observations [12, 13,

19], include the fluid dynamics, surface corrugations, growth rate variations,70

and changes in thickness

2. Methods

2.1. Solidification Model

The numerical model was set up similar to [12], with a few changes discussed

below, to simulate the experimental results reported in [12, 13, 19]. The exper-75

imental setup of Refs. [12, 13] is composed of replenishment, growth, thickness

control, separation, and removal of parts consecutively. Here, only the growth

region of the experimental setup was modeled.

A schematic of the growth region and an adapted mesh composed of a liquid

region, ⌦l, and a solid silicon region, ⌦s is shown in Fig. 1. The melt depth, d,80

in the experiments and in all of the following results was 13 mm. At the center of

the domain a cold helium slot jet impinges on the molten silicon to maintain the

growth process. This is not shown in the figure but was included in the model

using the heat removal boundary condition on the top surface. The domain

extended 4d upstream and downstream of the axial position of the center of the85

slot jet. In the experiments, there was also a heater under the molten silicon

[12, 31] which was included as a boundary condition in the numerical model as

well. (See 2.4 for more details on boundary conditions).
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Figure 1: Domain and an adapted mesh for the case with a pull speed of 0.5 mm/s. The

actual mesh resolution is four times finer because of the quartic basis functions used on each

triangular element.

2.2. Governing Equations

The temperature field in the solid is governed by the convection-di↵usion

equation (written in indicial notation)

@⇢scsT

@t
+

@⇢scsTus,j

@xj

� @

@xj

✓
ks

@T

@xj

◆
= 0 (1)

where T is temperature, t is time, xj and us,j with j 2 1, 2 denote the horizontal90

and vertical coordinates and components of solid velocity respectively. For all

of the following, the vertical velocity in the solid, u2, was zero while the hor-

izontal velocity is the solid pull speed. The density, specific heat and thermal

conductivity of the solid were taken as ⇢s = 2530 kg/m3, cs = 1000 J/(kg ·K)

and ks = 22 W/(m2 ·K) respectively [32].95

The convection-di↵usion equation governs the liquid part of the domain as

well with subscript s replaced by l to show the liquid properties. For the liquid,

we assumed, cl = cs, kl = 64 W/(m2 ·K) [32] and the density varies linearly

with temperature as

⇢l = ⇢m +
d⇢l
dT

(T � Tm) (2)

where ⇢m = ⇢s,
d⇢l

dT
= �0.23 kg/(m3 ·K), and Tm = 1685 K [33]. This assumes100

that the solid and liquid densities are equal at the equilibrium melting temper-

ature, which simplifies the implementation of the solidification jump conditions

discussed below.

The liquid velocity components are determined from the di↵erential forms
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of the conservation of mass and linear momentum of a Newtonian fluid:105

@⇢l
@t

+
@⇢lul,j

@xj

= 0 (3)

@⇢lul,i

@t
+

@⇢lul,iul,j

@xj

= � @p

@xi

+
@⌧ij
@xj

+ ⇢lgi (4)

where p is fluid pressure, the viscous stresses are given by ⌧ij = µ
⇣

@ul,j

@xi
+ @ul,i

@xj

⌘

with the dynamic viscosity of liquid silicon µ = 7 ⇥ 10�4 kg/(m · s) [32], and

gi with i 2 1, 2 are the gravitational acceleration components ( g1 = 0 and

g2 = �9.8 m/s2).110

2.3. Solid-Liquid Interface Model

At the solid-liquid interface, �I , conservation of mass requires:

J⇢(uj � ẋj)njK�I
= 0 (5)

where [[]] denotes the jump across the interface, ⇢ = ⇢s on the solid side and

⇢ = ⇢l on the liquid side, ẋj with j 2 1, 2 are the interface velocity components

and nj are components of the outward normal pointing in opposite directions for115

solid and liquid. Although at the interface liquid density varies because of kinetic

supercooling, it was assumed that at the interface ⇢l = ⇢s and therefore liquid

and solid velocities were equal. Hence, at the interface, a Dirichlet boundary

condition for the velocity components of the liquid was imposed where u1 was

set to the pull speed and u2 was set to 0.120

Conservation of energy at the interface states that the jump in the energy

flux should be equal to the flux of energy absorbed through phase change
s
�k

@T

@xj

nj

{

�I

= ⇢s(us,j � ẋj)ns,jLf (6)

Where ns,j is the outward normal to the solid at the interface and the latent

heat of fusion, Lf , was taken as 1.8⇥ 106 J/kg.

The solidification kinetics at the interface was based on the model used in125

Ref. [34] where the interface supercooled temperature is determined as

�T = K(�T, ✓m)(us,j � ẋj)ns,j (7)
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where �T = T � Tm is the temperature di↵erence of the interface from the

equilibrium melting temperature and K(�T, ✓m) is the kinetic coe�cient that

is a function of �T , and the misalignment angle, ✓m, from the {111} facet

direction. It was assumed that the growth was initiated with the [1̄00] direction130

pointing upward and the [011] direction aligned with the direction of growth.

In this case the {111} plane is about 55� from the horizontal axis. The kinetic

coe�cient was defined as:
8
><

>:

K = K2DN , sin(✓m) = 0,

K =
⇣
K4

rough
+K4

step

⌘1/4
, sin(✓m) > 0,

(8)

where

K2DN = B�1e
�A
|�T |

Kstep =
KSN

|sin(✓)|+ ✏step

and A = 140 K and B = 1.5⇥ 1010 K s/m, Krough = 79.4 K s/m, and KSN =

144 K s/m [34]. The value of ✏step was set to machine precision (i.e. about135

10�16) to avoid division by zero. K2DN models the two-dimensional nucleation

mechanism of crystal growth, which we assume occurs at the TPJ where the

temperature is lowest as shown in [12]. The growth along a facet is dominated

by step nucleation mechanism, Kstep. As the misalignment angle ✓m increases,

the crystal growth becomes rough on the atomic scale and the kinetic coe�cient140

value is dominated by Krough. The value of KSN was set about 90 times greater

than the value in Ref. [34] to avoid high sensitivity to misalignment angle that

led to convergence issues. In previous work, we found that if the value of KSN

from Ref. [34] were used, the facet is slightly flatter and there is a sharper

transition to roughened growth. Equation 6 coupled with the solidification145

kinetics was used to determine the normal interface velocity.

2.4. Boundary Conditions

At the left side of the domain, the inlet velocity components and temperature

were specified as an isothermal channel flow u1 = us,1

⇣
1�

�
x2
d

�2⌘
, u2 = 0 and
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T � Tm = 5 K. At the right of the domain, an outflow condition was imposed150

for the liquid by setting a zero total stress. A condition of zero heat flux was

applied for both solid and liquid on the right side of the domain.

A growth angle of ✓g = 11� was imposed by constraining the direction of

motion of the TPJ relative to the normal to the free surface, such that

(ẋTPJ,j � us,j)njp
(ẋTPJ,j � us,j) (ẋTPJ,j � us,j)

= sin ✓g (9)

where (ẋTPJ,j � us,j) are components of mesh velocity at the triple junction155

point relative to the solid motion [35, 36] . If ✓g = 0, this forces the solidification

at the TPJ to grow tangent to the free surface. A growth angle of 11� results in

the free surface approaching the TPJ from an 11� incline relative to horizontal

in the steady state case.

As the height of the TPJ varied, this varying height was translated with the160

pull speed along the top surface of the solid. Therefore, corrugations could be

observed along the top surface of the solid. Because the mesh became coarser

away from the TPJ, the smaller wavelengths became unresolved on the top

surface of the solid. To fix this issue, the corrugations on the top surface of the

solid were reconstructed analytically from the variations in the position of the165

TPJ.

The flow boundary conditions at the free surface of the liquid were the

kinematic condition that there is no flow through to the interface

(ul,j � ẋj)nj = 0 (10)

and the stress on the free surface was defined to be equal to stresses due to the

surface curvature and the temperature dependence of surface tension (i.e. the170

Marangoni e↵ect):

�pni + ⌧ijnj =
@�(T )ti

@s
(11)

where ti denote the components of the unit tangent vector to the free surface

and the surface tension, �, is a function of temperature. � was taken as � =

�0 + d�

dT
(T � Tm), �0 had a value of 0.735 N/m [32] and two values of the
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Table 1: Pull speeds, temperature sensitivities of surface tension and curve fit parameters of

the helium jet heat flux, qc, for cases studied

Case us,1

�
mm
s

�
d�

dT

�
N

m·K
�

qpeak
�
MW
m2

�
w (mm)

1 0.5 1⇥ 10�4 0.95 0.68

2 0.7 1⇥ 10�4 1.26 0.59

3 1 1⇥ 10�4 2.53 0.42

4 0.7 4⇥ 10�4 1.26 0.59

surface tension temperature sensitivity were studied. d�

dT
= �4 ⇥ 10�4 which175

corresponds to pure silicon in argon atmosphere [37] and a reduced value of

d�

dT
= �1⇥ 10�4 which corresponds to presence of some impurities in the melt

[30].

The thermal boundary condition on the top of the domain, for solid and

liquid, was a specified heat flux as180

q = qc + qr (12)

where the convective heat flux of helium, qc was modeled as

qc = qbase + qpeak
⇣
(1� ⇣)2�(x/w)2 + ⇣2�(x/wb)

2
⌘

(13)

where qbase, qpeak, ⇣, w and wb are curve fit coe�cients. The curve fit was based

on results of three ANSYSR� Fluent 16.2 simulations of the slot jet for di↵erent

helium flow rates [12]. For all the cases here, qbase = 164 kW/m2 represents the

conductive heat transfer between the melt and helium, ⇣ = 0.55, wb = 1.44 mm185

and values of qpeak, and w are given in Table 1 along with pull speeds and values

of d�

dT
of these cases. Note that the heat fluxes for cases 1, 2 and 4 were based

on the experimental work of Kellerman et al. [13] with the helium flow rate of

QHe = 1.9 L/min and QHe = 2.5 L/min respectively. Case 3 had the same qc

as the first case of Helenbrook et al. [12] with QHe = 5.0 L/min. The radiation190

heat flux, qr, between the silicon and the water cooled block that contained

the helium slot jet was modeled assuming the block to be a horizontal surface
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centered above the domain. The e↵ect of the growth angle on surface shape was

neglected (i.e. the liquid and solid surfaces were assumed to be flat at x2 = 0).

The temperatures of the enclosure around the free surface and the surfaces of195

the solid and liquid silicon were assumed to be Tm, and the water cooled block

surface was assumed to be Tc. The water cooled block and the enclosure were

assumed to be black and the silicon surface was assumed to be gray and di↵use.

The radiative heat flux is then given by

qr = ✏�bF (x1)(T
4
m
� T 4

c
) (14)

where ✏ is the emissivity and has di↵erent values of ✏l = 0.2 and ✏s = 0.6 for200

liquid and solid respectively. The Stefan-Botlzman constant is denoted as �b

and F (x1) is the view factor between the water-cooled block at Tc = 300 K and

the top surface defined as [38]

F (x1) =
sin�2 � sin�1

2
(15)

where

sin�1 =
�wr/2� x1q

(�wr/2� x1)
2 + h2

r

sin�2 =
wr/2� x1q

(wr/2� x1)
2 + h2

r

where the width of the block was wr = 5 cm and the height of the block from

the top of the melt (i.e. from x2 = 0) was hr = 3 mm. The behavior of F (x1)205

is shown in Fig. 2.

At the bottom of the domain, a no-slip boundary condition and specified

heat flux were imposed. The stabilizing heat flux from the bottom was set to

match case 1 from Ref. [12]. In the experiment, a heater was located under the

melt with about the same width as the water cooled block. To model this, the210

bottom heat flux was given in kW/m2 as

qb = 244.4F (x1) (16)

where the view factor function F (x1) was used as a convenient function for

confining the heat addition to the region below the water cooled block.
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2.5. Numerical Method

A third-order accurate, 4-stage, L-stable diagonally implicit Runge-Kutta215

(DIRK) scheme was used for time advancement. A high order finite element

method (hp-FEM) using fourth-degree basis functions on triangular elements

was used to obtain the numerical solution in space [39]. The hp-FEM used the

streamline-upwind Petrov-Galerkin (SUPG) stabilization approach for the equal

order pressure and velocity approximation space [39]. An arbitrary-Lagrangian-220

Eulerian (ALE) moving mesh method was used to track the solid-liquid inter-

face. the liquid free surface and the solid free surface while adapting the mesh

to maintain quality and accuracy as detailed in Ref. [39]. Mesh adaptation was

based on achieving a uniform target truncation error over the domain. We also

put a restriction on the minimum resolution, lmin, to avoid exessive refinement225

near singular points. A transient mesh with mesh adaptation is shown in Fig.

1.

Initial conditions were chosen as detailed in appendix 5.1. A steady solution

without Marangoni and buoyancy e↵ects was first obtained during the process

(discussed in appendix 5.2). For cases 1 to 3 the results were then obtained at230

a constant time step of �t = lmin
us,1

where lmin = 5 µm. The time-stepping was

done for a total time of 8d
us,1

. The time step was set so that the corrugations

on the top surface of the solid travel about 5 µm at each time step, allowing

observation of wavelengths as small as 10 � 15 µm, which were reported by
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Kellerman et al. [13].235

For case 4, the lmin and �t were reduced by a factor of 4. The simulation for

this case was continued from the last time step of case 2 and d�

dT
was increased

to 4 ⇥ 10�4 N/(m ·K). At the increased d�

dT
the maximum velocity in the

flow achieved on the free surface increased by a factor of about two. This was

achieved after only 10 time steps indicating the e↵ect of new value of d�

dT
has240

been established on the free surface. The results presented for case 4 ignored the

first 300 time steps to discard data a↵ected by transition in d�

dT
. Convergence at

d�

dT
= 4⇥ 10�4 N/(m ·K) proved to be more di�cult and the time-stepping was

only continued for about 1.4d
us,1

. Because the wavelengths were smaller for this

case, more waves were detected than in case 2 and therefore the data was more245

statistically converged in terms of the median of wavelengths and amplitudes.

3. Results and Discussion

3.1. Flow Dynamics

The flow field was unsteady and did not approach a steady solution. Al-

though the velocity magnitudes due to the Marangoni e↵ect were dominant250

compared to the maximum velocity due to buoyancy, the inclusion of buoy-

ancy in the model was essential to observe the unsteadiness. With buoyancy in

the model, even with no Marangoni stresses, the flow was unsteady at all pull

speeds. Helenbrook et al. [12] reported steady laminar solutions of a similar

model with d�

dT
= �7⇥ 10�5 N/(m ·K) from simulations when buoyancy e↵ects255

were neglected.

The time-averaged maximum flow speeds, and velocity scales of buoyancy

and Marangoni e↵ects along with relevant nondimensional numbers of the flow

are given in Table 2. The velocity scale of Marangoni convection can be esti-

mated using dimensional analysis considering Maranogni and viscous stresses260

being on the same order of magnitude. This gives an estimate of Marangoni

velocity scale to be VM =
d�
dT

�T
LM

Lv

µ
where LM and Lv are the length scales of

Marangoni convection and viscous e↵ects. Noting that the dominant heat flux
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Table 2: Time-averaged maximum flow speeds Vmax; Marangoni and buoyancy velocity scales,

VM and Vb, from dimensional analysis; and dimensionless parameters Ma, Gr, and Remax

Case
Vmax

(cm/s)

VM

(cm/s)

Vb

(cm/s)
Ma Gr · 10�5 Remax · 10�3

1 9.0 7.5 1.1 38.8 2.6 4.2

2 9.5 7.5 1.2 38.7 3.0 4.5

3 10.4 7.7 1.4 39.4 4.2 4.9

4 22.9 30 1.2 154 3.0 10.8

is due to the helium jet cooling, a temperature di↵erence scale can be estimated

as qpeakw

k
where w is the scale of helium jet width (see section 2.4). This gives a265

reasonable estimate on the order of 10 K that was observed in simulation results.

The proper length scales for viscous and Marangoni e↵ects to obtain reasonable

velocity scales were found to be w and d, respectively. Therefore, the Marangoni

velocity scales were estimated as VM =
d�
dT qmaxw

2

kdµ
and the Marangoni number

was defined as Ma = VMd

↵
=

d�
dT qpeakw

2

kµ↵
.270

Using the same temperature scale, the buoyancy velocity scale and Grashof

number were determined as Vb =
q

g�qpeakwd

k
and Gr = g�qpeakwd

3

k⌫2 . A Reynolds

number based on the time-averaged maximum velocity, Vmax can be defined as

Remax = Vmaxd

⌫
. Clearly, the flow in all cases was dominated by Marangoni-

induced flows. Marangoni and buoyancy e↵ects should be comparable at d�

dT
275

smaller by an order of magnitude (e.g. due to impurities in silicon).

Hadid and Roux [26] studied the combined e↵ects of buoyancy and ther-

mal Marangoni convection in open cavities heated laterally and showed that

Marangoni convection can decrease the critical Grashof number at which the

flow became unstable, even if the Marangoni e↵ects were not dominant. Here,280

the maximum velocity and the vortical structures are similar to what was ob-

served in the in steady solutions of Ref. [12], which did not have buoyancy.

Therefore, in this work Marangoni convection dominates the flow and buoyancy

appears to induce instability.
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Fig. 3 shows four consecutive snapshots of the unsteady temperature and285

velocity fields. The line plots show the velocity magnitude and temperature on

the free surface aligned with the subsequent contour plots. Video 1 shows a

movie of the flow in a similar manner to Fig. 3. In our unsteady simulations,

a supercooled region was always present in front of the TPJ and there was a

point of minimum temperature on the surface in this region near the TPJ. This290

point is identified by a circular marker in the zoomed-in views of the line plots

shown to the right at the full line plots in Fig. 3. At this point, surface tension

attained its maximum value and pulled the melt at the surface from both sides.

This pull often created a small counterclockwise vortex, between this point

and the TPJ, similar to what was reported in steady solutions of Helenbrook295

et al. [12] (see the zoomed-in views of Fig. 10 in [12] or the zoomed-in view of

velocity magnitude contour plot in Video 1 at time t = 86.7s). The small vortex

quickly rolled up into a jet and merged with the large clockwise vortex beneath

the TPJ. This vortex circulated cold fluid downward and warm fluid upward

creating the alternating cold and hot temperature fields seen in Fig. 3a-d.300

Generally, the minimum supercooled surface temperature fluctuated and as

it became colder or warmer, it moved further upstream or downstream respec-

tively and the TPJ followed it. It is notable that the point of the high-velocity

jet emerging near the TPJ in zoomed-in surface profiles of Fig. 3 follows the

point of minimum temperature with a lag. This time lag between the point305

of maximum surface tension and jet position keeps disturbing the velocity field

that in turn disturbs the temperature field as it changes. Such interactions be-

tween temperature and velocity fields contribute to the unstable flow field and

aperiodic changes in the TPJ position.

Downstream to the right of the large clockwise vortex beneath the TPJ,310

there were three other large vortices rotating in counterclockwise, clockwise,

and clockwise directions respectively. Ordinarily, three other large vortices could

be discerned upstream of the large vortex beneath the TPJ that from the most

upstream one were rotating in counterclockwise, clockwise, and counterclockwise

directions respectively. Buoyancy fed energy into these large vortices as it pulled315
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the colder melt from the surface or just beneath the sheet downward and pushed

the hotter melt near the bottom upward.

Additionally, there were one or more regions of low temperature further

upstream of the TPJ. Often, there was a point of minimum temperature on

the surface of these regions and as the unsteady temperature field evolved,320

these regions could attain supercooled temperatures temporarily. At such local

maxima of surface tension, the melt was pulled from both sides. In some cases,

initially, a temporary small vortex formed at these points that returned the cold

melt to the surface. These small vortices were short-lived and rolled up into a

jet streaming into the melt. Fig. 3b shows a clear formation of such a jet around325

x1 = �1.8 cm.

The position of jet ejection into the melt in the velocity profiles along the

surface can be discerned as points where velocity sharply decreases towards

zero similar to a stagnation point. Notably, the position of the jet at the surface

closely follows the point of minimum temperature in Fig 3. As the position330

of the minimum temperature changed, the jet moved back and forth. The

temperature at that point increased as the warmer melt moved towards the

point of minimum temperature or as the point moved away from the middle

of the domain with the maximum cooling. Conversely, movement of the point

further downstream towards the point of maximum cooling by the helium jet,335

decreased its temperature. Eventually, jets were either pulled towards the TPJ

or away from it. If pulled towards the TPJ they often became stronger and

merged with the jet streaming at the minimum temperature near the TPJ into

a stronger cold jet flowing into the crucible. The movement of a jet and merging

with the jet at the TPJ are shown in Figs. 3c and 3d. If moved away from the340

TPJ, such jets became weaker and eventually disappeared. Additionally, these

cold high velocity jets streamed into the melt and disrupted the temperature

field and large vortices beneath and upstream of the TPJ. Such disruptions in

the flow field are shown in Figs. 3b to 3d .

The time history of flow speed and temperature at a point near the TPJ,345

(�d/10, �d/10), is shown in Fig. 4. These oscillations correspond to the un-

15



-5 -4 -3 -2 -1 0
1670
1680
1690

0
5
10

-0.15 -0.1
1670
1680
1690

0
5
10

-5 -4 -3 -2 -1 0
1670
1680
1690

0
5
10

-0.15 -0.1
1670
1680
1690

0
5
10

-5 -4 -3 -2 -1 0 1 2 3 4 5

-1

-0.5

0

x1 (cm)

x 2
 (c

m
)

T (K)

1680

1690

1700

1710

1720

0

5

1680 1685 1690 1695 1700 1705 1710 1715 1720

0 1 2 3 4 5 6 7 8

-5 -4 -3 -2 -1 0 1 2 3 4 5

-1

-0.5

0

x1 (cm)

x 2
 (c

m
)

V (cm/s)

0

2

4

6

8

0

5

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

-5 -4 -3 -2 -1 0 1 2 3 4 5

-1

-0.5

0

x1 (cm)

x 2
 (c

m
)

V (cm/s)

0

2

4

6

8

0

5

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

-5 -4 -3 -2 -1 0 1 2 3 4 5

-1

-0.5

0

x1 (cm)

x 2
 (c

m
)

T (K)

1680

1690

1700

1710

1720

0

5

1680 1685 1690 1695 1700 1705 1710 1715 1720

0 1 2 3 4 5 6 7 8

-5 -4 -3 -2 -1 0 1 2 3 4 5

-1

-0.5

0

x1 (cm)

x 2
 (c

m
)

T (K)

1680

1690

1700

1710

1720

0

5

1680 1685 1690 1695 1700 1705 1710 1715 1720

0 1 2 3 4 5 6 7 8

-5 -4 -3 -2 -1 0 1 2 3 4 5

-1

-0.5

0

x1 (cm)

x 2
 (c

m
)

V (cm/s)

0

2

4

6

8

0

5

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

(b)

(c)

(d)

-5 -4 -3 -2 -1 0
1670
1680
1690

0
5
10

-0.15 -0.1
1670
1680
1690

0
5
10

t = 77.9 s

-5 -4 -3 -2 -1 0 1 2 3 4 5

-1

-0.5

0

x1 (cm)

x 2
 (c

m
)

T (K)

1680

1690

1700

1710

1720

0

5

1680 1685 1690 1695 1700 1705 1710 1715 1720

0 1 2 3 4 5 6 7 8

-5 -4 -3 -2 -1 0 1 2 3 4 5

-1

-0.5

0

x1 (cm)

x 2
 (c

m
)

V (cm/s)

0

2

4

6

8

0

5

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

-5 -4 -3 -2 -1 0
1670
1680
1690

0
5
10

-0.15 -0.1
1670
1680
1690

0
5
10

t = 82.4 s

t = 86.4 s

(a)

t = 87.2 s

Figure 3: Four consecutive snapshots of profiles of temperature and velocity along the melt sur-

face and corresponding temperature and velocity contours for case 1 (
d�
dT = 1⇥10

�4
N/(m ·K)

and us,1 = 0.5 mm/s). The contours of temperature and velocity are respectively 5 K and 0.5

cm/s apart. The marker in the zoomed-in views identifies the point of minimum temperature.
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Figure 4: Time histories of the temperature and flow speed at a point near the TPJ, at (-d/10,

-d/10), corresponding to the unsteady flow shown in Fig. 3.

steady flow shown in Fig. 3. A range of time scales can be observed with the

average frequency of temperature and velocity oscillations being 1.25 and 1.85

Hz respectively. The temperature often oscillates almost in-phase with velocity

fluctuations with a small time lag. When, temperature and velocity fluctuations350

are almost in-phase, the flow is dominated by the large vortex beneath the TPJ.

This vortex brings the warmer melt from the bottom to near the surface. The

vortex velocity is oscillatory due to buoyancy and Marangoni e↵ects, its inter-

action with vortices upstream and downstream of it, and the bottom wall of the

crucible. As the velocity of the vortex fluctuates, so does the rate of convective355

heat flux it provides. Therefore, the temperature fluctuations follow the velocity

oscillations, though the smaller velocity oscillations get di↵used out.

The largest oscillations and smallest time scales are observed at about t =

87 s and t = 92.5 s when the high velocity jet formed due to Marangoni e↵ect

passes through (�d/10, �d/10) (See Fig. 3c and 3d and Video 1). At these360

times, the oscillations appear to be almost ⇡ out of phase as the Marangoni jet

streams the supercooled flow from the surface and causes a sharp decrease in

the temperature.

For the case 4 where d�

dT
= 4 ⇥ 10�4 N/(m ·K), compared to case 2 with

d�

dT
= 1⇥ 10�4 N/(m ·K), Vmax induced by surface tension gradients increased365

by a factor of about 2.4 as shown in Table 2. Therefore, in this case, jets of
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higher velocity streamed into the crucible, and reduced the time scales of flow

oscillations.

Comparing cases 1 to 3 with d�

dT
= 1 ⇥ 10�4 N/(m ·K), increasing the pull

speed from 0.5 to 1 mm/s, no significant change in flow characteristics was370

observed. This was expected as the flow field was dominated by buoyancy and

Marangoni e↵ects inducing velocity magnitudes much larger than the pull speed.

As these dynamics in the flow field caused large changes in velocity magni-

tude and direction near the TPJ, the height and horizontal position of the TPJ

varied. As the leading edge of the sheet was pulled with varying heights and po-375

sitions, corrugations were formed on the top surface of the solid sheet. Similarly,

the solidification interface was also a↵ected by this dynamic flow field resulting

in large variations in the shape of the sheet on the bottom and therefore the

sheet thickness.

3.2. Corrugations on the Top Surface of the Sheet380

Corrugations observed for case 1 are shown in Fig. 5a. A zoomed-in view

is shown in Fig. 5b along with the results for case 1 with a finer mesh and a

smaller time step to assess the sensitivity of the results to spatial and temporal

resolutions. The simulation for the refined mesh was started from a solution of

case 1 and was repeated for a portion of simulation time. The time step was385

reduced by a factor of two, the truncation error target reduced by an order of

magnitude (resulting in an increase in the average number of degrees of freedom

of the mesh by a factor of almost two), and lmin was reduced by half. Note that

the surface corrugations were pulled to the right and thus in Fig. 5b the initial

point of refined simulations is at x1 = 67.2 mm. As the simulation advanced390

in time the deviation between the resulting corrugations of original and refined

cases increased. Considering the chaotic flow field dynamics discussed in 3.1

this is not surprising. This flow has all of the characteristics of a chaotic sys-

tem, namely unsteady, aperiodic, broad-spectrum solutions that diverge when

perturbed (in this case by a refinement to the mesh).395

Furthermore, Fig. 5b indicates that the average wavelengths are slightly
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Figure 5: Corrugations on the top surface of solid: (a) Corrugations from simulations for case

1 with
d�
dT = 1⇥ 10

�4
N/(m ·K) and us,1 = 0.5 mm/s (b) A zoomed-in view of corrugations

of case 1 and the results for case 1 refined with a finer mesh and time step halved (c) A part

of surface corrugations for case 4 with
d�
dT = 4 ⇥ 10

�4
N/(m ·K) and us,1 = 0.7 mm/s (d)

Experimental results of Kellerman et al. [13] using confocal microscopy.

smaller in the refined case suggesting that more refined spatial and temporal

simulations would converge to results with slightly smaller wavelengths. Despite

the high order spatial and temporal schemes used, the results still can converge

slowly because of the singular nature of the solution at the TPJ [11, 17, 40, 41].400

The surface corrugations from the last portion of the simulation of case 4

with d�

dT
= 4⇥10�4 N/(m ·K) are shown in Fig. 5c and the experimental results

using confocal microscopy from Kellerman et al. [13] are reproduced in Fig. 5d

for comparison. Note the change in units of the x1-axis to µm in Figs. 5c and

5d from mm in Figs. 5a and 5b. Also, x2 varies in a range of about 2 µm and405

0.7 µm in Figs. 5c and 5d respectively.

Statistics of the wavelengths including the number of detected wavelengths

N , median and mean of the wavelength of corrugations, �̃ and �, minimum and

maximum wavelengths, �min and �max and the median and mean of peak-to-

peak wave amplitudes, Ã and A, are given in Table 3 for both the numerical and410
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experimental results. Unlike the reports from [13], �̃ does show some dependence

on pull speed, however, this dependence is not consistent across di↵erent ways

of measuring wavelength. For example, �min and �max (the maximum and

minimum distance between local extreme) show little sensitivity to pull speed

while � increases from case 1 to 2 but barely changes from case 2 to case 3.415

For case 4, in agreement with with Fig. 5c, �̃ assumed a much smaller value

of 80 µm compared to case 2, but is still larger than the experimental values

shown on the last line of the Table 3. Finally, note that Ã values in Table 3 are

on the same order as experimental results shown in Fig. 5d from Kellerman et

al. [13]. For cases 1 to 3, the values of Ã is about three times larger than the420

experimental corrugations shown in Fig. 5d and for case 4, Ã is 42% greater

than the experimental value.

The average oscillation frequency for case 1 with us,1 = 0.5 mm/s, is roughly

0.85 Hz, which is close to frequencies observed near the TPJ in Fig. 4 (notably

the temperature oscillations with an average frequency of 1.25 Hz). Thus, the425

surface lines are a flow-driven phenomena. The median wavelengths of cases 1

to 3 correspond to TPJ vortical oscillations of about 1 Hz for all three cases.

As mentioned in section 3.1 and can be seen in Fig. 3a, there is a large vortex

beneath the TPJ with a diameter of the same size as the depth of the melt.

Noting the velocity scale of about 3.5 cm/s, the turnover time of this vortex430

matches the observed frequency and could be the reason for the observation

of increasing wavelength proportional to pull speed. In case 4, there was a

stronger jet similar to that shown in Figs 3b-d near the TPJ disrupting the

vortex. When not disrupted by cold jets streaming from the surface, the velocity

of this vortex was about 6 cm/s corresponding to a frequency of about 1.5 Hz.435

However, for case 4 rather than a corresponding median wavelength of about

450 µm, �̃ of about 80 µm was observed. Therefore, it seems that only some of

the wavelengths corresponding to vortical structures in the flow with a specific

frequency scaled with pull speed.

Kellerman et al. [13] gradually increased the pull speed from 0.3 mm/s440

to 0.8 mm/s while increasing the cooling provided by the helium jet in their
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Table 3: Pull speeds; temperature sensitivities of surface tension; number, median, mean,

minimum, and maximum of wavelengths; and the median and mean of the peak-to-peak

amplitude of the surface waves

Case us,1
�
mm
s

�
d�

dT�
N

m·K
�

N �̃

(µm)

�

(µm)

�min

(µm)

�max

(mm)

Ã

(µm)

A

(µm)

1 0.5 1⇥10�4 176 518 588 40 3.2 0.43 0.82

2 0.7 1⇥10�4 104 699 999 70 5.3 0.34 1.20

3 1 1⇥10�4 97 1013 1067 33 3.9 0.41 1.61

4 0.7 4⇥10�4 127 80 143 7 1.2 0.17 0.75

Exp.⇤ 0.5 — 17 21 25 12 0.065 0.12 0.16

⇤ Experimental data from Fig. 5d

experiment from which they concluded surface wavelengths are independent of

pull speed (Similarly, we increased the corresponding cooling heat flux on the

top boundary condition as detailed in 2.4). However, as they increased both

the pull speed and helium jet flux, they may have caused larger Marangoni445

stresses near the TPJ with corresponding smaller time scales such that the

average wavelengths did not change significantly. Also, although not included

in our model, as the pull speed increases, the segregation of solutes in the melt

increases [10]. This can cause Marangoni stresses due to concentration gradients.

Furthermore, the thermal Marangoni stresses could be large, similar to case450

4, such that jets streaming into the flow due to Marangoni stresses disrupted

the vortical structures with specific frequencies that can result in wavelengths

increasing proportional to pull speed. Finally, note that there is some variance

in the experimental wavelengths as shown in Table 3 and the wavelengths in our

results showed no clear dependence on pull speed in terms of mean, maximum455

or minimum wavelength.
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3.3. Growth Rate Variations

In addition to surface corrugations, the unsteady flow also causes fluctuations

in solidification rate. As the temperature, flow field, and heat fluxes change near

the solid-liquid interface, the growth rate of silicon changes as well. To quantify460

this, we first note that the leading edge growth is faceted. This was shown in

our previous simulations [12] and also can be seen in Video 1 or by zooming

in on the TPJ regions shown in Fig. 3. Because of this, the solidification

velocity of the facet can be calculated as Vg = us,1 sin(✓f ) + ẋTPJ,jnj where

✓f = 55� is the {111} facet angle. The growth rate variations at the TPJ for465

case 1 are shown in Figs. 6a-b. The experimental results of Kellerman et al.

[13] obtained using a passive antimony demarcation method are shown in Fig.

6c for comparison. The high sensitivity of antimony segregation coe�cient to

growth rate is used in Fig. 6c, combined with a Wright etch [42] to delineate

regions of high and low antimony, as an indicator of changes in growth rate.470

Note that to make comparisons with experiments easier, changes of growth rate

in time were mapped to their respective positions along the sheet considering

the pull speed and the changing position of the TPJ.

Large gradients in light intensity in Fig. 6c corresponds to sharp changes in

growth rate. Fig. 6d shows the mean light intensity along the horizontal direc-475

tion side of the parallelogram-shaped region in Fig. 6c normalized by maximum

light intensity. The mean light intensity was averaged along a line parallel to

the smaller side of the parallelogram, which aligned with the facet. Note that

the growth in the cross-section shown in Fig. 6c was double faceted with a

facet intersection point below the surface. This configuration was studied in480

[18] but has not been included in the current model. The noisiness of the photo

is reflected in the light intensity line plot. However, three regions with sharp

changes in growth rate are distinguishable and they are qualitatively similar to

the gradients in growth rate shown in Fig. 6b.

The spacings between sudden changes in growth rate experimentally ob-485

served in Fig. 6d are similar to experimental wavelengths in Fig. 5b. Similarly,

the spacings between the sharp changes in growth rate from simulations in Fig.
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Figure 6: Growth rate variations (a) simulation results for case 1 with
d�
dT = 1⇥10

�4
N/(m ·K)

and us,1 = 0.5 mm/s (b) a zoomed-in view of case 1 (c) experimental results of Kellerman

et al. [13] using antimony demarcations to show regions of sharp gradients in growth rate

(d) mean light intensity normalized by maximum light intensity along the longer side of the

parallelogram-shaped region

6a-b are close to wavelengths obtained from our numerical model in Fig. 5a.

Thus, these wavelengths scale with d�

dT
like the surface corrugations. Further-

more, note that sudden changes in growth rate in Figs. 6a-b can be on the490

same order as the steady-state growth rate itself as the growth rate sharply

drops from a maximum value to a minimum value. Therefore, these large varia-

tions in growth rate can cause the experimental passive antimony demarcation

observations. As both the surface corrugations and growth rate variations ob-

served in the experiment can be explained by the chaotic flow dynamics due to495

Marangoni stresses and buoyancy, there seems to be no need for the heuristic

limit cycle theory proposed in [13, 19] to explain these phenomena.

3.4. Variations in Thickness

As the solidification interface responded to the changing flow field, the in-

terface shape changed significantly. Deformations in the shape of the bottom500

of the sheet, which were often much larger than the surface corrugations, are
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shown in Fig. 7. The interface underwent large variations in shape near the

TPJ due to the highly unsteady flow near it. This resulted in the formation of a

varying sheet thickness as shown in Fig. 7. Video 2 shows a movie of the sheet

thickness in a manner similar to Fig. 7. The variations in thickness formed near505

the TPJ did not change significantly further downstream and were pulled with

the sheet. This is shown by the markers in the figures, which translate with the

pull speed and track the thickness variations. The top surface of the sheet is

also shown in Fig. 7 where surface corrugations are barely noticeable compared

to deformations on the bottom of the sheet.510

Such non-uniformities in the sheet thickness were reported by Daggolu et

al. [19] as a major challenge in achieving a sheet with constant thickness. To

achieve their target thickness of 200µm they added a thickness control sec-

tion with several heaters after the growth section, controlled by a model-based

thinning algorithm, to reduce the thickness and improve the uniformity. They515

carried out a few iterations to improve thickness and uniformity. Their data

indicates that even after iterative improvement in the thickness control section,

the standard deviation of thickness was on the same order of magnitude as the

ribbon thickness. Daggolu et al. [19] did not pinpoint the main reason for thick-

ness variations and mentioned “non-idealities in equipment, gas interaction and520

melt convection e↵ects”. The numerical results show that the thickness varia-

tions are caused by the chaotic flow.

4. Conclusions

An unsteady simulation of a horizontal ribbon growth model including Marangoni

and buoyancy e↵ects was carried out. It was found that the combination of525

Marangoni and buoyancy e↵ects causes an unsteady chaotic flow. The flow

field near the TPJ was dominated by Marangoni e↵ects and the buoyancy de-

creased the critical Marangoni number at which the flow becomes unstable. The

flow field was characterized by significant changes driven by cold jets stream-

ing into the crucible from the surface near the points of minimum temperature530
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Figure 7: Variations in sheet thickness for case 2 with
d�
dT = 1⇥ 10

�4
N/(m ·K) and us,1 =

0.7 mm/s.

(i.e. maximum surface tension). There was often a jet just upstream of the

TPJ near the point with minimum supercooled temperature and one or more

jets emerging from local minima in temperature further upstream. There was

a coupling between velocity and temperature oscillations and temperature os-

cillations as the jets moved back and forth to follow the varying position of535

minimum temperature.

As the TPJ position varied due to this unstable flow field, surface corruga-

tions were formed on the top surface of the sheet. Similarly, as the interface

adapted to this chaotic flow, large nonuniformities appeared on the bottom of

the solid resulting in a sheet with large variations in thickness. Furthermore,540

the results showed sharp and large changes in growth rate at the TPJ on the

order of the growth rate itself. These behaviors have all been observed in the

experimental results of Kellerman et al. [13] and Daggolu et al. [19]. Thus, the

chaotic flow seems to qualitatively explain most of the experimentally observed
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phenomena.545

Quantitatively, the median of the peak-to-peak amplitude of the surface

corrugations was on the same order as the experimental values and reduced for

the case corresponding to pure silicon with a greater temperature sensitivity of

surface tension. Similarly, the wavelength of surface corrugations reduced with

increasing temperature sensitivity of surface tension to values on the same order550

as those from experiments. The dependence of amplitudes and wavelengths on

pull speed was not clear. However, results suggests that only some surface wave-

lengths, likely due to vortical structures in the flow that had a specific turnover

time, were scaled with the pull speed. Overall, given the complexity of the ob-

served phenomena and the sensitivity to material parameters, the agreements555

between the experimental and model provide confidence that the observed ex-

perimental phenomena are due to flow e↵ects induced by Marangoni convection

and buoyancy. It would be interesting to perform a 3D study and investigate

possible 3D flow structures and their e↵ect on the shape of the sheet. This is

left for future studies.560

5. Appendix: Initial conditions and solution method

5.1. Initial conditions

The free surface shape was initialized as:

x2 = �dT e
x1�xle

lc

where the initial axial position of the triple junction was xle = �0.1d, lc =
q

�

⇢g

is the capillary length, and the depth of the triple junction point relative to

the upper left corner of the domain (where x2 = 0) was set from balance of

hydrostatic pressure and surface tension as

dT =

s
2�(1� cos ✓g)

⇢g
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where ✓g = 11� is the growth angle at the TPJ [35, 36]. The solid-liquid interface

shape was initialized as:

x2 = �dT � tseed

✓
1� e�

tan(55�)(x1�xle)
t0

◆

where the initial solid sheet thickness was tseed = 0.2d.

5.2. Solution method

An initial steady solution was obtained by fixing the solid-liquid interface,565

d⇢l

dT
= d�

dT
= 0, and using linear basis functions. Then, an adaptive time-stepping

was used to obtain a steady solution while the ALE moving mesh method and

mesh adaptation tracked the interface and kept the mesh quality and density.

Next, a steady solution was obtained using quadratic and then quartic basis

functions (p-refinement). Then, the mesh adaptation refined the solution based570

on a target error (h-refinement). Marangoni stress was next gradually increased

up to d�

dT
= 1⇥10�4 N/(m ·K). Except for case 1 a steady solution was obtained

at d�

dT
= 1⇥10�4 N/(m ·K). Next, the temperature sensitivity of surface tension

was set to 1 ⇥ 10�4 N/(m ·K) and d⇢l

dT
= �0.23 kg/(m3 ·K) and an adaptive

time-stepping was used for a period of 4d
us,1

to let the e↵ects of imposed buoyancy575

and Marangoni in the flow be established. Finally, a maximum time step of

�t = lmin
us,1

was set. The adaptive time-stepping used in this stage reduced the

time step by factors of two, if needed for convergence, such that results were

always obtained at �t intervals.
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