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Abstract

Unsteady simulations of horizontal ribbon growth of silicon were performed
that included both Marangoni and buoyancy effects. A chaotic flow was ob-
served dominated by strong Marangoni-driven jets emerging near the local tem-
perature minima on the free surface. This oscillatory flow caused the vertical
position of the leading edge of the sheet to fluctuate, resulting in corrugations
on the top surface of the ribbon. Additionally, larger amplitude and wave-
length nonuniformities appeared on the bottom of the sheet resulting in a sheet
with varying thickness. Lastly, the unsteady flow caused temporal variations in
growth rate, which when converted to distance using the pull speed, matched
the wavelengths observed on the top surface. All three of these phenomena have
been observed experimentally: The median of the surface wavelengths and am-
plitudes decreased with increasing temperature sensitivity of surface tension and
had wavelengths on the same order as experiments for a sensitivity correspond-
ing to uncontaminated silicon. Oscillations in growth rate have been observed
using passive antimony demarcation and thickness variations have been mea-
sured after sheet removal. These results indicate that the chaotic flow makes
producing thin uniform sheets using HRG challenging.
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1. Introduction

Horizontal ribbon growth (HRG) has been studied for several decades with
the aim of producing lower-cost silicon sheets for solar cells than the Czochralski
method, which involves losses due to squaring and sawing the ingots [IH19]. A
major issue in the successful growth of silicon sheets by HRG is achieving steady
conditions so that a sheet of constant thickness can be produced.

Flow instabilities can pose a major challenge in achieving such steady con-
ditions in crystal growth from melts. The importance of flow instabilities due
to buoyancy and surface tension gradients (Marangoni effects) was first inves-
tigated in floating zone (FZ) crystal growth [20H22]. Such flow instabilities,
which can cause striations on the grown crystal, was investigated numerically
by Chang and Wilcox [20] 21] and demonstrated experimentally by Schwabe et
al. [22]. Schwabe et al. [22] studied buoyancy and Marangoni convection due
to both temperature gradients (thermocapillary effect) and concentration gra-
dients (solutocapillary effect) and showed that oscillatory buoyancy-Marangoni
convection can dominate the flow. Furthermore, Schwabe et al. [23] and Chun
and Wuest [24] performed experiments on FZ with small Bond numbers (ratio of
gravity to surface tension forces) and showed the existence of steady Marangoni
convection up to a critical Marangoni number (ratio of Marangoni convection
to thermal diffusion) beyond which the flow became unsteady. A review of
Marangoni effects in various crystal growth methods can be found in Ref. [25].

Buoyancy-related convective instabilities in cavities have been studied as
related to horizontal Bridgeman crystal growth [26] 27]. The main parameters
characterizing such instabilities are the Prandtl number, the Rayleigh number,
and the aspect ratio of the cavity. A review of buoyancy-related instabilities
in bottom-heated cavities is given in [28]. Buoyancy-related instabilities also
appear in laterally-heated cavities where a Hadley circulation can form and
become unstable. A review of such instabilities is given in [29].

Schwabe et al. [22] 23] and Bates and Jewett [6] noted that flow instabili-

ties due to buoyancy and surface tension gradients could lead to variations in
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heat flux during HRG. Daggolu et al. [8] [10] developed a numerical model of
HRG including buoyancy, Marangoni, and free surface motion but neglecting
the kinetics of solidification. They reported strong Marangoni flows and weaker
buoyancy-driven ones but still steady solutions.

Helenbrook et al. [12] developed a model of HRG that included Marangoni
effects and the kinetics of solidification but neglected buoyancy effects. They
showed that the inclusion of solidification kinetics is essential to accurately pre-
dict the faceted solidification near the tri-phase junction (TPJ), where silicon
melt, solid, and the cold helium jet meet and significant supercooling was ob-
served. They also found steady solutions with flow speeds induced by Marangoni
stresses two orders of magnitude larger than the pull speeds.

In experiments by Kellerman et al. [13], corrugations on the top surface
of the ribbon were observed with a wavelength of roughly 10 pm for the same
setup modeled by Helenbrook et al.[12]. They attributed these ridges on the
surface to solidification kinetics (i.e. alternating slow facet growth and fast
roughened growth) through a heuristic limit cycle theory. They ruled out flow
instabilities due to Marangoni and buoyancy forces because they postulated
that the corrugation wavelengths caused by flow instabilities should vary in
proportion to the pull speed and this was not observed.

Sun et al. [15], duplicated the model of Helenbrook et al. [12] in coMsoL®
and observed a chain of vortices in their steady solutions due to Marangoni ef-
fect, similar to that reported by Helenbrook et al. [12]. They noted that these
vortices became stronger as the cooling heat flux increased. Sun et al. [16], then
simulated HRG in a simplified model with no solidification kinetics or realistic
solid-liquid interface, but included buoyancy in addition to Marangoni effects
and looked into the unsteady solution and oscillations caused by flow instabili-
ties. Their results indicated Marangoni and buoyancy can cause oscillations in
velocity and temperature with little dependence on the pull speed.

The main purpose of this paper is to investigate the flow during HRG due to
the combination of buoyancy and Marangoni effects, and see if we can explain

some of the experimental observations [12][13}[19]. Most previous models did not
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include kinetics which changes the temperature field significantly [2H5] [7H10, [14].
Our own previous work did not include buoyancy [12]. We also note that the
surface tension temperature sensitivity coefficient used in our own previous work
and others [15] was probably too low as the measured value is highly sensitive
to the presence of oxygen and other impurities [30]. A numerical model of the
experiments reported by Kellerman et al. [13], similar to the work of Helenbrook
et al. [12], was employed with buoyancy and TPJ growth angle physics added.
The results, most of which are compared to experimental observations [12] [13]
19], include the fluid dynamics, surface corrugations, growth rate variations,

and changes in thickness

2. Methods

2.1. Solidification Model

The numerical model was set up similar to [12], with a few changes discussed
below, to simulate the experimental results reported in [12] 13} [19]. The exper-
imental setup of Refs. [12] [13] is composed of replenishment, growth, thickness
control, separation, and removal of parts consecutively. Here, only the growth
region of the experimental setup was modeled.

A schematic of the growth region and an adapted mesh composed of a liquid
region, ;, and a solid silicon region, 24 is shown in Fig. The melt depth, d,
in the experiments and in all of the following results was 13 mm. At the center of
the domain a cold helium slot jet impinges on the molten silicon to maintain the
growth process. This is not shown in the figure but was included in the model
using the heat removal boundary condition on the top surface. The domain
extended 4d upstream and downstream of the axial position of the center of the
slot jet. In the experiments, there was also a heater under the molten silicon
[12} 31] which was included as a boundary condition in the numerical model as

well. (See for more details on boundary conditions).
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Figure 1: Domain and an adapted mesh for the case with a pull speed of 0.5 mm/s. The
actual mesh resolution is four times finer because of the quartic basis functions used on each

triangular element.

2.2. Gowverning Equations
The temperature field in the solid is governed by the convection-diffusion
equation (written in indicial notation)

OpscsT N dpscsTus; 0 ( 8T> 0

— (k= 1
ot aij a’l}j Sﬁxj ( )

where T is temperature, ¢ is time, x; and u, ; with j € 1,2 denote the horizontal
and vertical coordinates and components of solid velocity respectively. For all
of the following, the vertical velocity in the solid, ug, was zero while the hor-
izontal velocity is the solid pull speed. The density, specific heat and thermal
conductivity of the solid were taken as ps = 2530 kg/m?, ¢, = 1000 J/(kg - K)
and ks = 22 W/(m? - K) respectively [32].

The convection-diffusion equation governs the liquid part of the domain as
well with subscript s replaced by [ to show the liquid properties. For the liquid,
we assumed, ¢; = ¢, k; = 64 W/(m? - K) [32] and the density varies linearly
with temperature as

d
Pl:PmJFﬂ(T*Tm) (2)

where pp, = ps, % = —0.23 kg/(m? - K), and T},, = 1685 K [33]. This assumes
that the solid and liquid densities are equal at the equilibrium melting temper-
ature, which simplifies the implementation of the solidification jump conditions
discussed below.

The liquid velocity components are determined from the differential forms
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of the conservation of mass and linear momentum of a Newtonian fluid:
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where p is fluid pressure, the viscous stresses are given by 7;; = u ( Ll 3 LIt )

87,'1, Bacj
with the dynamic viscosity of liquid silicon u = 7 x 107* kg/(m - s) [32], and

g; with ¢ € 1,2 are the gravitational acceleration components ( g1 = 0 and

g2 = —9.8 m/s?).

2.8. Solid-Liquid Interface Model

At the solid-liquid interface, I'y, conservation of mass requires:

[p(u; = @j)n ]y, =0 (5)

where [] denotes the jump across the interface, p = ps on the solid side and
p = p; on the liquid side, £; with j € 1,2 are the interface velocity components
and n; are components of the outward normal pointing in opposite directions for
solid and liquid. Although at the interface liquid density varies because of kinetic
supercooling, it was assumed that at the interface p; = ps and therefore liquid
and solid velocities were equal. Hence, at the interface, a Dirichlet boundary
condition for the velocity components of the liquid was imposed where u; was
set to the pull speed and us was set to 0.

Conservation of energy at the interface states that the jump in the energy

flux should be equal to the flux of energy absorbed through phase change

oT .
[gmn] = ot =gty ©)

Where n; ; is the outward normal to the solid at the interface and the latent
heat of fusion, Ls, was taken as 1.8 x 10% J/kg.
The solidification kinetics at the interface was based on the model used in

Ref. [34] where the interface supercooled temperature is determined as

AT = K(AT, em)(u&j — l“j)n&j (7)
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where AT = T — T, is the temperature difference of the interface from the
equilibrium melting temperature and K (AT, 0,,) is the kinetic coefficient that
is a function of AT, and the misalignment angle, 6,,, from the {111} facet
direction. It was assumed that the growth was initiated with the [100] direction
pointing upward and the [011] direction aligned with the direction of growth.
In this case the {111} plane is about 55° from the horizontal axis. The kinetic

coefficient was defined as:

K = KQDN; sm(@m) = O,
1/4 (8)
K= (K?‘ough + K.éltep) ) SIn(Gm) > 07
where
Kopy = BleTat
K
Kstep = SN

[sin(8)] + €step

and A =140 K and B = 1.5 x 10" K s/m, K,ougn = 79.4 K s/m, and Kgy =
144 K s/m [34]. The value of €4, was set to machine precision (i.e. about
10*16) to avoid division by zero. Kopn models the two-dimensional nucleation
mechanism of crystal growth, which we assume occurs at the TPJ where the
temperature is lowest as shown in [12]. The growth along a facet is dominated
by step nucleation mechanism, Kgsep. As the misalignment angle 6, increases,
the crystal growth becomes rough on the atomic scale and the kinetic coefficient
value is dominated by K.ougn. The value of Kgxn was set about 90 times greater
than the value in Ref. [34] to avoid high sensitivity to misalignment angle that
led to convergence issues. In previous work, we found that if the value of Kgy
from Ref. [34] were used, the facet is slightly flatter and there is a sharper
transition to roughened growth. Equation [6] coupled with the solidification

kinetics was used to determine the normal interface velocity.

2.4. Boundary Conditions

At the left side of the domain, the inlet velocity components and temperature

were specified as an isothermal channel flow u; = u, (1 - (%)2), us = 0 and
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T — T, =5 K. At the right of the domain, an outflow condition was imposed
for the liquid by setting a zero total stress. A condition of zero heat flux was
applied for both solid and liquid on the right side of the domain.

A growth angle of 6, = 11° was imposed by constraining the direction of
motion of the TPJ relative to the normal to the free surface, such that

(E1paj — usj)ny

V(@rprs —us;) (Erps; — s ;)

= sinf, 9)

where (t7p Jj = us,j) are components of mesh velocity at the triple junction
point relative to the solid motion [35] 36] . If §, = 0, this forces the solidification
at the TPJ to grow tangent to the free surface. A growth angle of 11° results in
the free surface approaching the TPJ from an 11° incline relative to horizontal
in the steady state case.

As the height of the TPJ varied, this varying height was translated with the
pull speed along the top surface of the solid. Therefore, corrugations could be
observed along the top surface of the solid. Because the mesh became coarser
away from the TPJ, the smaller wavelengths became unresolved on the top
surface of the solid. To fix this issue, the corrugations on the top surface of the
solid were reconstructed analytically from the variations in the position of the
TPJ.

The flow boundary conditions at the free surface of the liquid were the

kinematic condition that there is no flow through to the interface
(urj —a;)n; =0 (10)

and the stress on the free surface was defined to be equal to stresses due to the
surface curvature and the temperature dependence of surface tension (i.e. the

Marangoni effect):
80(T)ti
0s

where ¢; denote the components of the unit tangent vector to the free surface

(1)

—pn; + Tijn; =

and the surface tension, o, is a function of temperature. o was taken as o =

oo + 9 (T — Ty,), 0o had a value of 0.735 N/m [32] and two values of the
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Table 1: Pull speeds, temperature sensitivities of surface tension and curve fit parameters of

the helium jet heat flux, g., for cases studied

Case usa (%) G (wr) @ear (5) w (mm)

1 0.5 1x1074 0.95 0.68
2 0.7 1x 1074 1.26 0.59
3 1 1x1074 2.53 0.42
4 0.7 4 %107 1.26 0.59
surface tension temperature sensitivity were studied. g—% = —4 x 10™* which

corresponds to pure silicon in argon atmosphere [37] and a reduced value of

do
dT

[30].

= —1 x 10~* which corresponds to presence of some impurities in the melt

The thermal boundary condition on the top of the domain, for solid and

liquid, was a specified heat flux as

q=4qc+qr (12)

where the convective heat flux of helium, ¢. was modeled as
2 2
de = Qbase + Gpeak ((1 — C)Q*(z/w) + C27(m/wb) ) (13)

where Gpase, @peak; ¢ w and wy, are curve fit coefficients. The curve fit was based
on results of three ANSYS® Fluent 16.2 simulations of the slot jet for different
helium flow rates [12]. For all the cases here, gpqs. = 164 kVV/m2 represents the
conductive heat transfer between the melt and helium, { = 0.55, wp, = 1.44 mm
and values of gpeqr, and w are given in Table[I{along with pull speeds and values
of 3—; of these cases. Note that the heat fluxes for cases 1, 2 and 4 were based
on the experimental work of Kellerman et al. [I3] with the helium flow rate of
Qpe = 1.9 L/min and Q. = 2.5 L/min respectively. Case 3 had the same g,
as the first case of Helenbrook et al. [12] with Qg. = 5.0 L/min. The radiation
heat flux, ¢, between the silicon and the water cooled block that contained

the helium slot jet was modeled assuming the block to be a horizontal surface
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centered above the domain. The effect of the growth angle on surface shape was
neglected (i.e. the liquid and solid surfaces were assumed to be flat at xo = 0).
The temperatures of the enclosure around the free surface and the surfaces of
the solid and liquid silicon were assumed to be T,,,, and the water cooled block
surface was assumed to be T,. The water cooled block and the enclosure were
assumed to be black and the silicon surface was assumed to be gray and diffuse.

The radiative heat flux is then given by
g = eopF(21)(T,, — T7) (14)

where € is the emissivity and has different values of ¢, = 0.2 and €5, = 0.6 for
liquid and solid respectively. The Stefan-Botlzman constant is denoted as oy
and F'(z1) is the view factor between the water-cooled block at T, = 300 K and
the top surface defined as [38]

sin ¢ — sin ¢y

Pl = 2002 (15)
where
sin ¢y = —wr/2—
\/(—wT/Q — 1) 4 h2
wy/2 — 11

sin g =
Vw2 —a1)* + 12
where the width of the block was w, = 5 cm and the height of the block from
the top of the melt (i.e. from z3 = 0) was h, = 3 mm. The behavior of F(z;)
is shown in Fig.

At the bottom of the domain, a no-slip boundary condition and specified
heat flux were imposed. The stabilizing heat flux from the bottom was set to
match case 1 from Ref. [12]. In the experiment, a heater was located under the
melt with about the same width as the water cooled block. To model this, the

bottom heat flux was given in kW /m? as
@ = 244.4F (z1) (16)

where the view factor function F(z1) was used as a convenient function for

confining the heat addition to the region below the water cooled block.

10
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Figure 2: The view factor function F(z1)

2.5. Numerical Method

A third-order accurate, 4-stage, L-stable diagonally implicit Runge-Kutta
(DIRK) scheme was used for time advancement. A high order finite element
method (hp-FEM) using fourth-degree basis functions on triangular elements
was used to obtain the numerical solution in space [39]. The hp-FEM used the
streamline-upwind Petrov-Galerkin (SUPG) stabilization approach for the equal
order pressure and velocity approximation space [39]. An arbitrary-Lagrangian-
Eulerian (ALE) moving mesh method was used to track the solid-liquid inter-
face. the liquid free surface and the solid free surface while adapting the mesh
to maintain quality and accuracy as detailed in Ref. [39]. Mesh adaptation was
based on achieving a uniform target truncation error over the domain. We also
put a restriction on the minimum resolution, l,,;,, to avoid exessive refinement
near singular points. A transient mesh with mesh adaptation is shown in Fig.
[

Initial conditions were chosen as detailed in appendix[5.1] A steady solution
without Marangoni and buoyancy effects was first obtained during the process

(discussed in appendix [5.2)). For cases 1 to 3 the results were then obtained at

a constant time step of At = Z’f where [, = 5 pm. The time-stepping was
done for a total time of f—dl. The time step was set so that the corrugations
on the top surface of the solid travel about 5 um at each time step, allowing

observation of wavelengths as small as 10 — 15 pm, which were reported by

11



235

240

245

250

255

260

Kellerman et al. [13].

For case 4, the l,,,;, and At were reduced by a factor of 4. The simulation for
this case was continued from the last time step of case 2 and g—; was increased
to 4 x 107 N/(m-K). At the increased 42 the maximum velocity in the
flow achieved on the free surface increased by a factor of about two. This was
achieved after only 10 time steps indicating the effect of new value of g—; has
been established on the free surface. The results presented for case 4 ignored the
first 300 time steps to discard data affected by transition in g—;. Convergence at
g—% =4x107* N/(m - K) proved to be more difficult and the time-stepping was

only continued for abou ©. Because the wavelengths were smaller for this

1.4d
t "
case, more waves were detected than in case 2 and therefore the data was more

statistically converged in terms of the median of wavelengths and amplitudes.

3. Results and Discussion

3.1. Flow Dynamics

The flow field was unsteady and did not approach a steady solution. Al-
though the velocity magnitudes due to the Marangoni effect were dominant
compared to the maximum velocity due to buoyancy, the inclusion of buoy-
ancy in the model was essential to observe the unsteadiness. With buoyancy in
the model, even with no Marangoni stresses, the flow was unsteady at all pull
speeds. Helenbrook et al. [12] reported steady laminar solutions of a similar
model with 92 = —7 x 107° N/(m - K) from simulations when buoyancy effects
were neglected.

The time-averaged maximum flow speeds, and velocity scales of buoyancy
and Marangoni effects along with relevant nondimensional numbers of the flow
are given in Table The velocity scale of Marangoni convection can be esti-
mated using dimensional analysis considering Maranogni and viscous stresses

being on the same order of magnitude. This gives an estimate of Marangoni
do AT p
dT L v

velocity scale to be Vjy = where Ly, and L, are the length scales of

Marangoni convection and viscous effects. Noting that the dominant heat flux

12
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Table 2: Time-averaged maximum flow speeds Vi, qz; Marangoni and buoyancy velocity scales,

Vi and Vp, from dimensional analysis; and dimensionless parameters Ma, Gr, and Remaqx

Vmaz VM VE;

Case Ma Gr-107% Repae - 1073
(cm/s)  (cm/s) (cm/s)
1 9.0 7.5 1.1 38.8 2.6 4.2
2 9.5 7.5 1.2 38.7 3.0 4.5
3 10.4 7.7 1.4 39.4 4.2 4.9
4 22.9 30 1.2 154 3.0 10.8

is due to the helium jet cooling, a temperature difference scale can be estimated
as W where w is the scale of helium jet width (see section. This gives a
reasonable estimate on the order of 10 K that was observed in simulation results.
The proper length scales for viscous and Marangoni effects to obtain reasonable

velocity scales were found to be w and d, respectively. Therefore, the Marangoni

d 2
_ d% dmazW

and the Marangoni number
kdp

velocity scales were estimated as Vi

d 2
Vud ﬁqpeakw

was defined as Ma =
« kpo

Using the same temperature scale, the buoyancy velocity scale and Grashof
3
number were determined as V, = 4/ M and Gr = gﬂq”;+§wd. A Reynolds

number based on the time-averaged maximum velocity, V4, can be defined as
Renar = % Clearly, the flow in all cases was dominated by Marangoni-
induced flows. Marangoni and buoyancy effects should be comparable at dd—%
smaller by an order of magnitude (e.g. due to impurities in silicon).

Hadid and Roux [26] studied the combined effects of buoyancy and ther-
mal Marangoni convection in open cavities heated laterally and showed that
Marangoni convection can decrease the critical Grashof number at which the
flow became unstable, even if the Marangoni effects were not dominant. Here,
the maximum velocity and the vortical structures are similar to what was ob-
served in the in steady solutions of Ref. [12], which did not have buoyancy.

Therefore, in this work Marangoni convection dominates the flow and buoyancy

appears to induce instability.

13
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Fig. [3| shows four consecutive snapshots of the unsteady temperature and
velocity fields. The line plots show the velocity magnitude and temperature on
the free surface aligned with the subsequent contour plots. Video 1 shows a
movie of the flow in a similar manner to Fig. In our unsteady simulations,
a supercooled region was always present in front of the TPJ and there was a
point of minimum temperature on the surface in this region near the TPJ. This
point is identified by a circular marker in the zoomed-in views of the line plots
shown to the right at the full line plots in Fig. [3l At this point, surface tension
attained its maximum value and pulled the melt at the surface from both sides.

This pull often created a small counterclockwise vortex, between this point
and the TPJ, similar to what was reported in steady solutions of Helenbrook
et al. [12] (see the zoomed-in views of Fig. 10 in [12] or the zoomed-in view of
velocity magnitude contour plot in Video 1 at time ¢ = 86.7s). The small vortex
quickly rolled up into a jet and merged with the large clockwise vortex beneath
the TPJ. This vortex circulated cold fluid downward and warm fluid upward
creating the alternating cold and hot temperature fields seen in Fig. [Bp-d.

Generally, the minimum supercooled surface temperature fluctuated and as
it became colder or warmer, it moved further upstream or downstream respec-
tively and the TPJ followed it. It is notable that the point of the high-velocity
jet emerging near the TPJ in zoomed-in surface profiles of Fig. [3| follows the
point of minimum temperature with a lag. This time lag between the point
of maximum surface tension and jet position keeps disturbing the velocity field
that in turn disturbs the temperature field as it changes. Such interactions be-
tween temperature and velocity fields contribute to the unstable flow field and
aperiodic changes in the TPJ position.

Downstream to the right of the large clockwise vortex beneath the TPJ,
there were three other large vortices rotating in counterclockwise, clockwise,
and clockwise directions respectively. Ordinarily, three other large vortices could
be discerned upstream of the large vortex beneath the TPJ that from the most
upstream one were rotating in counterclockwise, clockwise, and counterclockwise

directions respectively. Buoyancy fed energy into these large vortices as it pulled

14
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the colder melt from the surface or just beneath the sheet downward and pushed
the hotter melt near the bottom upward.

Additionally, there were one or more regions of low temperature further
upstream of the TPJ. Often, there was a point of minimum temperature on
the surface of these regions and as the unsteady temperature field evolved,
these regions could attain supercooled temperatures temporarily. At such local
maxima of surface tension, the melt was pulled from both sides. In some cases,
initially, a temporary small vortex formed at these points that returned the cold
melt to the surface. These small vortices were short-lived and rolled up into a
jet streaming into the melt. Fig. shows a clear formation of such a jet around
1 = —1.8 cm.

The position of jet ejection into the melt in the velocity profiles along the
surface can be discerned as points where velocity sharply decreases towards
zero similar to a stagnation point. Notably, the position of the jet at the surface
closely follows the point of minimum temperature in Fig As the position
of the minimum temperature changed, the jet moved back and forth. The
temperature at that point increased as the warmer melt moved towards the
point of minimum temperature or as the point moved away from the middle
of the domain with the maximum cooling. Conversely, movement of the point
further downstream towards the point of maximum cooling by the helium jet,
decreased its temperature. Eventually, jets were either pulled towards the TPJ
or away from it. If pulled towards the TPJ they often became stronger and
merged with the jet streaming at the minimum temperature near the TPJ into
a stronger cold jet flowing into the crucible. The movement of a jet and merging
with the jet at the TPJ are shown in Figs. Bk and Bd. If moved away from the
TPJ, such jets became weaker and eventually disappeared. Additionally, these
cold high velocity jets streamed into the melt and disrupted the temperature
field and large vortices beneath and upstream of the TPJ. Such disruptions in
the flow field are shown in Figs. [3b to[3d .

The time history of flow speed and temperature at a point near the TPJ,

(—=d/10, —d/10), is shown in Fig. These oscillations correspond to the un-

15
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Figure 3: Four consecutive snapshots of profiles of temperature and velocity along the melt sur-

face and corresponding temperature and velocity contours for case 1 (g—% =1x10"* N/(m - K)
and us,1 = 0.5 mm/s). The contours of temperature and velocity are respectively 5 K and 0.5

cm/s apart. The marker in the zoomed-in views identifies the point of minimum temperature.
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Figure 4: Time histories of the temperature and flow speed at a point near the TPJ, at (-d/10,
-d/10), corresponding to the unsteady flow shown in Fig. E

steady flow shown in Fig. A range of time scales can be observed with the
average frequency of temperature and velocity oscillations being 1.25 and 1.85
Hz respectively. The temperature often oscillates almost in-phase with velocity
fluctuations with a small time lag. When, temperature and velocity fluctuations
are almost in-phase, the flow is dominated by the large vortex beneath the TPJ.
This vortex brings the warmer melt from the bottom to near the surface. The
vortex velocity is oscillatory due to buoyancy and Marangoni effects, its inter-
action with vortices upstream and downstream of it, and the bottom wall of the
crucible. As the velocity of the vortex fluctuates, so does the rate of convective
heat flux it provides. Therefore, the temperature fluctuations follow the velocity
oscillations, though the smaller velocity oscillations get diffused out.

The largest oscillations and smallest time scales are observed at about ¢ =
87 s and t = 92.5 s when the high velocity jet formed due to Marangoni effect
passes through (—d/10, —d/10) (See Fig. and [3d and Video 1). At these
times, the oscillations appear to be almost 7 out of phase as the Marangoni jet
streams the supercooled flow from the surface and causes a sharp decrease in
the temperature.

For the case 4 where 42 = 4 x 10~% N/(m - K), compared to case 2 with

% =1x107* N/(m - K), Vjas induced by surface tension gradients increased

by a factor of about 2.4 as shown in Table Therefore, in this case, jets of
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higher velocity streamed into the crucible, and reduced the time scales of flow
oscillations.

Comparing cases 1 to 3 with s—; =1x 107* N/(m - K), increasing the pull
speed from 0.5 to 1 mm/s, no significant change in flow characteristics was
observed. This was expected as the flow field was dominated by buoyancy and
Marangoni effects inducing velocity magnitudes much larger than the pull speed.

As these dynamics in the flow field caused large changes in velocity magni-
tude and direction near the TPJ, the height and horizontal position of the TPJ
varied. As the leading edge of the sheet was pulled with varying heights and po-
sitions, corrugations were formed on the top surface of the solid sheet. Similarly,
the solidification interface was also affected by this dynamic flow field resulting
in large variations in the shape of the sheet on the bottom and therefore the

sheet thickness.

3.2. Corrugations on the Top Surface of the Sheet

Corrugations observed for case 1 are shown in Fig. [fh. A zoomed-in view
is shown in Fig. along with the results for case 1 with a finer mesh and a
smaller time step to assess the sensitivity of the results to spatial and temporal
resolutions. The simulation for the refined mesh was started from a solution of
case 1 and was repeated for a portion of simulation time. The time step was
reduced by a factor of two, the truncation error target reduced by an order of
magnitude (resulting in an increase in the average number of degrees of freedom
of the mesh by a factor of almost two), and l,,;, was reduced by half. Note that
the surface corrugations were pulled to the right and thus in Fig. the initial
point of refined simulations is at z; = 67.2 mm. As the simulation advanced
in time the deviation between the resulting corrugations of original and refined
cases increased. Considering the chaotic flow field dynamics discussed in [3.1
this is not surprising. This flow has all of the characteristics of a chaotic sys-
tem, namely unsteady, aperiodic, broad-spectrum solutions that diverge when
perturbed (in this case by a refinement to the mesh).

Furthermore, Fig. indicates that the average wavelengths are slightly
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Figure 5: Corrugations on the top surface of solid: (a) Corrugations from simulations for case
1 with g—% =1x107* N/(m - K) and us,1 = 0.5 mm/s (b) A zoomed-in view of corrugations
of case 1 and the results for case 1 refined with a finer mesh and time step halved (c¢) A part
of surface corrugations for case 4 with j—; =4x107* N/(m-K) and us1 = 0.7 mm/s (d)

Experimental results of Kellerman et al. [13] using confocal microscopy.

smaller in the refined case suggesting that more refined spatial and temporal
simulations would converge to results with slightly smaller wavelengths. Despite
the high order spatial and temporal schemes used, the results still can converge
slowly because of the singular nature of the solution at the TPJ [17, 40, [41].

The surface corrugations from the last portion of the simulation of case 4
with g—% =4x107* N/(m - K) are shown in Fig. [5¢ and the experimental results
using confocal microscopy from Kellerman et al. [13] are reproduced in Fig.

for comparison. Note the change in units of the zi-axis to pym in Figs. and

405 from mm in Figs. [fh and [fp. Also, x5 varies in a range of about 2 ym and

410

0.7 pm in Figs. Bk and [pd respectively.

Statistics of the wavelengths including the number of detected wavelengths
N, median and mean of the wavelength of corrugations, A and X, minimum and
maximum wavelengths, A,,;, and A4, and the median and mean of peak-to-

peak wave amplitudes, A and A, are given in Table for both the numerical and
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experimental results. Unlike the reports from [13], A does show some dependence
on pull speed, however, this dependence is not consistent across different ways
of measuring wavelength. For example, A, and Apee (the maximum and
minimum distance between local extreme) show little sensitivity to pull speed
while )\ increases from case 1 to 2 but barely changes from case 2 to case 3.
For case 4, in agreement with with Fig. , X assumed a much smaller value
of 80 um compared to case 2, but is still larger than the experimental values
shown on the last line of the Table (3| Finally, note that A values in Table [3| are
on the same order as experimental results shown in Fig. from Kellerman et
al. [13]. For cases 1 to 3, the values of A is about three times larger than the
experimental corrugations shown in Fig. and for case 4, A is 42% greater
than the experimental value.

The average oscillation frequency for case 1 with us; = 0.5 mm/s, is roughly
0.85 Hz, which is close to frequencies observed near the TPJ in Fig. {4 (notably
the temperature oscillations with an average frequency of 1.25 Hz). Thus, the
surface lines are a flow-driven phenomena. The median wavelengths of cases 1
to 3 correspond to TPJ vortical oscillations of about 1 Hz for all three cases.
As mentioned in section [3.I] and can be seen in Fig. [Bp, there is a large vortex
beneath the TPJ with a diameter of the same size as the depth of the melt.
Noting the velocity scale of about 3.5 cm/s, the turnover time of this vortex
matches the observed frequency and could be the reason for the observation
of increasing wavelength proportional to pull speed. In case 4, there was a
stronger jet similar to that shown in Figs [Bp-d near the TPJ disrupting the
vortex. When not disrupted by cold jets streaming from the surface, the velocity
of this vortex was about 6 cm/s corresponding to a frequency of about 1.5 Hz.
However, for case 4 rather than a corresponding median wavelength of about
450 pm, X of about 80 um was observed. Therefore, it seems that only some of
the wavelengths corresponding to vortical structures in the flow with a specific
frequency scaled with pull speed.

Kellerman et al. [13] gradually increased the pull speed from 0.3 mm/s

to 0.8 mm/s while increasing the cooling provided by the helium jet in their
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Table 3: Pull speeds; temperature sensitivities of surface tension; number, median, mean,
minimum, and maximum of wavelengths; and the median and mean of the peak-to-peak

amplitude of the surface waves

Case s, j—; N A Amin Amar A A
(%) (ax) (pm)  (pm) (um)  (mm) (pum)  (um)
1 0.5 1x107* 176 518 588 40 3.2 0.43  0.82
2 0.7 1x107* 104 699 999 70 5.3 034 1.20
3 1 1x107* 97 1013 1067 33 3.9 0.41 1.61
4 0.7 4x107% 127 80 143 7 1.2 0.17 0.75
Exp.* 0.5 — 17 21 25 12 0.065 0.12 0.16

* Experimental data from Fig.

experiment from which they concluded surface wavelengths are independent of
pull speed (Similarly, we increased the corresponding cooling heat flux on the
top boundary condition as detailed in . However, as they increased both
the pull speed and helium jet flux, they may have caused larger Marangoni
stresses near the TPJ with corresponding smaller time scales such that the
average wavelengths did not change significantly. Also, although not included
in our model, as the pull speed increases, the segregation of solutes in the melt
increases [10]. This can cause Marangoni stresses due to concentration gradients.
Furthermore, the thermal Marangoni stresses could be large, similar to case
4, such that jets streaming into the flow due to Marangoni stresses disrupted
the vortical structures with specific frequencies that can result in wavelengths
increasing proportional to pull speed. Finally, note that there is some variance
in the experimental wavelengths as shown in Table|3|and the wavelengths in our
results showed no clear dependence on pull speed in terms of mean, maximum

or minimum wavelength.
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3.3. Growth Rate Variations

In addition to surface corrugations, the unsteady flow also causes fluctuations
in solidification rate. As the temperature, flow field, and heat fluxes change near
the solid-liquid interface, the growth rate of silicon changes as well. To quantify
this, we first note that the leading edge growth is faceted. This was shown in
our previous simulations [12] and also can be seen in Video 1 or by zooming
in on the TPJ regions shown in Fig. Because of this, the solidification
velocity of the facet can be calculated as V; = us1sin(éy) + &7pj;n; where
0y = 55° is the {111} facet angle. The growth rate variations at the TPJ for
case 1 are shown in Figs. [6h-b. The experimental results of Kellerman et al.
[13] obtained using a passive antimony demarcation method are shown in Fig.
[k for comparison. The high sensitivity of antimony segregation coefficient to
growth rate is used in Fig. [6, combined with a Wright etch [42] to delineate
regions of high and low antimony, as an indicator of changes in growth rate.
Note that to make comparisons with experiments easier, changes of growth rate
in time were mapped to their respective positions along the sheet considering
the pull speed and the changing position of the TPJ.

Large gradients in light intensity in Fig. [k corresponds to sharp changes in
growth rate. Fig. [6ld shows the mean light intensity along the horizontal direc-
tion side of the parallelogram-shaped region in Fig. [6k normalized by maximum
light intensity. The mean light intensity was averaged along a line parallel to
the smaller side of the parallelogram, which aligned with the facet. Note that
the growth in the cross-section shown in Fig. [6k was double faceted with a
facet intersection point below the surface. This configuration was studied in
[18] but has not been included in the current model. The noisiness of the photo
is reflected in the light intensity line plot. However, three regions with sharp
changes in growth rate are distinguishable and they are qualitatively similar to
the gradients in growth rate shown in Fig. [6b.

The spacings between sudden changes in growth rate experimentally ob-
served in Fig. [6ld are similar to experimental wavelengths in Fig. [fp. Similarly,

the spacings between the sharp changes in growth rate from simulations in Fig.
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Figure 6: Growth rate variations (a) simulation results for case 1 with j—% =1x10"4N/(m - K)
and us1 = 0.5 mm/s (b) a zoomed-in view of case 1 (c) experimental results of Kellerman
et al. [13] using antimony demarcations to show regions of sharp gradients in growth rate
(d) mean light intensity normalized by maximum light intensity along the longer side of the

parallelogram-shaped region

[Bh-b are close to wavelengths obtained from our numerical model in Fig. [Bp.
Thus, these wavelengths scale w1th + like the surface corrugations. Further-
more, note that sudden changes in growth rate in Figs. [6p-b can be on the
same order as the steady-state growth rate itself as the growth rate sharply
drops from a maximum value to a minimum value. Therefore, these large varia-
tions in growth rate can cause the experimental passive antimony demarcation
observations. As both the surface corrugations and growth rate variations ob-
served in the experiment can be explained by the chaotic flow dynamics due to
Marangoni stresses and buoyancy, there seems to be no need for the heuristic

limit cycle theory proposed in [13] [19] to explain these phenomena.

3.4. Variations in Thickness

As the solidification interface responded to the changing flow field, the in-
terface shape changed significantly. Deformations in the shape of the bottom

of the sheet, which were often much larger than the surface corrugations, are
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shown in Fig. The interface underwent large variations in shape near the
TPJ due to the highly unsteady flow near it. This resulted in the formation of a
varying sheet thickness as shown in Fig. [7] Video 2 shows a movie of the sheet
thickness in a manner similar to Fig. [7l The variations in thickness formed near
the TPJ did not change significantly further downstream and were pulled with
the sheet. This is shown by the markers in the figures, which translate with the
pull speed and track the thickness variations. The top surface of the sheet is
also shown in Fig. [7] where surface corrugations are barely noticeable compared
to deformations on the bottom of the sheet.

Such non-uniformities in the sheet thickness were reported by Daggolu et
al. [19] as a major challenge in achieving a sheet with constant thickness. To
achieve their target thickness of 200um they added a thickness control sec-
tion with several heaters after the growth section, controlled by a model-based
thinning algorithm, to reduce the thickness and improve the uniformity. They
carried out a few iterations to improve thickness and uniformity. Their data
indicates that even after iterative improvement in the thickness control section,
the standard deviation of thickness was on the same order of magnitude as the
ribbon thickness. Daggolu et al. [19] did not pinpoint the main reason for thick-
ness variations and mentioned “non-idealities in equipment, gas interaction and
melt convection effects”. The numerical results show that the thickness varia-

tions are caused by the chaotic flow.

4. Conclusions

An unsteady simulation of a horizontal ribbon growth model including Marangoni

and buoyancy effects was carried out. It was found that the combination of
Marangoni and buoyancy effects causes an unsteady chaotic flow. The flow
field near the TPJ was dominated by Marangoni effects and the buoyancy de-
creased the critical Marangoni number at which the flow becomes unstable. The
flow field was characterized by significant changes driven by cold jets stream-

ing into the crucible from the surface near the points of minimum temperature
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Figure 7: Variations in sheet thickness for case 2 with j—‘% =1x10"* N/(m-K) and us,1 =
0.7 mm/s.

(i.e. maximum surface tension). There was often a jet just upstream of the
TPJ near the point with minimum supercooled temperature and one or more
jets emerging from local minima in temperature further upstream. There was
a coupling between velocity and temperature oscillations and temperature os-
cillations as the jets moved back and forth to follow the varying position of
minimum temperature.

As the TPJ position varied due to this unstable flow field, surface corruga-
tions were formed on the top surface of the sheet. Similarly, as the interface
adapted to this chaotic flow, large nonuniformities appeared on the bottom of
the solid resulting in a sheet with large variations in thickness. Furthermore,
the results showed sharp and large changes in growth rate at the TPJ on the
order of the growth rate itself. These behaviors have all been observed in the
experimental results of Kellerman et al. [13] and Daggolu et al. [19]. Thus, the

chaotic flow seems to qualitatively explain most of the experimentally observed
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phenomena.

Quantitatively, the median of the peak-to-peak amplitude of the surface
corrugations was on the same order as the experimental values and reduced for
the case corresponding to pure silicon with a greater temperature sensitivity of
surface tension. Similarly, the wavelength of surface corrugations reduced with
increasing temperature sensitivity of surface tension to values on the same order
as those from experiments. The dependence of amplitudes and wavelengths on
pull speed was not clear. However, results suggests that only some surface wave-
lengths, likely due to vortical structures in the flow that had a specific turnover
time, were scaled with the pull speed. Overall, given the complexity of the ob-
served phenomena and the sensitivity to material parameters, the agreements
between the experimental and model provide confidence that the observed ex-
perimental phenomena are due to flow effects induced by Marangoni convection
and buoyancy. It would be interesting to perform a 3D study and investigate
possible 3D flow structures and their effect on the shape of the sheet. This is

left for future studies.

5. Appendix: Initial conditions and solution method

5.1. Initial conditions
The free surface shape was initialized as:

1" Tle

To = —dTe le

where the initial axial position of the triple junction was z;. = —0.1d, I, = %
is the capillary length, and the depth of the triple junction point relative to
the upper left corner of the domain (where x2 = 0) was set from balance of

hydrostatic pressure and surface tension as

20(1 — cosby)
P9

dr =
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where 6, = 11° is the growth angle at the TPJ [35,136]. The solid-liquid interface

shape was initialized as:
_ tan(55°)(zy —xp,)
Ty = —dr —tseeq | 1 — € ‘o

where the initial solid sheet thickness was tseeq = 0.2d.

5.2. Solution method

An initial steady solution was obtained by fixing the solid-liquid interface,
% = j—; = 0, and using linear basis functions. Then, an adaptive time-stepping
was used to obtain a steady solution while the ALE moving mesh method and
mesh adaptation tracked the interface and kept the mesh quality and density.
Next, a steady solution was obtained using quadratic and then quartic basis
functions (p-refinement). Then, the mesh adaptation refined the solution based
on a target error (h-refinement). Marangoni stress was next gradually increased
up to g—% =1x107* N/(m - K). Except for case 1 a steady solution was obtained
at g—; =1x107* N/(m - K). Next, the temperature sensitivity of surface tension
was set to 1 x 1074 N/(m - K) and % = —0.23 kg/(m? - K) and an adaptive
time-stepping was used for a period of % to let the effects of imposed buoyancy
and Marangoni in the flow be established. Finally, a maximum time step of
At = l‘js—f was set. The adaptive time-stepping used in this stage reduced the

time step by factors of two, if needed for convergence, such that results were

always obtained at At intervals.
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