LETTER TO THE EDITOR

Quality of life independently predicts overall survival in myelofibrosis: Key insights from the COntrolled MyeloFibrosis Study with ORal Janus kinase inhibitor Treatment (COMFORT)-I study

Patient-reported outcomes (PROs) have considerable value for survival prediction, and generally include both quality of life (QOL) and symptom measures. A recent metaanalysis of 44 phase II or III randomised clinical trials found that overall survival (OS) was associated with at least one baseline PRO domain in 93% of studies, after controlling for pertinent clinical variables like performance status (PS), tumour staging and serum markers.¹ In a systematic review of 138 studies, 87% reported at least one PRO being significant for OS prognostication.² Myelofibrosis (MF) is associated with splenomegaly, cytopenias and a high symptom burden.³ In two phase III clinical trials, ruxolitinib was associated with improvements in splenomegaly, symptom burden, QOL measures and OS. ⁴⁻⁶ In MF, symptoms have been shown to be highly prevalent and are incorporated into response criteria and clinical trials assessments. Key symptoms are also associated with decreased QOL in patients with myeloproliferative neoplasms (MPNs). The objective of this analysis was to evaluate the prognostic relevance of baseline QOL on OS among patients with MF enrolled in the COntrolled MyeloFibrosis Study with ORal Janus kinase (JAK) inhibitor Treatment (COMFORT)-I trial.

Data from the COMFORT-I trial of ruxolitinib versus placebo for patients with intermediate-2 or high-risk MF (ClinicalTrials.gov Identifier: NCT00952289) was obtained from Incyte© for independent analysis.⁴ PRO variables considered for prognostication of OS included total symptom score (TSS), functional subscales, global health status (GHS)/QOL, and fatigue. Clinical factors included age, sex, International Prognostic Scoring System (IPSS) risk score, PS and treatment arm (see Supplementary Appendix for details on measures). Analysis of OS included both the intention-totreat method and censoring placebo patients at the time of crossover. A multivariable Cox proportional hazards model was used to examine the effect of symptoms and GHS/QOL baseline measures when controlling for clinical factors. Due to the substantial amount of crossover to ruxolitinib in the

placebo arm, the rank-preserving structural failure time method (RPSFT) was also evaluated.

The COMFORT-I study enrolled 309 patients (155 ruxolitinib, 154 placebo); 111 (72%) placebo patients ultimately crossed over to ruxolitinib.4 Baseline GHS/QOL was available in 296 patients and did not differ by treatment arm (Table S1). Symptom burden and fatigue were significantly higher in patients with lower GHS/QOL scores (Table S2). In addition, IPSS risk and European Organisation for the Research and Treatment of Cancer (EORTC) domains differed significantly by GHS/QOL median-split quantile groups. The mean (SD) GHS/QOL was 59.6 (22.0) in patients with a PS of 0, 51.7 (22.1) in patients with a PS of 1 and 43.8 (20.6) in patients with a PS of 2/3 (F = 7.97, p < 0.001). The mean (SD) GHS/QOL was 55.8 (22.3) for intermediate-2 versus 50.9 (22.5) for high-risk patients (p = 0.07) and TSS was 19.8 (11.1) for intermediate-2 versus 16.1 (11.4) for highrisk score (p = 0.005). TSS was inversely correlated with GHS/QOL (r = -0.36; p < 0.001); symptom item correlations ranged from r = -0.14 for night sweats to r = -0.38 for bone/ muscle pain (Table \$3).

Long-term analysis reported OS results favouring ruxolitinib (hazard ratio [HR] 0.69, 95% confidence interval [CI] 0.50-0.96; p = 0.03). Higher GHS/QOL score at baseline (>median vs. ≤ median) was associated with increased OS on both intention-to-treat analysis (HR 0.69, 95% CI 0.49-0.96; p = 0.03) and when patients on placebo were censored at crossover (HR 0.57, 95% CI 0.37–0.88; p = 0.001) (Figure 1). On univariate analysis, OS was also significantly associated with age, sex, physical functioning, PS and IPSS risk score (Table S4). Multivariable results demonstrated a significant effect for baseline GHS/QOL (HR 0.92, 95% CI 0.85-0.99; p = 0.03 for a 10-point increase, Table 1). Results were consistent for both analysis methods. Optimism corrected measures of Harrell's C-index were 0.66 and 0.69 respectively. The RPSFT method also estimated a HR for GHS/QOL of 0.92 (95% CI 0.85-0.99). In a time-dependent model assessing GHS/QOL by the median grouping, HRs were decreased

Presented in abstract form at the European Haematology Association Congress 2017, Madrid, Spain, June 2017.

13652141, 2022, 6, Downloaded from https://onlinelibrary.wiley.com/doi/10.1111/bjh.18329, Wiley Online Library on [20/122022]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons Licensea

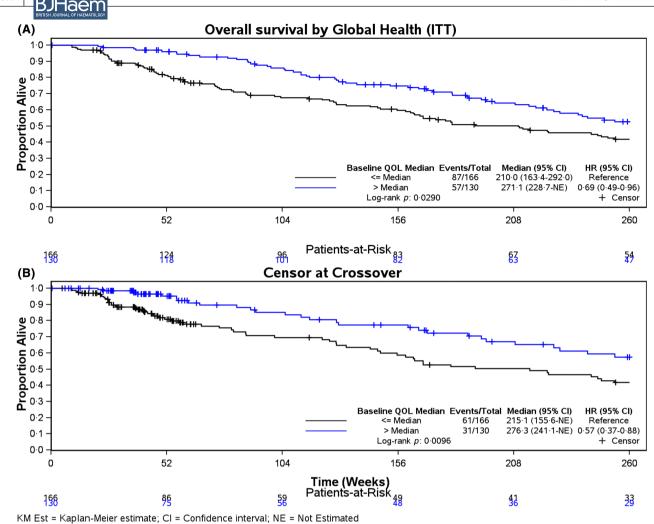


FIGURE 1 Overall survival stratified by baseline GHS/QOL median (<= median served as the reference group and is the group with lower QOL). Analysis was conducted by (A) intention-to-treat and (B) censored at time of crossover. CI, confidence interval; GHS, global health status; HR, hazard ratio; ITT, intention-to-treat; OS, overall survival; QOL, quality of life. [Colour figure can be viewed at wileyonlinelibrary.com]

for years 1 and 2, although sample size limited comparisons made (Figures S1 and S2).

1066

In patients enrolled on the COMFORT-I trial, baseline QOL was independently associated with OS. This relationship remained even when adjusting for patient characteristics, disease risk score, PS, treatment arm and baseline symptoms. This is the first study that has identified this association among individuals with MF. Bankar et al. found that higher frailty scores were associated with worse survival and increased JAK inhibitor therapy failure in 439 chronic phase MF patients. Other contemporary investigations have examined multiparameter flow cytometry as a substitute for blast count and response to ruxolitinib treatment after 6 months as potential predictors of survival. ^{10,11}

Improved survival seen with ruxolitinib use has been further validated on other real-world datasets, with the mechanism of improvement likely multifactorial including less debilitation, slower rates of leukaemic transformation, and fewer disease-associated complications. Higher baseline QOL might also be associated with less disease-related debilitation, decreased hospitalisations, and fewer

life-threatening complications. In this study, neither individual symptoms nor TSS at baseline appeared to be prognostic for OS, emphasising the importance of QOL *in addition* to symptom assessment. Baseline symptoms were significantly associated with QOL; however, when controlling for symptom burden, baseline GHS/QOL was the most prognostic variable. Similarly, Emanuel et al. 13 observed strong correlations (r > 0.50) between the TSS (10-item version), functional subscales and GHS/QOL in >1400 patients with MPNs.

Quality of life may be important to show overall patient health status, but symptoms are important for more subtle disease monitoring. In a recent consensus of PROs for myelodysplastic disorders, both patients and haematologists selected general QOL as a core PRO for health assessment in clinical research and daily practice. ¹⁴ Due to the significant effects of ruxolitinib on PROs, we only analysed baseline QOL. QOL changes over time may be an important consideration when evaluating survival. In other settings, recent changes in QOL did not improve predictive ability as compared to patients' current QOL. ¹⁵ In conclusion, baseline QOL was found to independently predict survival in patients

TABLE 1 Multivariable Cox proportional hazards model for overall survival

	Intention to treat		Censor at crossover	
Model variables	HR (95% CI)	<i>p</i> *	HR (95% CI)	<i>p</i> *
TSS, 5-unit increase	1.00 (0.92, 1.08)	0.99	0.99 (0.88, 1.10)	0.82
Age	1.05 (1.03, 1.08)	< 0.001	1.05 (1.02, 1.09)	0.002
IPSS risk score				
2	Reference		Reference	
3	1.46 (0.96, 2.20)	0.08	1.28 (0.77, 2.12)	0.35
Sex				
Male	Reference		Reference	
Female	0.65 (0.45, 0.93)	0.02	0.49 (0.31, 0.77)	0.002
Treatment				
Placebo	Reference		Reference	
Ruxolitinib	0.85 (0.60, 1.21)	0.37	0.40 (0.22, 0.74)	0.004
GHS/QOL, 10-unit increase	0.92 (0.85, 0.99)	0.03	0.84 (0.75, 0.94)	0.002
ECOG PS				
0	Reference		Reference	
1	0.81 (0.53-1.23)	0.32	0.86 (0.51, 1.45)	0.57
2–3	0.86 (0.48-1.53)	0.62	1.10 (0.53, 2.28)	0.80

Abbreviations: CI, confidence interval; ECOG PS, Eastern Cooperative Oncology Group Performance Status; GHS, global health status; HR, hazard ratio; IPSS, International Prognostic Scoring System; QOL, quality of life; TSS, total symptom score.

with intermediate-2 or high-risk MF and provided prognostication above and beyond PS, standard disease risk scores, and patient-reported symptoms.

AUTHOR CONTRIBUTIONS

Heidi E. Kosiorek, Robyn M. Scherber, Ruben A. Mesa, Amylou C. Dueck: study conception and design, development of study protocol methods and analyses, review of statistical analyses, writing the first draft of the manuscript, critical revisions and submission of the manuscript, approval of the final manuscript version. Holly L. Geyer, Srdan Verstovsek, Blake T. Langlais, Gina L. Mazza, Jason Gotlib, Vikas Gupta, Leslie J. Padrnos, Jeanne M. Palmer, Angela Fleischman: review of study protocol, review of statistical analyses, critical revisions and submission of the manuscript, approval of the final manuscript version.

ACKNOWLEDGEMENTS

None.

KEYWORDS

myelofibrosis, prognostic factors, quality of life, survival

CONFLICT OF INTEREST

Heidi E. Kosiorek, Holly L. Geyer, Blake T. Langlais, Gina L. Mazza, Jeanne M. Palmer and Leslie J. Padrnos have nothing to disclose. Srdan Verstovsek has research support for conduct of clinical studies and honoraria for participation in advisory boards from Incyte. Srdan Verstovsek receives research support from Incyte, Roche, NS Pharma,

Celgene, Gilead, Promedior, CTI BioPharma, Abbvie, Blueprint Medicines Corp., Novartis, Sierra Oncology, PharmaEssentia, Constellation, Italfarma, Protagonist, Kartos and does consulting work with Novartis, BMS and Incyte. Robyn M. Scherber was an employee of Incyte, the sponsor of the COMFORT-I trial. Angela Fleischman does consulting work with Incyte, BMS, CTI, and PharmaEssentia. Jason Gotlib: Research Funding: Incyte, Novartis, Kartos, Blueprint Medicines, Deciphera, Cogent Biosciences, Abbvie, Celgene, BMS, Protagonist Therapeutics Advisory Boards/Consulting/Honoraria: Incyte, Novartis, Kartos, Blueprint Medicines, Deciphera, Cogent Biosciences, Abbvie, Protagonist Therapeutics, PharmaEssentia. Vikas Gupta received research support from Novartis, Abb Vie, and consulting fees from Novartis, BMS Celgene, Pfizer, Abb Vie, Roche, Incyte and Sierra Oncology. Ruben A. Mesa reports research support from Incyte, Genetech, CTI, Promedior and Abbvie; consultant for Novartis, Sierra Oncology and La Jolla Pharma. RH reports research support from Roche. Amylou C. Dueck receives royalties from commercial licensing of the Myeloproliferative Neoplasm Symptom Assessment Form.

DATA AVAILABILITY STATEMENT

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Heidi E. Kosiorek¹ D Robyn M. Scherber² Holly L. Geyer³

^{*}Wald chi-square test statistic.

Srdan Verstovsek⁴ Blake T. Langlais¹ Gina L. Mazza¹ Jason Gotlib⁵ Vikas Gupta⁶ Leslie J. Padrnos⁷ Jeanne M. Palmer⁷ Angela Fleischman⁸ Ruben A. Mesa⁹ Amylou C. Dueck¹

¹Department of Quantitative Health Sciences, Mayo Clinic, Scottsdale, Arizona, USA ²Blueprint Medicines, Cambridge, Massachusetts, USA ³Department of Internal Medicine, Mayo Clinic, Scottsdale, Arizona, USA ⁴Department of Leukemia, MD Anderson Cancer Center, Houston, Texas, USA ⁵Stanford University Medical Center, Palo Alto, California, USA ⁶MPN Program, Princess Margaret Cancer Centre, University of Toronto, Toronto, Ontario, Canada Department of Hematology and Oncology, Mayo Clinic, Phoenix, Arizona, USA ⁸Department of Hematology and Oncology, University of California Irvine, Irvine, California, USA ⁹Mays Cancer Center at UT Health San Antonio MD Anderson, San Antonio, Texas, USA

Correspondence

Amylou C. Dueck, Department of Quantitative Health Sciences Mayo Clinic, Johnson Research Building, 13400 E. Shea Boulevard, Scottsdale, AZ 85259, USA.

Email: dueck.amylou@mayo.edu

ORCID

Heidi E. Kosiorek https://orcid.org/0000-0002-4651-9516 Srdan Verstovsek https://orcid.org/0000-0002-6912-8569 *Vikas Gupta* https://orcid.org/0000-0002-1419-8607 Leslie J. Padrnos https://orcid.org/0000-0002-1788-4944 Ruben A. Mesa https://orcid.org/0000-0001-5880-7972

REFERENCES

1. Mierzynska J, Piccinin C, Pe M, Martinelli R, Gotay C, Coens C, et al. Prognostic value of patient-reported outcomes from international randomized clinical trials on cancer: a systematic review. Lancet Oncol. 2019;20(12):e685-98.

- 2. Efficace F, Collins GS, Cottone F, Giesinger JM, Sommer K, Anota A, et al. Patient-reported outcomes as independent prognostic factors for survival in oncology: systematic review and meta-analysis. Value Health. 2021;24(2):250-67.
- 3. Mesa RA, Scherber RM, Geyer HL. Reducing symptom burden in patients with myeloproliferative neoplasms in the era of Janus kinase inhibitors. Leuk Lymphoma. 2015;56(7):1989-99.
- 4. Verstovsek S, Mesa RA, Gotlib J, Levy RS, Gupta V, DiPersio JF, et al. A double-blind, placebo-controlled trial of ruxolitinib for myelofibrosis. N Engl J Med. 2012;366(9):799-807.
- 5. Verstovsek S, Mesa RA, Gotlib J, Levy RS, Gupta V, DiPersio JF, et al. Efficacy, safety, and survival with ruxolitinib in patients with myelofibrosis: results of a median 3-year follow-up of COMFORT-I. Haematologica. 2015;100(4):479-88.
- 6. Cervantes F, Vannucchi AM, Kiladjian JJ, Al-Ali HK, Sirulnik A, Stablovskaya V, et al. Three-year efficacy, safety, and survival findings from COMFORT-II, a phase 3 study comparing ruxolitinib with best available therapy for myelofibrosis. Blood. 2013;122(25):4047-53.
- 7. Langlais BT, Geyer H, Scherber R, Mesa RA, Dueck AC. Quality of life and symptom burden among myeloproliferative neoplasm patients: do symptoms impact quality of life? Leuk Lymphoma. 2019;60(2):402-8.
- 8. Verstovsek S, Mesa RA, Gotlib JA, Gupta V, DiPersio JF, et al. Longterm treatment with ruxolitinib for patients with myelofibrosis: 5year update from the randomized, double-blind, placebo-controlled, phase 3 COMFORT-I trial. J Hematol Oncol. 2017;10(1):55.
- 9. Bankar A, Alibhai S, Smith E, Yang D, Malik S, Cheung V, et al. Association of frailty with clinical outcomes in myelofibrosis: a retrospective cohort study. Br J Haematol. 2021;194(3):557-67.
- 10. Mannelli F, Bencini S, Coltro G, Loscocco GG, Peruzzi B, Rotunno G, et al. Integration of multiparameter flow cytometry score improves prognostic stratification provided by standard models in primary myelofibrosis. Am J Hematol. 2022;97(7):846-55.
- 11. Maffioli M, Mora B, Ball S, Iurlo A, Elli EM, Finazzi MC, et al. A prognostic model to predict survival after 6 months of ruxolitinib in patients with myelofibrosis. Blood Adv. 2022;6(6):1855-64.
- 12. Verstovsek S, Parasuraman S, Yu J, Shah A, Kumar S, Xi A, et al. Realworld survival among patients with intermediate- to high-risk myelofibrosis in the United States: impact of ruxolitinib approval. Blood. 2020;136(supplement 1):46-7.
- 13. Emanuel RM, Dueck AC, Geyer HL, Kiladjian JJ, Slot S, Zweegman S, et al. Myeloproliferative neoplasm (MPN) symptom assessment form total symptom score: prospective international assessment of an abbreviated symptom burden scoring system among patients with MPNs. J Clin Oncol. 2012;30(33):4098-103.
- 14. Stojkov I, Conrads-Frank A, Rochau U, Koining KA, Arvandi M, Puntscher S, et al. Core set of patient-reported outcomes for myelodysplastic syndromes: an EUMDS Delphi study involving patients and hematologists. Blood Adv. 2022;6(1):1-12.
- 15. Singh JA, Nelson DB, Nichol KL. Recent health-related quality of life, but not change, predicted mortality and healthcare utilization. J Clin Epidemiol. 2021;S0895-4356(21):00268-7.

SUPPORTING INFORMATION

Additional supporting information can be found online in the Supporting Information section at the end of this article.