Physics of Double Faceted Crystal Growth in Solidification Processes
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Abstract

The existence of solidification growth fronts having intersecting facets (double faceted) has recently been observed
in silicon experiments of horizontal ribbon growth. This study investigates the physics of such configurations from
a continuum perspective by analyzing the variation of temperature at locations where a facet intersects another facet
or a free surface. The temperature distribution and gradients are obtained theoretically for different configurations
and material properties. The theoretical formulations show that the intersection point of two facets is colder than
the surrounding interface temperatures and thus could be a nucleation site. The analysis also shows that there is a
supercooled liquid (below the interface temperatures) in front of the intersection point. However, this is only the
case for materials that have a solid conductivity less than the liquid conductivity such as silicon. It is also shown,
to the extent that continuum assumptions remain valid, that the temperature gradients can approach infinity at either
the intersection point between two facets or the intersection of a facet with a free surface, depending on the material
properties and configurations. The theoretical predictions in the vicinity of these points are validated using a finite ele-
ment numerical solution that accounts for thermal transport, liquid convection, and solidification kinetics. This shows
that the physical behavior of a double facet formation can be theoretically predicted informing further experimental,
continuum numerical, and molecular dynamic investigations of the phenomenon.
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1. Introduction

Formation of facets is common in the growth of ox-
ides and semiconductors [1]. They have been observed
in different crystallization processes such as Czochral-
ski (CZ) [2-4], floating zone (FZ) [5], and horizontal
ribbon growth (HRG) [6-8]. Facets can have implica-
tions for the solidified product such as stress concentra-
tions and dopant segregation [4, 9]. In the Czhochralski
process in particular, facets are known to be one of the
causes for spiral growth [1]. As such, they have been
studied extensively in the past to understand their na-
ture and the conditions leading to their formation.

Faceted crystal growth occurs on low-index surfaces
that have a low free surface energy [9]. In the specific
case of crystallized silicon, the criterion proposed by
Jackson [10] predicts that only facets formed on a {111}
plane are atomically smooth and all other surfaces are
rough. Formation of facets on the solid-liquid interface
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is accompanied by a local reduction in interface temper-
ature below the equilibrium melting point, referred to as
supercooling or undercooling. This temperature reduc-
tion is attributed to anisotropy in interfacial energy or
attachment kinetics [11]. Facet kinetics consists of non-
linear step sources and subsequent linear propagation of
steps across the facet. Dislocations and 2D nucleation of
atoms at the solid-liquid interface are two general types
of step sources [12]. While growth of the solid-liquid
interface is in general a function of local temperature
gradients, the evolution of facets is a function of solidi-
fication kinetics as well, and therefore, their analysis re-
quires a knowledge of appropriate kinetic models [13].

Kinetic models are often expressed as ury, = AT1/K,
where ug, is the normal interface growth rate, ATy is
the local interface supercooling, and K is the kinetic co-
efficient. In the kinetics model proposed by Weinstein
and Brandon [14], the kinetic coefficient is an exponen-
tial function of ATy for 2D nucleation and a quadratic
function of AT for dislocations. It has been shown that
2D nucleation of atoms requires substantial liquid su-
percooling and its growth rate is slow [15]. The kinetic
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coefficient for subsequent step growth on the facet is a
function of local interface curvature and varies with the
inverse of the interface misalignment angle, i.e., the an-
gle between local interface normal and facet face nor-
mal. At larger misalignment angles, the liquid-solid in-
terface deviates from a facet and roughly aligns with
the melting point isotherm with roughened growth and
a constant kinetic coefficient [14]. It should be noted,
however, that such models are obtained for single iso-
lated facets formed on a solid-liquid interface and may
not hold for other configurations that might have differ-
ent physics. Formation of twin facets on parallel grain
boundaries [16—18], facets formed inside the grooves
between grain boundaries [19, 20], and faceted dendritic
growth [21-23] are examples of such configurations.

Configurations of interest in this paper are where a
single facet intersects a free surface at a triple junc-
tion point (TJP), where the solid, liquid, and gas phases
meet, or where a facet intersects another growth facet,
such as a (111) intersecting a (111) facet, at a point
submerged in the liquid. The intersection point is re-
ferred to herein as a double facet point (DFP) and the
configuration is referred to as a double facet formation.
Such formation occurs during the CZ and FZ processes,
where ridges have been sometimes observed around the
perimeter of solidified boules [5, 24, 25]. In the experi-
mental study of the HRG technique by Kellerman et al.
[26], a (111) and (111) double facet formation was ob-
served under the liquid surface (see Fig. 1) and it was
assumed that the facet intersection point was the step
source for the two facets. Single facets were also ob-
served to intersect the free surface at a TJP.

The facet configuration can significantly change the
physics of the problem because of the different heat flux
profiles around the two points. As such, it is impera-
tive to study the physics of the solidification process at
both point types to better understand the mechanisms
of a double facet formation. This study performs a de-
tailed theoretical and numerical analysis in the vicinity
of a double facet formation, an investigation that has
never been done before. An HRG configuration is cho-
sen as the backdrop for this study because both a facet
TJP and s DFP exist in this configuration. However, the
general analysis can be extended to other double facet
configurations as well. The objectives of this study is
to examine the physics of a double facet formation as
a function of temperature variations and the interactions
with the solidification kinetics in the vicinity of the dou-
ble facet. Results of this analysis provide valuable in-
formation about the nature of such phenomena, leading
to a more informed prediction of the performance and
stability of solidification processes in the presence of a

double facet configurations.

2. Problem Description

Figure 1(a) shows a schematic of the HRG technique
for crystal growth with a double facet formation at the
crystal leading edge (LE), denoted by a dashed circle.
In the HRG technique, an initial crystal seed is placed
on the free surface of a molten pool (€)) inside a cru-
cible with depth d, and a cooling jet of a non-reacting
gas (such as Helium) is blown on the pool surface. The
seed grows and a solidified single-crystal ribbon (€);) is
formed that floats on the liquid if the solid density is
smaller than the liquid. Silicon is an example of such
material. The ribbon (sheet) is continuously pulled out
of the pool with a pulling speed vector i, and is cut to
size. As long as the rate of solidified material extraction
equals the ribbon growth rate and no destabilizing phe-
nomenon occurs, a steady-state process can be main-
tained such that the ribbon LE seems to be stationary
from an observer’s perspective [27]. It is assumed here
that the solidification process in the HRG technique is
mainly uniform across the span (normal to page) of the
ribbon and three-dimensional edge effects are negligi-
ble. Therefore, the problem is studied at a cross-section
of the crucible in the middle of its span.

An enlarged view of the double facet formation at the
ribbon LE is shown in Fig. 1(b) with the chosen coor-
dinate system. The solid-gas and liquid-gas interfaces
and the pulling speed vector are assumed to align with
the x-axis (horizontal), such that if, = up%. The top sur-
face of the seed is aligned with the (100) plane and the
growth direction is [011]. The cooling heat flux from the
liquid-gas and solid-gas interfaces is denoted by ¢(x)
and ¢gs(x), respectively. The heat fluxes consist of con-
vective and radiative heat transfer and may be discon-
tinuous at the TJP due to a possible difference in liquid
and solid emissivities. The solid-liquid interface makes
an angle of frjp with the —x direction at the TJP. The
double facet consists of (111) and (111) facets, referred
to herein as the top and bottom facets, respectively. The
facet intersection point is a DFP, at which the angles
of the two facets with the x-axis are Opgp; and Opppp,
respectively. This configuration is consistent with the
experimental observations by Kellerman et al. [26], as
shown in Fig. 1(c). This picture was obtained by an
antimony demarcation method of an HRG experiment
where a roughly 1 [mm] thick sheet was pulled from a
pool of a depth of 13 [mm] at a rate of 0.5 [mm/s]. It
clearly shows the formation of top and bottom facets
that are aligned with (111) plane with 7 — 6 angle and
(111) plane with 6 angle from the x-axis, respectively,
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Figure 1: Cross-section view of a solidified ribbon in the HRG process with a double facet formation at its LE, with (a) schematic of the orientation
of liquid (€21) and solid (€25) domains with respect to the pulling speed direction, (b) close view of the double facet showing (111) (upper) and (111)
(lower) facets, TJP and DFP, and the respective angles, (c) double facet formation and orientations observed in an HRG experiment, opted from

Kellerman et al. [26].

where 6 ~ 55° is the angle that a (111) facet makes with
the x-axis and is referred to herein as the facet angle.

Because there is little information from the exper-
imental observations regarding the exact shape of the
double facet and the temperature variations in its vicin-
ity, a few assumptions and simplifications are made in
this study. Based on the experimental observation that
the DFP is the leading propagation point on the solid-
liquid interface, it is assumed that the DFP is the initi-
ation point of steps that propagate outward on both the
top and bottom facets. Thus, nucleation is assumed to
occur at the DFP. For this analysis, the top and bottom
facet angles are assumed equal (6prps = 6prpp), such
that the problem is geometrically symmetric around the
DFP. Furthermore, it is assumed that the problem is also
thermally symmetric around the DFP. This means that
the heat flux in the y-direction is assumed zero along a
horizontal line (in x-direction) passing through the DFP
(see Fig. 2). With this simplification, the problem only
needs to be studied on the top facet where both DFP
and TJP exist. While the thermal symmetry assumption
is not true for all scenarios, it is accurate for some con-

figurations, and may be a good assumption local to the
DFP.

3. Theoretical Model

In this section, the problem is studied theoretically
in the vicinity of the two points of interest, the TJP
and DFP. A schematic of the two points and the coor-
dinate systems used for their study is shown in Fig. 2,
where x* is aligned with the facet tangent and y* with
the facet normal, r is the distance from each point, and
6 is the angle of deviation from the facet direction in the
counter-clockwise direction. At the TJP (or DFP), the
angles of the liquid-gas (or liquid-liquid) and solid-gas
(or solid-solid) interfaces in their respective coordinate
system are 6, and 6, respectively, which may be positive
or negative depending on the case.

Following the same discussion as in [7] and [8], the
heat balance equation in the vicinity of each point re-
duces to V2T; = 0 in the r < € limit, where subscript
i refers to either the liquid, /, or solid, s, domains. For
this equation to be valid, the radius of investigation (€)
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Figure 2: Schematic of the top facet of a double facet formation in
the vicinity of (a) the TJP and (b) the DFP and the coordinate systems
used for the analysis of the problem. The double facet is assumed
geometrically and thermally symmetric about the x-axis at the DFP.

should be small such that the convective terms can be
assumed negligible provided that the Peclet number is
small, i.e., Pe; = piciupe/ki << 1, where pj, ¢, and
ki are the density, specific heat, and thermal conductiv-
ity of each domain [8]. In the small circle close to the
TJP, the cooling heat fluxes from the solid and liquid
domains can be assumed constant at values of g5 and ¢,
respectively. These two values are not usually equal in
the presence of radiation due to unequal liquid and solid
emissivities. The heat flux normal to the symmetry line
at the DFP is zero.

For the TJP (or DFP) in Fig. 2, the known boundary
conditions for the solution of the heat balance equation
are: (1) constant heat flux at the liquid-gas (or liquid-
liquid) interface, 6 = 6;, with - VT - i; = g, (2) con-
stant heat flux at the solid-gas (or solid-solid) interface,
0 = 0, with —k,VT; - iy = g5, (3) equal temperatures
at the solid-liquid interface, § = 0, with T} = T, (4)
heat release due to solidification at the solid-liquid in-
terface with —k,VT; - fis — k\VT) - iy = pLyily - fis, and
(5) finite temperature at r = 0, where L; is the latent
heat of fusion and 7 and 75 are the normals to the lig-
uid and solid domains, respectively, at each interface.
Note that the heat fluxes are assumed zero at the DFP,

qiprp = ¢sprp = 0. Because of non-homogeneous
boundary conditions (1), (2), and (4), the solution for
this problem at each point and each domain can be
assumed as the superposition of a non-homogeneous,
T nn, and a homogeneous, T, solution.

For the non-homogeneous solution, a linear formula
can be assumed because of constant heat fluxes at the
free surfaces at the TJP and zero heat fluxes at the sym-
metry line at the DFP, such that

0T nn A O0T; o0 5
ox* oy* (1)
=T =0)+Ax"+ By,

Tinmn(x*,y") =T(r=0)+

where T'(r = 0) is the temperature at ¥ = 0, and A; and B;
are constants for the liquid and solid domains (i = lors).
To satisfy the third boundary condition at the solid-
liquid interface (temperature continuity), A; = Ay = A
for both points. The solutions for A and B; at each point
are obtained in §4. With the assumptions of this prob-
lem, T'(r = 0) is unknown. However if either points are
a source of step nucleation, 7(r = 0) can be implicitly
obtained from the solidification kinetic formulations, as
will be shown in §5.

The boundary conditions for the homogeneous solu-
tion at both points become: (1) -k VT = 0at 6 = 6,
(2) —=ksVTsp-fis =0atl =65, (3) T'p =Tspatd =0,
4 —kSVTS’h - g — k1VT1,h -fap =0atd =0, and (5)
zero temperature at r = 0. With these boundary condi-
tions, the homogeneous solution can be obtained in the
r-0 plane by the method of separation of variables in the
form of Tix(r,0) = ¥i(0)ni(r). Plugging this definition
for temperature into the governing equation results in a
set of solutions of () = Cjcos(16) + D;sin(16) and
ni(r) = Eir* + Fir~ (i = lors), where A and the coeffi-
cients are constants that need to be determined based on
the boundary conditions.

Assuming A > 0, the fifth boundary condition (finite
temperature) results in F; = 0. Therefore the solution
can be presented as iy = (Gicos(46) + Hisin(16))r'.
Satisfying the other boundary conditions leads to a sys-
tem of equations in the form of Mg = 0, where M is a
4 x 4 matrix and g is the vector of solution constants.
For a non-trivial solution, the determinant of M must be
Zero:

ks + ki

%sin (A6, + 65)) — sin (A(6, — 65)) = 0. (2)
Solving this equation results in infinite series of solu-
tions for 4, (n = 1 — o) that are a function of the
thermal conductivities of the material of interest and the
angles that the liquid-gas interface at the TJP (or liquid-
liquid at the DFP) and solid-gas interface at the TJP (or



solid-solid at the DFP) make with the local facet. Note
that for the special case shown in Fig. 2 where both
the gas interfaces at the TJP (or symmetry interfaces at
the DFP) are horizontal, Eq. (2) is simplified because
6 + 0, = m — 26y at the TJP (or  — 26; at the DFP) and
6, — 6 = —m at the TJP (or & at the DFP).

With the obtained A,,, the homogeneous solution in
the liquid and solid domains for both the TJP and DFP
can be re-written as

(e

Gn
Tin(,0) = ) oo Boscosa@= )" (3)

n=1

where G, = Gy, = Gs, based on the third boundary
condition (temperature continuity). The G, coefficients
are unknown and should be obtained from a boundary
condition on a finite radius arc surrounding each point.
Because it is assumed that 4, > 0, the homogeneous so-
lution of Eq. (3) approaches zero at all A, as r — 0 close
to both points. Consequently, the temperature distribu-
tion in the vicinity of each point is determined by the
non-homogeneous solution. In other words, the lead-
ing order term of the solution dominates as r — 0. It
should be noted, however, that this may not be true for
the homogeneous temperature gradients, d7i,/0r and
(1/r)0T;n /06, because the gradients will approach in-
finity for 0 < A, < 1 and therefore they should not be
ignored in such conditions.

The temperature gradients at the TJIP and DFP can
have a significant influence on the stability of crystal
formation. After the temperature distributions are ob-
tained, the temperature gradients in the tangential, x*,
normal, y*, horizontal, x, and vertical, y, directions can
be computed as

oT; (aTi,h ) 0T ph
+
6=0

9x* or |, ox*’

Ty 1 (3Ti,h) + OTinn

ayr\ a8 ), oy’ @)
?’Tx = —%cos(@l) + g—y*sln(ﬁ),

oT;

T; . T;
E = _gx* sin(6)) — %cos(@l).

4. Discussion of the Theoretical Model

In this section, the application of the theoretical
model at the two points of interest is described and
the implications associated with different configurations
and conditions are discussed.

4.1. Theoretical Prediction at the TJP

At the TJP in Fig. 2(a), the gas interface angles are
6 = -6, and 6; = 7 — ;; and the free surface heat fluxes
are constant values of ¢, and ¢, respectively. The non-
homogeneous solution in the vicinity of the TJP is ob-
tained as

.

* ok pSquP 4 — @ 1
",y TIP ( ki — ke cos(6h) ki — ks sin(6))
psLiuy Gs-q_1 a1 ).
+ [-——=sin(6) + t ’
( bk Tk cos@) s cos)

where the temperature at the TJP location, T'rjp = T(r =
0), is unknown. Whether the homogeneous temperature
gradients can be ignored at the TJP depends on the spe-
cific configuration and the thermal conductivities of the
material. Considering only the first term of the homo-
geneous solution, the tangential and normal temperature
gradients in the vicinity of the TJP are stated as

8T1 GTS pstup qs — q1 1
= =- o) +
o o - ko k OOt T @
+ Glrﬁl_l .
oT, 3 — 1 1
LS ISR i | + 2
ay* ky — ks ki — ks cos(6) ki cos(6) (6)
+ ,Gtan(A,6)r" !,
0T Liu, | - 1 1
=Bt sin(6y) + L= s
ay* ky — ks ki — kg cos(6) ks cos(6)

+ ;G tan(A, (r + 6))yrt L.

If 1; < 1, both tangential and normal gradients ap-
proach infinity as » — 0. Assuming the misalign-
ment angle at the TJP is small compared to the facet
angle such that 6, ~ —6, and considering silicon as
the crystallized material with k; = 64 [W/(m - K)] and
ks = 22 [W/(m - K)] [28], the solutions of Eq. (2) at the
TIP are 4; = 0.8606, 1, = 2.088, .... Thus, the model
predicts that silicon will have infinite temperature gra-
dients in this solidification configuration. It should be
noted, however, that the continuum assumptions are no
longer valid at very small radii (atomic scale), and there-
fore Eq. (6) is only valid to an extent close to the TJP.

An infinite temperature gradient can have implica-
tions for the stability of solidification processes. For
example, the surface tension of liquid silicon is a strong
function of the surface temperature gradient [29]. For
the geometry shown in Fig. 2(a), the liquid free surface
is aligned with the horizontal (x) direction. Combining
Eq. (4) and (6), it can be concluded that the horizontal
liquid temperature gradient at the TJP, 07;/0x, will also
approach infinity if 4; < 1. This means there will be
a large difference in liquid surface tension between the



TJP and the far-field, resulting in a large Marangoni-
induced liquid flow in the vicinity of the TJP that may
cause flow instability in the liquid pool [30, 31].

If we only examine the non-homogeneous solution,
the temperature gradients are finite. For silicon, g5 > ¢
because the solid emissivity is greater than the liquid’s.
This implies that the tangential and normal gradients are
always negative and positive, respectively. A negative
tangential temperature gradient at the TJP means that
the temperature decreases moving away from the TJP
along the facet (see Fig. 2(a)), and therefore, the TJP
is warmer than other locations on the facet in its vicin-
ity, implying that it is probably not a source of crystal
nucleation. However because A1; < 1, no conclusion
can really be made regarding the sign of the tempera-
ture gradients at the TJP because the sign and value of
G is unknown.

Figure 3 explores the possibility of infinite temper-
ature gradients at the TJP for various systems by plot-
ting the first radial power of the homogeneous solution,
A1, at varying liquid interface angles (see Fig. 2(a))
in different materials. More specifically, the plots are
shown for materials with k&, > k; and materials with
ki < ks, where silicon and yttrium aluminum garnet
(YAG) properties are used, respectively [14]. It can
be observed that the two material types have opposite
behaviors. Note that the conditions mentioned above
for a double facet in silicon with 4; = 0.8606 and in-
finite temperature gradients occur at 6, = —0.31xr. At
this facet angle, materials with k; < kg will have finite
temperature gradients at the TJP of a double facet for-
mation.

At 6, = —mr/2, the facet is vertical (normal to the free
surface) with finite and constant homogeneous tempera-
ture gradients for both types of materials. Such a condi-

1.5 TP — K >k

- k <k
1 s

Figure 3: Variation of the first radial power of the homogeneous solu-
tion as a function of the liquid interface angle at the TJP for materials
with k| > ks and &y < k.

tion occurs at solidification near an adiabatic solid wall
or in droplet solidification [7]. 8, = —0.697 corresponds
to the {111} acute facet shown in Fig. 1(c) extending to
the free surface, where materials with & > kg (like sili-
con) would have a finite temperature gradients and ma-
terials with k; < ks (like YAG) would have infinite gra-
dients. At this angle, Eq. (6) predicts a finite and posi-
tive tangential temperature gradient for silicon, meaning
that the TJP is a local temperature minima where crys-
tal nucleation can occur. This situation was analyzed for
silicon in prior work [8].

4.2. Theoretical Prediction at the DFP

At the DFP in the coordinate system shown in Fig.
2(b), the misalignment angle is assumed small, such that
the angles of the liquid-liquid and solid-solid interfaces
are ) = m — 6 and 65 = —6¢, respectively. Also, the heat
fluxes are zero because of the adiabatic boundary con-
dition. The non-homogeneous temperature distribution
in the vicinity of the DFP is obtained as

Leu
P fkp cos(Hl)) x

S

Ti(x*,y") = Ts(x",y") = Tore + (

Ps Ly Up
+ a—
kl - ks

Sin(é’l))y*,
where Tppp = T'(r = 0) is the unknown temperature at
the DFP location. Including the first term of the homo-
geneous solution, the tangential and normal temperature
gradients at the DFP are equal to

oTy 0T Liu
L = _ P 1Dcos(ﬁl) +G vl

Ox*  Ox* ky — ks
aT, L
6y: = —ils _f?:: sin(6)) + /llGltan(/llé’l)r/l‘_l,
T, L
T _ _psltty sin(8) — 4,G;tan(; (x — ))rt L.
dy* ky — ks

Similar to Fig. 3, the variation of A; as a function of
the liquid interface angle at the DFP (see Fig. 2(b)) is
shown in Fig. 4 for the two types of materials. Com-
paring to Fig. 3, It is observed that the DFP behavior
is opposite that of the TJP for the two material types.
Considering silicon as the crystallized material (k; > k)
and 6, = m — 6 = 0.69x, as shown in Fig. 2(b), the solu-
tions of Eq. (2) at the DFP are A4, = 1.161, 1, = 1.882,
..., indicating that the temperature gradients are finite
at the DFP of a double {111} facet formation and are
determined by the non-homogeneous solution. For ma-
terials with k; < ks, however, the DFP of a double {111}
facet will have infinite temperature gradients according
to Eq. (8).

(7
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Figure 4: Variation of the first radial power of the homogeneous solu-
tion as a function of the liquid interface angle at the DFP for materials
with k; > kg and k; < k.

For materials like silicon with k; > ks, the tangential
temperature gradient is positive at the DFP, meaning the
temperature locally increases by moving away from the
DFP (positive x* in Fig. 2(b)) on both the top and bot-
tom facets (due to symmetry), making the DFP a local
temperature minima and a potential point of step nucle-
ation. The temperature at this point, Tppp, must be such
that the nucleation rate is consistent with the growth
rate. As the kinetics of nucleation at such a point are
unknown, it is impossible to determine Tpgp.

The normal temperature gradient is equal for both
the solid and liquid domains, implying that the jump
in heat flux to support the solidification is created by
the jump in thermal conductivity. Furthermore, com-
bining Eq. (4) and (8), the horizontal and vertical tem-
perature gradients at the DFP are obtained as 97;/0x =
psLeuy (ki — k), and 0T;/0y = 0, respectively. Thus, the
temperature linearly increases in the x direction, with
no gradient in the y direction and no change in slope at
the interface. A positive horizontal gradient implies that
the only way this configuration can exist is if the liquid
is supercooled in front of the DFP, which is in favor of
step nucleation at this point. However, when the pulling
speed (u,) is large or ki ~ kg, the amount of supercool-
ing increases substantially, which increases the chance
of unstable and dendritic growth at the DFP.

For materials like YAG with k; < kg, the temperature
gradients are infinite at the DFP and their sign is not pre-
dictable because the sign and value of G is unknown.
This and the above discussions indicate that the behav-
ior of YAG would be very different than that of silicon in
a HRG growth experiment. As far as we know, however,
no HRG experiments with YAG have been performed so
it is unclear what implications these differences would
have on the interface configuration in such an experi-

ment.

4.3. Zigzag Configurations

A double facet formation can also occur in different
configurations or boundary conditions. For example,
faceted growth can lead to a zigzag formation with no
free surface contact [18, 32]. In this case the leading
points (LP) of the connected double facets (leading in
the liquid) correspond to a DFP and the trailing points
(TP) are similar to a TJP, except with ¢ = ¢g; = 0. An
example of a zigzag formation is shown in Fig. 5. Note
that the facets here are again assumed to be symmetric
with an adiabatic boundary condition crossing both the
LP and TP points.

Referring to Eq. (6) and (8), the general formulation
for the tangential and normal temperature gradients of a
zigzag formation are
(aTi) _ pstup

Ox* | prp ki = ks
psLeuyp

(%) = sin(@)) + 4, Gytan(,6)r" ",
9" ) pate ki = ks

where subscript i refers to either the liquid or solid do-
mains. Whether each point has infinite temperature gra-
dients or not, depends on the value of 1, that is obtained
from Fig. 3 or Fig. 4 as a function of the thermal con-
ductivities of the material and the angles of the liquid
and solid interfaces. If the facets are aligned with the
{111} faces such that the liquid interface angle at each
point is 6 p = m — 6 and 6, tp = —6f, the temperature
gradients approach infinity at the TP and are finite at the
LP for materials with k; > kg, such as silicon. Because

cos(fy) + Glrﬁ‘_l,

. — -

solid

symmetric

7 & adiabatic
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Figure 5: Schematic of a zigzag double facet formation with the de-
scription of the coordinate systems and the angles at the leading point
(LP) and the trailing point (TP).
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the tangential temperature gradient will be positive at
the LP, it will likely be a nucleation site. In materials
with k; < kg, such as YAG, the gradients are finite at the
TP and infinite at the LP. For this case it is difficult to
say whether the LP could be the step source or not.

5. Temperature Variations and Solidification Kinet-
ics

As previously discussed, the rate of crystal growth
and the solidification kinetics of a faceted configuration
are a function of the local temperature variation. To ana-
lyze the crystal growth in a double facet formation, a so-
lidification kinetics model is required. In this study, the
kinetic model proposed by Weinstein and Brandon [14]
is used, in which the temperature at each point on the
solidification interface, 77, is expressed as a function of
the kinetic coeflicient and the normal interface growth
rate, such that 71 = Ty, + ATy = Ty + K(a@, ATurgn,
where T}, is the equilibrium melting point of the crystal.
Note that uy g, = —upsin(6s) along the facet in the vicin-
ity of both the TJP and DFP (see Fig. 2), because the
interface is stationary and the growth rate must balance
the rate of pulled material.

The kinetic coefficient is a function of the misalign-
ment angle and interface supercooling, depending on
the type of solidification that is likely to happen. Known
mechanisms of step generation are either 2D nucleation
on a facet or at a dislocation. For a single facet, the
kinetic coefficients of Krp = Kjpnexp(Azpn/|AT1|) and
Kgis = Kpg/ATy are proposed for 2D nucleation and
dislocation, respectively, where Kjp,, Aopn, and Kpg
are constants. In either formulation, the temperature at
the step source can be implicitly obtained. However, it
should be noted that no validated kinetic expression has
been obtained for facet intersection points such as the
DFP.

If the misalignment angle is small in the vicinity of
the nucleation points, step propagation occurs on the
facet with Kgep = Kg/[sin(a)|, where Ky, is constant.
With the facet temperature estimations of Eq. (5) and
(7) in the vicinity of the TJP and DFP, respectively, the
facet misalignment angle can be estimated using this
kinetic formulation if Tjp and Tpgp are somehow ob-
tained. Because the temperature is always finite in the
vicinity of both points, the misalignment angle will be
nonzero. However, taking the derivative of the step
growth kinetic formulation shows that if the tangential
temperature gradient (in the x* direction) is infinite at
either of the TJP or DFP, the rate of change of the mis-
alignment angle will be also infinite. For example, for
materials with k& > kg such as silicon, « is finite and

non-zero at the TJP but da/dx* is infinite, which could
lead to curvature effects at this point.

6. Validation of the Theoretical Model

To validate the theoretical formulations, a global so-
lution is obtained of a problem containing a DFP and
a TJP, with an HRG-like configuration with a cooling
heat flux at the free surfaces and silicon as the solidi-
fied material. The solution is obtained numerically and
compared with the theoretical predictions, as described
herein.

6.1. Numerical Analysis

An hp-finite element numerical formulation is used
that accounts for convective liquid flow, conductive
and convective heat transfer, and solidification kinet-
ics. The formulation benefits from high-order approx-
imation polynomials and a moving and adapting tri-
angular arbitrary Lagrangian-Eulerian (ALE) mesh for
tracking the solid-liquid interface position and resolv-
ing sharp gradients. The discretiziations are 5" order
accurate in space and 3™ order accurate in time. The
system of spatial and temporal equations in this method
are solved using an A-stable diagonally implicit Runge-
Kutta scheme. The interested reader is referred to refer-
ence [33] for more details.

To be consistent with the theoretical analysis, the nu-
merical simulation assumes there is a symmetry plane
parallel to the free surface and passing through the DFP
at a depth of mppp. Figure 6 displays a sample of the
numerical domain with the initial mesh in the liquid
(€))) and solid (€)) domains and the specified flow and
thermal boundary conditions on the domain boundaries.
The domains are non-dimensionalized by d = 100 [um],
which is on the order of twice the DFP depth, tpgp, ob-
served in the experiments (see Fig. 1(c)).

The bottom boundaries (symmetry and adiabatic
plane) and the top boundaries (free surface) of both do-
mains have Neumann boundary conditions. The bottom
boundaries have zero stress and zero heat flux. The top
boundaries have zero stress but a prescribed heat flux,
resembling convective heat flux by a cooling jet posi-
tioned at x = O plus radiative heat flux from the free
surfaces to the ambient. The heat flux distribution is
prescribed by [8]

q(X) = qc peak€XP (—(x/w)2ln2) + &0y (T;t (x) - Tf ) R
(10)
where g peax i the peak convective heat flux at x = 0, w
is the jet width, &; is the emissivity of the liquid or solid
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Figure 6: A sample of liquid and solid domains and meshes used for the numerical simulation with the specified flow and thermal boundary
conditions and the solidification kinetic formulation at the liquid-solid interface.

silicon, o, is the Stefan-Boltzmann constant, T(x) is
the temperature at each axial position on the free sur-
face, and T, is the ambient temperature. Both domains
are extended by 2.5d from the cooling jet center (x = 0)
such that the streamwise variations of the heat flux di-
minish at the inlet (x;,) and outlet (x,y) of the domains.
The liquid inlet and solid outlet have Dirichlet boundary
conditions, with the temperatures fixed at Tj, > Ty, and
Tou < T, respectively, and the inlet velocity is fixed at
the pulling speed, up,.

At the liquid-solid interface, the solidification kinetic
model of §5 is used, such that the interface velocity at
each time-step is obtained from the local interface su-
percooling and the appropriate kinetic coeflicient, uy, =
ATy/K(a, ATy). Although the type of kinetics at the
DFP is unknown, it is assumed that 2D nucleation oc-
curs at the DFP with the kinetic formulation provided in
§5. Using this formulation, Tpgp is obtained during the
simulation. The interface is initially positioned down-
stream (to the right) of the cooling jet center to create
a supercooled region in the liquid by the cooling heat
flux. The converged steady-state position of the inter-
face relative to the heat flux profile will be a function of
the balance between the generated heat at the interface
(a function of the pulling speed) and the removed heat.

6.2. Theoretical Vs. Numerical

The parameters for the particular studied case of a
double facet formation are listed in Table 1.

The converged steady-state temperature solution for
this problem is shown in Fig. 7, where the temper-
ature contours (isotherms) are visible as dashed lines.
Both the DFP and TJP are positioned upstream (left) of
the cooling jet center at xppp/d = —0.44 and xqyp/d =
—0.08. The minimum temperature occurs in the solid
downstream of the TJP and the cooling jet center at

Table 1: Parameters for the studied case for theoretical and numerical
comparison [14]

Description Variable Value [Units]
DFP depth IDFP 50 [jlm]
pulling speed up 0.4 [mm/s]
solid/liquid density P 2530 [kg/m3]
solid/liquid spec. heat c 1000 [J/kgK]
solid conductivity kg 22 [W/mK]
liquid conductivity ki 64 [W/mK]
equi. melting temp. T 1685 [K]
inlet temp. Tin 1687 [K]
outlet temp. Tout 1683 [K]
peak conv. heat flux e peak 100 [W/cm?]
cooling jet width w 100 [um]
solid emissivity & 0.6 -
liquid emissivity &l 0.2 -

2D nucl. kinetic const. Kopn 1/(1.5x10'%  [K/(m/s)]
2D nucl. kinetic const. Aopn 140 [K]
step kinetic const. K 1/0.63 [K/(m/s)]

x/d = +0.70 with T, = 1674.4 [K]. At the TIP, the
liquid and solid heat fluxes are ¢; = 116 [W/cm?] and
qs = 134[W/ cm?]. These values will be later used in
the theoretical estimation of temperature gradients at the
interface. The temperature contours make zero normal
gradient at the symmetry boundary because of the adi-
abatic boundary condition. A supercooled region exists
in front of the entire interface in the liquid region with
|AT| = 4-7 [K] (T, = 1685 [K]). This liquid supercool-
ing is necessary to initiation the growth of steps on the
facet. Note that the melting point isotherm is far up-
stream of the facet.

The variation of temperature along the interface is
shown in Fig. 8(a), where temperature at the DFP is
equal to Tppp = 1680.7 [K]. Although it is difficult
to see in Fig. 8(a), the temperature slightly increases
by moving away from the DFP in the x* direction, as
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Figure 7: Numerical solution showing the temperature contours in the liquid and solid domains in a region close to the top facet of a double facet

formation for the studied case of Table 1.
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Figure 8: Numerical solution for the studied case of Table 1 showing
the (a) temperature distribution along the facet, and (b) variation of
the misalignment angle along the facet.

predicted by Eq. (7). However, the temperature then
decreases by moving toward the TJP, where the temper-
ature is Tjp = 1678.8 [K]. This can be explained by
the singular tangential temperature gradient at the TJP
predicted by Eq. (6) for silicon, as will be observed
later. The facet misalignment angle in Fig. 8(b) has
a similar variation. At the DFP, the misalignment an-
gle starts from appp = 0.63 [deg], slightly increases,
and then sharply drops to arjp = 0.43[deg] at the
TJP because of the decreasing facet temperature. Be-
cause the misalignment angle over the entire facet is
smaller than the onset of transition to roughened growth

10

at Ayrans = sin” (K / Krougn) = 11 [deg], the mechanism
for crystal formation on the entire facet is step growth.

The numerical tangential (x*) and normal (y*) facet
temperature gradients in the vicinity of the DFP are de-
rived from the solution in Fig. 8 and are shown in Fig.
9(a) in the DFP coordinate system (see Fig. 2). It can be
observed that the tangential temperature gradient (solid
black line) is positive is a small region close to the DFP,
x*/d < 0.003, yielding a temperature increase of about
0.004 [K] in this region. This explains why this temper-
ature increase is not clearly visible in Fig. 8(a).

The theoretical estimations of the temperature gradi-
ents at the DFP from Eq. (8) are also shown as sym-
bols in Fig. 9(a), where Appp = 24.9 [K/mm)] (black
circle) and Bpgp = —35.5[K/mm] (blue square) are
the theoretical tangential and normal gradients at the
DFP, respectively, which are equal for both the liquid
and solid domains. Evaluating the numerical gradients
at the DFP location in Fig. 9(a) results in 97,/0x* =
0Ts/0x* = 11.6[K/mm], 0T\/dy* = -23.4[K/mm],
and 0T/dy* = —7.86[K/mm]. It can be observed
that the numerical temperature gradients are finite at the
DFP, as predicted by Eq. (8) for silicon, and approach
the values predicted by the analysis. Although the nu-
merical solid and liquid normal gradients have differ-
ent values, they both converge to the theoretical value
by performing a grid refinement procedure that will be
shown later.

The numerical facet temperature gradients in the
vicinity of the TJP are shown in Fig. 9(b). At this point,
the temperature gradients cannot be theoretically esti-
mated due to the unknown G value in the homogeneous
solution (see §4.1). It can be observed in Fig. 9(b) that
the numerical temperature gradients, displayed as lines,
are completely different from the theoretical prediction
for the non-homogeneous part of the gradients in Eq.
(6), Artrp, Bi1ip, and Bgtp, which are shown as sym-
bols. This means that the singular homogeneous part
of the temperature gradients dominate the gradients at
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Figure 9: Comparison of numerical and theoretical temperature gradients, (a) temperature gradients in the vicinity of the DFP, (b) temperature
gradients in the vicinity of the TJP, and (c) homogeneous part of the temperature gradients on a logarithmic scale in the vicinity of the TJP.

the TJP, which is consistent with the theoretical analy-
sis. Because the tangential temperature gradient (solid
black line) is positive and the normal temperature gradi-
ents (blue lines) are negative at the TJP, the coefficient
G in Eq. (6) should be positive in the specific configu-
ration studied here.

The first radial power of the homogeneous solution
at the TIP, A, can be estimated from the homoge-
neous part of the numerical temperature gradients and
be compared with the theoretical prediction from Eq.
(2). This can be done by subtracting the theoretical non-
homogeneous temperature gradients at the TIP (A;ryp
and B;j1jp) from the numerical temperature gradients
(VT). By plotting the resulting numerical homogeneous
temperature gradients, VT}, versus the radius from the
TJP on a logarithmic scale, 4; should be equal to the
slope of the variations (see Eq. (6)). These plots
are shown in Fig. 9(c), where the evaluated numer-
ical slopes are Ajx- = 0.8632, A1y = 0.8657, and
A1y = 0.8647, for tangential, normal in the liquid, and
normal in the solid gradients, respectively. It is evident
that these values are extremely close to the theoretical
prediction of 2; = 0.8606.

For a more accurate comparison between the theo-
retical and numerical results, the mesh is refined twice
to increase the grid resolution at the DFP and TJP. The
evaluated numerical results are shown in Table 2 in
comparison with the theoretical estimations. In addi-
tion, the numerical values in the limit that the grid ele-
ment size approaches zero are obtained using a Richard-
son extrapolation technique [34] and reported in Table
2, along with the numerical convergence rate of each
parameter. It can be observed that the extrapolated tem-
perature gradients at the DFP and the A; values at the
TJP approach the theoretical predictions. The normal
liquid and solid temperature gradients at the DFP are
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also closer after extrapolation. This confirms that the
theoretical formulations are good estimates of the be-
havior of a double facet formation in close proximity of
its two end points, the DFP and TJP.

As a final note, a positive G| in Eq. (6) means that
the horizontal temperature gradient, 7' /0x, is infinitely
negative (see Eq. (4)), resulting in a large Marangoni-
induced flow toward the TJP with the minimum lig-
uid free-surface temperature at the TJP. This behavior
could be observed experimentally by visualizing the lig-
uid surface velocities with marker particles. Note that
surface tension variation has not been included in the
numerical simulation. It has been shown in prior studies
that the TJP position moves downstream as the pulling
speed is increased [8]. At large pulling speeds, the min-
imum temperature occurs in the liquid and there is a
chance that the facet temperature increases toward the
TJP, making G| positive. With a positive G, the hor-
izontal temperature gradient will be infinitely positive
at the TJP, resulting in a large Marangoni-induced flow
from the TJP toward the minimum temperature location.
While this condition decreases the chance of crystal
contamination, it increases the risk of dendritic growth
at the TJP due to a large supercooled liquid region in
front of it.

7. Conclusions

The special case of a double facet formation in so-
lidification processes was investigated in this paper, in-
cluding different possible configurations and crystal-
lized materials. The physical behavior of facets and
their intersection or end points were analyzed theoreti-
cally to explore the temperature fields and solidification
kinetics at these points. It was observed that the be-
havior of facet end points is primarily a function of the



Table 2: Results of mesh refinement performed on the studied case of Table 1.

Description Variable Base case 1% Refine. 2"d Refine. Extrap. Analytical  [Units]
(Conv. Rate)

grid size N 19k 74k 298k - - elements
min. element size Axpin/d 5.6x 107 28x107°  1.4x107 - - -
DFP tangential temp. (%)DFP -11.6 -13.1 -14.3 -19.1 -24.9 [K/mm)]
gradient (0.32)

DFP lig. normal (LQ)DFP 23.4 24.7 25.8 31.9 35.5 [K/mm)]
temp. gradient (0.24)

DFP sol. normal (g;)m 7.86 10.7 13.3 415 35.5 [K/mm)]
temp. gradient (0.13)

TJP tangential 1* Aix 0.8632 0.8621 0.8613 0.8592 0.8606 -
radial power (0.46)

TIP lig. normal 1% Ay 0.8657 0.8637 0.8624 0.8617 0.8606 -
radial power (0.62)

TJP sol. normal 1% Alyes 0.8647 0.8631 0.8620 0.8596 0.8606 -
radial power (0.54)

material thermal conductivities in the liquid and solid
forms and the angles at which the facets intersect each
other or the free surfaces. For materials with k& > kg,
such as silicon, a double facet formation with a {111}
crystallographic orientation at its end points was shown
to have theoretically finite temperature gradients at the
double facet point or the leading point in the case of
a zigzag formation, and infinite temperature gradients
at the other end, the triple junction point or the trailing
point. The situation was shown to be reversed for a ma-
terial with k; < k;, such as yttrium aluminum garnet.
Existence of infinite or large temperature gradients at
any of the facet end points can cause large supercooled
regions and Marangoni-induced flows in proximity of
the points. Numerical simulation of an example case
with a double facet formation showed that the theoret-
ical formulations can successfully estimate the temper-
ature variations in the vicinity of the facet end points,
demonstrating their ability in predicting the behavior of
a double facet formation in different configurations and
conditions. Work in needed to experimentally verify
these predictions and also to understand the nucleation
process that is assumed to occur at a double facet point.
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