ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) | 978-1-6654-0540-9/22/$31.00 ©2022 IEEE | DOI: 10.1109/ICASSP43922.2022.9747300

TOWARDS CLOSED-LOOP SPEECH SYNTHESIS FROM STEREOTACTIC EEG:
A UNIT SELECTION APPROACH

Miguel Angrick', Maarten Ottenhoff?, Lorenz Diener, Darius Ivucic', Gabriel Ivucic?,
Sophocles Goulis®, Albert J. Colon®, Louis Wagner®, Dean J. Krusienski*, Pieter L. Kubben®
Tanja Schultz*, Christian Herf{*

!Cognitive Systems Lab, University of Bremen, Bremen, Germany
2School of Mental Health and Neurosciences, Maastricht University, Maastricht, Netherlands
3Epilepsy Center Kempenhaeghe, Kempenhaeghe, Netherlands
4ASPEN Lab, Virginia Commonwealth University, Richmond, VA, United States

ABSTRACT

Neurological disorders can severely impact speech com-
munication. Recently, neural speech prostheses have been
proposed that reconstruct intelligible speech from neural sig-
nals recorded superficially on the cortex. Thus far, it has
been unclear whether similar reconstruction is feasible from
deeper brain structures, and whether audible speech can be
directly synthesized from these reconstructions with low-
latency, as required for a practical speech neuroprosthetic.
The present study aims to address both challenges. First, we
implement a low-latency unit selection based synthesizer that
converts neural signals into audible speech. Second, we eval-
uate our approach on open-loop recordings from 5 patients
implanted with stereotactic depth electrodes who conducted
a read-aloud task of Dutch utterances. We achieve correlation
coefficients significantly higher than chance level of up to
0.6 and an average computational cost of 6.6 ms for each 10
ms frames. While the current reconstructed utterances are
not intelligible, our results indicate promising decoding and
run-time capabilities that are suitable for investigations of
speech processes in closed-loop experiments.

Index Terms— neuroprosthesis, speech synthesis, stereo-
tactic EEG, low-latency processing of neural signals

1. INTRODUCTION

Research related to neuroprosthesis, which use brain activity
data to synthesize audible speech, has gained an increasing
interest in recent years [1, 2, 3, 4]. The potential to regain
spoken communication for people who have lost their ability
to speak due to neurological disorders, such as amyotrophic

Correspondence to Miguel Angrick, miguel.angrick@uni-bremen.de.
C.H. acknowledges funding by the Dutch Research Council (NWO) through
the research project "Decoding Speech In SEEG (DESIS)’ with project num-
ber VI.Veni.194.021. T.S., D.J.K and M.A. acknowledge funding by BMBF
(01GQ2003) and NSF (2011595) as part of the NSF/NIH/BMBF Collabora-
tive Research in Computational Neuroscience Program.

978-1-6654-0540-9/22/$31.00 ©2022 IEEE 1296

lateral sclerosis (ALS) or severe paralysis, would significantly
impact the quality of life of those affected. Joint research
between the Brain-Computer Interface (BClIs) [5] and speech
processing communities raises hope to serve these needs by
identifying and decoding speech processes from brain activity
and directly transforming them into audible speech to provide
a spoken communication modality beyond acoustics [6].

Recent studies have demonstrated initial success with the
reconstruction of intelligible speech from open-loop record-
ings of produced and perceived speech. Anumanchipalli et
al. [7] employed a recurrent neural network to decode ar-
ticulatory kinematic trajectories from electrocorticographic
(ECoQ) recordings, which were then synthesized into acous-
tic speech in a subsequent step. Herff et al. [8] relied on
a concatenative approach by selecting waveform segments
from a database of neural and acoustic pairs. This approach
has been successfully replicated using intracortical electrode
arrays with very similar results [9]. Akbari et al. [10] used
penetrating depth electrodes to reconstruct perceived speech
through a deep neural network model.

While these findings greatly advanced the state-of-the art
in the field of speech related neuroprosthetics, many chal-
lenges remain and practical application for target users has
not yet been achieved. One of these open challenges refers
to the decoding capabilities from deeper brain structures. To
date, the majority of studies acquire neural signals either from
the scalp, such as electroencephalography (EEG), or directly
from the cortex (ECoG) [11]. Despite the large potential of
signals from deeper structures [12], the general adoption for
BClI remains to be seen. A second open challenge refers to the
requirement of a low-latency synthesis output to enable a nat-
ural conversation. While the related work has achieved high-
quality reconstructions using open-loop recordings, it is still
unclear whether these systems are applicable for real-time ex-
periments.

In this study, we contribute to both of these open chal-
lenges. We developed a speech synthesizer that uses a unit
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selection technique [13], a technique known to provide high-
quality output even when little training data is available, to
generate an acoustic waveform in real-time. For this, we
build upon our prior findings for reconstructing intelligible
speech based on concatenative approaches [8] and an initial
attempt to decode imagined speech processes from closed-
loop recordings [14]. Real-time capabilities are necessary
to enable continuous low-latency feedback in closed-loop ex-
periments. Our evaluation relies on open-loop data acquired
from stereotactic depth electrodes (sEEG) to capture neural
dynamics in cortical and deeper brain structures. This study
aims to provide preliminary results and to explore the decod-
ing capabilities and limitations of the proposed approach be-
fore deployment in closed-loop experiments.

2. MATERIAL AND METHODS

2.1. Experiment Design and Recording Setup

We conducted an experiment with 5 native speakers of Dutch,
who were being monitored for intractable epilepsy via im-
planted SEEG electrodes to identify the epileptogenic zone.
Placement of electrode shafts was purely determined based
on clinical needs , ranging from 107 to 127 electrodes across
patients. The patients performed a speech production task for
which they read aloud 100 short utterances randomly drawn
from the Mozilla Common Voice Dutch corpus [15], result-
ing in 8:20 min to 20:00 min of speech data. For each trial,
the target utterance was presented for 4-10 seconds on a mon-
itor in front of the patient (depending on the patients’ reading
speed), followed by a pause of 1 second (except for patient 5,
who conducted the experiment with a 2 second pause).

Neural data was digitized using a Micromed SD LTM am-
plifier (Micromed S.p.A., Treviso, Italy). Audio data was
recorded at 48 kHz using the recording notebook’s on-board
microphone. LabStreaming Layer [16] was used to record
SsEEG and acoustic data in parallel.

The experiment design was approved by the IRB of Maas-
tricht University and Epilepsy Center Kempenhaeghe and was
conducted in a clinical environment under the supervision of
experienced healthcare staff.

2.2. Data Processing

In order to compute meaningful features from the sEEG sig-
nals, we focused on the high-gamma band, which is known
to contain highly localized information about speech produc-
tion [17, 18] and has been successfully employed in previous
speech-related decoding studies [19, 20]. We used a band-
pass (70 - 170, 4th order Butterworth filter) filter to extract
the high-gamma band and two bandstop filters (98 - 102 and
148 - 152, respectively, both 4th order Butterworth filters) to
attenuate the first and second harmonic of the line noise at 50
Hz. The resulting signals were segmented into 50 ms win-
dows with a 10 ms frameshift. For each window, we calcu-

lated the signal power and applied a natural logarithm to nor-
malize the distribution. We appended 4 non-redundant frames
of preceding context to each window to model temporal de-
pendencies of up to -200 ms in the past. Resulting features
are of dimension | frames | x | electrodes | - 4.

Acoustic speech was resampled to 16 kHz and segmented
into 150 ms windows with 10 ms frameshift to match the tem-
poral alignment and number of windows of the high-gamma
features. A length of 150 ms for the acoustic data was used to
have sufficient acoustic samples to enable smooth transitions
in the concatenation procedure. Finally, we employed feature
selection to maintain a manageable number of high-gamma
features by selecting the top 150 features yielding the highest
correlation with the signal energy of the acoustic speech [14]
for each patient. The number of 150 features was determined
empirically in order to preserve as much information as possi-
ble and at the same time to be able to perform the computation
steps in real time.

2.3. Unit Selection based on Brain Activity Data

In our decoding step, we synthesize acoustic speech using a
unit selection paradigm — a technique that originates from
the text-to-speech domain [13]. In addition, unit selection
has been successfully deployed for voice conversion [21] and
speech synthesis from facial EMG [22], an approach that is
also applicable for similar silent-speech-interfaces [6]. Unit
selection utilizes a database, also known as codebook, con-
taining time-aligned pairs of high-gamma activity and wave-
form segments. This database enables the mapping from brain
activity data to acoustic speech by selecting the pair with the
highest similarity. Figure 1 illustrates the general concept.

In the training phase, we populate the database with cor-
responding pairs extracted from the training set. Each pair is
responsible for the mapping of a single window (50 ms) of
brain activity data to a single window (150 ms) of acoustic
speech, where the brain activity data is aligned with the left
third of the acoustic window. In the decoding phase, high-
gamma windows are extracted in real-time from the sEEG
stream, resulting in units of the same size as in the codebook.
The extracted windows are then compared to all pairs in the
database. Here, we follow the approaches from Herff et al.
[8] and Wilson et al. [9] by relying on the cosine similarity
distance metric:
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By picking the pair with the closest cosine distance, re-
sulting waveform segments are concatenated to obtain the fi-
nal speech signal. We applied a Hamming window to re-
weight the acoustic amplitudes for smooth transitions.

similarity (A, B) =
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Fig. 1. Illustration of the unit selection concept for speech synthesis from invasive brain signals. In the training phase, pairs
of brain activity and acoustic speech are stored in a unit database. In the decoding phase, windows of brain activity are
compared to all entries in the database using cosine similarity. The approach selects the pair with the highest similarity score
and concatenates its acoustic data to the output waveform. To ensure smooth transitions between previously selected and current
waveform segments, we used a re-weighting based on a Hamming window function.

2.4. Closed-Loop Decoder Design

The implementation of our closed-loop decoder is build upon
a node-based framework, which is specifically tailored for
conducting experiments that require real-time stream pro-
cessing of various biosignals to provide a continuous low-
latency feedback for its participants. In brief summary, the
framework enables to abstract certain functionality in self-
contained nodes. These nodes can be linked together to
provide a processing chain, where each node can receive
multiple inputs, performs its calculation and propagates the
results to the next nodes. Here, each node can be configured
to initiate a new process to enable simultaneous computa-
tions in a multi-processor environment. For further details,
we refer to our previous study about real-time decoding of
imagined speech processes [14].

The unit selection approach is implemented across three
subsequent nodes: In the first node, the decoding model com-
putes the similarity with respect to each entry in the codebook
by using the cosine similarity, and picks the waveform corre-
sponding to the unit with the smallest distance. This segment
gets inserted into a ringbuffer for storing a fixed amount of
previous selections that are used in the concatenation step to
enable smooth acoustic transitions. In the end, a reconstruc-
tion node is responsible for the final audio generation by using
a hamming window to re-weight individual waveform sam-
ples from the second ringbuffer and placing them together.

We incorporated our unit selection approach to the sys-
tem architecture of our previous study [14] by exchanging the
linear models with our proposed method. Hence, the final de-
coding pipeline consists of one processing chain of nodes for
the conversion from raw neural signals into an acoustic wave-
form. We used concurrent nodes to store intermediate and
final results to quantify performances in the evaluation.

3. RESULTS

To test the proposed approach, we conducted a simulated on-
line experiment. For each participant, we reconstructed the
audio waveform of their experimental runs by using a 10-fold
cross validation to split the brain activity and acoustic data
into non-overlapping partitions for model training and testing.
We then evaluated our results with respect to two criteria: (1)
decoding performance of the generated output in comparison
to its original speech and (2) the computational costs to en-
able such a conversion using the unit selection approach in a
real-time capable synthesizer.

3.1. Decoding Performance

In accordance with previous investigations based on ECoG
recordings [8, 20], we used the Pearson correlation as our
performance metric. For each trial, we transformed both the
original and reconstructed waveforms into the time-frequency
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Fig. 2. Mean Pearson correlation scores across all trials of each participant. Blue bars indicate our proposed approach while
red bars correspond to the chance level. Whiskers indicate standard deviation.

domain and averaged the correlation scores across frequency
bins. The chance level was established as a baseline by split-
ting the neural data into two partitions at a random point in
time and swapping them to break the alignment to the acous-
tic data. We then applied the same decoding pipeline to the
rotated data and calculated the results. We repeated this step
100 times to get a closer approximation of the chance level.
Figure 2 shows our decoding results. Our proposed method
achieves scores of 0.41, 0.64, 0.53, 0.50 and 0.62, as indi-
cated by the blue bars. Across all participants, the correla-
tion results from the proposed method are significantly higher
than the chance level (Man-Whitney-U test, %« x P < 0.001,
red bars). While reconstructed audio sounds very natural, the
generated speech is not intelligible at this point.

3.2. Computational Cost

We estimated the computational cost for each node in the net-
work to ensure that the calculations can be executed in real-
time. Based on a runtime of 1 min, we measured the respec-
tive processing times for our 50 ms windows with a 10 ms
frameshift and calculated their average. The results are shown
in Table 1. The data processing nodes need approximately
1.4 ms to execute their calculations, while the unit selection
nodes require a runtime of 5.2 ms. The runtime of the unit-
selection is dependent on the number of units n in the code-
book. Assuming single comparison in constant time, the pro-
cessing cost increases linearly as n grows, since in the decod-
ing process, one feature frame is compared to all units in the
codebook. This corresponds to a computational complexity
of O(n). In total, the proposed approach needs 6.6 ms for the
conversion of SEEG signals to audible speech, which is be-
low the threshold of the 10 ms frameshift. We conducted our
evaluation on a laptop with 16 GB of RAM and an Intel(R)
Core(TM) i5-6600 CPU (3.3 GHz, 3301 MHz). To limit the
interprocess communication, we used only one process for
the proposed approach and dedicated nodes for storing inter-
mediate results regarding the evaluation to circumvent delays
from I/O operations.

Processing step

Processing costs [/f5 -] |

per 10 ms

Data Processing

— Channel Selection 0.056
— High-Gamma 0.154
— Noise Filtering 0.282
— log Power Features 0.311
— Temporal Context 0.414
— Feature Selection 0.189
Unit Selection Approach

— Unit Selection 4.209
— Waveform Ringbuffer 0.353
— Waveform Concatenation 0.599
Total: 6.565

Table 1. Mean processing costs for the data processing steps
and the unit selection approach.

4. CONCLUSION

Here, we address two open challenges in the field of speech-
related neuroprostheses using a unit selection technique to
generate acoustic speech from sEEG recordings in real-time.
Our results indicate reliable decoding performances yield-
ing significantly higher correlations than the random chance
level. While the synthesized speech is not yet intelligible
and not on par with recent findings from ECoG recordings
using a similar decoding paradigm, our results show promise
in utilizing deeper brain structures for speech-related BClIs.
The real-time capabilities presented by our approach are a
mandatory requirement for moving towards closed-loop ex-
periments. Further work is needed to assess the decoding
performance of speaking modes beyond produced speech,
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