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1. Introduction
The study of quantum mechanical states is an important part of quantum

mechanics and quantum information theory [4]. One relevant feature of such states
is separability and entanglement [5]. These properties refer to the situation where
the quantum system is a composition of 𝑛 subsystems. Separable states are states
that can be expressed as (statistical mixtures of) tensor products of states of the
single subsystems. Entangled states are states that cannot. Entanglement is considered
one of the main resources in quantum computation [7], and therefore the study
of entanglement has generated a large interest in the last few decades. Types of
results that are important in this theory are criteria to test if a state is entangled
(separable) and the formulation of meaningful measures of entanglement. Results are
available for pure and mixed states, bipartite and multipartite systems and systems
whose subsystems are two-dimensional (qubits) or have general dimensions (qudits).
A review is given in [5]. One may also consider special classes of states and see
whether new results can be generated or results which are known for general states
can be simplified.

In this paper, we are interested in pure states of multipartite quantum systems
where each component subsystem is a two-dimensional system, that is, a quantum
bit (qubit). In other words, the states we are interested in are vectors in the 2𝑛-
dimensional complex vector space H := H ⊗𝑛

2 , where H2 is spanned by the basis of
two elements {|0〉, |1〉}. As it is customary in quantum mechanics (see, e.g. [10])
vectors which differ by a multiplicative factor are identified. If |𝜓〉 is a state in
H a simple separability-entanglement test is as follows: One considers the density
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matrix 𝜌 := |𝜓〉〈𝜓 | and, for each one of the qubits, takes the partial trace (see, e.g.
[7]) with respect to the remaining ((𝑛−1)-qubit) system. If and only if the resulting
reduced density matrices represent pure states, the state |𝜓〉 is separable. In this
paper we present an even more direct test valid for quantum symmetric states which
is in terms of the coefficients of the expansion of |𝜓〉 in a given (natural) basis
and does not require passing through the density matrix description of the state.

Symmetric states |𝜓〉 are states that are invariant under any element of the
permutation group 𝑆𝑛, that is, 𝑃 |𝜓〉 = |𝜓〉 for every 𝑃 ∈ 𝑆𝑛1. Such states have
recently received much attention [2, 3, 6, 8, 9] both at the theoretical and at the
experimental level. They span the so-called symmetric sector and are the largest
((𝑛 + 1)-dimensional) representation of SU(2) in the Clebsch-Gordan decomposition
of the tensor product (SU(2))⊗𝑛 (see, e.g. [12]). The symmetric sector is spanned
by the basis

B := {𝜙0, 𝜙1, . . . , 𝜙𝑛} ,
with

𝜙 𝑗 :=
∑︁

|𝑎1 · · · 𝑎𝑛〉, (1)

where the 𝑎𝑘’s are 0 or 1 and the sum runs over all the combinations which have
𝑗 1’s (and 𝑛 − 𝑗 0’s). Therefore, for example, the symmetric sector of three qubits
is spanned by

𝜙0 := |000〉,
𝜙1 := |100〉 + |010〉 + |001〉,
𝜙2 := |011〉 + |101〉 + |110〉,

𝜙3 := |111〉.
In general, states |𝜓〉 in the symmetric sector can be written as

|𝜓〉 =
𝑛∑︁
𝑗=0

𝑐 𝑗𝜙 𝑗 , (2)

for complex coefficients 𝑐 𝑗 . These states can also be obtained by applying the
symmetrizer operator

∑
𝑃∈𝑆𝑛 𝑃 to a (nonsymmetric) state.

Remark 1. The states in (1) are also called (symmetric) Dicke states. The
separability of mixed states which are statistical mixtures of Dicke states was
studied in [11] and criteria for separability and entanglement were given there.
These are mixed states of the type

∑𝑛
𝑗=0 𝜒 𝑗𝜙 𝑗𝜙

†
𝑗
, where 𝜙 𝑗 =

𝜙 𝑗

‖𝜙 𝑗 ‖ are normalized
Dicke states, and 0 ≤ 𝜒 𝑗 ≤ 1, with

∑𝑛
𝑗=0 𝜒 𝑗 = 1. They are also called diagonal

symmetric states. These are more general than the states we consider here because
not necessarily pure. However, they are less general in that they are ‘diagonal’.

1The above mentioned criterion of separability based on the density matrix simplifies in the case of symmetric
states since because of symmetry the reduced density matrix has to be computed only for one of the qubits,
being all the reduced density matrices equal.
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For example the symmetric pure state |𝜓〉 := 1√
2
( |00〉 + |11〉), when written in the

density matrix form |𝜓〉〈𝜓 | = 1
2 ( |00〉〈00| + |11〉〈11| + |00〉〈11| + |11〉〈00|), contains

off diagonal terms |00〉〈11| and |11〉〈00|.
Separability of symmetric states can also be inferred by an application of the

entanglement classification results for symmetric states in [2]. An alternative test
can be obtained by specializing to the qubit case the results of [9] which are based
on the concept of entanglement witnesses. The goal of this paper is to present
a direct and simple test. This is done in the next section.

2. A test of separability for symmetric states
Our result is the following simple test of separability for symmetric states given

directly in terms of the coefficients 𝑐 𝑗 in the expansion (2).

Theorem 1. A symmetric state |𝜓〉 in (2) is separable if and only if for every
two couples of indexes, (𝑙1, 𝑙2), (𝑚1, 𝑚2), such that

𝑙1 + 𝑙2 = 𝑚1 + 𝑚2,

it holds
𝑐𝑙1𝑐𝑙2 = 𝑐𝑚1𝑐𝑚2 . (3)

Remark 2. Notice that, consistently with quantum mechanics postulates, condition
(3) is independent of a common factor for the state. The differences of the quantities
equated in (3) may be used to express measures of entanglement. This happens for
the case 𝑛 = 3 treated in [1].

The result was proven in [1] for the case 𝑛 = 3. We generalize it here to an
arbitrary number 𝑛 of subsystems. To check the conditions (3), one can, for every
0 ≤ 𝑟 ≤ 2𝑛, list all the pairs (𝑙1, 𝑙2) with 𝑙1 ≤ 𝑙2 such that 𝑙1 + 𝑙2 = 𝑟 , and verify
that the quantity 𝑐𝑙1𝑐𝑙2 is the same for every pair. For example for 𝑛 = 4 we obtain
the pairs in the following table

𝑟

0 (0,0)
1 (0,1)
2 (0,2) (1,1)
3 (0,3) (1,2)
4 (0,4) (1,3) (2,2)
5 (1,4) (2,3)
6 (2,4) (3,3)
7 (3,4)
8 (4,4)



144 D. D’ALESSANDRO

The equalities to check according to the Theorem 1 are

𝑐0𝑐2 = 𝑐2
1, 𝑐0𝑐3 = 𝑐1𝑐2, 𝑐0𝑐4 = 𝑐1𝑐3 = 𝑐2

2, 𝑐1𝑐4 = 𝑐2𝑐3, 𝑐2𝑐4 = 𝑐2
3.

3. Proof of Theorem 1: Necessity
We will prove that, for a symmetric product state |𝜓〉 = (𝛼 |0〉 + 𝛽 |1〉)⊗𝑛 =

∑
𝑗 𝑐 𝑗𝜙 𝑗 ,

we have the following2

𝑐 𝑗 = 𝛽 𝑗𝛼𝑛− 𝑗 , 𝑗 = 0, 1, . . . , 𝑛. (4)

From this, it follows that

𝑐 𝑗𝑐𝑟− 𝑗 = 𝛽 𝑗𝛼𝑛− 𝑗𝛽𝑟− 𝑗𝛼𝑛−(𝑟− 𝑗) = 𝛽𝑟𝛼2𝑛−𝑟 ,

independent of 𝑗 , from which (3) follows.
To prove (4) we use induction on 𝑛. For 𝑛 = 1, (4) is true because |𝜓〉 = 𝛼 |0〉+𝛽 |1〉,

that is, 𝑐0 = 𝛼 and 𝑐1 = 𝛽. In order to prove the inductive step, denote by 𝜙𝑛−1
𝑗

the vector 𝜙 𝑗 defined in (1) when 𝑛 is replaced by 𝑛 − 1. Using the inductive
assumption, we have

|𝜓〉 =
(𝑛−1∑︁
𝑗=0

𝛽 𝑗𝛼𝑛−1− 𝑗𝜙𝑛−1
𝑗

)
⊗ (𝛼 |0〉 + 𝛽 |1〉)

=

𝑛−1∑︁
𝑗=0

𝛽 𝑗𝛼𝑛− 𝑗𝜙𝑛−1
𝑗 ⊗ |0〉 +

𝑛−1∑︁
𝑗=0

𝛽 𝑗+1𝛼𝑛−1− 𝑗𝜙𝑛−1
𝑗 ⊗ |1〉

= 𝛼𝑛𝜙𝑛−1
0 ⊗ |0〉 +

𝑛−1∑︁
𝑗=1

𝛽 𝑗𝛼𝑛− 𝑗𝜙𝑛−1
𝑗 ⊗ |0〉 +

𝑛∑︁
𝑗=1

𝛽 𝑗𝛼𝑛−1−( 𝑗−1)𝜙𝑛−1
𝑗−1 ⊗ |1〉

= 𝛼𝑛𝜙𝑛−1
0 ⊗ |0〉 +

𝑛−1∑︁
𝑗=1

𝛽 𝑗𝛼𝑛− 𝑗
(
𝜙𝑛−1
𝑗 ⊗ |0〉 + 𝜙𝑛−1

𝑗−1 ⊗ |1〉
)
+ 𝛽𝑛𝜙𝑛−1

𝑛−1 ⊗ |1〉.

Formula (4) follows from 𝜙𝑛−1
0 ⊗|0〉 = 𝜙0, 𝜙𝑛−1

𝑗
⊗|0〉+𝜙𝑛−1

𝑗−1⊗|1〉 = 𝜙 𝑗 , for 𝑗 = 1, . . . , 𝑛−1
and 𝜙𝑛−1

𝑛−1 ⊗ |1〉 = 𝜙𝑛. �

4. Proof of Theorem 1: Sufficiency
First consider the special case when 𝑐0 = 0. In this case, from

𝑐0𝑐2 = 𝑐2
1,

we get 𝑐1 = 0. Proceeding inductively from 𝑐1𝑐3 = 𝑐2
2, we get 𝑐2 = 0, from 𝑐2𝑐4 = 𝑐2

3
we get 𝑐3 = 0, and so on up to 𝑐𝑛−2𝑐𝑛 = 𝑐2

𝑛−1 which gives 𝑐𝑛−1 = 0. Thus, the
only coefficient different from zero is 𝑐𝑛 and the state is 𝜙𝑛 = |1 1 · · · 1〉 which is

2Here and in the following we agree that 00 = 1.
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a separable state. If 𝑐0 ≠ 0, we can assume without loss of generality that 𝑐0 = 1 in
the (un-normalized) state (cf. Remark 2). If 𝑐1 = 0, from 𝑐0𝑐 𝑗 = 𝑐 𝑗 = 𝑐1𝑐 𝑗−1, we
get 𝑐 𝑗 = 0 for 𝑗 = 1, . . . , 𝑛 and the state is 𝜙0 = |0 0 · · · 0〉, which is also separable.
Assume therefore that 𝑐0 = 1 and 𝑐1 ≠ 0. Inductively, on 𝑗 from 𝑐 𝑗−1𝑐 𝑗+1 = 𝑐2

𝑗 , we
get 𝑐 𝑗 = 𝑐

𝑗

1, for 𝑗 = 1, . . . , 𝑛. This corresponds to the (un-normalized) state

|𝜓〉 := ( |0〉 + 𝑐1 |1〉)⊗𝑛 ,

which is separable. �

Remark 3. From the proof of the above theorem, it follows that every symmetric
separable state is either equal to 𝜙𝑛 or 𝜙0 or it can be written, up to a normalization
factor, as

|𝜓〉 =
𝑛∑︁
𝑗=0

𝑧 𝑗𝜙 𝑗 , (5)

which is obtained by setting 𝛼𝑛 = 1 and 𝑧 := 𝑐1 := 𝛽𝛼𝑛−1 in (4). This fact was already
proved in [9] (cf. Proposition 2 and formula (15) in that paper) with a different
proof and in a more general context of 𝐷-symmetric states for multipartite systems
of dimension 𝑑 ≥ 2 (qudits). A basis of such space reduces to the basis of Dicke
states {𝜙 𝑗} in the case of qubits. The sufficiency part of the above theorem shows
that the conditions (3) imply such a situation. Sufficient conditions of separability
where also given in [9] based on entanglement witnesses and the PPT criterion.

5. Discussion

Using the test of Theorem 1, we can immediately assess, for example, that
a state for 𝑛 = 2,

|𝜓〉 = 𝑒2𝑖𝛾

3
𝜙0 +

√
2

3
𝑒𝑖𝛾𝜙1 +

2
3
𝜙2,

is separable since 𝑐0𝑐2 = 2𝑒2𝑖𝛾
9 = 𝑐2

1. On the other hand, the state

|𝜓〉 = 𝑒𝑖𝛾
√

2
𝜙0 +

1
√

2
𝜙1

is not separable since 𝑐0𝑐2 = 0 ≠ 𝑐2
1 = 1

2 .
In [1], for the case 𝑛 = 3, the entanglement measures were expressed in terms

of the differences of the quantities mentioned in Theorem 1, that is, the quantities
(for 𝑛 = 3) 𝑋2 := 𝑐0𝑐2 − 𝑐2

1, 𝑋3 := 𝑐0𝑐3 − 𝑐1𝑐2, and 𝑋4 := 𝑐1𝑐3 − 𝑐2
2, which are all zero

in the case of separable states. It is possible that similar results can be obtained
for entanglement measures in the case of general 𝑛. This will be a topic for future
research.
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