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1. Introduction

The study of quantum mechanical states is an important part of quantum
mechanics and quantum information theory [4]. One relevant feature of such states
is separability and entanglement [5]. These properties refer to the situation where
the quantum system is a composition of n subsystems. Separable states are states
that can be expressed as (statistical mixtures of) tensor products of states of the
single subsystems. Entangled states are states that cannot. Entanglement is considered
one of the main resources in quantum computation [7], and therefore the study
of entanglement has generated a large interest in the last few decades. Types of
results that are important in this theory are criteria to test if a state is entangled
(separable) and the formulation of meaningful measures of entanglement. Results are
available for pure and mixed states, bipartite and multipartite systems and systems
whose subsystems are two-dimensional (qubits) or have general dimensions (qudits).
A review is given in [5]. One may also consider special classes of states and see
whether new results can be generated or results which are known for general states
can be simplified.

In this paper, we are interested in pure states of multipartite quantum systems
where each component subsystem is a two-dimensional system, that is, a quantum
bit (qubit). In other words, the states we are interested in are vectors in the 2"-
dimensional complex vector space H := H;™", where H, is spanned by the basis of
two elements {]|0),|1)}. As it is customary in quantum mechanics (see, e.g. [10])
vectors which differ by a multiplicative factor are identified. If |¢) is a state in
9H a simple separability-entanglement test is as follows: One considers the density
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matrix p := [¥){y¥| and, for each one of the qubits, takes the partial trace (see, e.g.
[7]) with respect to the remaining ((n — 1)-qubit) system. If and only if the resulting
reduced density matrices represent pure states, the state |¢) is separable. In this
paper we present an even more direct test valid for quantum symmetric states which
is in terms of the coeflicients of the expansion of |¢) in a given (natural) basis
and does not require passing through the density matrix description of the state.
Symmetric states |¢) are states that are invariant under any element of the
permutation group S,, that is, Ply) = |¢) for every P € S,'. Such states have
recently received much attention [2, 3, 6, 8, 9] both at the theoretical and at the
experimental level. They span the so-called symmetric sector and are the largest
((n + 1)-dimensional) representation of SU(2) in the Clebsch-Gordan decomposition
of the tensor product (SU(2))®" (see, e.g. [12]). The symmetric sector is spanned

by the basis
B = {¢0,¢1,'-'$¢n}a
with

¢; = lar - ay), (1)

where the ai’s are 0 or 1 and the sum runs over all the combinations which have
Jj U’s (and n—j 0’s). Therefore, for example, the symmetric sector of three qubits
is spanned by

o :=1000),
@1 :=[100) + |010) +|001),
¢y :=[011) + [101) +|110),
¢3 = |111>
In general, states |/) in the symmetric sector can be written as
EDNI @)
j=0
for complex coeflicients c¢;. These states can also be obtained by applying the
symmetrizer operator Y. pcg, P to a (nonsymmetric) state.

ReMmark 1. The states in (1) are also called (symmetric) Dicke states. The
separability of mixed states which are statistical mixtures of Dicke states was
studied in [11] and criteria for separability and entanglement were given there.

These are mixed states of the type Z?:o )(,-(5 jq’;j where q?,- = are normalized

i
;1
Dicke states, and 0 < y; < I, with Z?:o x;j = 1. They are also called diagonal
symmetric states. These are more general than the states we consider here because

not necessarily pure. However, they are less general in that they are ‘diagonal’.

1The above mentioned criterion of separability based on the density matrix simplifies in the case of symmetric
states since because of symmetry the reduced density matrix has to be computed only for one of the qubits,
being all the reduced density matrices equal.
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For example the symmetric pure state |¢) := \/% (J00) +|11)), when written in the

density matrix form |y ){¥| = % (]00)€00| + [11){11| + |00)(11] + |11){00]|), contains
off diagonal terms |00){11| and |11){00|.

Separability of symmetric states can also be inferred by an application of the
entanglement classification results for symmetric states in [2]. An alternative test
can be obtained by specializing to the qubit case the results of [9] which are based
on the concept of entanglement witnesses. The goal of this paper is to present
a direct and simple test. This is done in the next section.

2. A test of separability for symmetric states

Our result is the following simple test of separability for symmetric states given
directly in terms of the coefficients c¢; in the expansion (2).

THEOREM 1. A symmetric state W) in (2) is separable if and only if for every
two couples of indexes, (l1,1;), (mi,my), such that

ll+12:m1+m2,

it holds
011612 = lecmz. (3)

RemaRrk 2. Notice that, consistently with quantum mechanics postulates, condition
(3) is independent of a common factor for the state. The differences of the quantities
equated in (3) may be used to express measures of entanglement. This happens for
the case n =3 treated in [1].

The result was proven in [1] for the case n = 3. We generalize it here to an
arbitrary number n of subsystems. To check the conditions (3), one can, for every
0 <r < 2n, list all the pairs (I1,l) with [y < I, such that I} +1, = r, and verify
that the quantity c; c;, is the same for every pair. For example for n =4 we obtain
the pairs in the following table

-
0 (0,0)

1 ©,1)

2 0,2y @1,n
3 0,3 1,2
4104 13 22
5 1,4) (23)
6 24 @G3
7 3.4)

8 4,4)
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The equalities to check according to the Theorem 1 are

2 2 2
CoC2 = C, CoC3 = C1C, CoCq = C1C3 = Cy, C1C4 = C2C3, C2Cy4 = C3.

3. Proof of Theorem 1: Necessity

We will prove that, for a symmetric product state |¢) = (a|0) + B]1))®" = 2iCibjs
we have the following?

cj=,8-ja"_<’, j=0,1,...,n. @)
From this, it follows that
cicroj = Bfa,n—jﬁr—ja,n—(r—j) — IBra,Zn—r’

independent of j, from which (3) follows.
To prove (4) we use induction on n. For n = 1, (4) is true because |¢) = «|0)+3]|1),
that is, ¢o = @ and c¢; = 8. In order to prove the inductive step, denote by ¢;.‘*1

the vector ¢; defined in (1) when n is replaced by n — 1. Using the inductive
assumption, we have

n-1
wy= (D, Fa" o1 ) @ (al0) + BI1)
7=0
n—1 n-1
= Y Baigr w0y + ) pam g s )
j=0 ‘ J=0

n-1 n
=a"gy @ (0)+ ) pla" It @0)+ Y pla" U Vg e 1)
Jj=1 Jj=1

n—1
=a"gy " @ 10)+ ) o (41 @10)+ g3l @ 1)) + B0t @ 1),
j=1
Formula (4) follows from ¢6"1®|0> = oo, ¢;.“1®|0)+¢;?:}®|1) =¢;, forj=1,...,n-1
and ¢""} ® [1) = ¢, O

4. Proof of Theorem 1: Sufficiency
First consider the special case when c¢g =0. In this case, from
coca = cf,
we get ¢; = 0. Proceeding inductively from cic3 = ¢3, we get ¢, =0, from ¢4 = ¢3

we get ¢3 =0, and so on up to cy—pc, = cfl_] which gives c¢,-; = 0. Thus, the

only coefficient different from zero is ¢, and the state is ¢, = |11 ---1) which is

2Here and in the following we agree that 00 = 1.
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a separable state. If c¢o # 0, we can assume without loss of generality that co =1 in
the (un-normalized) state (cf. Remark 2). If ¢; =0, from coc; = ¢; = cicj_1, we
get ¢; =0 for j=1,...,n and the state is ¢op =00 ---0), which is also separable.

Assume therefore that c¢o =1 and ¢; # 0. Inductively, on j from cj_jcj. = cf., we
get ¢j = c{, for j=1,...,n. This corresponds to the (un-normalized) state

) = (|0) +ci[1)®",
which is separable. O

Remark 3. From the proof of the above theorem, it follows that every symmetric
separable state is either equal to ¢, or ¢y or it can be written, up to a normalization
factor, as

wy=> e;, (5)
=0

which is obtained by setting o = 1 and z := ¢| := Sa"! in (4). This fact was already
proved in [9] (cf. Proposition 2 and formula (15) in that paper) with a different
proof and in a more general context of D-symmetric states for multipartite systems
of dimension d > 2 (qudits). A basis of such space reduces to the basis of Dicke
states {¢;} in the case of qubits. The sufficiency part of the above theorem shows
that the conditions (3) imply such a situation. Sufficient conditions of separability
where also given in [9] based on entanglement witnesses and the PPT criterion.

5. Discussion

Using the test of Theorem 1, we can immediately assess, for example, that
a state for n =2,

eZiy \/5 ; 2
_c N2 iy z
) 3 $o + 3¢ ¢1+3¢2,
is separable since cgpcy = ze;iy = c%. On the other hand, the state
wy = a0+ Lo
=—¢o+ —=¢1
V2 W2

is not separable since coc, =0 # c% = %

In [1], for the case n =3, the entanglement measures were expressed in terms
of the differences of the quantities mentioned in Theorem 1, that is, the quantities
(for n=3) X, := cocz—c%, X3 :=coc3 —cica, and X4 = cic3 —c%, which are all zero
in the case of separable states. It is possible that similar results can be obtained
for entanglement measures in the case of general n. This will be a topic for future
research.
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