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Abstract— Recent studies have shown promise for designing
Brain-Computer Interfaces (BCIs) to restore speech communi-
cation for those suffering from neurological injury or disease.
Numerous BCIs have been developed to reconstruct different
aspects of speech, such as phonemes and words, from brain
activity. However, many challenges remain toward the success-
ful reconstruction of continuous speech from brain activity
during speech imagery. Here, we investigate the potential of
differentiating speech and non-speech using intracranial brain
activity in different frequency bands acquired by stereotactic
EEG. The results reveal statistically significant information in
the alpha and theta bands for detecting voice activity, and
that using a combination of multiple frequency bands further
improves performance with over 92% accuracy. Furthermore,
the model is causal and can be implemented with low-latency
for future closed-loop experiments. These preliminary findings
show the potential of cross-frequency brain signal features
for detecting speech activity to enhance speech decoding and
synthesis models.

I. INTRODUCTION

Speech is the foremost modality of human interpersonal
communication. Individuals suffering from severe neurologi-
cal disease or injury can completely lose the ability to speak.
Brain-Computer Interfaces (BCIs) have shown promise as
assistive technologies for communication and control for the
disabled [1], [2]. However, the complex nature of speech
makes reconstructing naturalistic speech from brain signals
extremely challenging. Invasive recording of brain activity,
such as electrocorticography (ECoG) [3] and stereotactic
electroencephalography (sEEG) [4], can provide high spa-
tiotemporal resolution and have shown promise for designing
BCIs for speech decoding and synthesis [5], [6], [7], [8], [9].

Earlier studies in this area have utilized brain recordings
to synthesize different parts of speech, including phonemes,
characters, and words [5], [8], [9], [10]. One commonality
that these and other studies share is the focus on features
extracted from broadband gamma activity. While the signif-
icance of the information extracted from broadband gamma
in representing different tasks (e.g., speech, hand movement
[11]) is undeniable, the information in other frequency bands
can also help enhance the performance of the models. A
few previous studies have investigated extracting features
from multiple frequency bands together for speech-related
tasks [12], [13], [14]. While these studies highlight the
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potential contributions of multiple bands, a comprehensive
characterization of the individual and joint band contributions
was not provided.

The present study aims to investigate the conventional
frequency bands (delta, theta, alpha, beta, low-gamma, and
broadband gamma), individually and jointly, in the design
of a model to discriminate speech and non-speech from
intracranial brain activity. This analysis can provide insights
into new potential features for enhancing the performance of
speech BCIs.

II. METHODOLOGY

A. Participants and Data Collection

sEEG data were collected from 4 native English-speaking
participants being monitored as part of treatment for in-
tractable epilepsy at UCSD Health. The locations of sEEG
electrodes were determined solely based on the participants’
clinical needs. A subset of the implanted electrodes for each
participant were determined to be in or adjacent to brain
regions associated with speech and language processing.
Fig. 1 shows the axial view of the depth electrode locations
for each participant.

For the experiment, participants alternated trials of vocal-
izing and generating inner speech for the same sentences.
The Harvard sentences [15] were selected for recitation
because they are phonetically-balanced through inclusion of
specific phonemes at the same frequency they appear in
conversational English. The sentences were displayed on
a computer monitor and also simultaneously narrated via
computer speakers. Immediately following this presentation,
participants were prompted for the trial type using vocalize
or inner speech icons, respectively, and the participants
were asked to perform the associated task immediately upon
presentation of the icon within a 4-second interval before the
subsequent trial. Data were collected for 25-50 sentences per
participant. The intracranial signals and speech via a micro-
phone were simultaneously recorded during the experiment,
digitized at 1,024 Hz and 44,100 Hz, respectively. For this
preliminary study, only the data from the vocalized trials
were used to extract speech and non-speech sections from
the audio recordings.

B. Labeling the Audio Files (Speech vs. non-speech)

The overt-speech sections were manually transcribed us-
ing wavesurfer [16]. The transcription was performed for
separate analyses but was convenient for labeling the audio
files as speech and non-speech. For speech and non-speech
labeling, a 10 ms frame with no overlap was shifted across
the audio file, and the transcription onset/offset timings were
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Fig. 1: Axial view of the sEEG depth electrode locations
for each of the 4 participants. The frontal lobe is toward
the bottom. Note that this represents projections onto the 2D
axial plane and the individual electrode shafts have different
trajectory angles.

used to create the label. The frame length was chosen to be
10 ms to better represent brain signals’ nonstationary nature
and the fast changes of speech activity for eventual closed-
loop implementation.

Each frame was labeled as speech if at least half of
the frame length overlapped with a transcribed word and
as non-speech otherwise. Overall, this yielded 49.6% non-
speech frames, indicating that the classes are approximately
balanced.

C. Data Preprocessing and Feature Extraction

All sEEG data were visually inspected and noisy or
anomalous channels and trials were excluded from the anal-
ysis. The resulting sEEG channels were re-referenced using
the Laplacian method [17], [18]. The sEEG channels were
then normalized by removing the mean and scaled to unit
variance. To maintain consistency with a related but separate
dataset collected using different equipment, the sEEG signals
and the audio signals were resampled to 1,200 Hz and 48,000
Hz, respectively.

The narrow-band amplitude envelope of each normalized
sEEG channel was computed in the conventional frequency
bands: delta (0.5-4 Hz), theta (4-8 Hz), alpha (8-12 Hz), beta
(12-30 Hz), low-gamma (30-55 Hz), and broadband gamma

(65-170 Hz). The subsequent preprocessing was performed
for each frequency band.

To compute the amplitude envelopes, using the extracted
10 ms frames from the labeled audio signals, the sEEG
channels were segmented over a specified temporal window
around this frame. This window was chosen such that it
would not extend beyond the 10 ms frame to emulate causal,
real-time performance for the model. The window length
was chosen to be 310 ms (from 300 ms before the frame’s
start until the end of the 10 ms frame). However, this is
insufficient for the lower frequency bands as at least 3-4
cycles are needed to convey meaningful information in a
particular band. Hence, for delta, theta, alpha, and beta bands,
the duration of four cycles of the lowest frequency in the
band was chosen as the window onset, and the offset was
always fixed at the 10 ms frame length (e.g., for 4-8 Hz theta
band, the window onset is 1 second (4 cycles x 0.25 s/cycle)
before the start of the frame, giving a 1.01 s window length).
These longer windows were then segmented to the standard
310 ms window length.

Each window was band-pass filtered over the frequency
range of the specific band using zero-phase, Butterworth,
sixth order, IIR filters. An additional 118-122 Hz notch filter
was applied to broadband gamma to suppress the second
harmonic of the line noise at 120 Hz.

The 310 ms filtered windows were divided into thirty-one
10 ms segments. The signal energy of each segment was
calculated as the feature. The resulting feature space was
#10-ms frames × #channels × #segments for each frequency
band, which was concatenated to 2D (#frames × features).

D. Model Training and Evaluation

1) Logistic Regression Model: For each frequency band,
a Logistic Regression (LR) model was trained. Additionally,
L1 regularization was used, which shrinks the less important
feature’s coefficients to zero and can provide a convenient
interpretation of individual feature contributions based on the
non-zero classifier weights. A Proximal Adagrad Optimizer
(alpha = 0.05 and L1 = 0.005) with SoftMax function was
selected for training the classifier.

A 10-fold cross-validation analysis was employed. To
prevent training bias, the nine folds of train data were
normalized to zero mean and unit variance, and the same
normalization parameters were applied to the test folds. One
tenth of the train data was used as a validation set to optimize
the hyperparameters of the training models (e.g., alpha and
L1 of LR models). Additionally, to establish the chance clas-
sification level, a randomization test was performed where
the labels of all trials were randomly shuffled and the 10-
fold cross-validation process was repeated for 1000 separate
randomizations of the labels.

For cross-frequency analysis, a voting scheme was im-
plemented on the single-band classifiers. Since a voting
scheme with unbiased weights needs an odd number of
inputs to make a decision, the frequency band classifier with
the lowest accuracy in the previous step was excluded for
each participant. Using a 10-fold cross-validation analysis,
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Fig. 2: Architecture of CNN models. The input layer is #channels × #segments × #frequency-bands. Model in the figure
depicts a representative model, and the convolutional layers’ width change based on the number of channels selected by the
LR models.

five separate models were trained using the features of 5
frequency bands. The label with three or more votes was
chosen as the label of the frame. The same process was also
repeated using the three frequency bands with the highest
individual accuracies.

2) Convolutional Neural Network Model: Convolutional
neural networks (CNN) have been shown to be promising
classification models for different BCI tasks [6], [19], [20],
[21]. Therefore, for each participant, a CNN model was
implemented for the single and cross-frequency analysis. Due
to the small number of classes in the task (2 classes of speech
and non-speech), a conventional CNN design (convolutional
layers followed by fully-connected layers) was employed
with an attempt to lower the computational cost (e.g., number
of layers and filters) while maintaining a high accuracy.
Fig. 2 depicts the architecture of the final CNN model. Where
applicable, a ReLU activation function was implemented. To
prevent from overfitting, we added a dropout layer between
the last convolutional layer and the first dense layer. An
Adam optimizer and categorical crossentropy loss were used
for the training of the CNN models.

Using the LR model results, feature selection was per-
formed by excluding the features of each channel that result
in an LR weight of zero in all of the features of the channel’s
segments. The remaining features were converted to 3 di-
mension (#frames × #channels × #segments). Next, a CNN
model was trained using the features and equivalent 10-fold
cross-validation. The average of the CNN models’ results
over all ten folds was computed as the final classification
accuracy for each frequency band.

For cross-frequency analysis, features of m frequency
bands were used as a multi-layer input which was fed to
the CNN model. To be consistent with the LR analysis,
for each participant, m was set to 3 and 5, respectively,
which represent the number of frequency bands with highest
accuracies based on the results of the CNN models from
previous section. Since the number of channels selected
by the LR models were different for each frequency band,
features from all channels were used for these CNN models.
For each participant, it was confirmed that sufficient training
samples were available for the CNN models to converge.

E. Evaluation of Signal Energy of Different Bands as Feature

In addition to model training and evaluating features using
the L1 loss of the LR models, the statistical significance
of signal energy in the various bands and channels was
evaluated as a feature for speech-non-speech classification.
The features of each channel and frequency band were first
averaged over speech and non-speech trials separately. Next,
a Wilcoxon signed-rank test followed by Bonferroni-Holm
correction (α = 0.05) was applied to reveal the features
exhibiting significant differences between speech and non-
speech.

III. RESULTS

Fig. 3 illustrates the results of the 10-fold cross-validation
analysis with LR and CNN models, respectively, over all
frequency band combinations. On average, the alpha band
features provided the best performance across participants
and single bands. In contrast, the low-gamma band exhibited
comparatively lower performance to the other bands. It is
observed that models trained with cross-frequency features
perform better than those trained with single frequency
features. On average, the CNN models performed slightly
better than the LR models, which may be attributed to the
CNN models further optimizing the features pre-selected by
the LR models.

The chance-level randomization analyses yielded the ex-
pected accuracy of approximately 50%. In comparison to
the results in Fig. 3, all models performed well above
this chance level. However, for participants A and C, the
models performed noticeably better than participants B and
D, possibly due to the more comprehensive coverage of the
left hemisphere and language cortex [22], [23]. This suggests
that broad brain areas may contribute to speech vs. non-
speech discrimination, but speech-associated areas provide
the most impactful contributions.

Fig. 4 shows the speech/non-speech histograms of alpha
and broadband gamma energy across trials for a represen-
tative dominant channel. As expected, the energy of the
broadband gamma increases during speech in comparison
to non-speech, while the converse is observed for the alpha
band. Furthermore, the relative means and variances of
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Fig. 3: Classification performance of LR and CNN models for various combinations of frequency band features for each
participant (chance level is 50% on average).

Fig. 4: Speech vs. non-speech histograms of alpha and
broadband gamma energy averaged across trials for a rep-
resentative participant (participant A).

the alpha and broadband gamma activity are comparable,
supporting the respective performance results of the LR and
CNN models.

To explore the spatio-temporal contributions of the fre-
quency features on the classification, the individual feature
weights of the LR model were examined. The weights array
was reshaped to #channels × #time samples, and the channels
having zero weight in all time samples were excluded. For
each frequency band, the average of the ten models trained
over the ten folds was computed. Fig. 5 shows the abso-
lute value of this average for a representative participant’s
(participant A) alpha band’s features. It is observed that the
dominant channels in the relevant temporal shafts have the
largest values close to or on the speech frame (0-1 on the
x-axis).

The same procedure was applied to the LR models’
weights trained with the same data and randomly shuffled
labels. In contrast to Fig. 5 that shows dominant contributions
of specific channels in the model, as expected, the random-
ization test largely yielded a somewhat random distribution
of weights across all channels without dominant channels.

The statistical significance of channels between speech
and non-speech was explored using a Wilcoxon signed-rank
test. For each participant, the significant channels (p-value ≤
0.05) were similar across the frequency bands. Fig. 6 shows
the group of statistically significant channels for participant
A for the top-performing bands (alpha, beta, theta, and
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Fig. 5: Absolute value of average LR model weights across
10-folds for a representative participant and frequency band
(alpha band’s features of participant A). The channel labels
are grouped by electrode shaft, with left (L) and right (R)
hemisphere designations and numbers 1 and 10 representing
depth and superficial contacts, respectively. The letters in
parenthesis indicate the location of the electrode on gray
(G) matter, white (W) matter, or unknown (U). The channels
selected by the model (with nonzero weight) are marked by
*.

Fig. 6: Channels with statistically significant activity during
speech vs. non-speech for participant A.

broadband gamma).
For participants with coverage of both hemispheres (i.e.,

participants A and C), the significant channels were located
in the left hemisphere, as expected, including those located
within proximity to Broca’s area. It was also observed that
significant channels were located in both grey and white
matter, which warrants further investigation.

The channels resulting from the significance tests were
compared to Fig. 5 for the LR models. It was found that
the majority of statistically significant channels overlapped
with the dominant channels from the LR models for each
participant and frequency band, further validating the LR
model with L1 regularization approach for feature selection.

IV. CONCLUSION

This study examined two classification models and various
combinations of frequency band features from sEEG signals
for classification of speech versus non-speech. The results
suggest that all examined frequency bands contain significant
information to distinguish speech and non-speech well above
the chance level. While the broadband gamma features com-
monly used for intracranial BCI research performed well, it
was observed that alpha band activity can achieve compara-
ble or even superior performance to broadband gamma for
this task. Moreover, using a combination of bands in a CNN
model resulted in a performance of over 92%, compared to
the 50% chance level. These findings highlight the potential
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of exploring spectral features beyond conventional broad-
band gamma for improving the performance of intracranial
speech BCIs. Further work is needed to explore the specific
contributions of the superficial and deeper brain areas related
to speech/language production and reception on the models,
as well as whether these results can be generalized across a
larger participant pool.
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