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Abstract— Recent studies have shown it is possible to decode
and synthesize speech directly using brain activity recorded
from implanted electrodes. While this activity has been ex-
tensively examined using electrocorticographic (ECoG) record-
ings from cortical surface grey matter, stereotactic electroen-
cephalography (sEEG) provides comparatively broader cover-
age and access to deeper brain structures including both grey
and white matter. The present study examines the relative and
joint contributions of grey and white matter electrodes for
speech activity detection in a brain-computer interface.

I. INTRODUCTION
Invasive recordings of brain activity using intracranial

arrays, such as electrocorticography (ECoG) [1], have shown
promise in the design of brain-computer interfaces (BCIs)
for a variety of applications including speech decoding and
synthesis [2], [3], [4], [5], [6], [7]. Because ECoG only
samples grey matter from the cortical surface, there has been
little investigation into the potential contributions to BCI
decoding of recordings from white matter, which makes up
approximately 50% of human brain volume. Additionally,
information from white matter recordings has been reported
to be distinctive from that of grey matter [8]. The growing
popularity of stereotactic electroencephalography (sEEG) [9]
for clinical applications provides the opportunity to examine
neural activity from broader brain regions and deeper struc-
tures, including both grey and white matter.

A few recent studies have investigated the role of sEEG
recordings from white matter in the design of BCIs. It has
been shown that including sEEG channels from both grey
and white matter can help distinguish between various upper
limb movements and rest, or between different movement
types [10]. Other studies have shown that sEEG channels in
both grey and white matter contribute to models for speech
activity detection and speech production for BCIs [7], [11],
[12]. While these studies highlight the potential contributions
of both grey and white matter to speech production, a
comprehensive characterization of the grey and white matter
channels has yet to be conducted.

The present study investigates channels from both grey
and white matter, individually and jointly, in the design of a
speech activity detection model to discriminate speech from
non-speech for a BCI.
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Fig. 1: The sEEG depth electrode locations for the 4 par-
ticipants from different perspectives using an averaged brain
model.

II. METHODOLOGY

A. Participants and Data Collection

sEEG data were collected from 4 native English-speaking
participants being monitored as part of treatment for in-
tractable epilepsy at UCSD Health. The study design was
approved by the Institutional Review Boards of Virginia
Commonwealth University and UCSD Health. The locations
of sEEG electrodes were determined solely based on the
participants’ clinical needs. A subset of the implanted elec-
trodes for each participant was determined to be in or ad-
jacent to brain regions associated with speech and language
processing. Fig. 1 shows the sEEG electrode locations for
the 4 participants, with electrode (channel) counts provided
in Table I. Anatomical location of the channels, including
brain region and binary location (white or grey matter), were
identified using the FreeSurfer software package [13].

For the experiment, the participants were presented with
a sentence displayed on a computer monitor and simultane-
ously narrated via computer speakers. When prompted, the
participant was instructed to speak the sentence audibly while
the acoustic speech and sEEG signals were simultaneously
recorded. The participant was subsequently prompted to
silently articulate (i.e., mouth) and imagine speaking without
articulating, respectively, for the same sentences - although
data from these components of the task were not used for the
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present analysis. This structure was repeated for 50 unique
Harvard sentences, which are phonetically-balanced based on
conversational English [14].

The sEEG electrodes were referenced to a pair of subder-
mal needle electrodes in the scalp and digitized at 1,024 Hz.
The audio signal recorded via an external microphone was
digitized at 44,100 Hz. The data from the audible speech
portions of the task were used to extract speech and non-
speech segments from the audio recordings.

B. Labeling the Audio Files (Speech vs. Non-speech)

The recorded speech was manually transcribed using the
Wavesurfer software package [15] for a separate analysis, but
was found useful to provide precise labeling of the speech
and non-speech segments. This was accomplished by shifting
a 10 ms non-overlapping frame across the audio recording,
with the resulting timings from the transcription word bound-
aries being used as the frame label. Each frame was labeled
as speech if at least half of the frame length overlapped with a
transcribed word and as non-speech otherwise. Because there
were relatively few and short non-speech segments detected
during the continuous vocalization of the sentence utterances,
each 4-second interval encompassing the entire utterance was
simply labeled as speech between the onset and offset of the
entire utterance as determined by the transcription, and as
non-speech before and after the onset and offset, respectively.

C. Data Preprocessing and Feature Extraction

All sEEG data were visually inspected and noisy or
anomalous channels and segments were excluded from the
analysis. The resulting sEEG channels were re-referenced
using the Laplacian method [16], [17]. The sEEG channels
were then normalized by removing the mean and scaled
to unit variance. To ensure that perceptual information is
not directly contributing to the decoding models, channels
in the vicinity of the auditory cortex and belts exhibiting
large correlations between gamma-band activity and the
microphone recordings were excluded from the analysis. The
number of channels excluded for each particpant is provided
in Table I.

The sEEG channels were then resampled to 512 Hz and
features were extracted in the alpha frequency band (8-12
Hz), which has been previously shown to be promising for
distinguishing movement from rest [10] and speech from
non-speech [11]. The sEEG channels over a 510-ms window
around each audio frame (corresponding to 500 ms before
the frame to the end of the frame) were zero-phase filtered
from 8-12 Hz using a sixth-order Butterworth filter. This
window length was chosen to capture sufficient cycles to
reliably estimate the alpha band activity (i.e., 4 cycles ×
0.125 s/cycle). Next, the narrow-band amplitude envelope
of each sEEG channel was computed using the Hilbert
transform. Finally, for each channel, the alpha-band features
were computed every 10 ms as the natural logarithm of the
resulting envelope energy over 210 ms, representing 10 ms
overlapping the audio frame and 200 ms prior to the frame
to emulate a causal design. The features from each included

channel were concatenated to form the feature vector (#
channels × 21 features) for the decoding models.

D. Model Training and Evaluation

1) Logistic Regression Model: For evaluating the fea-
tures, a logistic regression model with L1 regularization
was designed. A Proximal Adagrad Optimizer with SoftMax
function was selected for training the model. This model
has been shown to be effective for evaluating individual
features and providing a convenient interpretation of the
feature contributions [11].

To prevent training bias, the training data were normalized
to zero mean and unit variance, and the same normalization
parameters were applied to the test data. To establish the
chance-level classification, a randomization test was per-
formed where the labels of all trials were randomly shuffled
and the 10-fold cross-validation process was repeated for
1000 separate randomization of the labels.

2) Single-channel Analysis: For each participant, using a
10-fold non-shuffled cross-validation analysis, performance
of aforementioned decoding model was evaluated for each in-
dividual channel. This single-channel analysis was performed
to compare the relative contributions of each channel.

Three groups of channels were selected: channels identi-
fied as located in white matter (WM), grey matter (GM), and
the combination of grey and white matter channels (CM). To
select the most relevant channels for each group, a threshold
of the mean plus one standard deviation of the average
balanced accuracy in the 10-fold cross-validation analysis
was computed. Channels with an average balanced accuracy
above the threshold were selected for inclusion in the multi-
channel analysis.

3) Multi-channel Analysis: For each participant and group
of selected channels (WM, GM, and CM), using a 10-fold
non-shuffled cross-validation analysis, concatenated features
of the channels were evaluated using the aforementioned
decoding model. The final weights of the 10 decoding
models of 10-fold cross-validation analysis were extracted
to compute the averaged spatiotemporal patterns to compare
the contribution of each feature in grey or white matters to
the final model [18]. These patterns provide a convenient
interpretation of individual feature’s spatial and temporal
contributions to speech activity detection.

III. RESULTS

Fig. 2 illustrates violin plots of the distributions of av-
eraged balanced accuracy of the 10-fold cross validation
analysis of the models trained in the single-channel analysis.
The black dots on Fig. 2 represent the channels that yielded
an averaged balanced accuracy above the threshold of the
group and were selected for the multi-channel analysis.

Fig. 3 shows the grey and white matter channels selected
by the single channel analysis. Channels from a wide range
of cortical and sub-cortical brain regions, including inferior
and middle frontal gyrus, superior temporal gyrus, and sulcus
were selected for the multi-channel analysis. It can be seen
that these channels lie in both right and left hemispheres,
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Fig. 2: Distributions of the cross-validated classification
performance of decoding models for channels in grey matter,
white matter, or combined. The black dots represent the
selected channels for each group.

Fig. 3: The selected grey and white matter channels across
all 4 participants.

which supports recent studies that have reported speech-
related activity in both hemispheres [11], [12], [19], [20].

The number of selected channels utilized by each decoding
model is provided in Table I. Fig. 4 shows the averaged
balanced accuracy of the decoding models in the 10-fold
cross-validation analysis for each group. All models per-
formed significantly better than chance level (p < 0.0001,
Bonferroni-Holm corrected Wilcoxon signed-rank test). For
all four participants and the average across participants,
the results of the CM group were significantly larger than
the results of both WM and GM groups (p < 0.01). No
significant difference was observed between the WM and
GM model performance (p = 0.0913).

Fig. 5 shows the averaged spatiotemporal patterns derived

Participant # Recorded # Excluded # Model Selected
P1 70 4 4 (GM), 2 (WM), 6 (CM)
P2 69 4 4 (GM), 2 (WM), 6 (CM)
P3 173 13 13 (GM), 13 (WM), 27 (CM)
P4 227 6 18 (GM), 17 (WM), 37 (CM)

TABLE I: Numbers of channels for each participant. The
first column lists the total number of channels recorded
during the experiment, the second column lists the number
of channels excluded as located in auditory regions, and the
third column lists the number of channels selected for each
decoding model.

from the decoding model weights for the WM, GM, and
CM groups of an example participant (P2) [18]. The feature
contributions tend to be more prominent near speech onset
(i.e., 0 ms). It is also observed that the relevant channels in
the CM group are determined to be a subset of channels from
both the WM and GM groups. Channels from GM group
had a relatively lower impact in the CM models compared
to channels from WM group. This is likely due to the nature
of logistic regression with L1 regularization, which shrinks
a feature’s weight to zero based on relative importance. The
WM features with the largest contribution to the CM model
are consistent for both the WM and CM models. For the
other participants, it was observed that channels from either
WM or GM were more prominent in the CM model.

IV. CONCLUSION

The results of this pilot study show that an effective
speech activity detection model can be created using alpha
band activity from sEEG recordings. The results indicate that
constructing the model using combination of grey and white
matter channels is more effective than using exclusively grey
or white matter channels. Moreover, on average, models
constructed from white matter channels performed equiv-
alently to models constructed from grey matter channels.
These findings highlight the potential of features beyond
the cortex, particularly from under-explored white matter,
for improving the performance of intracranial speech BCIs.
Further work is needed to explore the specific contributions
of functional areas and networks with respect to speech
production and perception, as well as whether these results
can be generalized across a larger participant pool.
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