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ABSTRACT A growing body of research has established that the microbiome can
mediate the dynamics and functional capacities of diverse biological systems. Yet,
we understand little about what governs the response of these microbial commun-
ities to host or environmental changes. Most efforts to model microbiomes focus on
defining the relationships between the microbiome, host, and environmental fea-
tures within a specified study system and therefore fail to capture those that may be
evident across multiple systems. In parallel with these developments in microbiome
research, computer scientists have developed a variety of machine learning tools
that can identify subtle, but informative, patterns from complex data. Here, we rec-
ommend using deep transfer learning to resolve microbiome patterns that transcend
study systems. By leveraging diverse public data sets in an unsupervised way, such
models can learn contextual relationships between features and build on those pat-
terns to perform subsequent tasks (e.g., classification) within specific biological
contexts.
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It is now apparent that microbiomes frequently mediate the dynamics and functional
capacities of environmental and biological systems and in so doing can impact sys-

tem health and homeostasis (1). Diverse sources of biotic and abiotic variation can
affect these microbial communities, which in turn can reciprocally impact the health
and functioning of their host or habitat. In this era of rapid, human-induced environ-
mental change, our ability to manage biological and environmental systems may very
well depend upon our understanding of how microbes interact with one another as
well as with their host or environment and how exogenous variation (i.e., variation
external to the host or environment microbiome itself) impacts these interactions. To
propel this understanding, microbiologists have developed technologies that catalog
and quantify measurable features of the microbiota, their host, and the environment.
From environmental DNA sequencing to metabolomics, microbial ecologists increas-
ingly generate, analyze, and integrate massive multi-omic data sets to characterize
communities, understand the mechanisms they use to interact and drive their environ-
ment, and determine how these community components respond to environmental
changes (2). In doing so, microbial ecologists often focus solely on their specific data
sets and do not leverage the vast repository of publicly available microbial data to
extract complex but generalizable patterns in relation to specific scientific questions.

Researchers currently apply powerful statistical and machine learning methods to a
specific microbiome data set to identify microbial features (i.e., the measurable

Editor Linda Kinkel, University of Minnesota

Copyright © 2022 David et al. This is an open-
access article distributed under the terms of
the Creative Commons Attribution 4.0
International license.

Address correspondence to Maude M. David,
maude.david@oregonstate.edu.

The authors declare a conflict of interest.
M.M.D. has a financial interest in Second
Genome Inc. (a therapeutic company) and is
co-owner of Microbiome Engineering and
NeuroBiome, companies specialized in
developing biosensors.

Published

January/February 2022 Volume 7 Issue 1 e01058-21 msystems.asm.org 1

PERSPECTIVE

18 January 2022

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//j

ou
rn

al
s.a

sm
.o

rg
/jo

ur
na

l/m
sy

st
em

s o
n 

20
 D

ec
em

be
r 2

02
2 

by
 1

28
.1

93
.1

54
.1

17
.

https://orcid.org/0000-0003-1561-418X
https://orcid.org/0000-0001-9565-5912
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://msystems.asm.org
https://crossmark.crossref.org/dialog/?doi=10.1128/msystems.01058-21&domain=pdf&date_stamp=2022-1-18


variables of a system: taxa, genes, metabolites) that stratify groups of samples or that
explain the variation of a continuous covariate across samples (2–7). Traditional meth-
ods may also use summary metrics like beta-dispersion and alpha- and beta-diversity
to characterize microbial community patterns (8). However, neither the single feature
approach nor the community summary statistic approach incorporates patterns across
studies or systems, nor do they take into account the interdependencies between fea-
tures. Thus, they will fail to capture basic principles governing how microbial commun-
ities assemble, diversify, and respond to environmental variation.

Currently, meta-analyses are used to apply these traditional analysis approaches
across studies. However, while meta-analyses of microbiome data sets generally sup-
port relationships between microbiome changes in community structure or function
and disease observed in individual studies (9, 10), these interactions are often relatively
weak and confounded by interstudy and individual microbiome variation (11–14). This
may be due to a limitation in the traditional analysis methods, which treat each study
independently and consequently may miss key insights into a system’s more generaliz-
able biological properties. To overcome these limitations, prior work has sought to
robustly link specific microbiome features to outcomes and phenotypes across studies
(11, 15). These studies go beyond traditional meta-analyses by identifying generaliz-
able properties of microbial communities using network analysis or by accounting for
noise across multiple data sets when developing predictive models. Such work shows
that (i) there are generalizable patterns among diverse microbiomes that could be bet-
ter exploited and (ii) many of these patterns or structures may be undetectable within
individual studies due to the contextual nature of the patterns and limitation of the
study sample size.

We believe deep transfer learning can expand on these approaches and is particu-
larly well suited to generalize patterns of microbial ecology across studies and biologi-
cal systems. We and others are leveraging deep learning methods (Table 1) both to

TABLE 1 Lexicon of key terms and their definitions

Term Definition
Machine learning Data analytics methods that use a variety of algorithms learning from available data to optimize the parameters of

models, which are often predictive of classes if used in a supervised context.

Deep learning A class of machine learning algorithms originally inspired by the brain. Deep models have multiple layers that
sequentially process inputs, have high parameter counts, and use large amounts of data to train. In training,
deep models learn to extract high-level features that are useful for both the trained model and potentially other
models down the analytical pipeline.

Pretrained models Models trained on a “pretraining” objective for which there is a very large amount of data. Such models can then
be adapted to a “downstream” objective for which there are far fewer data and are often able to leverage
information learned from the pretraining data to more easily perform the downstream objective.

Transformer models A specific type of deep learning model originally proposed for language but later applied to many other domains,
including vision, graphs, and sets.

Embeddings Higher-level features derived from deep learning algorithms. They can efficiently represent statistical patterns in
microbial communities, aiding in data processing for such models.

Transfer learning The process of training a model on one task/data set and then fine-tuning it to perform a different task on a
different data set is known as transfer learning.

Unlabeled data Use of microbiome-related data (may be of different data types) without requirement for specific metadata
associated with a given prediction task.

Language model Models based on algorithms originally developed by the field of natural language processing, trained to model
natural language and estimate the probability of a given word appearing in a certain context.

Task-specific model Models developed to predict a specific set of features or outcomes and almost always trained on a prediction task
with labeled data.
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capture microbe-microbe and microbe-environment interactions across systems and
to generate models and transformed features informed by aggregations of all available
data. Deep learning approaches are specifically designed to analyze diverse, high-
dimensional data in ways that can detect complex patterns of association between
multiple features and covariates of interest. As a result, deep learning approaches can
discover associations between a feature and a covariate that are contextually depend-
ent upon other features in the system. Moreover, deep neural networks have proved
capable of transfer learning, the process of learning generalizable patterns from
diverse data and then fine-tuning that general model on study- or system-specific tasks
(16–18). By developing deep learning approaches that resolve shared patterns across
studies, researchers can draw novel insights about well-studied communities and aid
discovery in understudied environments.

In particular, we advocate using deep learning models that have already proven ad-
ept at transfer learning in natural language processing (NLP) to better understand
baseline interactions present in microbiome data (19–21). There exist easily drawn par-
allels between natural language data and microbiome data, namely, that documents
are equivalent to biological samples, words to taxa, and topics to microbial neighbor-
hoods (22–24). While other language-inspired algorithms such as topic modeling
methods have been employed to identify latent variables in microbiomes, deep learn-
ing approaches offer the unique advantage that they scale with the amount of data
available, allowing our understanding and our predictive models to scale alongside the
genomic revolution (25).

One simple NLP algorithm is embedding, where a low-dimensional space is learned
that preserves information about the cooccurrences between features. Embedding-
based analysis of gut microbiomes has previously enabled a more accurate and gener-
alizable differentiation between microbiomes associated with inflammatory bowel dis-
ease and healthy gut microbiomes than does analysis based on individual taxon counts
(26). It was also observed that a word embedding algorithm applied to 16S k-mers
resulted in meaningful numeric feature representations that both bolstered down-
stream classification performance and offered insight into the correspondence of mi-
crobial taxa to particular body sites (27).

Another powerful approach is to pretrain a model using “self-supervised” learning
strategies on a large, diverse corpus (21, 28). In natural language, this can be achieved
by (i) blocking out words from the input text and asking the model to recreate the hid-
den portion or (ii) asking the model to generate the next word in the sentence. This
forces the model to identify properties in the input data that are useful for inferring
the missing information and can lead the model to learn linguistic and semantic pat-
terns that govern the composition of natural text beyond simple word cooccurrences
(e.g., grammatical rules, semantic relationships, and other statistical patterns that aid
in understanding text). Analogously, self-supervised learning can be applied to learn a
“language” model of the microbiome, which captures the interactions among different
microbial species or metabolic processes and can be used to understand shared com-
position rules of microbial communities. The pretrained language models can encode
each word, or measured bacterial feature, into an embedding, which can subsequently
be used for supervised prediction tasks (to differentiate two systems, or the same per-
turbation across two systems, for example) (Fig. 1) with greatly reduced dimension,
hence reducing the risk of overfitting. These models offer distinct advantages over
conventional methods because they use large data sets of bacterial features from
diverse species and environments. Such models may be used to generalize across mi-
crobial systems to reduce input dimensionality and find useful latent properties in mi-
crobial communities.

There are important distinctions between natural language and microbiome data.
Language has a natural sequential structure that is not present in most omics-based
microbiome data. Comparatively, microbiome data also has rich biological information
about taxa and functions that helps generate ecological and evolution inferences into
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whole-system dynamics. Such distinctions offer exciting opportunities for new innova-
tions to adapt NLP models to microbiome data, similar to what has been done in com-
puter vision (29) and learning with graphs (30) and sets (31) (Table 2).

While the application of deep learning to study microbiomes holds great promise,
there exist significant challenges. Deep learning requires large amounts of data. For
example, BERT, a commonly used pretrained language model for natural text, was
trained on 3.3 billion words (23). While the scientific community has been generating
microbiome data exponentially, these data are often not publicly available or remain
unprocessed or uncurated. For example, while NCBI counts around 690 million
sequence records (as of August 2021), the vast majority of records do not contain the
metadata information sufficient to include in training data sets. Conversely, well-cura-
ted databases often lack sufficient depth of records. For example, databases like Qiita,
which aim to enable cross-system meta-analyses of omics data, contain on the order of
tens of millions of individual sequence records (e.g., amplicon sequence variants [ASVs]
from 16S amplicon studies) from a few hundred thousand (160,000 to 200,000)

FIG 1 Workflow of microbial data transformation using deep learning approaches used to capture cross-system
properties and apply to a specific task. Hexagons represent algorithms, fed data (in blue) and producing
models (squares). Measured microbial features from publicly available data sets are input into the deep
learning algorithms (in yellow) to produce pretrained models constituting new features (in green). During
pretraining, a model is trained to reconstruct original input from distorted or partial input, using unlabeled
data. The process outputs a trained model and/or a set of feature embeddings (which may be interpreted to
represent community assembly rules and microbial ecology principles). The general model may then be fine-
tuned on metadata (study data set in blue) to answer a biome- or system-specific question of interest. The
process of training a model on one task/data set and then fine-tuning it on another task/data set is known as
transfer learning.
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TABLE 2 Nonexhaustive list of relevant examples of deep learning algorithms and their ecological representations, when applicablea

Deep learning
algorithm Description Application to microbial ecology Papers
Autoencoder Condense a long vector of input

features into a dense mathematical
space and then validate by
regenerating the input from the
condensed space.

16S amplicon, gene, metabolite, or
protein counts can be condensed,
thereby defining latent variables that
drive observed feature counts.
Ecological representation: latent
variables may represent
environmental factors like nutrient
availability or pH that dictate
observed microbial features.

“Using autoencoders for predicting latent
microbiome community shifts responding
to dietary changes” (37); “DeepGeni: deep
generalized interpretable autoencoder
elucidates gut microbiota for better cancer
immunotherapy” (38); “Utilizing
longitudinal microbiome taxonomic
profiles to predict food allergy via Long
Short-TermMemory networks” (39);
“Predictingmicrobiomes through a deep
latent space” (40); “DeepMicro: deep
representation learning for disease
prediction based onmicrobiome data” (41)

Convolutional neural
networks

A class of models that use convolution
kernels or filters that slide along input
features to learn features between input
segments with a given spatial
relationship

Integrate spatial information about relative
and globalmicrobial locations within a
system. Interpret nucleotide text.
Ecological representation: metabolic
relationships dependent on location
within a system.Motif function
dependent on location relative to other
motifs.

“TaxoNN: ensemble of neural networks on
stratified microbiome data for disease
prediction” (42); “Learning, visualizing
and exploring 16S rRNA structure using
an attention-based deep neural
network” (43)

Long short-term
memory (LSTM)

A class of deep neural networks that
process data sequentially. They have
a memory that updates every time
the network processes a sequence
entry.

Learn patterns frommicrobial genetic
sequence (e.g., shotgun
metagenomics or transcriptomics)
which hold information about gene
function. Represent longitudinal
count data and changing microbiome
dynamics along a nutrient or time
gradient. Ecological representation:
gene clusters of interreliant genes.
Changes in specific taxon
abundances over time are indicative
of system state.

“Transfer learning improves antibiotic
resistance class prediction” (33);
“Utilizing longitudinal microbiome
taxonomic profiles to predict food
allergy via Long Short-Term Memory
networks” (39); “Shedding light on
microbial dark matter with a universal
language of life” (34)

Embedding Learn word vectors so the inner product
of vectors i and j reflects the
cooccurrence probability for words i
and j. Specific example: GloVe.

Consider taxon or any microbial feature
cooccurrences. Ecological
representation: metabolic
corporations or partnership.

“GloVe: global vectors for word representation”
(44); “Decoding the language of
microbiomes usingword-embedding
techniques, and applications in
inflammatory bowel disease” (26)

Continuous bag of
words

Generate one static embedding per
word. Training algorithm captures
semantic and lexical information of
each word based on that word’s
context—i.e., its neighboring set of
words. Specific example: Word2vec.

k-mer representations of sequences
could be embedded in such a way
that their context is preserved.
Ecological representation: conserved
motifs (k-mers) represent
evolutionary and possibly functional
similarities across sequences.

Word2vec (45); “Learning representations
of microbe-metabolite interactions” (46)

Transformer Guess the next word or part of a
sentence based on all the words
present in a sentence. Mask input text
tokens, then train the model to
predict original tokens from
unmasked context. Distort text by
replacing input text tokens with fake
but plausible substitutions. Then train
model to identify the fake tokens
based on the surrounding context.
Specific examples: BERT, ELECTRA

Provide a view of a sample by
considering all neighbors. Identify key
microbial features association within
samples. Ecological representation:
community assembly and/or
metabolic cooperation at a higher
degree.

“BERT: pretraining of deep bidirectional
transformers for language
understanding” (21); “ELECTRA:
pretraining text encoders as
discriminators rather than generators”
(47)

aPapers highlighted in bold engage in transfer learning where an independent pretraining task and data set are used to build a model, which is then fine-tuned on a
different prediction task and data set.
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samples of various omics types (32). Because of this, transfer learning in the microbial
space thus far has largely focused on using pretraining tasks that do not require cura-
tion, such as predicting the next segment of genetic sequence or the next amino acid
of a protein sequence, from minimally processed reads (33, 34). Examples of transfer
learning using predefined microbial features (e.g., ASVs, genes, or metabolites) are
rare. However, our first attempt determined that approximately equal numbers of fea-
tures (ASVs) and samples were sufficient to capture meaningful information in embed-
ding vectors while drastically reducing the dimensionality from ;23,000 ASVs to 100
dimensions (26).

Given the complexity and noisiness of biological systems, integration of differ-
ent omics data representing different processes will be key in the development of
more generalizable models that transcend individual systems. Accordingly, under-
standing the biological relationships between these data types and what limita-
tions and insights they provide into biological processes is a large and important
challenge. The scientific community needs to (i) ensure metadata is available
alongside omics; (ii) adopt a common ontology for metadata type and sequencing
data type, such as those being developed by the National Microbiome Data
Collaboration (35); and (iii) allow universal and easy access to those data. There is
an urgent need to organize data catalogs, or at least to categorize any new data
generated during published research. These efforts should follow principles such
as the FAIR data standards (36) of Findability, Accessibility, Interoperability, and
Reuse of digital assets. In addition to requiring large amounts of data, deep models
are often difficult for humans to understand. Although the learned patterns of neu-
ral network models can detect useful and general statistical patterns in microbial
data, interpreting those models remains challenging. How can we extract informa-
tion from properties or dimensions that humans have not conceptually defined
yet? Work on interpreting neural network models is well under way in the field of
computer science, and cross-disciplinary partnerships that leverage that work are
becoming increasingly valuable, especially as the amount of microbiome omics
data grows year over year.

To conclude, we call upon the scientific community to collaboratively accelerate
these endeavors: the algorithms developed in various branches of computer science,
including natural language processing and explainable artificial intelligence (AI), offer
us unprecedented opportunities to learn from complex and massive data sets and gain
transformative insight into the rules that govern how microbial communities assemble,
diversify, and respond to environmental variation. This effort is particularly relevant in
an age where our ability to synthesize data on model systems outstrips our ability to
sample across every microbial system on Earth.
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