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GEOCHEMISTRY

Serpentinite-derived slab fluids control the oxidation

state of the subarc mantle

Yuxiang Zhang'*3*, Esteban Gazel**, Glenn A. Gaetani®, Frieder Klein®

Recent geochemical evidence confirms the oxidized nature of arc magmas, but the underlying processes that
regulate the redox state of the subarc mantle remain yet to be determined. We established a link between deep
subduction-related fluids derived from dehydration of serpentinite + altered oceanic crust (AOC) using B isotopes
and B/Nb as fluid proxies, and the oxidized nature of arc magmas as indicated by Cu enrichment during magma
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evolution and V/Yb. Our results suggest that arc magmas derived from source regions influenced by a greater
serpentinite (+AOC) fluid component record higher oxygen fugacity. The incorporation of this component into
the subarc mantle is controlled by the subduction system’s thermodynamic conditions and geometry. Our results
suggest that the redox state of the subarc mantle is not homogeneous globally: Primitive arc magmas associated
with flat, warm subduction are less oxidized overall than those generated in steep, cold subduction zones.

INTRODUCTION

The fugacity of oxygen (fo2) in Earth’s mantle fundamentally influ-
ences the generation and evolution of basaltic magmas (1). The
overall higher fo, recorded by arc magmas as compared to mid-
ocean ridge basalts (MORB) has been widely attributed to the
influence of oxidized slab materials on the magma sources (2, 3), as
evidenced by the positive correlations of fo, with H,O and fluid
mobile element concentrations in arc and back-arc lavas (4, 5). The
redox budget of the subarc mantle also increases with subduction
zone age and convergence rate (6, 7). While these correlations are
clear, a direct link between arc magma fo, and the input of subducted
oxidizing material is still lacking.

Altered oceanic crust (AOC) and sediments have long been
considered as major subduction components involved in arc magma
generation (8, 9). However, the dehydration of subducted ser-
pentinite has been increasingly recognized as an important source
of volatiles (e.g., water, sulfur, and halogens) in the subarc mantle
(10-12). Like AOC (7, 13), breakdown of oxidized serpentinites can
produce highly oxidizing fluids (14-18), which may have an im-
portant influence on the fo, of arc magmas. Boron (B) isotopes
("B = [("'B/"*B)sampte/(" B/"*B)srmos1 — 1]¥1000) are a powerful
tool for tracing the presence of serpentinite-derived fluids, as ''B is
depleted in the upper mantle [B < 0.1 parts per million (ppm);
8''B = —10 to —7%o] but is extremely enriched in serpentinite (up to
100 ppm B; 8''B up to +40%o) (19). B/Nb is a second proxy for the
subducted serpentinite, as this ratio is very high in serpentinite (up
to 10%) (20) and not strongly fractionated by magma differentiation
processes (21). The positive correlation between 8''B values and
B/Nb for arc lavas is interpreted as reflecting the contributions of
serpentinite fluid to the subarc mantle wedge (22, 23).
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To connect fluids derived from subducted serpentinite with the
redox state of arc magmas, we investigated the relationships among
8''B values and B/Nb with proxies for arc magma fo, on a global
scale. The abundance of Cu in arc magmas is controlled by satura-
tion with sulfide, in which Cu is highly compatible (24). While sulfide
saturation in silicate melt is influenced by pressure, temperature,
melt composition, and H,O concentration, fo; is one of the most
influential parameters (25-28). Sulfide (S*) is the dominant sulfur
oxidation state at relatively low fo, (e.g., < FMQ, fayalite-magnetite-
quartz buffer), whereas at higher fo,, the stable oxidation state of
sulfur is S°* (as sulfate). $°* has up to 10 times greater solubility in
magma than $*~ and the transition between the two sulfur species
occurs within a narrow range of fo; (e.g., FMQ to FMQ+2) (25, 26).
As a result, Cu shows contrasting behavior during magma evolu-
tion at different redox conditions: Cu enrichment due to suppres-
sion of sulfide saturation at high fo,; Cu depletion due to sulfide
segregation at low fo, (Fig. 1) (24). Thus, Cu enrichments in the
liquid lines of descent of arc magmas can be interpreted as reflect-
ing high fo, if the influences of other parameters can be excluded. In
addition to Cu, we adopted V/Yb as a second proxy for fo,. V is
redox-sensitive whereas Yb is not, so that V/Yb fractionation varies
as a function of oxygen fugacity during peridotite partial melting.
That V and Yb are similarly incompatible during crystal fraction-
ation means that this signal is not perturbed by shallow-level
processes (29, 30). V/Yb is also not sensitive to degree of mantle
depletion (fig. S1).

RESULTS AND DISCUSSION

Cu behavior in arc magmas controlled by fo,

The variation of Cu concentration during magmatic evolution of
arc and back-arc lavas from three intraoceanic subduction zones
(Mariana, Scotia, and Tonga) is shown in Fig. 1. The lavas from the
back-arc basins generally have lower Cu concentrations than those
in the corresponding arcs; there is a large data overlap between
Tonga Arc and Lau Basin, partially due to the high Cu concentrations
of primary Lau Basin magmas and/or the existence of immature
spreading centers in the back-arc region. The trend of continuously
decreasing Cu concentration with decreasing MgO concentration
in the back-arc basins, indicative of early sulfide saturation, is
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Fig. 1. Plots of Cu versus MgO for volcanic rocks from arcs and mid-ocean ridges. (A to C) Intraoceanic arcs, (D and E) Continental arcs, and (F) Mid-ocean ridges. Arc
and back-arc data were plotted separately for the intraoceanic subduction zones. The black curves describe the behavior of Cu during magmatic differentiation at
FMQ+0.3, +1.2, +1.3, and +1.4 following the models of (24). Tholeiitic differentiation model (P=0.2 GPa) was used for intraoceanic arc lavas and MORB, and the Calc-alkaline
differentiation model (P= 0.8 GPa) was used for continental arc lavas. The initial concentrations of S in the melt were set to be 1500 ppm.

markedly different from the trends observed in their arc counter-
parts, which show the highest concentration of Cu at 4 to 6 weight %
(wt %) MgO (Fig. 1) but trends similar to those observed in thick
continental arcs (crustal thickness > 30 km) (Fig. 1, D and E) and
mid-ocean ridges (Fig. 1F).

Results from a previous study suggest that these distinct Cu
evolution trends are controlled by arc crustal thickness. Thicker
crust favors early magnetite crystallization, which induces sulfide
saturation, whereas thinner crust retards magnetite crystallization,
as indicated by the covariance of Cu and Fe concentrations for
global arc lavas (31). Sulfide saturation in magma is also facilitated
by high pressure (27). However, these models cannot explain the Cu
depletion in lavas from back-arc basins and mid-ocean ridges,
which are characterized by very thin crust. In addition, the concen-
trations of Cu and Fe,Osr (total Fe as Fe,O3) of the back-arc lavas
do not follow a similar evolution trend (fig. S2). Other factors
affecting sulfide saturation in magmas include sulfur concentration,
temperature, and H,O concentration (26, 28). Magmas generated
beneath mid-ocean ridges (perhaps including some back-arc basins)
are generally characterized by lower sulfur concentrations (32) and
higher temperatures (33) than arc magmas, which do not favor the
observed early sulfide saturation (Fig. 1). Furthermore, the primary
magmas from intraoceanic arcs and thick continental arcs share
similar H,O concentrations (34). Therefore, the parameters mentioned
above cannot explain the systematic difference in the behaviors of
sulfide saturation among intraoceanic arcs, thick continental arcs,
back-arc basins, and mid-ocean ridges. We therefore attribute the
saturation of sulfide in magmas to relatively reducing conditions,
similar to MORB. The back-arc magmas are expected to have lower
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fo with increasing distance from the trench and, thus, weaker influ-
ence from subducted oxidized components as compared with arc
magmas (5). For example, the lavas from the Mariana Trough
record lower fo, (FMQ+0.1 to FMQ+0.5) than those from the
Mariana Arc (FMQ+1.0 to FMQ+1.6) (4). Using the method of
(24), we modeled the behavior of Cu during magma differentiation
at varying redox conditions. The results show that the magmas
from back-arc basins, thick continental arcs, and mid-ocean ridges
are mostly consistent with lower fo, (~FMQ+0.3), while the
magmas from intraoceanic arcs record higher fo, (FMQ+1.2 to
FMQ+1.4) (Fig. 1). This range of redox conditions overlaps with the
foz associated with §27-8%" transition (FMQ to FMQ+2) (25),
meaning that the sulfur solubility in arc magmas is largely influ-
enced by fo,. The above indicates that high fo, is a key factor leading
to the Cu enrichment during arc magma evolution.

Cu enrichment during arc magma evolution promoted by
"1B-rich slab fluids

We found that the lavas from intraoceanic arcs that show Cu en-
richment during magma evolution are characterized by heavy
B isotopes (fig. S3). The heavy B isotopes in the lavas from the Mariana
Arc (8"'Byyer. & +4.5%0), Tonga Arc (8" Byyer. = +8.3%o), and South
Sandwich Arc (8''Byyer. & +15.0%0) cannot be explained by the
contribution of fluids from the subducted sediments (5''B mostly
negative) (35). AOC typically has low to moderate 5''B values
(mostly 0 to +5%o); the AOC metamorphosed at high temperatures
can be characterized by heavy B isotopes (8''B up to > +10%o)
(19, 36). Despite the high 5''B values, subducting AOC preferentially
loses ''B during dehydration and, thereby, will probably have low
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3''B at subarc depths (22, 23). In comparison, subducted ser-
pentinite can retain heavy B isotopes (5''B up to +34%o) until ser-
pentine minerals break down at depths down to >200 km (11, 37),
making it the most likely major source of isotopically heavy B in arc
magmas (22, 23, 38, 39). B isotopes in arc lavas tend to become
progressively lighter with distance behind the trench (fig. S3). The
back-arc basin lavas, which have little or no Cu enrichment with
decreasing MgO, have much lighter B isotopes than the arc lavas
(fig. S3), for example, Mariana Trough (8" Boyer. = —4.7%o, as
compared to +4.5%o of Mariana Arc) and Lau Basin (8" Bayer. = —2%o,
as compared to +8.3%o of Tonga Arc), suggesting the limited partici-
pation of serpentinite-derived fluids in the back-arc mantle.

We investigated the relationships of Cu enrichment during arc
magma evolution to B isotopes and B/Nb using a global arc dataset
(including some back-arc basin data) (Fig. 2, A and B). Here, we
used the relative Cu enrichment at 4 to 6 wt % MgO [ACu_¢) =
Cus-6)/Cus_12) — 1, where Cus_6) and Cuys_12) are the concentra-
tions Cu in arc lavas containing 4 to 6 wt % and 8 to 12 wt % MgO,
respectively] to evaluate Cu enrichment or depletion for each arc;
although this MgO range cannot represent primitive arc magmas,
ACuyy_g) values show whether sulfide saturation is reached at an
early stage of magma evolution and, thus, might indicate primitive
magma fo,. While magma fo, can increase during differentiation,
i.e., via the fractionation of Fe(II)-rich minerals (such as almandine),
such an effect is small during basaltic to andesitic differentiation
(40). It is noted that the intermediate lavas can also be produced by
mixing of mafic and felsic magmas. However, the mixing scenario is
not consistent with the higher Cu concentrations of intermediate
magmas in many arcs, as both the mafic and felsic lavas are depleted
in Cu (Fig. 1) (24, 31).

The average B isotopic compositions and B/Nb are plotted
against ACus-¢) values for the lavas from 12 Pliocene-Quaternary
aged arcs and two back-arc basins (see Materials and Methods for
the calculations of averages) (Fig. 2, A and B). We found that the
ACu(y-¢) values show significant positive correlations with the
B isotopes (r* = 0.74) and B/Nb (+* = 0.79) for the global arc dataset.
Similar relationships are observed between Cu_¢) values and
5!'B, B/Nb (fig. S4, A and B). Although we cannot exclude the influ-
ences of AOC-derived fluids on the arcs with low to moderate
8''B values, these correlations indicate that a strong relationship
exists between Cu enrichment during arc magma evolution and
subducted serpentinite fluids carrying heavy B. ACuy_¢) values are
not affected by Cu enrichment or depletion in the magma source.
Thus, we suggest that the above correlations reflect the role of
serpentinite-derived fluids in controlling the behavior of Cu in the
melt by influencing the fo, of the system and, thus, the state of
sulfide saturation. This interpretation is also supported by the
positive correlations of the average V/Yb of primitive arc lavas [8 to
12 wt % MgO; V/Yb(s_12)], a proxy for fo, (29, 30), with the average
5''B values (¥* = 0.77) and average B/Nb (r2 = 0.84) for our global
arc dataset (Fig. 2, C and D).

Serpentinite can recycle substantial amounts of H,O, sulfur
(asHSO4 or SO427), and carbon into the upper mantle at convergent
margins (10, 11, 16). Of particular interest is that sulfate (S°*) has
strong oxidizing capacity when it is reduced to sulfide (S*7) (5).
In addition, H,O concentrations correlate with the Fe(IIT)/XFe in
the melt and, while H,O itself is generally not considered to be an
oxidizing agent, this correlation suggests that slab-derived fluids are
involved in the redox reactions (6); results from a recent study do,
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however, suggest the possibility that hydrous melts can be oxidized
by H,O dissociation and hydrogen incorporation into orthopyroxene
(41). Furthermore, ~/5 of the Fe in serpentinite is ferric, which is
hosted by magnetite and serpentine minerals (lizardite, chrysotile,
and antigorite). Previous studies suggested that the Fe(III)/ZFe
decreases during metamorphism and deserpentinization (14). This
inference rests on the assumption that the protoliths of variably
metamorphosed serpentinites had a consistent Fe(III)/~Fe to begin
with, which, however, cannot be unequivocally determined (18). If
metamorphism and deserpentinization does result in a decrease of
Fe(III)/ZFe, the reduction of Fe(III) to Fe(II) would require the
formation of an oxidized component such as SOy or COy. This
interpretation, while still debated, would suggest that serpentinite
dehydration has the potential to release oxidizing fluids with an
isotopically heavy 8''B signature (15-17, 23).

Evans and Frost (18) elaborated on a variety of processes that
may affect the redox budget of subducted serpentinites and, thereby,
the capacity of serpentinite-derived fluids to oxidize subarc mantle.
While some studies conclude that fluids released by serpentine
dehydration are sufficiently oxidized to affect the redox budget of
arc magmas (15-17), others suggest that these fluids may be notably
less oxidized (42). Serpentinite within the subducting plate has
isotopically heavy B (5''B up to +40%o) and is a possible source of
"B in arc magmas (37). However, the modern subducting plates
are mostly generated at fast-spreading ridges, where the interactions
between lithospheric mantle and fluids are relatively limited, and
thus, it is questionable whether such serpentinites are as oxidized
as those formed at slow-spreading ridges (18). In comparison,
forearc serpentinite, extensively metasomatized by sulfate-bearing
fluids released from subducting slab at shallow depth (43), is
probably more oxidized and also has relatively heavy B isotopes
(3''B up to +15%o) (44). However, it is debatable whether the
serpentinized forearc mantle is transported to the subarc depth by
the subducting slab or corner flow (20, 45). Therefore, based on the
current knowledge, it is not possible to determine which kind of
serpentinite is the major fluid source. Despite these uncertainties,
the robust correlations between magma fo, proxies and 8''B values
for global arcs favor the conclusion that serpentinite-derived fluids
play an important role in establishing the redox conditions in the
subarc mantle. Here, again, we cannot exclude the influence of
AOC-derived fluids, which are also recognized to be oxidizing
(7, 13). It is likely that the redox state of subarc mantle is influenced
by a combination of AOC- and serpentinite-derived fluids, which
may form a high 5''B and oxidizing composite slab fluid.

Implications for the fo, of primitive arc magmas

Dehydration of serpentine minerals is controlled by the pressure-
temperature conditions of the subduction system (fig. S5) and the
thermal structure of subduction zone varies with slab age and dip
(46). Multivariate analysis shows that subducting slab dip signifi-
cantly correlates with the amount of ''B-rich, oxidizing serpentinite
fluids that lastly reach the subarc mantle (table S1). Shallow slabs
are generally associated with warm subduction (fig. S5C) and the
higher temperatures will lead to shallow dehydration of serpentinite
(fig. S5, A and B), thereby depleting the slab with respect to ''B at
subarc depth. These slabs usually have low descent rates and longer
arc-trench distances and, thus, reside beneath the mantle wedge for
much longer times and dehydrate more efficiently (fig. S5, D and E)
(22). The slab dip is likely the main control on the mechanisms of
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Fig. 2. Bubble plots showing the correlations of magma fo, proxies with slab fluid proxies for global arcs. (A) ACu,_g) versus 5B, (B) ACus_g) versus B/Nb, (C) V/Ybs_12)
versus 8''B, and (D) V/Ybg_12) versus B/Nb. Each point represents the average values of 5'"B, B/ND, ACus-g), or V/Ybg_12) for each individual arc segment and MORB (table S2).
The bubble color indicates the slab dip and the bubble radius is proportional to 16 uncertainties of the variable [5”B, ACuy-¢), V/Yb, and B/Nb]. See Materials and Methods

for more details about how the average values are obtained.

slab fluids delivery into the mantle wedge; fluid flux from a steep
slab will be focused beneath the arc and, thus, deeper fluids from the
breakdown of subducted serpentinite have a higher potential for
becoming an important contribution to arc magmas (Fig. 3) (47).
Consequently, arc lavas from steep subduction zones are probably
influenced by more recycled serpentinite fluids and thereby have
higher 3''B, B/Nb, ACu(,_¢) values, and V/Ybs_12) compared to
those from flat subduction (Fig. 2). One exception is the Mexican
Arc, where the slab beneath the arc markedly changed from shallow
dip to a very steep angle at ~7 Ma (million years), and there are also
complexities with an OIB-like source sampled by these volcanoes
(48). The extremely heavy B isotopes observed in the South
Sandwich Arc lavas may be partly due to the subduction erosion of

Zhang et al., Sci. Adv. 7, eabj2515 (2021) 26 November 2021

serpentinized forearc mantle (39) or the subduction of serpentinized
mantle near the seafloor formed by slow-spreading tectonics of the
South Atlantic (49).

In summary, a combination of the thermal structure and geom-
etry of the subduction zone provides a first-order control on the
incorporation of 'B-rich, oxidizing fluid derived from deser-
pentinization into the source regions of arc magmas. Results from
thermodynamic models suggest that AOC dehydration produces
oxidizing fluids more efficiently in cold subduction than in warm
subduction (13). These results imply that the average fo, of subarc
mantle is not homogeneous globally. Some thick continental arcs in
the eastern Pacific (e.g., Ecuador, Mexico, and Cascades) are generally
characterized by shallow, hot/warm subduction, which would result
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Fig. 3. Sketch of serpentinite subduction [modified after (72)]. (A) Steep, cold subduction zone and (B) Flat, warm subduction zone. Dehydration of serpentine minerals
[lizardite (Liz), chrysotile (Ctl), and antigorite (Atg)] releases ''B-rich and oxidizing fluids. The migration of such fluids into the subarc mantle is promoted by steep, cold
subduction, but is limited by flat, warm subduction. The depths of lizardite + chrysotile to antigorite transition (200 to 400°C) (72) and antigorite breakdown (600 to
700°C) (67) are determined according to a thermal gradient of 5°C/km for cold subduction and 10°C/km for warm subduction (62). The B concentrations and 5''B of

serpentinite and chlorite (Chl) harzburgite are from (37, 63).

in light 5''B values, similar to those of MORB mantle; based on the
Cu depletion and low V/Yb (Figs. 1 and 2), the primary magmas in
these arcs will generally have lower fo, due to the lack of contri-
butions from an oxidizing fluid. Conversely, the subarc mantle of
some intraoceanic arcs with steep and/or cold subducting plates
(e.g., Mariana, Tonga, and Izu-Bonin) are expected to be overall
more oxidized and, therefore, to generate sulfide-undersaturated
magma. Results from a previous study suggest that the redox states
of global primitive arc lavas and MORB are indistinguishable as
indicated by their similar Cu concentrations (24). However, our
results show that the Cu concentrations of primitive arc lavas
(MgO = 8 to 12 wt %) are not identical globally and they also show
positive correlations with 5''B and B/Nb, but they are not higher
than the Cu concentrations of primitive back-arc lavas and MORB
(fig. S4, C and D). The Cu concentrations of mantle partial melt are
controlled by many factors, in addition to fo,, such as extent of
partial melting, Cu concentrations of mantle sources (24), etc.; thus,
they are probably not robust proxies for the mantle fo,.

Our conclusions are based on the average estimates for entire arc
segments. The fo, can be highly heterogeneous within a single arc
(e.g., from FMQ to FMQ+2) (50). High fo, lavas (e.g., ~FMQ+2)
have been observed in some continental arcs, such as Mexico (3)
and Cascades (51). Sporadic Cu enrichment also occurs in these
arcs (Fig. 1, D and E). This may reflect the roles of multisourced
subduction input, intracrustal processes (e.g., crustal contamination
and deep crystallization), and/or mantle heterogeneity in the for-
mation of chemically diverse arc volcanic rocks (52). Despite this,
the significant global correlations among 3''B, B/Nb, ACu(y_)
values, and V/Yb denote that independent of local heterogeneity,

Zhang et al., Sci. Adv. 7, eabj2515 (2021) 26 November 2021

recycling of oxidizing slab fluids probably have an important
control on the oxidation state of subarc mantle.

MATERIALS AND METHODS
Data compilation and filtration
The data of Cu, MgO, Fe;Osr, 5''B, B, Nb, V, and Yb for the lavas
from 16 Pliocene-Quaternary aged arcs and three back-arc basins
(Mariana Trough, Lau Basin, and East Scotia Ridge) used in this
study are from the GEOROC database (http://georoc.mpch-mainz.
gwdg.de/georoc/). Some 8''B and B/Nb data are from literature
(38, 39, 53-57). The MORB data are from the PetDB database
(www.earthchem.org/petdb/). These data include whole-rock or
glass compositions of volcanic rocks. Melt inclusion data were also
included for 5''B and B/Nb. Boninites were not considered here as
they are products of subduction initiation and exist in only a few
arcs. The samples that are described as altered or have LOI higher
than 2 wt % were discarded from the dataset. All outliers were cross-
checked with the original publications. The northern part of the Lau
Basin and Tonga Arc is influenced by mantle plume (58), and, thus,
only the data to the south of 17°S were used. Note that Fonualei
Spreading Center was divided into the Tonga Arc for the lava show
arc signature (59). All the data mentioned above are given in data S1.
As B isotope fractionation during the magma differentiation is
insignificant (19), the 5''B data were not filtered according to MgO
concentrations. B/Nb is also little influenced by magma differentia-
tion (21). However, the B/Nb ratio shows large variations at
MgO < 2 wt % for some arcs (fig. S6); thus, the data for MgO < 2 wt %
were removed. We note that crustal contamination can substantially
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influence the B isotopes and B/Nb of magmas; thus, we have gone
back to the original publications and removed the data affected by
crustal contamination. The V/Yb of the arc lavas shows sharp
decrease with the decreasing MgO concentrations at MgO < 6 wt %
(fig. S7). We used the data at MgO = 8 to 12 wt % to represent the
compositions of primitive arc magma. This MgO range can mini-
mize the effect of magnetite crystallization on V contents. We also
removed the data with Dy/Yb > 2 to exclude the effects of residual
garnet in the source (29). It is shown whether arc lavas are enriched
or depleted in Cu at 4 to 6 wt % MgO (31); thus, we used the relative
Cu enrichment at 4 to 6 wt % MgO [ACu(4_¢) = Cu(s_e)/Cu(g_12) - 1,
where Cuy_¢) and Cug_12) indicate Cu concentrations at MgO = 4
to 6 wt % and 8 to 12 wt %, respectively] to evaluate Cu enrichment
or depletion for each arc.

Determination of average values for each arc segment

The averages of 5''B value, B/Nb, Cu concentration at MgO = 4 to 6 wt %
[Cus_6)] and 8 to 12 wt % [Cu(s_12)], and V/Yb at MgO = 8-12 wt %
[V/Ybs_12)] were calculated for each individual arc. To reduce the
sampling bias toward certain volcanoes and to get a reliable estima-
tion of arc averages, the filtered data were first averaged within
volcanoes (or volcanic zones) and then averaged within arc seg-
ments, following the method of (60). For Cu concentrations and
V/Yb, at least two data points were required for determining the
volcano averages; for 3''B and B/Nb, one data point was allowed to
represent a volcano. At least two volcanoes were required for the
calculation of arc averages. The back-arc averages were obtained by
averaging all the samples. The MORB averages were calculated
following the method of (31): The data were firstly subgrouped
(at intervals >0.5 wt %) and median values were calculated for each
subgroup; then, the average values and 16 uncertainties were cal-
culated from the median values. This method can reduce the bias
caused by outliers.

The average values for arc segment and each volcano are given in
table S2 and data S1, respectively. The calculated Cu4_) values for
each arc are overall consistent with those obtained by averaging all
the samples (fig. S8A) (31). The locations of the volcanoes with
available data of 3''B, B/Nb, Cu concentrations, and V/Yb are
shown in figs. S9 to S13. The distributions of B isotope data by
volcanoes for each arc are shown in fig. S14. Although the available
B isotope and B/Nb data are relatively in small quantity, they mostly
cover a large part of the arcs. The arc average Cu concentration and
V/Yb obtained by all the volcanoes are consistent with those
obtained by the volcanoes with available 8''B or B/Nb (fig. S8, B
and C). Thus, we believe that the observed 8''B or B/Nb can be
representative of the values of the whole arc segment.

SUPPLEMENTARY MATERIALS

Supplementary material for this article is available at https://science.org/doi/10.1126/
sciadv.abj2515
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