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Figure 1: The work�ow of SemanticOn. There are three steps to creating a web automation program with semantic conditions using 
SemanticOn. (Step 1) To specify semantic conditions, users can either describe their intent in text (User Enters, �c ) or indicate the section of 
interest by brushing through an image �a or highlighting parts of a text �b (System Suggests). SemanticOn then encodes these speci�cations 
with computer vision and natural language processing techniques into web program conditions. (Step 2) To create the intended web 
automation program, users demonstrate the actions on the website using WebRobot, including image downloading �d and text scraping �e . 
(Step 3) Once the program is executed, users can also easily coordinate with SemanticOn to re�ne the semantic conditions (�f , �h ) or take 
back control to add or remove data manually �g . 

ABSTRACT 
Data scientists, researchers, and clerks often create web automation 
programs to perform repetitive yet essential tasks, such as data 
scraping and data entry. However, existing web automation sys-
tems lack mechanisms for de�ning conditional behaviors where 
the system can intelligently �lter candidate content based on se-
mantic �lters (e.g., extract texts based on key ideas or images based 
on entity relationships). We introduce SemanticOn, a system that 
enables users to specify, re�ne, and incorporate visual and textual 
semantic conditions in web automation programs via two methods: 
natural language description via prompts or information highlight-
ing. Users can coordinate with SemanticOn to re�ne the conditions 
as the program continuously executes or reclaim manual control 
to repair errors. In a user study, participants completed a series of 
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conditional web automation tasks. They reported that SemanticOn 
helped them e�ectively express and re�ne their semantic intent by 
utilizing visual and textual conditions. 
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1 INTRODUCTION 
Enterprises, governments, and schools often use web-based ap-
plications to manage their businesses and services. Other than 
information consumption, users such as clerks, data scientists, and 
researchers often employ these web platforms to conduct tasks that 
are repetitive yet essential, such as data scraping and data entry. 
Performing these tasks manually can often lead to human errors 
(e.g., data duplicates, missed entries), which can cause ine�ciencies. 

https://doi.org/10.1145/3526113.3545691
https://doi.org/10.1145/3526113.3545691
https://doi.org/10.1145/3526113.3545691
mailto:permissions@acm.org


UIST ’22, October 29-November 2, 2022, Bend, OR, USA Kevin Pu, et al. 

Web automation o�ers a solution that leverages bots to mimic hu-
man interactions on web applications. It assists users with tedious 
and recurring tasks and has proven to be faster and more accurate 
for various task types compared to manual e�ort [42]. 

Past research has developed techniques to help users of all ex-
pertise levels to quickly and accurately create their intended web 
automation programs [25–27, 44, 68]. However, these techniques 
are limited to creating programs with requirements at the website 
syntax or structural level (e.g., scraping the �rst two items in each 
row of a table). Tools capable of creating logic based on the mean-
ing of the content (semantics) remain unexplored. For instance, 
commercial tools such as iMacros [2] and UiPath [8] enable users 
to perform record-and-replay interactions for web automation and 
testing. Research tools such as Helena [15] further this technique by 
lowering the learning curve, allowing users with little programming 
experience to create complex programs that can handle hierarchical 
data (e.g., tree-structured data) and distributed data spread across 
multiple websites. 

We identi�ed a need for web automation with semantic con-
ditions through prior user studies [24] and analysis of real user 
requests in online forms [3, 7]. This includes vision-related seman-
tic conditions, such as scraping images that meet speci�c criteria 
(e.g., a photography student wants to study group interaction por-
traits on a gallery website with thousands of photos) or text-related 
semantic conditions, such as scraping text only when it expresses 
particular sentiments (e.g., a �lm critic wants to evaluate positive 
reviews of a movie star’s acting from dozens of news articles in 
a journal). With current techniques, users cannot specify these 
semantic intents in web automation programs. As noted above, 
semantic information often varies by content type, which makes 
it hard to design a universal interaction that is both easy to use 
and su�ciently expressive. Additionally, unlike other AI systems 
that provide results immediately after the provision of user inputs 
(e.g., chatbots), once executed, a web automation program will 
continuously output results as it iterates over web contents. This 
makes monitoring and error handling di�cult, as the program may 
encounter unforeseen and problematic cases. 

This paper explores interactive techniques to enable content-
based semantic condition speci�cation for web automation pro-
grams. We introduce SemanticOn,1 a system that allows users to 
specify, re�ne, and incorporate visual and textual semantic informa-
tion as conditions in web automation programs via two methods: 
natural language description via prompts or detailed information 
highlighting with system support. We de�ne them as User Enters 
and System Suggests, respectively. SemanticOn combines the rel-
ative strengths of neural models (Transformer) for unstructured 
information and program synthesis techniques for web automation. 
By doing so, we introduce a new interaction paradigm for users to 
continuously add/re�ne semantic conditions in a programming-by-
demonstration system. Speci�cally, SemanticOn builds upon We-
bRobot [24], a program synthesis system that enables users to create 
web automation programs by demonstrating actions on the target 
websites. WebRobot employs a no-code development approach that 
requires only web interactions in place of programming knowledge 
from users, which is consistent with our design goal. 

1SemanticOn is an acronym for semantic condition 

Figure 1 depicts the three steps of using SemanticOn. (Step 1) To 
specify semantic conditions, users can either describe their intent 
in a sentence (Fig. 1.c), indicate their area of interest by brushing 
through an image (Fig. 1.a), or highlight parts of a text (Fig. 1.b). 
SemanticOn uses similarity-based computer vision and natural lan-
guage processing techniques to encode these speci�cations into 
web program conditions. (Step 2) To create the intended web au-
tomation program, users will demonstrate actions on the website 
using WebRobot, including image downloading (Fig. 1.d) and text 
scraping (Fig. 1.e). (Step 3) Once the program is executed, users 
can also easily coordinate with SemanticOn to re�ne the semantic 
conditions based on the automatically detected information (Fig. 1.f, 
Fig. 1.h) or reclaim control to manually add or remove data if the 
program has misjudged (Fig. 1.g). To our knowledge, SemanticOn 
is the �rst system to explore content-based semantic speci�cation 
interactions for web automation programs. 

We conducted a user study with 10 participants to evaluate 
SemanticOn’s overall usability and e�ciency and to compare the 
semantic condition speci�cation of each method (User Enters and 
System Suggests). We found that participants using SemanticOn 
successfully extracted 80.8% of the required data with an average 
time of 06:10 minute:second per task. The participants found that 
SemanticOn helped them e�ectively express their semantic intent 
by prompting them to consider their visual and textual perceptions 
of the tasks. We found a sense of control vs. e�ort trade-o�, where 
participants enjoyed composing their conditions in User Enters but 
had to spend more time and mental e�ort devising a description 
to encapsulate the semantic condition. On the other hand, while 
participants could specify and re�ne conditions more easily via 
highlighting content details and selecting generated conditions in 
System Suggests, they had less freedom to express their intent when 
system suggestions were inaccurate. 

In the �nal section of this work, we analyze the human-AI collab-
oration work�ow in SemanticOn, discuss the implications of adding 
similarity-based models in a symbolic PBD system, and explore 
future work that can adapt our approach to other types of interac-
tive AI systems that require semantic conditions. This work is an 
essential step towards the vision of natural, intent-unambiguous 
end-user programming with a focus on web automation creation. 
This paper makes the following contributions: 

• The User Enters, System Suggests interaction designs, imple-
mentations, and evaluations that allow users to specify and 
demonstrate their intent during web automation creation, 

• The re�nement and error-handling techniques to clarify and 
improve semantic �lters in a continuous human-AI collabo-
ration process, 

• SemanticOn, along with a user study showing its usability 
and e�ectiveness in helping users specify semantic condi-
tions for web automation programs. 

2 RELATED WORK 
SemanticOn builds on decades of web automation systems and 
innovations. In this section, we draw our design goals and guid-
ance from three areas of work: web automation, programming-by-
demonstration, and user intent speci�cation and re�nement. 
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2.1 Web Automation 
Web automation is a software technique that leverages bots to 
perform tedious and recurring web tasks by mimicking human 
interactions, such as data entry and data extraction. Data scientists, 
UI testers, and clerks all use web automation to help complete 
their domain-speci�c tasks [40, 43, 49, 69]. Social scientists, for 
example, might want to develop web data scraping programs to 
collect necessary web datasets. UI testers might want to create an 
automated browser testing program to help developers �nd front-
end defects. Data workers might envision a data entry program 
for routine tasks like entering large amounts of data into a digital 
system (e.g., booking �ights for all employees). 

Creating web automation programs is a non-trivial and complex 
task. Many web automation tools require users to have domain 
knowledge (e.g., understand the Document Object Model (DOM) 
structure) and programming experience. Commonly used tools like 
Puppeteer [4], Selenium [6], Scrapy [5], and Beautiful Soup [1] 
require users to learn code syntax, understand the task content 
architecture (e.g., DOM tree hierarchy), and have software test-
ing experience. Prior work has shown that even for professional 
developers, creating automation programs is time-consuming. Kros-
nick and Oney studied the challenges of writing web macros using 
common web automation frameworks for experienced program-
mers [35]. They found that a primary challenge for participants 
was the labor of checking syntactical element selectors to create 
their programs, which was ine�cient and prone to mistakes. In 
addition, the program might not generalize to cross-webpage se-
lections where the elements don’t have syntactic similarity. Our 
work enables users to specify the semantic meaning of their target 
content, bypassing the issues caused by implementation. 

Researchers have developed many helpful tools to reduce the 
e�ort of program creation. For desktop application automation, sys-
tems like Sikuli [76] allow users to identify a GUI element (e.g., an 
icon or a toolbar button) by taking its screenshot. Using computer vi-
sion techniques, it analyzes patterns in the screenshots to locate the 
appropriate elements when automating GUI interactions. Although 
this approach is promising, it requires programming knowledge 
and cannot disambiguate similar elements or text information. For 
UI testing, researchers have proposed and studied crowdsourcing 
and automated testing strategies to help increase the testing cov-
erage and reduce the e�ort of creating programs [21, 23]. While 
helpful, outputs produced with these tools are hard to generalize 
to new UIs or contexts. 

2.2 Programming-by-Demonstration 
To further reduce the expertise required, many tools have used 
a programming-by-demonstration (PBD) approach where users 
only have to interact with the target applications rather than writ-
ing code [12, 36, 38]. These span a variety of application domains 
including text manipulation [13, 39, 54, 60, 75], image or video edit-
ing [37, 47, 51], and GUI synthesis [55, 57, 61, 71]. In the context 
of web applications, PBD delivers on this �rst design requirement, 
o�ering web automation without requiring users to understand 
browser internals or manually reverse-engineer target pages. The 
PBD approach has produced great successes in the web automation 

domain, most notably CoScripter [42], Vegemite [48], Rousillon [15], 
and iMacros [2]. 

Some of these systems require users to edit their traces to add 
parametrization. For instance, CoScripter and iMacros o�er record-
and-replay functionality; users record themselves interacting with 
the browser—clicking, entering text, and navigating between pages— 
and the tool writes a loop-free script that replays the recorded 
interaction. Because they lack support for control constructs and 
function composition, these systems require users to have logic 
skills. Other systems support iteration using program synthesis, 
automatically discovering loops given a demonstration of one or 
a few iterations. While less domain knowledge is needed, the syn-
thesizer can make mistakes in which the user must provide more 
demonstrations or edit the DSL to correct it (e.g., Helena), which 
can be frustrating. SemanticOn instead allows users to e�ectively 
coordinate with PBD systems by smoothly switching agency and 
editing constraints at any time during program execution. 

2.3 User Intent Speci�cation and Re�nement 
User intent speci�cation is an important and challenging compo-
nent of human-AI collaboration. Ideally, users should be able to 
easily and naturally specify their intent to a system while under-
standing its states. However, given the limited capabilities of AI 
understanding techniques, high-level user intent can be di�cult 
for systems to comprehend. Many systems have proposed bridg-
ing the gap between user intent and system understanding. For 
instance, PLOW [9] and PUMICE [46] allow users to express con-
cepts (e.g., hot weather) in natural language and then learn the 
concepts to generalize the automation. Systems like Scout [70], 
Designscape [64], and Iconate [80] allow users to iteratively re�ne 
their intent by directly manipulating the AI-generated artifacts. 
Other studies have shown that this re�nement interaction can even 
be delegated to crowd workers [18]. Another work, APPINITE [45], 
also encapsulates user’s intent in natural language instructions 
and clari�es the intention in a back-and-forth conversation with 
the AI. While these approaches are promising, user intents can 
involve visual and cognitive details such as identifying visual re-
lationships in images or parsing texts to match a high-level idea. 
The user’s semantic level intents are often not fully or accurately 
expressed through natural language or limited examples only, lead-
ing to information loss during communication and rendering the 
communication ine�ective [19]. 

Similar to PBD systems, programming-by-example (PBE) is an-
other approach to facilitate program creation for various tasks such 
as data wrangling [29, 30, 34] and data visualization [52, 72]. Many 
PBE and PBD systems require users to provide additional examples 
to disambiguate user intent. Falx allows users to specify visualiza-
tion examples using a small amount of data and then infers and 
transforms the data to match the design [73]. Sporq allows users 
to more accurately and quickly search code patterns in large code-
bases by prompting them to re�ne their intent by annotating a 
batch of negative examples and adding speci�c constraints [58]. 
Other works enable users to directly annotate their input examples 
(augmented examples) to disambiguate user intent [66, 78]. Or they 
employ data visualization techniques to showcase the generated 
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programs, allowing users to tweak the path of program genera-
tion in a tree view [77]. While promising, providing additional 
examples increases users’ cognitive demand. In this work, we focus 
on addressing the ambiguous semantic conditions and designing 
human-AI collaboration interaction solutions to help re�ne the 
constraints based on the content. 

Using machine learning (ML) models to re�ne intent has been a 
recent focus in the �eld of interactive ML. One common interactive 
ML approach allows users to o�er feedback during the model train-
ing process for more e�ective ML model creation [16]. Work by Cai 
et al. allows users to adjust the search algorithm iteratively with 
di�erent types of similarities at di�erent moments [14]. Projects 
by Austin et al. and Jiang et al. allow users to interact with large 
language models to help re�ne their intent when writing code 
snippets [11, 33]. Work by Amershi et al. allows users to identify 
new friend groups on social media by analyzing the examples pre-
sented [10]. Software developed by Fogarty et al. helps users to 
create their own rules to improve the search results [28]. This re-
search inspires our work, but instead, we focus on helping users 
re�ne their intent while interacting with continuous AI systems— 
web automation programs that require constant monitoring and 
that e�ectively coordinate the turn-taking. 

3 BACKGROUND AND DESIGN GOALS 
Our work is built upon an existing web automation system, We-
bRobot [24], that only uses web interactions and requires no pro-
gramming knowledge from its users. This is consistent with our 
design goal. In addition to prior work, we derive our design goals 
from WebRobot’s user study. In this section, we provide necessary 
background information on the WebRobot system and then discuss 
the design goals for our system SemanticOn. 

a

b

c

d

Figure 2: A screenshot of the WebRobot system UI. 

3.1 The WebRobot System Work�ow 
WebRobot is designed to facilitate web automation program cre-
ation. Figure 2 shows the WebRobot user interface. To create a 
web automation program for a data entry or scraping task, a user 

�rst starts recording their actions (Fig. 2.a). Then they can either 
upload a JSON �le (Fig. 2.b) if the task involves data entry, or they 
can choose an appropriate action (e.g., Scrape Text) in the action 
panel (Fig. 2.c) and perform the required actions (e.g., clicking the 
desired text data on the website). After each scraping action, they 
will see the data appended to the output panel (Fig. 2.d). Behind 
the scenes, WebRobot records every user action on the website and 
its associated action type (e.g., Scrape Text). After a few demon-
strations, WebRobot synthesizes a program P from the trace A of 
demonstrated actions. In particular, WebRobot guarantees that P 
not only reproduces the demonstrated actions from A but also gen-
eralizes beyond A. This typically implies P would contain loops that 
can be used to automate the user-intended task. Finally, WebRobot 
executes P to automate the rest of the actions in the task. 

procedure S��������� (A) 
input: A = [a1, ··, am ] is a trace of user-demonstrated actions. 
output: a program P that generalizes A. 
1: P0 := a1; ··; am ; 
2: W := {P0}; Pe := ;; 
3: while W , ; 
4: P := W .remove(); 
5: if P generalizes A then Pe.add(P); 

W 0 6: := R������(P); 
7: W := W [ W 0; 
8: return R���(Pe); 

Algorithm 1: Rewrite-based program synthesis algo-
rithm. 

3.2 WebRobot’s Synthesis Algorithm 
In a nutshell, WebRobot’s synthesis algorithm (Algorithm 1) gen-
eralizes an input action trace A into a program P (with loops) by 
iteratively rewriting A to loops in P from the inside out. Initially, it 
creates a program P0 with exactly those actions in A (line 1): while 
P0 reproduces A, it does not generalize A (i.e., it does not produce 
new actions after A). Therefore, the algorithm performs iterative 
rewriting to gradually “compress” P0 into more compact and gen-
eral programs using a worklist algorithm (lines 2-8). The worklist 
W is initialized to have only P0, and we use Pe to keep track of all 
programs that generalize A (line 2). Whenever W is not empty (line 
3), the algorithm would remove a program P fromW (line 4). It then 
checks to see whether P generalizes A; if so, P is added to Pe (line 
5). After this, in line 6, the algorithm tries to rewrite P into more 
general programs, which are stored in W 0 . The key idea underlying 
our R������ procedure is to perform semantic rewriting using a 
methodology called speculate-and-rewrite. Intuitively, it inspects P , 
identi�es repetitive patterns in P , hypothesizes potential loops that 
correspond to P , and �nally synthesizes programs with one more 
level of loop. How WebRobot’s speculative writing process works 
is beyond the scope of this work; we refer interested readers to the 
original WebRobot paper [24] for details. Once P is rewritten to a 
new set of programs W 0 (line 6), the algorithm simply merges W 0 
into W (line 7). The worklist loop terminates when no programs 
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can be rewritten and it �nally returns the smallest program in Pe 
using a ranking function (line 8). 

3.3 User Feedback 
In WebRobot’s user study, participants reported that while We-
bRobot can help lower barriers of entry for the creation of web 
automation programs and handling a more comprehensive range 
of tasks, they wished that they could express conditions to �lter the 
content. For instance, one participant said, “maybe some conditional 
scraping [can be included], not based on whether the element exists 
in the webpage, but based on some other conditions.” Consistently, 
we found posts on forums such as iMacros [3] and Stack Over-
�ow [7] that request the creation of web automation programs with 
content-based conditions. Participants also wished to re�ne their 
intent when interacting with the WebRobot system. For instance, 
participants reported that they wanted to “undo my wrong manipu-
lations” or “edit my history.” However, as noted in the related work, 
WebRobot and other systems do not e�ectively support actions 
such as undo or history manipulation. 

3.4 Design Goals 
Based on this prior work, we devised the following three design 
goals to help users easily create web automation programs with 
semantic conditions. 

• DG1: Ability to express content-based semantic condi-
tions: Users can specify semantic conditions when creating 
web automation programs. 

• DG2: Accessible user intent re�nement: Users can iter-
atively re�ne their semantic conditions at any time of the 
program creation process. 

• DG3: Responsive error handling for mistakes made by 
users and the system: Users need to modify inaccurate 
conditions and edit scraped data easily. 

WebRobotML models

1. Specify conditions 2. Demonstrate

3. Intent refinement

Final web automation 
program

Synthesized programSemantic filters

Figure 3: SemanticOn’s system architecture. 

4 SEMANTICON 
With the three design goals above, we created SemanticOn to help 
users specify, re�ne, and incorporate semantic conditions in au-
tomated web data scraping. Figure 3 shows SemanticOn’s system 

architecture and main user interactions at a high level. Instead of 
writing web macros from scratch for each website and �ltering the 
scraped content in post-processing, users can interact with Seman-
ticOn to compose semantic conditions on the content they want 
to scrape (Step 1 Fig. 3), then demonstrate actions on the target 
website to synthesize automation programs for di�erent websites 
without writing a single line of code (Step 2 Fig. 3). Throughout this 
process, users can communicate with SemanticOn, which is capable 
of parsing text and image content through machine learning models. 
The users and SemanticOn work together to re�ne the condition 
set and repair errors in result selection, continuously improving 
both the system’s and user’s understanding of the �lter criteria 
(Step 3 in Fig. 3). In this section, we �rst illustrate SemanticOn’s 
user experience with a sample scenario that embodies common 
semantic conditions. We then detail the design and implementation 
of SemanticOn. 

4.1 The SemanticOn User Experience 
Mia, an outdoor enthusiast, wants to extract online information 
about travel destinations where outdoor activities are available. To 
help her make an informed decision, Mia wants to scrape the text 
description and the image for each location from an article to build 
potential itineraries. One option is to read through every paragraph, 
look at each picture, and manually copy and paste the relevant in-
formation, but that process would be tedious and repetitive. On the 
other hand, Mia could write a web scraping script using Python. She 
has some coding experience, but writing a script and �ltering the 
results based on her preference would also be time-consuming and 
laborious. Instead, Mia uses SemanticOn to e�ciently demonstrate 
her conditions and web actions and synthesize a web automation 
program that completes the task for her. 

To begin, Mia sets the semantic conditions for the intended 
content (Step 1 Fig.3). She �rst clicks “Text Condition”. She then 
selects User Enters (Fig. 4.d) to specify the semantic condition in her 
own words. Mia represents her high-level requirement in the system 
prompt by typing, “This is a great location for outdoor activities” 
(Fig. 6.c). She believes this sentence is likely semantically similar 
to the relevant content in this article. After clicking “Add”, the 
condition is appended to the text condition table (Fig. 4.h) in the 
condition panel. Furthermore, Mia decides to add a condition to 
the corresponding destination image. She wants to travel to a place 
where hiking and water activities are accessible. To that end, she 
uses System Suggests, clicks on an ideal image, and highlights the 
mountain and lake in the picture (Fig. 6.a). The system detects 
several objects and summarizes the image content into a sentence. 
Mia also adds the relevant objects and caption to the corresponding 
tables (Fig. 4.f,g) in the condition panel. 

After specifying two initial conditions, Mia decides to start the 
demonstration process (Step 2, Fig.3). She clicks the “Start Record-
ing” button (Fig. 4.a) to start the web macro recording for program 
synthesis. Then, Mia speci�es the task name as “Travel Destination 
Search” and sets the column number to 2, one for text descriptions 
and one for the associated images. 

Next, Mia selects “Download Image” and hovers the mouse to 
highlight the desired image element (Fig. 4.j). As she clicks on the 
element, the image is downloaded and put into the �rst column 
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Figure 4: Overview of SemanticOn’s user interface. The user begins program synthesis by clicking Start Recording �a . The user can 
disable or enable system suggested prompts in automation �b . The user can specify conditions for images or text �c and choose between 
manually input or select system-suggested conditions �d . The user can also toggle between OR and AND logic for the condition set �e . 
A unique table displays image object conditions �f , image description conditions �g , and text description conditions �h . The user may 
pause �i at any time to make changes that will not a�ect automation. To interact with the web page and demonstrate actions for program 
synthesis, the user will select their action type by choosing an option in the action panel �j . The system will predict the next action, shown 
in the temporary row �k . If the semantic conditions are met, the temporary row will be appended to the output panel �l . To learn more 
about how the content match with the conditions, the user may click on the information icon �m. 

of the Temporary Row (Fig. 4.k). SemanticOn evaluates conditions 
associated with each column before the row is added to the output 
panel or skipped. However, at the demonstration stage, the condi-
tion will not be triggered, as we assume users will only demonstrate 
macro actions on the content they want to include. Mia then selects 
the “Scrape Text” action and repeats the steps for the destination 
description. As both columns in the temporary row are �lled, the 
entire row is added to the output panel (Fig. 4.l). 

Figure 5: Example of system prompt when new content does 
not match with current condition. 

Mia repeats her demonstration for a second destination that �ts 
her requirement. After two rows of user demonstration, WebRobot 
can synthesize the web automation program and predict the user’s 
next step, so the system now enters a guided semi-automation 

mode. SemanticOn scrolls into the next row of the destination and 
highlights the next element to be extracted. For the image, a prompt 
states that the generated caption matched with the initial image 
condition “a lake beneath the mountain range”. Mia con�rms this 
selection and lets SemanticOn continue. However, Mia �nds that 
her initial text condition is too general, as the system informs her 
the text condition does not match the current text and presents 
key phrases from this element to be potentially used as re�nement 
(Fig.5). She realizes that “scenic hiking trails” would be a good 
textual condition to include. She also discovers “pet travel” as a key 
phrase. Mia would love to take her dog Sushi on the trip, so she also 
selects that key phrase. After she clicks “Finish,” those two phrases 
are added to the text condition table, and the highlighted text is 
considered accepted. 

After inspecting several elements in semi-automation mode and 
re�ning the condition set with system prompts, Mia feels satis�ed 
with the system’s interpretation of her requirements. She clicks on 
the “Hide Prompt” button (Fig. 4.b) to allow the system to automat-
ically predict and �lter the rest of the web page content without 
stopping for user con�rmation. Mia sits back and waits for the 
program to �nish. However, she notices that for one destination, 
“Grand Canyon, USA,” the system �lters the image as it does not 
match “a lake beneath the mountain range”. However, she actually 
wants to include this destination in her list, as she can still engage in 
outdoor activities such as hiking and kayaking. To repair this error, 
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Figure 6: Two condition speci�cation methods in SemanticOn. After entering the system suggests mode, the user may draw on images. 
Then, a prompt �a containing detected objects within that region, and a general description of the image will be shown. Similarly, the user 
may highlight sections of text, and the system will prompt �b important key phrases within the highlighted portion. Users may manually 
enter conditions by clicking on an image or section of text and entering their conditions �c . 

Mia pauses the automation process (Fig. 4.i, 7.b). She then manually 
scrapes the text description and downloads the image using the 
action panel (Fig. 4.j). It’s worth noting that during the pause, Mia’s 
web macros are not used for program synthesis and therefore do 
not a�ect the current automation program. Mia also adds another 
image condition using User Enters, specifying “a canyon valley with 
river” as another instance of her ideal destination. While the pro-
gram is paused, Mia scrolls through, evaluates the output panel, 
and can delete output rows that were added by system mistake or 
modify/delete conditions during the pause (Fig. 7.d). After she is 
satis�ed with the re�ned condition set and the current results, Mia 
clicks “Resume” to continue the automation. The program iterates 
through the rest of the web page and collects �ltered data based on 
Mia’s semantic conditions. After the program ends, Mia stops the 
web macro recording, and the collected results are exported as a 
JSON �le. Mia uses SemanticOn to create a tailored web automation 
program without writing any code. She also obtains a high-accuracy 
result set of her ideal travel destinations by continuously working 
with SemanticOn to clarify and re�ne conditions and repair errors. 

4.2 Design and Implementation 
We implemented SemanticOn as a Chrome browser extension, in-
corporating the core program synthesis engine from an existing sys-
tem, WebRobot. Primarily, it uses plain JavaScript for the front-end 
interactions. For semantic condition comprehension, we adopted 
two o�-the-shelf Transformer models. 

4.2.1 Step 1: Specify Semantic Conditions. To enable content-based 
semantic conditions speci�cation (DG1), SemanticOn allows users 
to add condition criteria to speci�c content on the target website. 
Currently, the system supports conditions on text and image content 
(Fig. 4.c). The user can choose one of the two methods of speci�ca-
tion: 1) User Enters, where the user composes the condition using 

analyze and provide suggested conditions (Fig. 4.d). Upon selecting 
the type of condition and the speci�cation method, the user chooses 
an element on the web page as the basis of the semantic condition. 

Inspired by recent prompt-based interactions [33, 50, 79], a prompt 
displays next to the selected text or image element for User Enters, 
encouraging the user to enter a semantic description of their search 
criteria (Fig. 6.c). This description, along with the context of the text 
or image element, is added to the conditional panel on SemanticOn 
(Fig. 4.f,g,h). In comparison, for System Suggests, the user needs to 
highlight the crucial part of the content to set the condition on. 

For images, the user brushes over an area of interest with their 
mouse (Fig. 6.a) to illustrate. The image is fed through an o�-the-
shelf pre-trained multi-layer Transformer model that learns to 
align image-level tags with their corresponding image region fea-
tures [32]. The model detects objects for the illustrated section 
and generates a caption for the entire image. For texts, the user 
highlights relevant phrases or sentences with their mouse (Fig. 6.b). 
Similarly, the text is processed by an o�-the-shelf unsupervised 
language model where the noun phrases in the input text are �rst 
detected and then ranked based on frequency and co-occurrence. 
The model generates key phrases in the passage highlighted by the 
user. The user can then pick any object, caption, or phrase tags 
to add to the condition table (Fig. 4.f,g,h). We used these models 
through the Microsoft Azure Cognitive Services and Cloud plat-
form.2 Guided by the design of other systems [17, 31], we also 
implemented edit, delete, and logical operations for multiple con-
dition speci�cations, allowing the user to modify, remove, or set 
the AND/OR logic switch on the conditions (Fig. 4.e). They can also 
apply the condition to one or all of the output columns. 

4.2.2 Step 2: Demonstrate Actions and Automate. Once the user 
sets initial conditions, they can start the demonstration process by 
clicking “Start Recording” (Fig. 4.a). This initializes the WebRobot 

natural language, or 2) System Suggests, a novel speci�cation tech-
nique where the user highlights relevant content for SemanticOn to 2Microsoft Azure, https://tinyurl.com/55puwcf2 

https://tinyurl.com/55puwcf2
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Figure 7: SemanticOn Error Repair Work�ow. A user wants to download cute pictures of a cat and a dog cuddling, but they notice a 
photo of two cats is being scraped by mistake �a . The user pauses the system �b . Then, the user can edit the condition description, delete 
conditions �c , and delete the incorrectly scraped result �d . 

system on the current web page. The user can then select one of 
the three actions under the action panel: Scrape Text, Download 
Image, and Normal (Fig. 4.j). The Scrape Text and Download Image 
actions allow users to click on the desired text or image element and 
extract the information into the table in output panel. In contrast, 
the Normal action allows the user to navigate and paginate the web 
page. For example, the user can use Normal to click into a web page, 
use Scrape Text to extract a passage, and switch back to Normal to 
return to the previous page. WebRobot registers this entire sequence 
of web macros and generates an automation program to repeat it. 

After the user demonstrates their intended pattern of actions 
twice, WebRobot generates an automation program and predicts 
the next action. SemanticOn also enters a guided semi-automation 
mode. That is, for every data extraction action predicted, the system 
parses the content through machine learning models. A new image 
is considered matching with the current conditions if 1) an object 
speci�ed in the image condition is detected (e.g. user speci�ed a 
dog, and the new image consists of a human petting a dog), or 2) 
the new caption yields a similarity score above a certain threshold 
when compared with captions speci�ed in the image condition. The 
image caption and text content similarity thresholds were set to 0.5 
and 0.4, respectively, based on our benchmark testing. A new text is 
considered matching if it yields a similarity score above a threshold 
when compared with speci�ed text conditions. We used a Sentence-
Transformer to calculate the semantic similarity between captions 
and texts [67]. The model utilizes Sentence-BERT (SBERT), a pre-
trained network that derives semantically meaningful sentence 
embeddings that can be compared using cosine-similarity. To avoid 
the low-score comparison between an entire paragraph and a key 
phrase, we chunk the text content and conditions into sentences 
and see if any pair results in a high similarity score. 

4.2.3 Step 3: Refine, Repair, and Coordinate. To help users easily 
re�ne their intent (DG2) and repair mistakes (DG3), we adopted 
the human-in-the-loop approach [24, 59, 63] and introduced a semi-
automation mode to ease the transition between manual demon-
stration and full system automation. First, to repair unexpected 
results or conditions, SemanticOn o�ers users a program pause 
function, which is important and unique in continuous AI systems. 
In the semi-automation mode, if new text or image content matches 

with the condition set, the user is noti�ed by a prompt informing 
them which part of the content was matched. In contrast, if the new 
content is ambiguous or does not match with the condition set, the 
user is prompted with a set of suggested conditions (objects and 
captions for images, key phrases for text) generated by ML model 
processing (Fig. 5). The user can clarify their intent by selecting 
suggested conditions to append to the condition set. The new con-
tent will be accepted and added to the output results. Alternatively, 
the user can reject the system’s prediction by clicking “Finish”, 
in which case the condition set remains unchanged, and the new 
content is discarded. The semi-automation mode guides the user 
through condition speci�cation and re�nement. The user might 
begin with a high-level idea of their search query but can re�ne 
and adjust it upon seeing SemanticOn’s interpretation of the result. 
The user can add new conditions to cover unforeseen cases or to 
modify/delete vague or over-speci�ed conditions that �lter results 
in an unintended way. 

After going through predicted content, administering decisions, 
and re�ning conditions, the user might feel satis�ed with the set of 
conditions. In that case, the user can choose to hide system prompts 
(Fig. 4.b) for rejected content and enter full automation. In this mode, 
SemanticOn continuously executes the predicted web macros and 
assesses each new piece of content, outputting the information 
accordingly. This is done by adding a condition evaluation step 
after executing every macro before extracting the data. However, 
when the user detects a �ltering error, they can use the “Pause 
Automation” button to reclaim manual control (Fig. 7.b). When the 
system is paused, the user is free to modify the output result table. 
For each assessed piece of output, an information icon is displayed 
at the end of the table cell (Fig. 4.m). Once clicked, it will expand 
and display the ML processing results for that content. The user can 
repair system-made errors by deleting rows of ambiguous results 
accepted by the system but misaligned with the user’s mental model 
(Fig. 7.d). They can also manually use the action panel to add content 
rejected by the system but matches the user’s needs. In addition, 
the user can learn from the �ltering results to add new conditions 
they omitted or under-speci�ed. Likewise, condition editing and 
deletion are also available during the pause (Fig. 7.c). This way, 
the user can feel con�dent about the automatic selection of results, 
as they always have the power to reclaim manual control, repair 
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system mistakes, and clarify their intents. Note that during pause, 
none of these steps are recorded for program synthesis and do not 
a�ect the automation program. 

5 SYSTEM EVALUATION 
We conducted an in-person user study to evaluate SemanticOn’s 
usability and compare the two methods for condition speci�cations. 
This evaluation was guided by the usage evaluation in the HCI 
toolkit evaluation strategy classi�cation [41]. 

5.1 Participants 
We recruited 10 people (5F5M, mean age 24.3, mean coding experi-
ence 4.6 years) at a large public university. Participants are denoted 
as P1-P10 in subsequent sections. Seven of the participants were 
graduate students, and three were undergraduates. Five partici-
pants have written web automation programs or used commercial 
tools to some extent. The participants were contacted by email to 
participate in a study where they would interact with computer 
software to create web automation programs. 

5.2 Study Design 
After signing our consent form, each participant �rst watched a 
tutorial video of SemanticOn’s interface and features. Then par-
ticipants performed �ve tasks using SemanticOn. For each task, 
they were given a task sheet with a semantic conditional intent. 
Similar to the posted tasks in online forums, the descriptions were 
intentionally vague, so the user could not copy the instructions 
verbatim and would need to formalize their own idea of how to 
specify and re�ne the conditions. The participants could request the 
experimenter’s assistance at any time during the session. After the 
participants completed the tasks, we conducted a short interview 
with them regarding their experience. Additionally, they �lled out 
a short survey with Likert scale and short-answer questions when 
they exited. The participants were compensated $25 for their time. 
Each session took 60-75 minutes and was conducted in person on 
our machine. All sessions were screen- and audio-recorded. Our 
study is approved by the IRB at our institution. 

5.3 Tasks 
Through an analysis of online web scraping request posts from 
iMacros Forum [3], and Stack Over�ow [7], we designed �ve tasks 
that represent the challenge of creating web automation programs 
with semantic conditions. The Appendix (Fig 8) shows the details 
of the user study tasks. To evaluate the usability and utility of the 
system and compare the e�ectiveness of two intent speci�cation 
methods, we designed the tasks with the following goals in mind: 
1) the web content to be scraped should be realistic and easily 
understood by participants, 2) the tasks should extract informa-
tion based on text and image content, 3) the condition criteria and 
the corresponding results should contain some ambiguity to allow 
room for re�nement, and 4) the tasks should help SemanticOn to 
demonstrate the system’s full capabilities. To achieve this goal, we 
adopted and piloted �ve web scraping requests by real users on 

online forums, two based on image-heavy websites (pet wallpa-
pers3, street photography4), two with text-heavy content (movie 
star biographies5, list of novels6), and one task with a variety of 
both image and text content (beautiful places in the world7). Par-
ticipants needed to extract only images or only text content for 
the �rst four tasks. In addition, they were randomly assigned to 
use User Enters and System Suggests as their speci�cation method 
for the �rst four tasks. We counterbalanced the ordering of image 
versus text tasks and the assigned speci�cation method to eliminate 
sequence and learning e�ects. To standardize task di�culty, par-
ticipants needed to extract the top 15 text passages and/or images 
from the website based on a semantic condition. For the �nal task, 
participants needed to scrape both images and text in two separate 
columns and were free to use both condition speci�cation methods. 
Task 5 served as an exploration task for participants to evaluate and 
compare the two speci�cation methods and was not constrained by 
a result set or time. Participants engaged in this task until the end 
of the study. Therefore, Task 5 was not included in the quantitative 
analysis for accuracy and duration in the later sections. 

We designed the conditions based on the content itself and es-
tablished a ground truth result set that was compared with the 
participant’s result to measure accuracy. The conditions were de-
signed so that in the ground truth set, the number of results passing 
and failing the condition across all tasks was approximately the 
same (31 passes, 29 fails). 

5.4 Results 
5.4.1 Time and accuracy. The user study recorded 40 scenarios (10 
participants x 4 tasks); one instance was discarded from analysis due 
to a recording issue, resulting in 39 total task completions. Table 1 
lists the average time (in minute:second) each participant spent and 
the accuracy (percentage of correctly included and excluded results) 
on each task. The overall average duration is 06:10 (image tasks 
mean=05:55, text tasks mean=06:25), and the overall average task 
accuracy is 80.7% (image tasks mean = 83.0%, text tasks mean = 
78.5%). We could not identify statistical signi�cance in the di�erence 
in accuracy and duration across image and text tasks. 

We also analyzed the data comparing usages of User Enters ver-
sus System Suggests. The average duration was 06:22 for User Enters 
tasks and 05:57 for System Suggests tasks. In terms of mean accu-
racy, participants achieved 83.0% for User Enters tasks and 78.5% 
for System Suggests tasks. Again, the di�erences are unable to be 
identi�ed as statistically signi�cant. 

5.4.2 Overall e�ectiveness in intent specification. In the exit survey, 
participants rated the ease of use of SemanticOn overall, the ease 
of use of each speci�cation method, their mental e�ort, and their 
trust in the system. Table 2 displays the average score for Likert 
scale questions on SemanticOn’s usability. On a scale of 1 (strongly 
disagree, very negative) to 7 (strongly agree, very positive), par-
ticipants believed their speci�ed conditions were displayed in an 
easily understandable way (mean = 6.0, SD = 1.1) and that the 

3Pet Wallpapers, https://tinyurl.com/47kr3mz6
4Street Photographers, https://tinyurl.com/bdppfa48 
5Movie Stars, https://tinyurl.com/zsnkne5r
6Best Romance Novels, https://tinyurl.com/mryjs47h 
7Vacation Destinations, https://tinyurl.com/4peucx3p 

https://tinyurl.com/47kr3mz6
https://tinyurl.com/bdppfa48
https://tinyurl.com/zsnkne5r
https://tinyurl.com/mryjs47h
https://tinyurl.com/4peucx3p
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Task index Completion time 
(mean, SD in mm:ss) Accuracy 

1 
2 
3 
4 

05:06 (01:43) 
06:58 (02:28) 
06:44 (01:50) 
05:56 (01:50) 

85.3% 
68.9% 
81.3% 
86.0% 

Table 1: Average time spent on each task. Tasks 1 and 3 are 
image tasks; tasks 2 and 4 are text tasks. 

system-generated prompts in semi-automation mode helped them 
re�ne their intent (mean = 5.6, SD = 0.97). However, participants 
had polarized opinions on the statement “it was easy to coordinate 
(claim controls, pause/resume, show/hide prompts) with SemanticOn 
to repair under- or over-speci�cations,” with 5 participants agreeing 
and 3 participants disagreeing (mean = 4.7, SD = 1.7). Overall, 
the users widely accepted the semi-automation work�ow towards 
automation and the opportunity to adjust conditions later on by 
pausing. 9 out of 10 participants added re�nement conditions for 
Tasks 1-4, and all participants utilized the system prompts in semi-
automation mode to re�ne their conditions in Task 5. 

5.4.3 Error-handling Analysis. As per DG3, SemanticOn o�ers 
error-handling techniques for users during full automation. We 
measured participants’ usage of three error repair methods: con-
dition deletion, result deletion, and manual result addition. Most 
users opted to use the pause and repair functionalities, as 7 par-
ticipants deleted their speci�ed conditions due to inaccuracies, 6 
participants removed undesired output to repair system mistakes, 
and 2 participants manually added desired contents missed by the 
�lter. The utilization of the error-handling features varied based on 
the task type. For condition deletion, we found 16 instances across 
image tasks and 0 instances for text tasks. Similarly, there were 11 
instances of result deletion for image tasks and 2 for text tasks. As 
for manual result addition, we found 3 instances for image tasks 
and none for text tasks. This di�erence can be related to the content 
processing speeds for visual versus textual materials. The condition 
speci�cation method also plays a role in the usage of error-handling 
features. We observed 4 instances of condition deletions for User 
Enters and 12 for System Suggests. In addition, we found 4 result 
deletion instances for User Enters and 9 for System Suggests. This 
can be attributed to the di�erence in the required e�ort for each 
work�ow. We expand on these varieties in our Discussion. 

5.4.4 Comparison between User Enters and System Suggests. Re-
garding the di�erence between the two speci�cation methods, par-
ticipants found both experiences comparable but thought System 
Suggest was easier to use. P10 said, “[My preference] really depends 
on the task, but I really liked the System Suggests mode, especially 
for words it was really easy to use and accurate.” When assessing 
the overall experience to specify conditions, participants rated User 
Enters slightly higher (mean = 5.3, SD = 1.1) than System Suggests 
(mean = 5.1, SD = 1.2). But when evaluating the ease of use for each 
interaction, users rated entering their own natural language descrip-
tions lower (mean = 5.1, SD = 1.1) than brushing, highlighting, or 
choosing system-suggested conditions (mean = 5.7, SD = 0.82). We 
were unable to identify statistical signi�cance in these di�erences. 

However, when measuring the average number of initial conditions 
set before the demonstration, participants speci�ed an average of 
2.6 conditions for User Enters and 4.1 conditions for System Suggests 
(p < 0.05). This points to a di�erence in ease-of-use and condition-
generation capability between the two methods, which is further 
explored in Discussion. 

�estion Likert Scale (Mean, SD) 

User Enters Experience 
System Suggests Experience 
User Enters Ease of Use 
System Suggests Ease of Use 
Coordination to Refine Specifications 
Usefulness of Generated Prompts 
Conditions Displayed Clearly 
Trust in Full Automation 
Success in Completing Task 

5.3 (1.0) 
5.1 (1.2) 
5.1 (1.0) 
5.7 (0.8) 
4.7 (1.6) 
5.6 (0.9) 
6.0 (1.0) 
4.5 (1.5) 
5.0 (0.9) 

Mental Demand 
E�ort to Achieve Results 
Feelings of Insecurity and Stress 
Feelings of Being Hurried or Rushed 

4.6 (1.7) 
4.9 (1.3) 
5.2 (1.7) 
4.9 (1.6) 

Table 2: Survey Responses. For section one (top), 1 is very nega-
tive, and 7 is very positive. For section two (bottom), 1 is very high 
mental demand, e�ort, insecurity and stress, and feelings of being 
hurried and rushed. 

5.4.5 Mental e�ort and AI system trust. Participants also reported 
on their mental e�ort in completing the tasks and their trust in the 
AI system in the survey. Participants generally reported medium 
to high mental e�ort using SemanticOn, especially at the start 
of the study when they had to familiarize themselves with the 
interface and remember the work�ow (P2, P5, P6, P7). On a scale of 
1 (very demanding, very hard, not successful) to 7 (not demanding, 
not hard at all, very successful), participants experienced medium 
mental demand (mean = 4.6, SD = 1.8) and medium e�ort (mean = 
4.9, SD = 1.4). They believed they were relatively successful in 
accomplishing the tasks (mean = 5.0, SD = 0.94). 

We also found that the participants exhibited a medium level of 
trust (mean = 4.5, SD = 1.6) towards the AI system’s prediction 
in full automation. Six users were comfortable entering full au-
tomation mode for at least one task. However, P3 and P7 expressed 
very low trust in the automated prediction (both rated 2 out of 7 in 
survey). During the interview, some participants (P5, P9) also com-
mented that their trust in the system depended on the content type 
and the number of re�nements required for each task. For example, 
P5 mentioned they “trust this picture task a bit more...[because] text 
has more group[ing]s and potential variations” when they used 11 
text re�nements and only 1 image re�nement. We analyze the e�ect 
of content type on users’ perception of the task and our system in 
the Discussion. 
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6 DISCUSSION 
Based on the evaluation, we present analysis of the human-AI col-
laboration techniques and the role of each agent in SemanticOn. We 
also discuss the implications of adding similarity-based machine 
learning models in symbolic PBD systems. In addition, we report 
�ndings on users’ trade-o�s in using User Enters and System Sug-
gests, as well as the intent speci�cation e�ectiveness and system 
limitations to provide insights on future designs. 

6.1 Human-AI Collaboration 
The user work�ow of SemanticOn consists of both a human and an 
arti�cial intelligence agent; they exchange control in di�erent parts 
of the interaction and collaborate to build a complete and accurate 
web automation program. In SemanticOn, we utilize machine learn-
ing models’ classi�cation e�ciency to rapidly process texts and 
images, summarize the content, and provide suggested semantic 
�lters to the user. This saves the user’s mental e�ort signi�cantly, 
as it is no longer the human’s role to parse content and identify an 
inclusion or exclusion decision. However, it also introduces a new 
source of error to web automation, as similarity-based models can 
mislabel inputs and result in false positive and false negative data. 
This is why human is always involved in the continuous human-AI 
collaboration in SemanticOn. After a couple of demonstrations, 
the user is prompted with potential semantic conditions for each 
processed content in the semi-automation mode. Additionally, even 
when the user feels satis�ed with the set of conditions, the program 
can still be paused at any time if a mistake is spotted or the user 
wants to edit the conditions. 

From the evaluation of this interaction paradigm, most partici-
pants (7/10) reported that the work�ow’s path from demonstration 
to guided semi-automation to full automation was intuitive and 
useful. The semi-automation phase allowed users to calibrate con-
ditions with SemanticOn and better understand the AI system’s 
interpretation of the conditions. This is important as users might 
not have had a well-de�ned semantic condition at the program’s 
start. P4 believed that the “human brain still needs to think about 
[how to describe the condition]...and link to all the keywords. These 
words might not speci�cally come to mind to the human.” In this case, 
the initial conditions may not include all of the user’s needs, result-
ing in low �lter accuracy. The semi-automation mode provides aid 
for this. For example, P3 mentioned that even if the results were 
not accurate at the start, “I can interactively try to make [automated 
prediction] better as it goes.” P4 also mentioned that “the transitional 
period to trust the process is good, saves a lot of fuss.” 

However, the steps to re�ne conditions and results through sys-
tem prompts and automation pauses could require too much user 
e�ort and become time-consuming. P5 commented that the entire 
user experience was “a little slow...I think the �ne-tuning part is 
slow. Once you start [full automation], then it’s �ne.” P2 reported 
that “it took me multiple times to �gure out the sequence of the but-
tons.” When they spotted system mistakes, P1 and P4 decided not 
to pause and amend the errors because it took too much e�ort. 
They believed the misclassi�ed content was not detrimental to 
the automation task, as there was no requirement for accuracy. 
While supplying users with multiple re�nement tools enhances 

robustness, the system must be cautious not to overload users with 
interaction techniques and interruptions. 

6.2 Similarity-based Model in PBD Systems 
A main contribution of SemanticOn is introducing a new interaction 
paradigm for users to continuously add/re�ne semantic conditions 
in programming-by-demonstration (PBD) systems. In particular, it 
enables users to express intent via similarity-based machine learn-
ing models. This speci�cation is at a higher abstraction level than 
pure symbolic systems based on DOM structure. Here, we dis-
cuss the advantages and disadvantages of expressing intent using 
similarity-based statistical models versus pure symbolic systems, 
the implications of adding statistical models in PBD systems, and 
the generalizability and viability of SemanticOn against errors. 

Traditional symbolic automation systems like WebRobot are ro-
bust at understanding speci�c user actions and generalizing them 
into repeatable steps in a synthesized program. This is achieved 
by iterating over the elements in the DOM structure of the web-
sites and generalizing the pattern. Meanwhile, statistical machine 
learning models are useful at parsing high-level user intent and 
matching unstructured, but semantically similar concepts, for exam-
ple extracting key entities from a natural language input. However, 
both systems alone have their limitations. Similarity-based models 
lack reasoning capability. The machine learning models we employ 
classify the inclusion and exclusion of content based on semantic 
similarity, but they cannot derive further actions based on spe-
ci�c criteria. For example, the models alone could not construct a 
program that repeatedly takes in an image URL, searches it, and 
downloads the image based on semantic conditions. It is e�cient in 
the last �ltering step but ine�ective when structural elements need 
to be generalized. In contrast, symbolic models that reason about a 
set of user instructions over a certain website structure might fail 
to generalize if the query is unstructured or outside the scope of 
the task domain, while similarity models can cover a wider range of 
input content that are not constrained by the structure. SemanticOn 
combines these two techniques in an e�ective way that seals the 
gap between users’ semantic intent and web automation. 

From a practical standpoint, training an intelligent statistical 
model for the tasks we cover in SemanticOn’s user evaluation would 
be e�ortful. Systems like Calendar.help [22] require many expert 
heuristics and even human workers to automate a very speci�c task 
in event scheduling across di�erent parties. In SemanticOn, users 
compromise some e�ort by doing two rounds of demonstrations of 
their desired web actions. Still, the automation tasks can be general-
ized to a diverse set of data on many di�erent websites. Introducing 
similarity-based models in symbolic systems does present a new 
source of error as the models can �lter content incorrectly, in ad-
dition to program synthesis errors in pure-symbolic systems. To 
amend this, SemanticOn provides continuous condition re�nement 
and output edit/delete options so that users can repair classi�cation 
errors easily and yield more accurate results. 

Our work does not rely on a speci�c program synthesizer to 
generate a web automation program or a speci�c machine learning 
model to �lter content semantically. The novelty of SemanticOn is 
the set of condition speci�cation, re�nement, and error-correction 
interactions, which can be generalized to other PBD systems. 
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6.3 User Enters and System Suggests 
One emphasis of this project is to compare the usability of the two 
semantic condition speci�cation methods. To summarize the �nd-
ings, participants shifted their preference between System Suggests 
and User Enters based on two factors: perceived e�ort and the type 
of content presented. When participants expressed their prefer-
ences and the rationale behind using each speci�cation method, we 
also discovered a trade-o� between their sense of control and the 
perceived e�ort. 

6.3.1 Perceived e�ort based on content types. Perceived e�ort plays 
an important role in user preference. When it was easy to summa-
rize the target content on which users needed to set conditions, 
participants preferred to use User Enters to express their intent 
instead of selecting System Suggests, which could be too broad or 
too speci�c. P3 remarked that “[User Enters makes] you feel like [you 
have] more control because you are looking for a speci�c thing.” 

On the contrary, when the target content was information-heavy 
and hard to encapsulate in a short natural language description, 
participants preferred to use System Suggests to highlight the details 
and let SemanticOn present potential conditions. P6 commented 
that “I do like the possibility of being able to say this is what I see in 
the image [based on System Suggests]... and [highlight] a part of the 
image that I think is important.” 

When participants were free to use both User Enters and System 
Suggests (i.e. Task5 in Appendix Fig 8), we found that text content 
inherently took more e�ort to process, and 7 out of 10 participants 
opted to use System Suggests to avoid reading a large block of 
text. In contrast, despite containing a variety of objects and entity 
relationships, the corresponding image content could be encoded 
and summarized more quickly, and 9 out of 10 participants chose 
to specify their intents with User Enters. 

This preference based on content type persisted during condition 
re�nement in semi-automation and full automation modes. Partic-
ipants expressed di�culty in parsing textual information rapidly, 
as they could not distinguish whether the system made the correct 
selection. P3 said that “text task in general is much more di�cult,” 
and P5 commented, “when it comes to text task, I’m a little lazy to 
read through all this... so system can just get me relevant keywords.” 
Our observations support this as users were far more likely to re-
pair errors for image tasks than text tasks by deleting inaccurate 
conditions and incorrect results. Participants can quickly identify 
whether an image �ts the condition set, but they can not parse 
through a block of text as the automation quickly processes each 
row of content. Based on this �nding, future designs should account 
for the processing e�ort for text content and provide users more 
time and aid in understanding and summarizing the information. 

6.3.2 Sense of Control and mental e�ort trade-o�. Another key 
factor for speci�cation preference was the sense of control. Three 
participants (P3, P7, P10) listed a better sense of control as to why 
they preferred User Enters, where they could tailor the condition 
using their terms. In addition, in cases where System Suggests sug-
gestions were inaccurate (e.g., failing to detect relevant text entities 
or generate image captions at the appropriate granularity), some 
participants (P2, P4, P6, P10) switched to User Enters. 

However, there was a trade-o� between the sense of control and 
the required e�ort. Participants rated a lower ease-of-use score 
on average for User Enters (5.1 versus 5.7 for System Suggests), de-
spite it having fewer interaction steps. Three participants (P4, P5, 
P10) pointed out that they preferred System Suggests due to the 
convenience and ease of mental e�ort. System Suggests is also ad-
vantageous in reporting details that escaped the user’s attention. 
For example, P4 pointed out that they preferred System Suggests 
mode because it sometimes captured things that the user failed to 
recognize or think of. Additionally, P7 mentioned that they “quite 
like System Suggests more, [because it is] more systematic and high-
lights speci�c things.” Participants could avoid cognitive overload 
by handing the processing labor to SemanticOn through System 
Suggests, but they were limited to the generated set of conditions 
for each item. This trade-o� also a�ects participants’ usage of error 
handling features during automation. With the increased cognitive 
load in User Enters, participants are much less likely to pause and re-
pair their mistakes than when using System Suggests. However, this 
could be explained by participants adopting less accurate prompts 
from System Suggests, which leads to more errors overall for users 
to �x. Future work could potentially create a combined approach 
where users can edit system-suggested conditions, yielding a sense 
of control and avoiding heavy user e�orts. 

6.4 System E�ectiveness 
Most participants (8/10) agreed that SemanticOn is an e�ective tool 
for web automation and that the condition speci�cation aspect is 
useful. Compared with manual e�ort and traditional data scraping 
methods such as writing automation scripts, participants found Se-
manticOn’s no-code solution novel and easier to use. P5 mentioned 
that in manual scraping scenarios, “Control-F would only get you 
so far” and that the system is “much easier than writing your own 
script...[and] more functionalit[ies]” In addition, P7 thought this tool 
“would be super helpful for someone not comfortable with code. [It 
provides] low e�ort but maximum reward.” 

More than half of the participants (6/10) believed that Seman-
ticOn could be applied to realistic tasks. However, some focused 
on the conditional selection aspect, and others emphasized on the 
complexity of the task. For example, P2 commented that the system 
is “very good for selective tasks [when you] only want a few images 
from a lot of them.” Similarly, P5 suggested that SemanticOn could 
be used for websites without robust �ltering, search engine, or cat-
egories because “it could easily make any website sort-able.” On the 
other hand, P1 enjoyed using this tool on Task 5 with both image 
and text conditions combined and proposed that “this type of tool 
would bene�t... power users [for tasks] like creating a dataset...[and] 
dealing with complex things.” These reports provide evidence for 
the need of no-code solutions in conditional web automation tasks. 

6.5 System Limitations 
There are several limitations to our system. First is the e�ciency 
of coordination. As mentioned, some participants found the re�ne-
ment process complicated and slow and were reluctant to utilize 
the functionality to increase system accuracy. In future designs, 
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the researchers could simplify the user interface and the interac-
tion steps and condense the system prompt information to reduce 
cognitive load. 

Another limitation is the relatively low accuracy of the machine 
learning models it relies on to classify text and image content. Par-
tially, this relates to a design decision we made when building 
SemanticOn. We �rst used two state-of-the-art models—OFA [74], 
which uses a sequence-to-sequence learning framework, and Im-
ageAI, which uses a convolutional neural network [56], for image 
captioning and object detection, and we were able to achieve high 
accuracy. However, the image processing was computation-heavy 
and took more than 30 seconds per image on an o�-the-shelf laptop. 
To reduce the gulf of evaluation [62], we switched to the Microsoft 
Azure computer vision model [32] for near-instant cloud processing 
but with lower accuracy and detail level for some content domains. 
Similarly, for key phrase extraction, we employed the Microsoft 
Azure language model, sending text contents via REST API calls 
for near-instant processing. But the extracted key phrases often 
have a low level of abstraction (i.e. extracting entities and nouns in 
a sentence without indication of interaction) and could not provide 
high-level descriptions like those used for image captions. 

Additionally, SemanticOn builds upon an existing symbolic pro-
gram synthesis system, WebRobot, which has its own constraints 
and requirements. And the introduction of similarity-based ma-
chine learning models also presents ambiguity to the source of 
error between incorrect program synthesis steps and result mis-
classi�cations. The user might be confused when encountering 
unexpected behavior, as it could be a product of a user demon-
stration error or the system’s misunderstanding of user intents, 
which requires a di�erent work�ow to repair. However, in our user 
study, we emphasize repairing errors from machine learning model 
mislabelling as that is the novel part of SemanticOn. 

6.6 Future Work 
We summarized three points of feedback that are relevant for fu-
ture works. First, we found that participants spent a longer time 
encoding and processing texts than images. This is coherent with 
previous studies on human capability in consuming di�erent types 
of information [53]. But, this �nding is signi�cant in full automa-
tion, when the system rapidly loops through web page content, 
giving users little time to identify potential selection errors. Future 
works could enable multi-modal interaction (e.g., voice) to reduce 
the e�ort of information processing [20]. Additionally, one can 
provide more indicators for users to quickly recognize the informa-
tion represented in text elements (e.g. highlighting matching key 
phrases) and decide whether the content should be included based 
on the semantic condition. 

Second, participants separately favored one of the two condi-
tion speci�cation methods, User Enters and System Suggests, de-
pending on the content type and the amount of information they 
needed to process. Similar to the neurosymbolic program synthesis 
approach [16, 65], future works could create a uni�ed technique 
where users could bene�t from the instant and comprehensive re-
sults from machine learning models while preserving users’ power 
to specify conditions on their own terms. 

Lastly, future designs could further improve the system usability 
by reducing the mental e�ort. The dual process of collaborating 
with an AI on both demonstrating web macros to synthesize an 
automation program and specifying semantic conditions to �lter 
web content requires a decent amount of mental e�ort, especially 
for users who are less familiar with programming or web scraping. 
Therefore, future designs should alleviate users’ cognitive load with 
a more minimalist UI and more user guidance. 

7 CONCLUSION 
In this work, we designed and developed SemanticOn, a collabora-
tive system that allows users to specify and re�ne visual and textual 
conditions through user-entered descriptions and system-suggested 
prompts in a web automation program. In a system evaluation, we 
found that participants can e�ectively use SemanticOn to create 
conditional �lters and re�ne them via continuous human-AI collab-
oration, collecting selective web content with high accuracy. Par-
ticipants’ feedback also suggested that a guided semi-automation 
mode, where users authorize system predictions, helped clarify user 
intents. We also found a trade-o� between User Enters and System 
Suggests regarding user e�ort and the sense of control. Our work 
can point directions to future system and interaction designs for 
user-intent speci�cation and re�nement in a continuous human-AI 
collaboration setting. 
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A APPENDIX 

# Task Description Condition
Type

Inclusion Example Exclusion Example

1 Download pictures with a

dog and a cat interacting

Image

only

Dog and cat interacting Cat only, no interactions

2 Scrape book descriptions

that highlight a female pro-

tagonist’s story

Text only

Heroine perspective No female perspective

3 Download photos if it con-

tains multiple people inter-

acting

Image

only

Two people interacting No interactions

4 Scrape movie star biogra-

phies that writes about

their acting

Text only

Biography includes acting No acting in biography

5 Scrape the description and

download the image if: 1)

Text mentions outdoor ac-

tivities and 2) Image con-

tains mountain and water

Text and

image

Image has mountain and

water and description men-

tions outdoor activities No outdoor activity de-

scription, no mountains

Figure 8: Task descriptions with inclusion and exclusion examples 
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