
INTENT: Interactive Tensor Transformation Synthesis
Zhanhui Zhou∗ Man To Tang∗ Qiping Pan∗

University of Michigan Purdue University University of Michigan
Ann Arbor, MI, USA West Lafayette, IN, USA Ann Arbor, MI, USA
zhanhui@umich.edu tang426@purdue.edu panqp@umich.edu

Shangyin Tan Xinyu Wang Tianyi Zhang
Purdue University University of Michigan Purdue University

West Lafayette, IN, USA Ann Arbor, MI, USA West Lafayette, IN, USA
tan279@purdue.edu xwangsd@umich.edu tianyi@purdue.edu

ABSTRACT
There is a growing interest in adopting Deep Learning (DL) given
its superior performance in many domains. However, modern DL
frameworks such as TensorFlow often come with a steep learning
curve. In this work, we propose INTENT, an interactive system that
infers user intent and generates corresponding TensorFlow code
on behalf of users. INTENT helps users understand and validate the
semantics of generated code by rendering individual tensor trans-
formation steps with intermediate results and element-wise data
provenance. Users can further guide INTENT by marking certain
TensorFlow operators as desired or undesired, or directly manip-
ulating the generated code. A within-subjects user study with 18
participants shows that users can �nish programming tasks in Ten-
sorFlow more successfully with only half the time, compared with a
variant of INTENT that has no interaction or visualization support.

CCS CONCEPTS
• Human-centered computing ! Human computer interac-
tion (HCI); Interactive systems and tools.

KEYWORDS
Program Synthesis, Deep Learning, Interactive Visualization
ACM Reference Format:
Zhanhui Zhou, Man To Tang, Qiping Pan, Shangyin Tan, Xinyu Wang,
and Tianyi Zhang. 2022. INTENT: Interactive Tensor Transformation Syn-
thesis. In The 35th Annual ACM Symposium on User Interface Software and
Technology (UIST ’22), October 29-November 2, 2022, Bend, OR, USA. ACM,
New York, NY, USA, 16 pages. https://doi.org/10.1145/3526113.3545653

1 INTRODUCTION
The use of Deep Learning (DL) has grown rapidly in the past decade.
Due to its superior performance, DL has found its application in
various domains and continued to fascinate us with new applica-
tions such as cloud migration [6]. Thanks to the development of
∗The �rst three authors contributed equally to this work.

This work is licensed under a Creative Commons Attribution International
4.0 License.

UIST ’22, October 29-November 2, 2022, Bend, OR, USA
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9320-1/22/10.
https://doi.org/10.1145/3526113.3545653

modern DL frameworks such as TensorFlow, DL has become more
accessible to regular programmers [12]. However, there is still a
steep learning curve for regular programmers to adopt DL in their
own practices. A recent survey found that programmers encoun-
tered a variety of hurdles when learning machine learning, e.g.,
lack of conceptual and mathematical understanding, cryptic API or
syntax design, etc. [3].

Indeed, DL programming is quite di�erent from traditional pro-
gramming. Unlike traditional programming, tensors (i.e., multi-
dimensional arrays) are the �rst-class citizen in DL computation,
including not only internal model computation but also data pre-
processing and model performance calculation. For instance, a pro-
grammer needs to use special tensor operators such as tf.where
and tf.cond in TensorFlow to perform conditional operations on
a tensor, rather than using traditional if-else statements. While
tensors are a natural and e�cient representation of massive, high-
dimensional data in DL, writing code to operate on tensors re-
quires solid linear algebra and calculus knowledge. Furthermore,
modern DL frameworks de�ne a large number of tensor transfor-
mation operators (e.g., about 500 in TensorFlow) but su�er from
insu�cient documentation and poor API design [3, 53, 55]. For
example, some tensor operators have cryptic names that do not
match the underlying computation, e.g., tf.eye for constructing
an identity matrix. Some operators have similar names but dif-
ferent functionalities, such as tf.argmax vs. tf.reduce_max and
tf.ones vs. tf.ones_like. These issues lead to signi�cant design
barriers and selection barriers [18] in DL programming.

In this work, we propose INTENT, an interactive program syn-
thesis system that generates tensor transformation programs in
TensorFlow on behalf of users. Users can specify a desired transfor-
mation in natural language and supplement input-output examples
to illustrate the transformation. INTENT extends an existing syn-
thesis algorithm from TF-Coder [44] to handle such multi-modal
user speci�cations. Speci�cally, it infers the weights of tensor op-
erators using a combination of an NLP model and a multi-layer
perceptron. Then, it performs a bottom-up enumerative search to
synthesize a tensor transformation program that satis�es the given
examples. Based on previous synthesis results, users can further
mark desired or undesired operators to adjust their weights and
guide the synthesizer towards promising synthesis directions.

One core usability challenge addressed by INTENT is the chal-
lenge of understanding and validating synthesized code, as iden-
ti�ed by prior work [11, 22, 37]. This challenge is exacerbated in

https://doi.org/10.1145/3526113.3545653
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3526113.3545653

UIST ’22, October 29-November 2, 2022, Bend, OR, USA Zhanhui Zhou, Man To Tang, Qiping Pan, Shangyin Tan, Xinyu Wang, and Tianyi Zhang

DL programming due to cryptic API names and sophisticated lin-
ear algebraic operations on tensors. To address this challenge, we
designed a novel interactive visualization that renders the inter-
mediate steps of a tensor transformation program in a data�ow
diagram. The data�ow diagram is further augmented with element-
wise data provenance, through which users can trace the �ow of
speci�c elements inside a tensor.

Sometimes, a synthesizer may have generated a solution close
to the �nal solution. However, due to the exponentially-grown
search space, users often �nd it hard to guide the synthesizer to
generate the �nal solution from this point. This is dubbed the last
mileage problem in program synthesis by prior work [52]. In such
cases, users prefer to directly edit the synthesized code instead.
INTENT supports this need with an in situ program editing and
validation feature, so users do not have to switch to an external
Python environment to edit and test the code.

To evaluate the usefulness of INTENT, we conducted a within-
subjects user study with 18 programmers with di�erent levels of
ML experience. We created a comparison baseline of INTENT by
disabling the interactive visualization and validation support. The
result shows that participants using INTENT �nished the assigned
TensorFlow coding tasks more successfully with only half of the
time on average. Speci�cally, when using the baseline tool, 8 partic-
ipants switched to a Jupyter notebook on Google Colab and tested
some variations of synthesized code, while no participants did that
when using INTENT. In the post-study survey, participants felt more
con�dent about the synthesis results—6.72 vs. 5.44 on average in
a 7-point Likert scale con�dence rating question (t-test: p=0.005).
These results imply that augmenting intelligent code generation
systems with interactive visualization and validation support in
tightly-coordinated views can signi�cantly improve programmer
productivity when writing TensorFlow code.

Overall, we make the following contributions:
• A tensor transformation synthesis system with rich inter-
action support for non-expert DL programmers. We have
open-sourced our system on GitHub.1

• A novel data�ow visualization of tensor transformation code
with element-wise data provenance to help users understand
tensor transformation code.

• A within-subjects study with 18 programmers to demon-
strate that INTENT improves both the programming produc-
tivity and programmers’ con�dence on program synthesis.

2 RELATED WORK
2.1 Programming-by-Example Systems
Programming-by-Example (PBE), also termed as Programming-by-
Demonstration (PBD), is a technique that automatically generates
programs from user-provided examples. There is a long history
of developing PBE systems to support non-experts in writing pro-
grams [20, 27]. In 1986, Myers and Buxton developed one of the �rst
PBE systems called Pedriot, which allowed users to create UI wid-
gets such as menus and scrollbars by demonstration [35]. Various
PBE systems have been proposed since then [4, 5, 7, 9, 10, 17, 21, 23–
26, 28, 31–34, 36, 43, 48, 49, 51, 52, 54]. In this work, we investigate

1https://github.com/ZHZisZZ/INTENT

tensor transformation synthesis, which is a new but increasingly
important synthesis problem. Nowadays, a growing number of peo-
ple want to adopt deep learning in their own practices. However,
authoring programs using deep learning frameworks such as Ten-
sorFlow is not easy. To the best of our knowledge, the only work
tackling this problem is TF-Coder [44]. TF-Coder is designed as
a fully automated tool, while INTENT brings new interactive sup-
port to address known usability issues in program synthesis. First,
INTENT provides a novel data�ow visualization with intermediate
values and element-wise provenance to help users understand syn-
thesized TensorFlow code. By contrast, TF-Coder renders the raw
code. Second, INTENT allows users to directly modify synthesized
code and test it with new examples within the interface, so users
do not have to switch to an external IDE and set up a testing en-
vironment. Finally, INTENT supports richer speci�cation modality
and �ne-grained control of the synthesis process by specifying
TensorFlow operators as desired or undesired.

2.2 Interaction Support for PBE Systems
Existing PBE systems adopt di�erent kinds of interaction design
to address common usability challenges in PBE, such as program
comprehension di�culty, lack of con�dence, and ambiguous user
speci�cations. The most related interaction support to our work
is communicating synthesized code to users in a more compre-
hensible and user-friendly way. For instance, Wrex [7] converts a
synthesized program, which is initially represented in an arcane
domain-speci�c language, to concise, readable Python code that
data scientists are familiar with. FlashProg [31] translates synthe-
sized data extraction programs to English-like descriptions. Pur-
suit [34] employs a comic strip metaphor to visualize data object
changes (e.g., �le copy) in synthesized shell scripts. Rousillon [4] vi-
sualizes synthesized web scraping programs in a block-based visual
programming language called Scratch [42]. Compared with prior
work, INTENT adopts data�ow visualization to render intermediate
steps in a tensor transformation program. Since tensor transfor-
mation involves high-dimensional arrays and sophisticated linear
algebra computation, INTENT further augments traditional data�ow
visualization with element-wise data provenance to render how
individual elements in a tensor are computed.

Another related interaction support is multi-modal speci�cation.
Since examples are inherently incomplete, modern PBE systems
often support additional speci�cation modalities, such as natural
language descriptions [5, 16, 30, 40, 41] and voice commands [24–
26], to elicit more complete speci�cations and reduce ambiguity.
For example, Jigsaw [16] synthesizes Python code using the Pandas
APIs from natural language descriptions and input-output exam-
ples. Unlike INTENT, Jigsaw focuses on automatically detecting and
�xing incorrect code generated by a language model.

The feature that allows users to mark certain TensorFlow opera-
tors as desired or undesired in INTENT is inspired by Peleg et al. [39].
In [39], Peleg et al. proposed an interaction model that allows users
to specify which parts of a synthesized program must be included
or excluded in the next synthesis iteration and demonstrated its
e�ectiveness in several domains. This feature also resembles the
touch modality in APPINITE [25] and PUMICE [26], in which users

https://github.com/ZHZisZZ/INTENT

INTENT: Interactive Tensor Transformation Synthesis UIST ’22, October 29-November 2, 2022, Bend, OR, USA

Figure 1: After adding two input-output examples (�1) and a natural language description (�2), INTENT automatically generates
three TensorFlow programs that match the given examples (�3). The data�ow diagram (�4) renders a step-by-step transfor-
mation with intermediate results on the given tensor.

can touch an area in a mobile screen to pinpoint which UI widget
the synthesizer should focus on.

3 USAGE SCENARIO
Suppose Kyle is a ML enthusiast who just started using TensorFlow.
As part of a data preprocessing step, Kyle needs to set the maximum
value in each tensor to zero. Kyle knows how to reset maximum
values in a tensor using a loop in Python. However, since his tensors
are very large, iterating dimensions in a tensor is not e�cient. Kyle
wants to use TensorFlow APIs to perform the transformation since
those vectorized APIs are highly optimized, especially for GPU
parallelization. Kyle searches online and �nds a TensorFlow API
called tf.while_loop, which seems to �t his need. After careful

examination, Kyle �nds it hard to use this API, since it requires
writing two lambda expressions to control the loop, and Kyle has
never written any lambda expressions before. Finally, Kyle decides
to try INTENT and see if it can help him generate the code he wants.

Kyle �rst adds a natural language description of the desired
transformation in INTENT, as shown in Figure 1 �2 . He also adds
a concrete example to illustrate this transformation (Figure 1 �1).
After Kyle clicks the Synthesize button, the synthesizer quickly
returns three programs that satisfy the given example (Figure 2).
Some API calls in these programs are easy to understand, such as
tf.subtract and tf.multiply. However, Kyle cannot easily tell
the meaning of other API calls, such as tf.gather and tf.one_hot.

UIST ’22, October 29-November 2, 2022, Bend, OR, USA Zhanhui Zhou, Man To Tang, Qiping Pan, Shangyin Tan, Xinyu Wang, and Tianyi Zhang

Figure 2: The synthesizer returns three TensorFlow transfor-
mation programs in the �rst iteration.

Figure 3: The data�ow diagram of the �rst program in Fig-
ure 2 with on-demand data provenance

In the meantime, Kyle notices that a data�ow diagram (Figure 3)
is rendered for the �rst program. Kyle also notices that tf.gather is
computed �rst in the data�ow. This operation uses the input tensor
in his example as the value for both the arguments of tf.gather.
When he hovers the mouse over the tf.gather node, a tooltip
appears to show a description of tf.gather. Based on the tooltip
alone, Kyle makes a guess that the output of tf.gather is computed
by gathering elements from the params argument based on the
elements in the indices argument. Nevertheless, he is still unclear
how exactly this is done, e.g., which element moves to where.

Figure 4: The data�ow diagram of the third program in Fig-
ure 2 with on-demand data provenance

Kyle clicks on the �rst element in the output tensor of tf.gather.
Then two red dotted lines appear, pointing to the 4th element in the
params argument and the 1st element in the indices argument.
Kyle also notices that the 4th element in params has the same value
as the 1st element in the output tensor, and the 1st element in
indices happens to be the index of the 4th element in params.
Kyle then clicks on the 4th element in the output tensor. The two
red dotted lines show that this element has the same value as the
2nd element in the params argument and the connected element
in indices is the index of the 2nd element in params. Now, Kype
con�rms that the output tensor consists of the elements in params
but these elements are reordered based on the elements in indices.

INTENT: Interactive Tensor Transformation Synthesis UIST ’22, October 29-November 2, 2022, Bend, OR, USA

Figure 5: Kyle provides two additional test cases to verify the current programs are correct by clicking the plus icon.

Figure 6: After Kyle modi�es the last program, INTENT au-
tomatically evaluates it on the given examples and reveals
that this edit leads to failures on all three examples.

Kyle then looks at the following two operations, tf.multiply
and tf.subtract, in the data�ow diagram. He realizes that this
program just happens to transform the input tensor to the expected
output but has nothing to do with setting the max value in a tensor
to zero. The second program is the same as the �rst one with the
arguments of tf.multiply swapped. Kyle moves on to investigate
the last program in Figure 2. This program looks correct at �rst
sight, since it uses tf.arg_max and tf.reduce_max, both of which
look related to computing the max value of a given tensor. But
Kyle is not sure what tf.one_hot does. Kyle turns to its data�ow
diagram (Figure 4) and �nds that tf.one_hot converts the input
tensor into a matrix that has the depth of the max value computed
by tf.reduce_max. This looks wrong to Kyle.

Although the third program is incorrect, Kyle �nds the operation,
tf.reduce_max, quite promising. To guide the synthesizer towards
this direction, Kyle marks tf.reduce_max as a desired operation
(Figure 1 �2). He also marks tf.gather and tf.one_hot as unde-
sired, since these operations seem irrelevant to his goal. Then he
clicks the Synthesize button again.

Given the feedback from Kyle, the synthesizer generates an-
other set of three programs (Figure 1 �3) in the second iteration.
Kyle immediately noticed the last program, which starts with a
tf.where operation followed by tf.greater and tf.reduce_max.
These three operations together look quite promising to him. Kyle

looks at its the data�ow diagram (Figure 1 �3) to con�rm its behav-
ior. Kyle �nds that this program �rst computes the max value of
the input tensor and then compares the max value with the input
tensor using tf.greater. Then it sets the max values to False
and other values to True. These boolean values are then used as
the condition in tf.where to select values from the original input
tensor and a tensor with all zeros. In this way, all the max elements
are replaced with 0.

Kyle wants to double-check this program on some other exam-
ples. Instead of setting up a new Python environment and con�gur-
ing TensorFlow to test the generated program, Kyle uses the quick
validation feature provided by INTENT. He adds two additional
test cases (Figure 5). Then INTENT automatically runs the three
generated programs on the new test cases. He also tweaks the last
program by changing tf.greater to tf.equal but �nds that the
modi�ed program fails on all three examples (Figure 6). Thus, Kyle
is convinced that the original programs generated is correct. This
interactive experience helps Kyle understand how the generated
program works internally and gives him con�dence on its behavior.

4 TOOL DESIGN AND IMPLEMENTATION
Figure 7 gives an overview of the system architecture. INTENT
contains three major components—(1) a multi-modal synthesizer
for tensor transformation (Section 4.1), (2) an interactive data�ow
visualization that facilitates program comprehension (Section 4.2),
and (3) an in situ program validation feature that allows users to
quickly validate the correctness of a program (Section 4.3).

4.1 Multi-Modal Tensor Transformation
Synthesis

INTENT extends the bottom-up enumerative synthesis algorithm in
TF-Coder [44] to support three types of speci�cations:

• Input-output examples. Users can specify input-output tensors
to demonstrate the desired transformation in the speci�cation
panel (Figure 1 �2). Di�erent from TF-Coder[44], which only
accepts one example, INTENT allows multiple examples. Since
di�erent examples may specify di�erent aspects of the intended

UIST ’22, October 29-November 2, 2022, Bend, OR, USA Zhanhui Zhou, Man To Tang, Qiping Pan, Shangyin Tan, Xinyu Wang, and Tianyi Zhang

Figure 7: System Architecture

program behavior, we designed a ranking mechanism to balance
multiple examples (detailed in Appendix A).

• Natural-language descriptions. Input-output examples are known
as partial speci�cations, since they only express speci�c behav-
iors on speci�c inputs. Therefore, natural language is often used
to allow users to describe the overall behavior of the desired
program. INTENT supports natural language descriptions as a
complementary speci�cation modality to input-output examples;
this is inherited from TF-Coder [44].

• Desired or undesired operators. Sometimes, users may roughly
know which operators to use but do not know precisely how to
use them together. Furthermore, when a synthesizer generates a
wrong program, it is helpful if the synthesizer can be informed
which operators are incorrect and should not be considered again
in following synthesis iterations. Such hints have been shown ef-
fective in guiding the synthesis process [39]. Our interface allows
users to either directly type in desired or undesired operators in
the speci�cation panel (Figure 1 �2), or right-click on an operator
node in the data�ow diagram and mark it as desired or undesired.
This new modality is not supported by TF-Coder [44].

Appendix A describes the multi-modal synthesis algorithm in
detail. Here we brie�y summarize how it works. Similar to TF-
Coder [44], INTENT uses a multilayer perceptron (MLP) model to
rank tensor operators in TensorFlow based on input-output exam-
ples and a naive Bayes model to rank tensor operators based on
natural language descriptions. These two rankings are combined

to compute the cost of each operator. The higher a tensor operator
ranks, the lower its cost is. If a user provides desired or undesired
operators, INTENT will adjust the cost of these operators accord-
ingly. Given these weighted operators, INTENT constructs tensor
transformation programs in a bottom-up manner. That is, it enu-
merates smaller programs �rst and then uses these programs as
“building blocks” to construct bigger ones. The program construc-
tion process prioritizes programs with small costs (i.e., programs
with highly ranked operators and few operators). This process con-
tinues until the �rst K programs that satisfy all given examples are
found, where K is speci�ed by the user.

4.2 Interactive Data�ow Visualization with
Element-wise Data Provenance

Previous studies show that a major barrier to adopting program
synthesis in practice is the di�culty of understanding and validat-
ing synthesized programs [11, 38, 54]. This challenge is exacerbated
in the domain of tensor transformation since tensor transformation
often involves sophisticated linear algebra computations, and Ten-
sorFlow APIs are known to be hard to comprehend. To help users
understand synthesized tensor transformation programs, INTENT
visualizes a program as a data�ow diagram, which visualizes how
the input tensors are transformed by each operator eventually to the
output. Since all intermediate tensors are shown step by step, the
gap between the input and output tensors is greatly alleviated (Fig-
ure 3). Furthermore, as tensors are essentially multi-dimensional

INTENT: Interactive Tensor Transformation Synthesis UIST ’22, October 29-November 2, 2022, Bend, OR, USA

arrays, users might wonder how a speci�c element in a tensor is
computed. To support this need, we designed element-wise data
provenance (the red dotted lines in Figure 3). Users can click an
element of interest in a tensor and trace which elements in other
tensors are used to compute it.

To construct the data�ow diagram of a program, INTENT �rst
parses it to an Abstract Syntax Tree (AST) and traverses the AST
to identify each tensor operator in the program. INTENT performs
postorder traversal since the tensor operators executed �rst ap-
pear deeper in the AST than those executed later. The AST node
of a tensor operator is then converted to a node in the data�ow
diagram. INTENT computes data provenance in two ways. First,
INTENT automatically generates the data provenance of 59 di�eren-
tiable operators using the automatic di�erentiation of TensorFlow.
Given a target element in an output tensor, INTENT computes the
gradient of each element in the input tensor. If the gradient of an
input element is not zero, it means the output element depends
on it and therefore a data provenance can be derived. Second, we
manually write speci�cations to compute the data provenance of
the remaining 52 operators. A formal description of the data prove-
nance computation method is provided in Appendix B.

4.3 In Situ Program Editing and Validation
As observed in prior work [52], users often get inspired by partially
correct programs generated by a synthesizer. In such cases, instead
of providing feedback to a synthesizer and waiting for it to regener-
ate the program, users prefer to directly edit the synthesized code
and test its correctness. For example, suppose a user wants to write
a program that sets all maximum values in the input tensor to zeros
and she provides an input-output example below.

in:[3, 1, 4, 5, 1, 8] ! out:[3, 1, 4, 5, 1, 0]

INTENT will generate a program that is very close to the correct
program, as shown below.

tf.multiply(in, tf.cast(tf.greater(tf.constant(8) , in),
tf.int32)).

This solution is wrong since it contains a hardcoded value of
8, which happens to be the maximum value in the given input
tensor. Some users, especially those experienced with TensorFlow,
may spot this mistake and come up with a quick �x that replaces
tf.constant(8) with tf.reduce_max(in).

tf.multiply(in, tf.cast(tf.greater(tf.reduce_max(in) , in),
tf.int32))

Then, the user could validate the correctness of this modi�ed pro-
gram by running it against the input-output examples or some new
test cases. Without INTENT, they have to open a Python IDE or a
Jupyter notebook with TensorFlow pre-installed and then copy and
paste the modi�ed program as well as test cases to run it. INTENT
eliminates this hassle by incorporating a partial program validation
component. This component automatically generates a complete
Python program with test stub to run a modi�ed program with
user-provided inputs from the speci�cation panel and compares
the output with user-provided outputs.

5 USER STUDY
To evaluate the usefulness and usability of INTENT, we conducted
a within-subjects user study with 18 programmers with di�erent
levels of machine learning expertise. Given that INTENT is built
upon TF-Coder [44], we choose TF-Coder as a comparison baseline.
Since TF-Coder does not have an interface, we adapted the user
interface of INTENT by disabling the new features we proposed to
enable a fair comparison. Speci�cally, we disabled the data�ow vi-
sualization, element-wise data provenance, in situ program editing
and validation, and the user annotation feature.

5.1 Participants
We recruited 18 CS graduate students (1 female, 17 male) at Purdue
University using the department graduate mailing list. Most partic-
ipants had adequate training in programming. 8 had more than 5
years of programming experience, 9 had 2 to 5 years, 1 had only
1 year. However, they had diverse experience with TensorFlow. 4
participants said that they were familiar with TensorFlow and had
used it many times. 14 participants said they knew TensorFlow but
only used it a few times. As a compensation for their participation,
each participant received a $25 Amazon gift card.

5.2 Tasks
To re�ect how INTENT is used in real-world programming scenarios,
we selected tensor transformation tasks from the TF-Coder bench-
mark [44]. Since many tasks in the TF-Coder benchmark were
sampled from Stack Over�ow, we eliminated those tasks that users
can easily �nd via Google Search. This was to prevent users from
accidentally �nding a correct solution online since we allowed par-
ticipants to search online during the study. Eventually, we selected
three tasks with di�erent levels of di�culty.

The �rst task is considered easy to solve; the transformation
is reasonably intuitive, and both synthesizers can solve it quickly
in one iteration. Compared with the �rst task, the other two are
considered harder: both synthesizers often give some plausible
solutions that cannot handle some corner cases in the �rst iteration,
thus requiring users to provide counterexamples to disambiguate
their intent. The third task is considered the hardest since it involves
a rarely used TensorFlow operator, tf.boolean_mask. When users
see this solution, many may immediately consider it incorrect since
it uses an operator that seems irrelevant to the task.

For each task, we created a task description in natural language
and also added an input-output example to illustrate the task. Dur-
ing the study, we encouraged participants to use their own language
and examples as input for the assigned synthesizer. Note that there
exist multiple correct solutions for each task. We considered a par-
ticipant to successfully complete the task once they reached any
of the correct solutions. The natural language descriptions and
input-output examples are listed below.
Task 1. Divide the �rst tensor (i.e., input1) by the second ten-
sor (i.e., input2), but when dividing by 0, return the numerator.
[Post 53643339] 2

input1=[3.0, 1.0, 4.0, 5.0, 2.0, 8.0, -6.0, -7.0]

2This post has been deleted from Stack Over�ow. We �nd a snapshot of it on Web
Archive and provide the link to the snapshot instead.

https://web.archive.org/web/20181221032607/https://stackoverflow.com/questions/53643339/tensorflow-overriding-tf-divide-to-return-the-numerator-when-dividing-by-0

UIST ’22, October 29-November 2, 2022, Bend, OR, USA Zhanhui Zhou, Man To Tang, Qiping Pan, Shangyin Tan, Xinyu Wang, and Tianyi Zhang

input2=[0.5, 0.0, -2.0, 0.0, 1.0, -1.0, 0.0, 2.0]
output=[6.0, 1.0, -2.0, 5.0, 2.0, -8.0, -6.0, -3.5]

solution=tf.where(tf.cast(in2, tf.bool), x=
tf.divide(in1, in2), y=in1)

Task 2. Use the �rst input tensor (i.e., input1) as the boolean condi-
tion for multiplying by -10 with the second tensor. For example, if
the �rst element in input1 is 1, then the �rst element in input2 will
not be multiplied by -10. On the other hand, if the �rst element of
input1 is 0, then the �rst element in input2 will be multiplied by
-10. [From an internal Google forum]

input1=[1, 0, 0, 1, 0]
input2=[1, 2, 3, 4, 5]
output=[1, -20, -30, 4, -50]

solution=tf.multiply(in2, tf.gather(
tf.constant((-10, 1)), in1))

Task 3. Select the values in the second tensor where the �rst tensor
is greater than 1. [Post 39045797]

input1=[2, 1, 0, 1]
input2=[3, 1, 2 ,1]
output=[3]

solution=tf.boolean_mask(in2, tf.greater(in1,
tf.constant(1)))

5.3 Protocols
Each user study starts with an introduction and consent collection.
Participants were assigned two tensor transformation tasks, one to
be completed with INTENT and the other to be completed with TF-
Coder. To mitigate the learning e�ect, both task assignment order
and tool assignment order were counterbalanced across participants.
In total, 6 participants experienced each task in each condition.
Before starting each task, participants �rst watched a tutorial video
of the assigned synthesizer and spent about 5 minutes getting
familiar with the assigned synthesizer. Then, they were given 20
minutes to �nish the assigned task. A task was considered failed
if participants did not �nd any solution after 20 minutes or if they
provided a wrong solution. To simulate the real-world programming
work�ow, participants were allowed to search online and refer to
any online resources during the study. After completing each task,
participants �lled out a post-task survey to give feedback. The
post-task survey asked users what they liked or disliked about
the assigned tool and what they wished to have. The survey also
included a set of Likert-scale questions to ask users to rate the
usefulness of key features in each assigned tool. To evaluate the
cognitive load of �nishing a task with the assigned synthesizer,
we included �ve NASA Task Load Index questions [13] as part of
the post-task survey. After all tasks were completed, participants
�lled out a �nal survey, where they directly compared the two
synthesizers. We recorded each user study with the permission of
the participants. A study took 64 minutes on average.

6 RESULTS
6.1 User Performance
Table 1 shows participants’ performance on the three TensorFlow
coding tasks using INTENT vs. TF-Coder. When using INTENT, all 18
participants successfully completed the assigned tasks within the
given time. By contrast, 14 of 18 participants successfully completed
the assigned tasks when using TF-Coder. Speci�cally, when using
TF-Coder, 1 participant provided a wrong program as their �nal
solution, and 3 participants did not �nish the task within 20 minutes.
Furthermore, when using INTENT, participants spent only half the
time �nishing the assigned task compared with using TF-Coder. The
average task completion time using INTENT is 5.8 minutes, while the
average task completion time using TF-Coder is 11.0 minutes. The
mean di�erence of 6.2 minutes is statistically signi�cant (unpaired
t-test: t=4.11, df=25, p=0.0003).

We analyzed the post-task survey responses and the recordings
to understand why participants using INTENT performed better.
First, we found that the data�ow visualization signi�cantly sped
up the program comprehension process. Based on the recordings,
all 18 participants using INTENT made heavy use of the data�ow
visualization to understand the synthesized TensorFlow code. By
contrast, participants using TF-Coder spent a lot of time reading
o�cial TensorFlow documentation to understand the code. Over-
all, 14 out of 18 participants referred to online learning resources
when using TF-Coder while only 3 participants did so when us-
ing INTENT. In the post-task survey, 15 of them strongly agreed
that data�ow visualization helped them understand the synthesized
code (Figure 10). P17 said, “I can see the explanation and the data�ow
of the generated code, so I don’t need to think too much about the
APIs.". 5 participants who tried INTENT before TF-Coder explicitly
mentioned that they wished they could have the data�ow visual-
ization when using TF-Coder. P17 said “I cannot see the data �ow,
modify the generated code, provide constraints compared with the
�rst version, which is not convenient. And I need to search the API
online to make sure my result is correct.”

Second, 10 out of 18 participants marked certain operators as
desired or undesired to guide the synthesizer towards the �nal
solution. We observed that such feedback to the synthesizer signi�-
cantly reduced the synthesis time since it helped prune the search
space of the synthesizer. As P17 said, “the ability to add constraints
makes me help synthesize the program quickly and �exibly.” By
contrast, when using TF-Coder, participants can only change the
input-output examples to disambiguate their intent. In particular,
6 TF-Coder users stopped tuning their examples in the middle of
the task and tried to solve the task by themselves, searching for
solutions online or coming up with their own solutions.

Third, INTENT supports in situ program editing and validation,
so users do not have to switch to an external test environment.
When using TF-Coder, 8 participants opened a Jupyter notebook
in Google Colab and manually edited and tested a synthesized
program. By contrast, no participants switched to Google Colab
or any IDE when using INTENT. P9 said, “[INTENT] felt more of a
one-stop shop that helped me accomplish the task without having
to use external stu� like trying out code locally myself or searching
documentation online..” P14 said, “I can test my transformation in
real-time which saves me a lot of time in testing.” In the post-task

https://stackoverflow.com/questions/39045797/conditional-assignment-of-tensor-values-in-tensorflow

INTENT: Interactive Tensor Transformation Synthesis UIST ’22, October 29-November 2, 2022, Bend, OR, USA

Task 1 - Easy Task 2 - Medium Task 3 - Hard
Control Experiment Control Experiment Control Experiment

7 10 12 10 12 6
8 4 8 4 12 4.5
6 10 11 4 Incomplete 5.5
12 3 Incomplete 6 10 4
8 1.75 Incomplete 7.5 11.5 7.5

2.5 5 7.5 7 12 4.5
7.25 5.63 13.08 6.41 12.92 5.33

Overall average time for all tasks combined 11.08 5.79
Average Time

Table 1: Task completion time. Incomplete means the participant did not �nish the assigned task within 20 min. Completion
time colored in grey means the participant provided a wrong solution to the assigned programming task.

survey, 4 participants mentioned that they spent a lot of e�ort
validating the synthesized code when using TF-Coder. P5 said, “[I
need] a convenient way to evaluate the synthesized program.” P2 said,
“it would be great to have an integrated Python/TF session so that I
can directly try the result in the real programming environment.”

6.2 User Con�dence and Cognitive Overhead
In the post-task survey, participants self-reported their con�dence
in the synthesized code in a 7-point Likert scale question (1 means
not con�dent at all and 7 means highly con�dent). As shown in Fig-
ure 8, participants reported higher con�dence when using INTENT,
6.72 vs. 5.44 speci�cally. This mean di�erence of 1.28 is statistically
signi�cant (unpaired t-test: t = -3.16, df = 20, p-value = 0.005). This
con�dence improvement was largely attributed to a better under-
standing of synthesized code when using INTENT. P1 said, “the
data�ow diagram provided a better guarantee of the correctness of
the result.” P2 said, “the data�ow graph helps me better understand
the synthesized expression and gives me higher con�dence about the
result.” P15 said, “[INTENT] really helps me understand what the
APIs are doing with the input, teach me what they do or con�rm my
existing knowledge at its worst.”

Since INTENT has more sophisticated features than TF-Coder,
one may wonder if INTENT leads to more mental demand. After
each task, participants self-reported the cognitive load of using the
assigned tool in a NASA TLX questionnaire. As shown in Figure 9,
participants felt less mental demand, e�ort, and stress when using
INTENT. The reasons are two-fold. First, INTENT provides an intu-
itive data�ow visualization of a synthesized program, which renders
individual steps and intermediate results. Thus, participants did not
have to refer to external resources, such as TensorFlow API docu-
mentation, to understand the synthesized code. Second, with the
quick validation feature in INTENT, participants no longer needed
to switch to an external test environment to validate the correctness
of synthesized code. P10 said, “when working with complex expres-
sions, it is indeed helpful to understand which function is contributing
to which part of the computation. It feels very intuitive to validate
the synthesized expression [with INTENT], which would have been
overwhelming otherwise.”

6.3 User Ratings of Individual Features
In the post-task survey, participants rated the key features of IN�
TENT. Figure 10 shows the distribution of user ratings. We found

Figure 8: The distribution of participants’ con�dence on the
synthesis results when using INTENT vs. TF-Coder

that the majority of participants were satis�ed with each feature in
INTENT. Among all features, the data�ow visualization is the most
appreciated feature. 14 of 18 participants strongly agreed that “it
was helpful to see the data�ow diagram of synthesized code.” Further-
more, 13 participants agreed or strongly agreed that “it was helpful
to see the element-wise data provenance.” Marking an operator as
desired or undesired was the second most useful feature. 15 out
of 18 participants agreed or strongly agreed that “it was helpful to
mark transformation operators as desired or undesired in the data
�ow diagram.” P7 said, “[I like INTENT better] because we can ad-
d/drop operations if I wanted to optimize the expression generated
by the synthesizer.” In addition, 12 participants agreed or strongly
agreed that “it was helpful to directly modify a synthesized program
and get the instant feedback on test results.” P14 said, “I can test my
transformation in real-time which saves me a lot time in testing.” P17
said, “sometimes the generated code is just a little bit incorrect, it
would be very helpful if I can modify it and then test it.”

6.4 User Preference and Feedback
All participants reported that they preferred to use INTENT when
writing TensorFlow code. We coded participants’ responses to the
question about what they like about INTENT. We identi�ed three

UIST ’22, October 29-November 2, 2022, Bend, OR, USA Zhanhui Zhou, Man To Tang, Qiping Pan, Shangyin Tan, Xinyu Wang, and Tianyi Zhang

2
4

6
8

plot title

R
at
in
g

control experiment

Q1 Q2 Q3 Q4 Q5

2
4

6
8

plot title

R
at
in
g

Mental Demand Hurry Performance Effort Stress

control experiment

Figure 9: NASA Task Load Index Ratings. Entries with a star
mean a statistically signi�cant di�erence between the con-
trol and experiment groups.

themes. First, 17 participants mentioned INTENT helped them un-
derstand and validate the program easily. P8 said, “it allows me to
know what exactly happens in each step of operation, thus increasing
the system transparency and my understanding of the system.” P11
said, “The data�ow graph with descriptions for each function is clear
to understand. It makes me �nd the right solution quickly.” Second,
5 participants pointed out that INTENT helped them validate the
synthesis results. P9 said, “it helps me build a more accurate mental
model to validate the correctness of code.” Third, 5 participants liked
INTENT since it gives them more control over the synthesis process.
P4 said, “giving desirable operations would (hopefully) mean faster
inference of a small expression.”

In the post-task survey, we also asked participants what addi-
tional features may help them better solve the task. 3 participants
complained about the synthesis speed and hoped to see the progress
of the synthesizer. 3 participants mentioned that it was tedious to
come up with new examples or corner cases to validate a synthe-
sized program. They wished to have some automated test genera-
tion tools to facilitate the validation of synthesized code. Finally, 4
participants suggested it would be helpful to provide a direct link
to the o�cial documentation of each TensorFlow operator in the
data�ow visualization for their convenience.

7 DISCUSSION
7.1 Design Implications
The user study results suggest that interaction support for program
comprehension and validation in the synthesis cycle can signi�-
cantly improve the productivity of the human-synthesizer team as
well as users’ con�dence on a synthesizer. In the past, most research
e�ort has been put into improving synthesis algorithms or applying
program synthesis to new application domains. Our work shows
that it is not su�cient to only optimize the synthesis algorithm
without considering how users may make use of the synthesized
code. Instead, we should treat a human user and a synthesizer as a
team and optimize their collaborative performance.

A program synthesizer is essentially an AI agent for program-
ming. Therefore, it su�ers from common usability issues of AI

agents, e.g., lack of trust, lack of control, overreliance on AI, the
interpretability challenge, miscommunication and misinterpreta-
tion, etc. [2, 8, 14, 19, 29, 46]. INTENT addresses the lack of trust
and lack of control issues by (1) visualizing the intermediate steps
in a synthesized program in a data�ow diagram with element-wise
data provenance, (2) supporting in situ program editing and valida-
tion, and (3) allowing users to mark desired or undesired operators
to guide the synthesis process. Based on the user study results,
we found that without such interaction support, the task solving
process was signi�cantly stagnated.

The data�ow visualization is helpful for programming domains
that involve heavy mathematical or sequential computation. For
example, SQL query synthesis [47, 50] is another domain where
the data�ow visualization can help one understand and validate
synthesized code. Speci�cally, a SQL query can be visualized as
a data�ow diagram where intermediate steps are atomic query
operations such as �lter, join, sort, and intermediate results are
SQL tables. By navigating through the data�ow diagram of a SQL
query, users can easily understand how the �nal query result is
computed step by step. However, there are some domains where
it is more straightforward for users to directly look at the �nal
program output instead of intermediate steps, such as visualization
synthesis [48], or where intermediate steps are hard to visualize
or comprehend, such as assembly code synthesis [15]. For such
domains, data�ow visualization may not be a good �t.

7.2 Handling Multi-Dimensional Tensors
Though the previous examples only demonstrate INTENT on one-
dimensional tensors, INTENT supports multi-dimensional tensors
as well. In the Supplementary Material, we have included more
screenshots to demonstrate how multi-dimensional tensors are
rendered in INTENT. Speci�cally, to ease the speci�cation of multi-
dimensional tensors, INTENT visualizes them as nested tables in
the speci�cation panel (Figure 1 �1). Each dimension in the ta-
ble is assigned a unique background color to distinguish di�erent
dimensions.

If a tensor has too many dimensions (e.g., a 10D tensor), the
data�ow visualization can become cluttered; yet, this may not be
a major concern in practice, as real-world tensor transformation
tasks often do not involve tensors with too many dimensions. To
con�rm this, we manually checked the TF-Coder benchmark, which
includes 70 tensor transformation tasks collected from an internal
Google forum and StackOver�ow. Among these 70 tasks, none of
them involve tensors with more than 4 dimensions. Speci�cally,
2 of them involve the transformation of 4D tensors, 9 involve 3D
tensors, and the rest only involve 1D or 2D tensors.

Since some tensor operators make use of all input elements for all
output elements, this might lead to many red dotted lines when ren-
dering data provenance. Among the 101 tensor operators supported
by INTENT, we only �nd 13 such operators, such as tf.reduce_sum
and tf.broadcast_to. In the Supplementary Material, we have
included screenshots of the resulting visualizations involving those
operators. We found these visualizations were not cluttered since
the tensors have four dimensions or less. Furthermore, since the
data provenance is only rendered on demand when users click an

INTENT: Interactive Tensor Transformation Synthesis UIST ’22, October 29-November 2, 2022, Bend, OR, USA

Figure 10: Users’ ratings on features

element in a tensor, those data provenance lines are unlikely to
intersect with each other.

7.3 Target User Groups and Use Cases
INTENT is designed to empower users who already have program-
ming experience but are unfamiliar with deep learning. Note that
programmers who are experienced in one domain (e.g., web de-
velopment) can still struggle with DL due to the cryptic APIs in
TensorFlow and lack of conceptual and math background in DL,
as shown in prior work [3]. Furthermore, several participants in
our user study who were experts in TensorFlow also appreciated
INTENT, since they did not have to recall which APIs to use during
implementation.

INTENT is not designed for end-users without programming ex-
perience. Therefore, our design and �ndings do not generalize to
end-user programming. Indeed, it is hard for end-users to read a
data�ow diagram or directly edit a program. To support end-user
programming, one should consider converting synthesized pro-
grams to a representation that is comprehensible to end-users. For
example, Mayer et al. [31] proposed translating the synthesized
code to English descriptions to help end-users understand its behav-
ior. Zhang et al. [54] proposed to generate distinguishing examples
and corner cases to help end-users validate the synthesized code.

7.4 Limitations and Future Directions
Our current user study design limits us to necessarily attributing
participants’ success to individual features in INTENT. One can
improve the study design by capturing the utility rate of each feature
or comparing with variants with individual features disabled. In the
post-task survey, participants rated the usefulness of each feature
(Figure 10). Though this is a subjective measurement, it to some
extent indicates which feature is more helpful. Among all features,
the data�ow visualization is the most appreciated feature.

INTENT normally takes more than 30 seconds or even longer
to synthesize a program, which may stand in the way of rapid,
iterative speci�cation of a program. This challenge is not unique to

INTENT, but rather a byproduct of working with program synthe-
sizers with a large search space. We believe distributed computing
can be leveraged to speed up program synthesis signi�cantly. The
search process in program synthesis is highly parallelizable. Fur-
thermore, it may also be helpful to allow a synthesizer to quickly
return some imperfect but promising solutions, so users can provide
some early feedback, which would enable more rapid iteration to
incrementally reach a �nal, perfect solution.

Currently, INTENT can only generate TensorFlow code that uses
tensor transformation APIs. As a future direction, it would be
appealing if INTENT could be extended to support the construc-
tion of an entire neural network. This would require support-
ing more TensorFlow APIs in the synthesis framework, such as
tf.keras.layers.LSTM. In addition, input-output examples may
not be descriptive enough to specify the desired model. Instead,
users may �nd it more intuitive to communicate model speci�ca-
tions in natural language (e.g., “the model should have an attention
layer”) or constraints (e.g., !GPU && Memory >= 16GB). Other modal-
ities such as sketching is also worth considering to support rich
speci�cation modalities in neural network synthesis.

8 CONCLUSION
This paper presents INTENT, an interactive program synthesizer
that generates TensorFlow code to transform tensors on behalf of
users. Since tensor transformation often involves multi-dimensional
arrays and sophisticated linear algebra operations, INTENT provides
an interactive data�ow visualization to render intermediate results
and element-wise data provenance in a tensor transformation pro-
gram. With this feature, users can conveniently track how the �nal
tensor and individual elements in it are computed step by step.
INTENT also supports in situ program editing and validation to
help users establish trust on the synthesis results and explore al-
ternative solutions. A user study with 18 programmers shows that
participants �nished assigned tasks with only half the time, higher
success rate, and more con�dence when using INTENT compared to
using a baseline synthesizer without the aforementioned features.

UIST ’22, October 29-November 2, 2022, Bend, OR, USA Zhanhui Zhou, Man To Tang, Qiping Pan, Shangyin Tan, Xinyu Wang, and Tianyi Zhang

ACKNOWLEDGMENTS
We would like to thank anonymous participants for the user study
and anonymous reviewers for their valuable feedback. We would
also like to thank Yitao Huang and Lyubing Qiang for their contri-
butions to an early prototype of INTENT.

REFERENCES
[1] Aws Albarghouthi, Sumit Gulwani, and Zachary Kincaid. 2013. Recursive pro-

gram synthesis. In International conference on computer aided veri�cation. Springer,
934–950.

[2] Gagan Bansal, Tongshuang Wu, Joyce Zhou, Raymond Fok, Besmira Nushi, Ece
Kamar, Marco Tulio Ribeiro, and Daniel Weld. 2021. Does the whole exceed
its parts? the e�ect of ai explanations on complementary team performance. In
Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems.
1–16.

[3] Carrie J Cai and Philip J Guo. 2019. Software developers learning machine
learning: Motivations, hurdles, and desires. In 2019 IEEE symposium on visual
languages and human-centric computing (VL/HCC). IEEE, 25–34.

[4] Sarah E. Chasins, Maria Mueller, and Rastislav Bodik. 2018. Rousillon: Scrap-
ing Distributed Hierarchical Web Data. In Proceedings of the 31st Annual ACM
Symposium on User Interface Software and Technology (Berlin, Germany) (UIST
’18). Association for Computing Machinery, New York, NY, USA, 963–975.
https://doi.org/10.1145/3242587.3242661

[5] Qiaochu Chen, Xinyu Wang, Xi Ye, Greg Durrett, and Isil Dillig. 2020. Multi-
modal synthesis of regular expressions. In Proceedings of the 41st ACM SIGPLAN
conference on programming language design and implementation. 487–502.

[6] Utkarsh Desai, Sambaran Bandyopadhyay, and Srikanth Tamilselvam. 2021. IBM
AI helps to break down massive code to ease cloud migration. Retrieved Accessed:
2022-03-29 from https://www.ibm.com/blogs/research/2021/02/ai-refactoring-
cloud-migration/

[7] Ian Drosos, Titus Barik, Philip J Guo, Robert DeLine, and Sumit Gulwani. 2020.
Wrex: A uni�ed programming-by-example interaction for synthesizing readable
code for data scientists. In Proceedings of the 2020 CHI conference on human factors
in computing systems. 1–12.

[8] Malin Eiband, Sarah Theres Völkel, Daniel Buschek, Sophia Cook, and Heinrich
Hussmann. 2019. When people and algorithms meet: User-reported problems in
intelligent everyday applications. In Proceedings of the 24th international confer-
ence on intelligent user interfaces. 96–106.

[9] Kasra Ferdowsifard, Allen Ordookhanians, Hila Peleg, Sorin Lerner, and Nadia
Polikarpova. 2020. Small-step live programming by example. In Proceedings of the
33rd Annual ACM Symposium on User Interface Software and Technology. 614–626.

[10] Sumit Gulwani. 2011. Automating string processing in spreadsheets using input-
output examples. In Proceedings of the 38th annual ACM SIGPLAN-SIGACT sym-
posium on Principles of programming languages. 317–330.

[11] Sumit Gulwani, José Hernández-Orallo, Emanuel Kitzelmann, Stephen H Mug-
gleton, Ute Schmid, and Benjamin Zorn. 2015. Inductive programming meets the
real world. Commun. ACM 58, 11 (2015), 90–99.

[12] P. Guo. 2018. How Did People Write Machine Learning Code in the Past? Retrieved
2022-03-29 from https://cacm.acm.org/blogs/blog-cacm/230805-how-did-people-
write-machine-learning-code-in-the-past/fulltext

[13] Sandra G Hart and Lowell E Staveland. 1988. Development of NASA-TLX (Task
Load Index): Results of empirical and theoretical research. In Advances in psy-
chology. Vol. 52. Elsevier, 139–183.

[14] Kevin Anthony Ho� and Masooda Bashir. 2015. Trust in automation: Integrating
empirical evidence on factors that in�uence trust. Human factors 57, 3 (2015),
407–434.

[15] Jingmei Hu, Priyan Vaithilingam, Stephen Chong, Margo Seltzer, and Elena L
Glassman. 2021. Assuage: Assembly Synthesis Using A Guided Exploration. In
The 34th Annual ACM Symposium on User Interface Software and Technology.
134–148.

[16] Naman Jain, Skanda Vaidyanath, Arun Iyer, Nagarajan Natarajan, Suresh
Parthasarathy, Sriram Rajamani, and Rahul Sharma. 2022. Jigsaw: large lan-
guage models meet program synthesis. In 2022 IEEE/ACM 44th International
Conference on Software Engineering (ICSE). IEEE, 1219–1231.

[17] Sean Kandel, Andreas Paepcke, Joseph Hellerstein, and Je�rey Heer. 2011. Wran-
gler: Interactive Visual Speci�cation of Data Transformation Scripts. In Proceed-
ings of the SIGCHI Conference on Human Factors in Computing Systems (Vancouver,
BC, Canada) (CHI ’11). Association for Computing Machinery, New York, NY,
USA, 3363–3372. https://doi.org/10.1145/1978942.1979444

[18] Amy J Ko, Brad A Myers, and Htet Htet Aung. 2004. Six learning barriers in end-
user programming systems. In 2004 IEEE Symposium on Visual Languages-Human
Centric Computing. IEEE, 199–206.

[19] Rafal Kocielnik, Saleema Amershi, and Paul N Bennett. 2019. Will you accept an
imperfect ai? exploring designs for adjusting end-user expectations of ai systems.
In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems.

1–14.
[20] David Kurlander, Allen Cypher, and Daniel Conrad Halbert. 1993. Watch what I

do: programming by demonstration. MIT press.
[21] J. Landauer and M. Hirakawa. 1995. Visual AWK: a model for text processing

by demonstration. In Proceedings of Symposium on Visual Languages. 267–274.
https://doi.org/10.1109/VL.1995.520818

[22] Tessa Lau. 2009. Why Programming-By-Demonstration Systems Fail: Lessons
Learned for Usable AI. AI Magazine 30, 4 (Oct. 2009), 65. https://doi.org/10.1609/
aimag.v30i4.2262

[23] Gilly Leshed, Eben M Haber, Tara Matthews, and Tessa Lau. 2008. CoScripter:
automating & sharing how-to knowledge in the enterprise. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems. 1719–1728.

[24] Toby Jia-Jun Li, Amos Azaria, and Brad A Myers. 2017. SUGILITE: creating
multimodal smartphone automation by demonstration. In Proceedings of the 2017
CHI conference on human factors in computing systems. 6038–6049.

[25] Toby Jia-Jun Li, Igor Labutov, Xiaohan Nancy Li, Xiaoyi Zhang, Wenze Shi,
Wanling Ding, Tom M Mitchell, and Brad A Myers. 2018. Appinite: A multi-modal
interface for specifying data descriptions in programming by demonstration using
natural language instructions. In 2018 IEEE Symposium on Visual Languages and
Human-Centric Computing (VL/HCC). IEEE, 105–114.

[26] Toby Jia-Jun Li, Marissa Radensky, Justin Jia, Kirielle Singarajah, Tom M Mitchell,
and Brad A Myers. 2019. Pumice: A multi-modal agent that learns concepts and
conditionals from natural language and demonstrations. In Proceedings of the
32nd annual ACM symposium on user interface software and technology. 577–589.

[27] Henry Lieberman. 2001. Your wish is my command: Programming by example.
Morgan Kaufmann.

[28] Greg Little, Tessa A Lau, Allen Cypher, James Lin, Eben M Haber, and Eser
Kandogan. 2007. Koala: capture, share, automate, personalize business processes
on the web. In Proceedings of the SIGCHI conference on Human factors in computing
systems. 943–946.

[29] Ewa Luger and Abigail Sellen. 2016. " Like Having a Really Bad PA" The Gulf be-
tween User Expectation and Experience of Conversational Agents. In Proceedings
of the 2016 CHI conference on human factors in computing systems. 5286–5297.

[30] Mehdi Manshadi, Daniel Gildea, and James Allen. 2013. Integrating Program-
ming by Example and Natural Language Programming. In Proceedings of the
Twenty-Seventh AAAI Conference on Arti�cial Intelligence (Bellevue, Washington)
(AAAI’13). AAAI Press, 661–667.

[31] Mikaël Mayer, Gustavo Soares, Maxim Grechkin, Vu Le, Mark Marron, Alex
Polozov, Rishabh Singh, Ben Zorn, and Sumit Gulwani. 2015. User Interaction
Models for Disambiguation in Programming by Example. In 28th ACM User
Interface Software and Technology Symposium (UIST 2015) (28th acm user interface
software and technology symposium (uist 2015) ed.). ACM – Association for
Computing Machinery. https://www.microsoft.com/en-us/research/publication/
user-interaction-models-for-disambiguation-in-programming-by-example/

[32] Richard G McDaniel and Brad A Myers. 1999. Getting more out of programming-
by-demonstration. In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems. 442–449.

[33] Robert Miller and Brad Myers. 2002. LAPIS: smart editing with text structure.
(01 2002). https://doi.org/10.1145/506443.506447

[34] Francesmary Modugno and Brad A. Myers. 1997. Visual Programming in a Visual
Shell-A Uni�ed Approach. J. Vis. Lang. Comput. 8 (1997), 491–522.

[35] Brad A Myers and William Buxton. 1986. Creating highly-interactive and graph-
ical user interfaces by demonstration. ACM SIGGRAPH Computer Graphics 20, 4
(1986), 249–258.

[36] Brad A Myers, Jade Goldstein, and Matthew A Goldberg. 1994. Creating charts
by demonstration. In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems. 106–111.

[37] Brad A. Myers and Richard McDaniel. 2001. Chapter 3 - Demonstrational In-
terfaces: Sometimes You Need a Little Intelligence, Sometimes You Need a Lot.
In Your Wish is My Command, Henry Lieberman (Ed.). Morgan Kaufmann, San
Francisco, 45–III. https://doi.org/10.1016/B978-155860688-3/50004-X

[38] Brad A Myers and Richard McDaniel. 2001. Demonstrational interfaces: some-
times you need a little intelligence, sometimes you need a lot. In Your Wish is
My Command. Elsevier, 45–III.

[39] Hila Peleg, Sharon Shoham, and Eran Yahav. 2018. Programming not only by
example. In 2018 IEEE/ACM 40th International Conference on Software Engineering
(ICSE). IEEE, 1114–1124.

[40] Kia Rahmani, Mohammad Raza, Sumit Gulwani, Vu Le, Dan Morris, Arjun Rad-
hakrishna, Gustavo Soares, and Ashish Tiwari. 2021. Multi-modal Program Infer-
ence: a Marriage of Pre-trained Language Models and Component-based Synthe-
sis. In OOPSLA. https://www.microsoft.com/en-us/research/publication/multi-
modal-program-inference-a-marriage-of-pre-trained-language-models-and-
component-based-synthesis/

[41] Mohammad Raza, Sumit Gulwani, and Natasa Milic-Frayling. 2015. Composi-
tional Program Synthesis from Natural Language and Examples. In IJCAI 2015
(ijcai 2015 ed.).

[42] Mitchel Resnick, John Maloney, Andrés Monroy-Hernández, Natalie Rusk, Evelyn
Eastmond, Karen Brennan, Amon Millner, Eric Rosenbaum, Jay Silver, Brian

https://doi.org/10.1145/3242587.3242661
https://www.ibm.com/blogs/research/2021/02/ai-refactoring-cloud-migration/
https://www.ibm.com/blogs/research/2021/02/ai-refactoring-cloud-migration/
https://cacm.acm.org/blogs/blog-cacm/230805-how-did-people-write-machine-learning-code-in-the-past/fulltext
https://cacm.acm.org/blogs/blog-cacm/230805-how-did-people-write-machine-learning-code-in-the-past/fulltext
https://doi.org/10.1145/1978942.1979444
https://doi.org/10.1109/VL.1995.520818
https://doi.org/10.1609/aimag.v30i4.2262
https://doi.org/10.1609/aimag.v30i4.2262
https://www.microsoft.com/en-us/research/publication/user-interaction-models-for-disambiguation-in-programming-by-example/
https://www.microsoft.com/en-us/research/publication/user-interaction-models-for-disambiguation-in-programming-by-example/
https://doi.org/10.1145/506443.506447
https://doi.org/10.1016/B978-155860688-3/50004-X
https://www.microsoft.com/en-us/research/publication/multi-modal-program-inference-a-marriage-of-pre-trained-language-models-and-component-based-synthesis/
https://www.microsoft.com/en-us/research/publication/multi-modal-program-inference-a-marriage-of-pre-trained-language-models-and-component-based-synthesis/
https://www.microsoft.com/en-us/research/publication/multi-modal-program-inference-a-marriage-of-pre-trained-language-models-and-component-based-synthesis/

INTENT: Interactive Tensor Transformation Synthesis UIST ’22, October 29-November 2, 2022, Bend, OR, USA

Silverman, et al. 2009. Scratch: programming for all. Commun. ACM 52, 11 (2009),
60–67.

[43] Christopher Sca�di, Brad Myers, and Mary Shaw. 2008. Topes. In 2008 ACM/IEEE
30th International Conference on Software Engineering. IEEE, 1–10.

[44] Kensen Shi, David Bieber, and Rishabh Singh. 2020. TF-Coder: Program Synthesis
for Tensor Manipulations. CoRR abs/2003.09040 (2020). arXiv:2003.09040 https:
//arxiv.org/abs/2003.09040

[45] Abhishek Udupa, Arun Raghavan, Jyotirmoy V Deshmukh, Sela Mador-Haim,
Milo MK Martin, and Rajeev Alur. 2013. TRANSIT: specifying protocols with
concolic snippets. ACM SIGPLAN Notices 48, 6 (2013), 287–296.

[46] Alan R Wagner, Jason Borenstein, and Ayanna Howard. 2018. Overtrust in the
robotic age. Commun. ACM 61, 9 (2018), 22–24.

[47] Chenglong Wang, Alvin Cheung, and Rastislav Bodik. 2017. Interactive Query
Synthesis from Input-Output Examples (SIGMOD ’17). Association for Computing
Machinery, New York, NY, USA, 1631–1634. https://doi.org/10.1145/3035918.
3058738

[48] Chenglong Wang, Yu Feng, Rastislav Bodik, Isil Dillig, Alvin Cheung, and Amy J
Ko. 2021. Falx: Synthesis-powered visualization authoring. In Proceedings of the
2021 CHI Conference on Human Factors in Computing Systems. 1–15.

[49] Xinyu Wang, Sumit Gulwani, and Rishabh Singh. 2016. FIDEX: �ltering spread-
sheet data using examples. In Proceedings of the 2016 ACM SIGPLAN International
Conference on Object-Oriented Programming, Systems, Languages, and Applica-
tions, OOPSLA 2016, part of SPLASH 2016, Amsterdam, The Netherlands, October 30
- November 4, 2016, Eelco Visser and Yannis Smaragdakis (Eds.). ACM, 195–213.
https://doi.org/10.1145/2983990.2984030

[50] Navid Yaghmazadeh, Yuepeng Wang, Isil Dillig, and Thomas Dillig. 2017. SQLizer:
query synthesis from natural language. Proceedings of the ACM on Programming
Languages 1, OOPSLA (2017), 1–26.

[51] Kuat Yessenov, Shubham Tulsiani, Aditya Menon, Robert C Miller, Sumit Gulwani,
Butler Lampson, and Adam Kalai. 2013. A colorful approach to text processing
by example. In Proceedings of the 26th annual ACM symposium on User interface
software and technology. 495–504.

[52] Tianyi Zhang, Zhiyang Chen, Yuanli Zhu, Priyan Vaithilingam, Xinyu Wang,
and Elena L Glassman. 2021. Interpretable Program Synthesis. In Proceedings of
the 2021 CHI Conference on Human Factors in Computing Systems. 1–16.

[53] Tianyi Zhang, Cuiyun Gao, Lei Ma, Michael Lyu, and Miryung Kim. 2019. An
empirical study of common challenges in developing deep learning applications.
In 2019 IEEE 30th International Symposium on Software Reliability Engineering
(ISSRE). IEEE, 104–115.

[54] Tianyi Zhang, London Lowmanstone, Xinyu Wang, and Elena L Glassman. 2020.
Interactive Program Synthesis by Augmented Examples. In Proceedings of the
33rd Annual ACM Symposium on User Interface Software and Technology. 627–648.

[55] Zejun Zhang, Yanming Yang, Xin Xia, David Lo, Xiaoxue Ren, and John Grundy.
2021. Unveiling the mystery of api evolution in deep learning frameworks a case
study of tensor�ow 2. In 2021 IEEE/ACM 43rd International Conference on Software
Engineering: Software Engineering in Practice (ICSE-SEIP). IEEE, 238–247.

A SYNTHESIS ALGORITHM
Our algorithm is presented in Algorithm 1. It takes as input a set
OP of tensor operators (e.g., TensorFlow APIs) and aims to generate
programs using these operators. Each operator in OP is associated
with a cost, which will later be used to guide the search. The overall
goal here is to �nd a program that satis�es the provided examples
with a smallest cost, guided by other types of speci�cations.

Towards this goal, the algorithm begins by assigning costs to
operators based on the user-provided examples E, natural language
description N , as well as the desired/undesired operators D and U
(lines 1-4). In a nutshell, these costs are constructed using machine
learning models. For instance, we use the multilayer perceptron
(MLP) model from [44] to update costs based on examples (line 2)
and their TF-IDF model to handle natural languages (line 3). Both
models are trained in a supervised manner; we refer interested
readers to prior work [44] for details of these models.

Di�erent from prior work, our work additionally leverages the
operators preference information; that is, we also adjust costs based
on the desired operators D and undesired operators U (line 4).
Speci�cally, INTENT divides the cost of a desired operator by 3
whereas it multiplies the cost of an undesired operator by 3. The

factor of 3 is designed empirically. Note that we choose to penalize
undesired operators instead of completely removing them from the
pool of candidate operators; this is because user feedback may not
always be correct, especially in the domain of tensor transforma-
tion where many tasks often involve complex, non-intuitive linear
algebra operations. Users may not be aware of some operations
that are indeed useful and may mistakenly mark them as undesired.
For example, given the task “setting all values to zeros except for
ones” as well as the following input/output example,

in:[3, 1, 4, 5, 1, 8] ! out:[0, 1, 0, 0, 1, 0]

it is tempting to mark tf.cast (a TensorFlow operator that changes
an tensor’s data type) as undesired since it does not explicitly partici-
pate in any numerical value calculation but actually it is a important
intermediate step to convert boolean mask to a binary vector, which
can be multiplied to the input tensor to clear all ones in the input.
The correct program is shown below.
tf.multiply(in, tf.cast(tf.equal(in, tf.constant(1)),

tf.int32))
By only penalizing operators that are mistakenly labeled as un-

desired, INTENT still has a chance to generate the correct program
with these operators after trying many other operators.

Lines 5-16 describe the bottom-up search process. Because the
search space grows exponentially in the program size, we perform
the so-called value-based memoization [1, 45] to optimize the search
performance. At a high-level, this optimization clusters programs
based on their outputs. That is, if two programs produce the same
output, they will be treated as “one single program” e�ectively as
the search algorithm progresses. Since multiple programs may yield
the same output value, this optimization is able to reduce the search
space quite dramatically (i.e., it searches the space of program values,
rather than the space of programs). More speci�cally, the algorithm
maintains a set V of values that current enumerated programs gen-
erated. V is initialized to contain only the user-provided constants
and input tensors from the given examples (line 5); however, V
grows as search progresses (line 14) by incorporating new values
that are produced by newly discovered programs (line 10). Note
that, the search is structured by �rst enumerating the costs T in
the ascending order (line 6), which e�ectively prioritizes programs
with smaller costs (i.e., less complex programs) over more complex
programs with larger costs. Given T , the algorithm constructs all
programs that have cost T (lines 7-16). In particular, it considers all
operators in OP (line 7), and for each op, it executes op on current
values in V (lines 8-10). Line 11 performs value-based memoization:
we add � to V only if � is not yet seen in the past. Note that lines
12-13 also update the meta-data associated with �; for example, it
records the cost of this program. Finally, at line 14, it returns the
current program if it already matches our examples E. This program
is also guaranteed to have the smallest cost.

B DATA PROVENANCE COMPUTATION
Formally, we de�ne element-wise data provenance speci�cation for a
tensor operator op as a function that maps from any element in the
output tensor to a set of elements in the input tensors. Speci�cally,
consider Y = f (X1, · · · , Xn , c1, · · · , cm), where f is a function that
transforms n input tensors X1, · · · , Xn to an output tensor Y using

https://arxiv.org/abs/2003.09040
https://arxiv.org/abs/2003.09040
https://arxiv.org/abs/2003.09040
https://doi.org/10.1145/3035918.3058738
https://doi.org/10.1145/3035918.3058738
https://doi.org/10.1145/2983990.2984030

UIST ’22, October 29-November 2, 2022, Bend, OR, USA

Algorithm 1: Tesnfor transformation synthesis algorithm.
Input: A set of input-output tensor examples E = {(Ii , Oi)}, a

natural language description N , a set of tensor operators OP
where each operator is associated with a weight, a set of
user-provided constants C , a set of desired operators D , a set
of undesired operators U

Output: A tensor transformation program P such that
8(Ii ,Oi)2E P (Ii) = Oi .

1 OP I���������O�������C����();
2 OP U�����C����B�E������(OP, E);
3 OP U�����C����B�NL(OP, N);
4 OP U�����C����B�P���(OP, D);
5 V C�����I������V�����(C, E);
6 for T = 1, 2, · · · do
7 forall op 2 OP do
8 n op .ar it� ; w op .wei�ht ;
9 forall aÆ = [a1, a n

2, · · · , an] 2 V s.t.Õ
T = w + ai .i wei�ht and aÆ is valid arguments for op do

10 � E������(op, aÆ) ;
11 if � < V then
12 � .wei�ht T ;
13 � .pro� op(a1 .pro�, · · · , an .pro�);
14 V V [� ;
15 if � .pro� satis�es E then
16 return � .pro�

m additional non-tensor parameters c1, · · · , cm . The element-wise
data provenance speci�cation S for f would be of the form:

S(· · · · · ·)(v) |, u) [, , , , v], , B {(Xi , Y is f compute Y X1 Xn c1 cm d from Xi [u]}.
Here, v is a vector (of indices) denoting the position of an element
in the output tensor Y , and u is the position of an element in the
input tensor Xi . This equation means computing the element at
position v of Y “uses” the element at position u in Xi .

Let us illustrate this using the following example. Consider a
TensorFlow function tf.roll(X, shift=s, axis=a) which shifts
the tensor elements on a speci�ed dimension. For instance, given
inputs X = [[1, 2, 3, 4], [8, 6, 4, 2]] and s = 1, axis = 1, it gives output
Y = [[4, 1, 2, 3], [2, 8, 6, 4]]. Here, tf.roll shifts each element by
1 along axis 1. The following equations describe the provenance
relationship in detail for this tf.roll operator.

S(roll,Y ([]) {[]} ([]) {[]}, ,X ,1,1) 0 0 = 0, 3 S(roll,Y , , ,X ,1,1) 1 0 = 1 3
S(,r ll, , ,o Y X 1 ([, ,1) 0 1]) = {[0 0]}, S(roll,Y ,X ,1 [,1)([1 1]) = { 1, 0]}
S(roll Y 0,X 1 1)([2]) {, , , , = [0, 1]} S(roll,Y ([]) {[]}, , ,X 1,1) 1 2 = 1, 1
S(,roll,Y ,X ,1,1)([0 3]) = {[0, 2]} S(roll,Y ,X ,1,1)([1, 3]) = {[1, 2]}
More generally, the provenance speci�cation is encoded symboli-

cally in INTENT. For instance, the symbolic provenance speci�cation
for tf.roll is shown as follows.
S(roll ([· · ·, , ,Y X ,s,a) �1 ,�a , · · · ,�l])

B {(X , [�1, · · · , (�a � s)%X .shape[a], · · · ,�l])}
This equation speci�es that the � a-th� �a -th element on the dimension
in Y is computed using the (�a � s)%X .shape[a] -th element on
the a-th dimension from X .

Zhanhui Zhou, Man To Tang, Qiping Pan, Shangyin Tan, Xinyu Wang, and Tianyi Zhang

To reduce the manual e�ort of writing data provenance speci-
�cations, we used the automatic di�erentiation of TensorFlow to
automatically generate provenance for 59 out of 101 TensorFlow
operators that are used in INTENT (Appendix C). We brie�y explain
how this automated generation process works as follows.

Suppose f : m⇥n qR pR ⇥ ! is a di�erentiable TensorFlow func-
tion and X m nR ⇥ 2 is a tensor input. First, we obtain the output
tensor f (X). Then, if we want to know the provenance of f (X)[v],
we can propagate the target output element f (X)[v] through the
di�erentiable function f to derive the gradient with respect to X

@ f (X)[v] n
D m⇥= 2 R

@X
If D[u] , 0, f (X)[v] depends on X [u] and therefore a data prove-
nance is derived.

S(f)(v) = {u | D[u] , 0}
On the other hand, since most of the remaining operators are dis-

crete (such as tf.argmax), we manually write their speci�cations.
This is because automatic di�erentiation does not always work
for discrete operators. To reduce this manual e�ort, we grouped
similar TensorFlow functions into classes and manually wrote the
speci�cation for each class. These classes are listed in Appendix D.

C DIFFERENTIABLE TENSORFLOW
FUNCTIONS

(*) mark means the function is not di�erentiable w.r.t this input
tensor, which will be handled specially.

tf.abs(x)
tf.add(x, y)
tf.boolean_mask(tensor, mask)
tf.broadcast_to(input, shape)
tf.divide(x, y)
tf.exp(x)
tf.expand_dims(input, axis)
tf.gather(params, indices)
tf.gather(params, indices, axis, batch_dims)
tf.math.cumsum(x, axis)
tf.math.cumsum(x, axis, exclusive=True)
tf.math.divide_no_nan(x, y)
tf.math.negative(x)
tf.math.reciprocal(x)
tf.math.reciprocal_no_nan(x)
tf.math.segment_max(data, *segment_ids)
tf.math.segment_mean(data, *segment_ids)
tf.math.segment_min(data, *segment_ids)
tf.math.segment_prod(data, *segment_ids)
tf.math.segment_sum(data, *segment_ids)
tf.math.unsorted_segment_max(

data, *segment_ids, num_segments)
tf.math.unsorted_segment_mean(

data, *segment_ids, num_segments)
tf.math.unsorted_segment_min(

data, *segment_ids, num_segments)
tf.math.unsorted_segment_prod(

data, *segment_ids, num_segments)
tf.math.unsorted_segment_sum(

INTENT: Interactive Tensor Transformation Synthesis UIST ’22, October 29-November 2, 2022, Bend, OR, USA

data, *segment_ids, num_segments)
tf.math.squared_difference(x, y)
tf.matmul(a, b)
tf.maximum(x, y)
tf.minimum(x, y)
tf.multiply(x, y)
tf.pad(tensor, paddings, mode=�CONSTANT�)
tf.pad(tensor,

paddings, mode=�CONSTANT�, constant_values)
tf.pad(tensor, paddings, mode=�REFLECT�)
tf.pad(tensor, paddings, mode=�SYMMETRIC�)
tf.reduce_max(input_tensor)
tf.reduce_max(input_tensor, axis)
tf.reduce_mean(input_tensor)
tf.reduce_mean(input_tensor, axis)
tf.reduce_min(input_tensor)
tf.reduce_min(input_tensor, axis)
tf.reduce_prod(input_tensor, axis)
tf.reduce_sum(input_tensor)
tf.reduce_sum(input_tensor, axis)
tf.reshape(tensor, shape)
tf.reverse(tensor, axis)
tf.roll(input, shift, axis)
tf.sort(values, axis)
tf.sort(values, axis, direction=�DESCENDING�)
tf.sqrt(x)
tf.square(x)
tf.squeeze(input)
tf.squeeze(input, axis)
tf.subtract(x, y)
tf.tensordot(a, b, axes)
tf.tile(input, multiples)
tf.transpose(a)
tf.transpose(a, perm)
tf.where(condition)
tf.where(condition, x, y)

D SPECIFICATION CLASSES
BROADCASTABLE

tf.equal(x, y)
tf.greater(x, y)
tf.greater_equal(x, y)
tf.not_equal(x, y)

STACKLIIKE

tf.add_n(inputs)
tf.concat(values, axis)
tf.stack(values, axis)

ALONGAXIS

tf.argmax(input, axis)
tf.argmin(input, axis)

ALONGSEG

tf.math.segment_max(*data, segment_ids)
tf.math.segment_mean(*data, segment_ids)
tf.math.segment_min(*data, segment_ids)
tf.math.segment_prod(*data, segment_ids)
tf.math.segment_sum(*data, segment_ids)
tf.math.unsorted_segment_max(

*data, segment_ids, num_segments)
tf.math.unsorted_segment_mean(

*data, segment_ids, num_segments)
tf.math.unsorted_segment_min(

*data, segment_ids, num_segments)
tf.math.unsorted_segment_prod(

*data, segment_ids, num_segments)
tf.math.unsorted_segment_sum(

*data, segment_ids, num_segments)

ARGSORT

tf.argsort(values, axis, stable=True)
tf.argsort(

values, axis, direction=�DESCENDING�, stable=True)

CONDITION

tf.argsort(

tf.boolean_mask(tensor, mask)
values, axis, direction=�DESCENDING�, stable=True)

ELEMENTWISE

tf.cast(x, dtype)
tf.clip_by_value(t, clip_value_min, clip_value_max)
tf.constant(value)
tf.math.ceil(x)
tf.math.floor(x)
tf.round(x)
tf.sign(x)

NO-TENSOR-INPUT

tf.eye(num_rows)
tf.eye(num_rows, num_columns)
tf.eye(num_rows, dtype)
tf.fill(dims, value)
tf.one_hot(indices, depth)
tf.ones(shape)
tf.ones_like(input)
tf.range(start)
tf.range(start, limit, delta)
tf.zeros(shape)
tf.zeros_like(input)

OTHERS

tf.gather_nd(params, indices)
tf.gather_nd(params, indices, batch_dims)
tf.math.bincount(arr)
tf.math.count_nonzero(input)
tf.math.count_nonzero(input, axis)
tf.scatter_nd(indices, updates, shape)

UIST ’22, October 29-November 2, 2022, Bend, OR, USA Zhanhui Zhou, Man To Tang, Qiping Pan, Shangyin Tan, Xinyu Wang, and Tianyi Zhang

tf.searchsorted(
sorted_sequence, values, side=�left�)

tf.searchsorted(
sorted_sequence, values, side=�right�)

tf.sequence_mask(lengths)
tf.sequence_mask(lengths, maxlen)

tf.shape(input)
tf.tensor_scatter_nd_update(

tensor, indices, updates)
tf.unique_with_counts(x)
tf.unstack(value, axis)

	Abstract
	1 Introduction
	2 Related Work
	2.1 Programming-by-Example Systems
	2.2 Interaction Support for PBE Systems

	3 Usage Scenario
	4 Tool Design and Implementation
	4.1 Multi-Modal Tensor Transformation Synthesis
	4.2 Interactive Dataflow Visualization with Element-wise Data Provenance
	4.3 In Situ Program Editing and Validation

	5 User Study
	5.1 Participants
	5.2 Tasks
	5.3 Protocols

	6 Results
	6.1 User Performance
	6.2 User Confidence and Cognitive Overhead
	6.3 User Ratings of Individual Features
	6.4 User Preference and Feedback

	7 Discussion
	7.1 Design Implications
	7.2 Handling Multi-Dimensional Tensors
	7.3 Target User Groups and Use Cases
	7.4 Limitations and Future Directions

	8 Conclusion
	Acknowledgments
	References
	A Synthesis Algorithm
	B Data Provenance Computation
	C Differentiable Tensorflow Functions
	D Specification Classes

