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ABSTRACT 
There is a growing interest in adopting Deep Learning (DL) given 
its superior performance in many domains. However, modern DL 
frameworks such as TensorFlow often come with a steep learning 
curve. In this work, we propose INTENT, an interactive system that 
infers user intent and generates corresponding TensorFlow code 
on behalf of users. INTENT helps users understand and validate the 
semantics of generated code by rendering individual tensor trans-
formation steps with intermediate results and element-wise data 
provenance. Users can further guide INTENT by marking certain 
TensorFlow operators as desired or undesired, or directly manip-
ulating the generated code. A within-subjects user study with 18 
participants shows that users can �nish programming tasks in Ten-
sorFlow more successfully with only half the time, compared with a 
variant of INTENT that has no interaction or visualization support. 

CCS CONCEPTS 
• Human-centered computing ! Human computer interac-
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1 INTRODUCTION 
The use of Deep Learning (DL) has grown rapidly in the past decade. 
Due to its superior performance, DL has found its application in 
various domains and continued to fascinate us with new applica-
tions such as cloud migration [6]. Thanks to the development of 
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modern DL frameworks such as TensorFlow, DL has become more 
accessible to regular programmers [12]. However, there is still a 
steep learning curve for regular programmers to adopt DL in their 
own practices. A recent survey found that programmers encoun-
tered a variety of hurdles when learning machine learning, e.g., 
lack of conceptual and mathematical understanding, cryptic API or 
syntax design, etc. [3]. 

Indeed, DL programming is quite di�erent from traditional pro-
gramming. Unlike traditional programming, tensors (i.e., multi-
dimensional arrays) are the �rst-class citizen in DL computation, 
including not only internal model computation but also data pre-
processing and model performance calculation. For instance, a pro-
grammer needs to use special tensor operators such as tf.where 
and tf.cond in TensorFlow to perform conditional operations on 
a tensor, rather than using traditional if-else statements. While 
tensors are a natural and e�cient representation of massive, high-
dimensional data in DL, writing code to operate on tensors re-
quires solid linear algebra and calculus knowledge. Furthermore, 
modern DL frameworks de�ne a large number of tensor transfor-
mation operators (e.g., about 500 in TensorFlow) but su�er from 
insu�cient documentation and poor API design [3, 53, 55]. For 
example, some tensor operators have cryptic names that do not 
match the underlying computation, e.g., tf.eye for constructing 
an identity matrix. Some operators have similar names but dif-
ferent functionalities, such as tf.argmax vs. tf.reduce_max and 
tf.ones vs. tf.ones_like. These issues lead to signi�cant design 
barriers and selection barriers [18] in DL programming. 

In this work, we propose INTENT, an interactive program syn-
thesis system that generates tensor transformation programs in 
TensorFlow on behalf of users. Users can specify a desired transfor-
mation in natural language and supplement input-output examples 
to illustrate the transformation. INTENT extends an existing syn-
thesis algorithm from TF-Coder [44] to handle such multi-modal 
user speci�cations. Speci�cally, it infers the weights of tensor op-
erators using a combination of an NLP model and a multi-layer 
perceptron. Then, it performs a bottom-up enumerative search to 
synthesize a tensor transformation program that satis�es the given 
examples. Based on previous synthesis results, users can further 
mark desired or undesired operators to adjust their weights and 
guide the synthesizer towards promising synthesis directions. 

One core usability challenge addressed by INTENT is the chal-
lenge of understanding and validating synthesized code, as iden-
ti�ed by prior work [11, 22, 37]. This challenge is exacerbated in 
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DL programming due to cryptic API names and sophisticated lin-
ear algebraic operations on tensors. To address this challenge, we 
designed a novel interactive visualization that renders the inter-
mediate steps of a tensor transformation program in a data�ow 
diagram. The data�ow diagram is further augmented with element-
wise data provenance, through which users can trace the �ow of 
speci�c elements inside a tensor. 

Sometimes, a synthesizer may have generated a solution close 
to the �nal solution. However, due to the exponentially-grown 
search space, users often �nd it hard to guide the synthesizer to 
generate the �nal solution from this point. This is dubbed the last 
mileage problem in program synthesis by prior work [52]. In such 
cases, users prefer to directly edit the synthesized code instead. 
INTENT supports this need with an in situ program editing and 
validation feature, so users do not have to switch to an external 
Python environment to edit and test the code. 

To evaluate the usefulness of INTENT, we conducted a within-
subjects user study with 18 programmers with di�erent levels of 
ML experience. We created a comparison baseline of INTENT by 
disabling the interactive visualization and validation support. The 
result shows that participants using INTENT �nished the assigned 
TensorFlow coding tasks more successfully with only half of the 
time on average. Speci�cally, when using the baseline tool, 8 partic-
ipants switched to a Jupyter notebook on Google Colab and tested 
some variations of synthesized code, while no participants did that 
when using INTENT. In the post-study survey, participants felt more 
con�dent about the synthesis results—6.72 vs. 5.44 on average in 
a 7-point Likert scale con�dence rating question (t-test: p=0.005). 
These results imply that augmenting intelligent code generation 
systems with interactive visualization and validation support in 
tightly-coordinated views can signi�cantly improve programmer 
productivity when writing TensorFlow code. 

Overall, we make the following contributions: 
• A tensor transformation synthesis system with rich inter-
action support for non-expert DL programmers. We have 
open-sourced our system on GitHub.1 

• A novel data�ow visualization of tensor transformation code 
with element-wise data provenance to help users understand 
tensor transformation code. 

• A within-subjects study with 18 programmers to demon-
strate that INTENT improves both the programming produc-
tivity and programmers’ con�dence on program synthesis. 

2 RELATED WORK 
2.1 Programming-by-Example Systems 
Programming-by-Example (PBE), also termed as Programming-by-
Demonstration (PBD), is a technique that automatically generates 
programs from user-provided examples. There is a long history 
of developing PBE systems to support non-experts in writing pro-
grams [20, 27]. In 1986, Myers and Buxton developed one of the �rst 
PBE systems called Pedriot, which allowed users to create UI wid-
gets such as menus and scrollbars by demonstration [35]. Various 
PBE systems have been proposed since then [4, 5, 7, 9, 10, 17, 21, 23– 
26, 28, 31–34, 36, 43, 48, 49, 51, 52, 54]. In this work, we investigate 

1https://github.com/ZHZisZZ/INTENT 

tensor transformation synthesis, which is a new but increasingly 
important synthesis problem. Nowadays, a growing number of peo-
ple want to adopt deep learning in their own practices. However, 
authoring programs using deep learning frameworks such as Ten-
sorFlow is not easy. To the best of our knowledge, the only work 
tackling this problem is TF-Coder [44]. TF-Coder is designed as 
a fully automated tool, while INTENT brings new interactive sup-
port to address known usability issues in program synthesis. First, 
INTENT provides a novel data�ow visualization with intermediate 
values and element-wise provenance to help users understand syn-
thesized TensorFlow code. By contrast, TF-Coder renders the raw 
code. Second, INTENT allows users to directly modify synthesized 
code and test it with new examples within the interface, so users 
do not have to switch to an external IDE and set up a testing en-
vironment. Finally, INTENT supports richer speci�cation modality 
and �ne-grained control of the synthesis process by specifying 
TensorFlow operators as desired or undesired. 

2.2 Interaction Support for PBE Systems 
Existing PBE systems adopt di�erent kinds of interaction design 
to address common usability challenges in PBE, such as program 
comprehension di�culty, lack of con�dence, and ambiguous user 
speci�cations. The most related interaction support to our work 
is communicating synthesized code to users in a more compre-
hensible and user-friendly way. For instance, Wrex [7] converts a 
synthesized program, which is initially represented in an arcane 
domain-speci�c language, to concise, readable Python code that 
data scientists are familiar with. FlashProg [31] translates synthe-
sized data extraction programs to English-like descriptions. Pur-
suit [34] employs a comic strip metaphor to visualize data object 
changes (e.g., �le copy) in synthesized shell scripts. Rousillon [4] vi-
sualizes synthesized web scraping programs in a block-based visual 
programming language called Scratch [42]. Compared with prior 
work, INTENT adopts data�ow visualization to render intermediate 
steps in a tensor transformation program. Since tensor transfor-
mation involves high-dimensional arrays and sophisticated linear 
algebra computation, INTENT further augments traditional data�ow 
visualization with element-wise data provenance to render how 
individual elements in a tensor are computed. 

Another related interaction support is multi-modal speci�cation. 
Since examples are inherently incomplete, modern PBE systems 
often support additional speci�cation modalities, such as natural 
language descriptions [5, 16, 30, 40, 41] and voice commands [24– 
26], to elicit more complete speci�cations and reduce ambiguity. 
For example, Jigsaw [16] synthesizes Python code using the Pandas 
APIs from natural language descriptions and input-output exam-
ples. Unlike INTENT, Jigsaw focuses on automatically detecting and 
�xing incorrect code generated by a language model. 

The feature that allows users to mark certain TensorFlow opera-
tors as desired or undesired in INTENT is inspired by Peleg et al. [39]. 
In [39], Peleg et al. proposed an interaction model that allows users 
to specify which parts of a synthesized program must be included 
or excluded in the next synthesis iteration and demonstrated its 
e�ectiveness in several domains. This feature also resembles the 
touch modality in APPINITE [25] and PUMICE [26], in which users 
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Figure 1: After adding two input-output examples (�1 ) and a natural language description (�2 ), INTENT automatically generates 
three TensorFlow programs that match the given examples (�3 ). The data�ow diagram (�4 ) renders a step-by-step transfor-
mation with intermediate results on the given tensor. 

can touch an area in a mobile screen to pinpoint which UI widget 
the synthesizer should focus on. 

3 USAGE SCENARIO 
Suppose Kyle is a ML enthusiast who just started using TensorFlow. 
As part of a data preprocessing step, Kyle needs to set the maximum 
value in each tensor to zero. Kyle knows how to reset maximum 
values in a tensor using a loop in Python. However, since his tensors 
are very large, iterating dimensions in a tensor is not e�cient. Kyle 
wants to use TensorFlow APIs to perform the transformation since 
those vectorized APIs are highly optimized, especially for GPU 
parallelization. Kyle searches online and �nds a TensorFlow API 
called tf.while_loop, which seems to �t his need. After careful 

examination, Kyle �nds it hard to use this API, since it requires 
writing two lambda expressions to control the loop, and Kyle has 
never written any lambda expressions before. Finally, Kyle decides 
to try INTENT and see if it can help him generate the code he wants. 

Kyle �rst adds a natural language description of the desired 
transformation in INTENT, as shown in Figure 1 �2 . He also adds 
a concrete example to illustrate this transformation (Figure 1 �1 ). 
After Kyle clicks the Synthesize button, the synthesizer quickly 
returns three programs that satisfy the given example (Figure 2). 
Some API calls in these programs are easy to understand, such as 
tf.subtract and tf.multiply. However, Kyle cannot easily tell 
the meaning of other API calls, such as tf.gather and tf.one_hot. 
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Figure 2: The synthesizer returns three TensorFlow transfor-
mation programs in the �rst iteration. 

Figure 3: The data�ow diagram of the �rst program in Fig-
ure 2 with on-demand data provenance 

In the meantime, Kyle notices that a data�ow diagram (Figure 3) 
is rendered for the �rst program. Kyle also notices that tf.gather is 
computed �rst in the data�ow. This operation uses the input tensor 
in his example as the value for both the arguments of tf.gather. 
When he hovers the mouse over the tf.gather node, a tooltip 
appears to show a description of tf.gather. Based on the tooltip 
alone, Kyle makes a guess that the output of tf.gather is computed 
by gathering elements from the params argument based on the 
elements in the indices argument. Nevertheless, he is still unclear 
how exactly this is done, e.g., which element moves to where. 

Figure 4: The data�ow diagram of the third program in Fig-
ure 2 with on-demand data provenance 

Kyle clicks on the �rst element in the output tensor of tf.gather. 
Then two red dotted lines appear, pointing to the 4th element in the 
params argument and the 1st element in the indices argument. 
Kyle also notices that the 4th element in params has the same value 
as the 1st element in the output tensor, and the 1st element in 
indices happens to be the index of the 4th element in params. 
Kyle then clicks on the 4th element in the output tensor. The two 
red dotted lines show that this element has the same value as the 
2nd element in the params argument and the connected element 
in indices is the index of the 2nd element in params. Now, Kype 
con�rms that the output tensor consists of the elements in params 
but these elements are reordered based on the elements in indices. 
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Figure 5: Kyle provides two additional test cases to verify the current programs are correct by clicking the plus icon. 

Figure 6: After Kyle modi�es the last program, INTENT au-
tomatically evaluates it on the given examples and reveals 
that this edit leads to failures on all three examples. 

Kyle then looks at the following two operations, tf.multiply 
and tf.subtract, in the data�ow diagram. He realizes that this 
program just happens to transform the input tensor to the expected 
output but has nothing to do with setting the max value in a tensor 
to zero. The second program is the same as the �rst one with the 
arguments of tf.multiply swapped. Kyle moves on to investigate 
the last program in Figure 2. This program looks correct at �rst 
sight, since it uses tf.arg_max and tf.reduce_max, both of which 
look related to computing the max value of a given tensor. But 
Kyle is not sure what tf.one_hot does. Kyle turns to its data�ow 
diagram (Figure 4) and �nds that tf.one_hot converts the input 
tensor into a matrix that has the depth of the max value computed 
by tf.reduce_max. This looks wrong to Kyle. 

Although the third program is incorrect, Kyle �nds the operation, 
tf.reduce_max, quite promising. To guide the synthesizer towards 
this direction, Kyle marks tf.reduce_max as a desired operation 
(Figure 1 �2 ). He also marks tf.gather and tf.one_hot as unde-
sired, since these operations seem irrelevant to his goal. Then he 
clicks the Synthesize button again. 

Given the feedback from Kyle, the synthesizer generates an-
other set of three programs (Figure 1 �3 ) in the second iteration. 
Kyle immediately noticed the last program, which starts with a 
tf.where operation followed by tf.greater and tf.reduce_max. 
These three operations together look quite promising to him. Kyle 

looks at its the data�ow diagram (Figure 1 �3 ) to con�rm its behav-
ior. Kyle �nds that this program �rst computes the max value of 
the input tensor and then compares the max value with the input 
tensor using tf.greater. Then it sets the max values to False 
and other values to True. These boolean values are then used as 
the condition in tf.where to select values from the original input 
tensor and a tensor with all zeros. In this way, all the max elements 
are replaced with 0. 

Kyle wants to double-check this program on some other exam-
ples. Instead of setting up a new Python environment and con�gur-
ing TensorFlow to test the generated program, Kyle uses the quick 
validation feature provided by INTENT. He adds two additional 
test cases (Figure 5). Then INTENT automatically runs the three 
generated programs on the new test cases. He also tweaks the last 
program by changing tf.greater to tf.equal but �nds that the 
modi�ed program fails on all three examples (Figure 6). Thus, Kyle 
is convinced that the original programs generated is correct. This 
interactive experience helps Kyle understand how the generated 
program works internally and gives him con�dence on its behavior. 

4 TOOL DESIGN AND IMPLEMENTATION 
Figure 7 gives an overview of the system architecture. INTENT 
contains three major components—(1) a multi-modal synthesizer 
for tensor transformation (Section 4.1), (2) an interactive data�ow 
visualization that facilitates program comprehension (Section 4.2), 
and (3) an in situ program validation feature that allows users to 
quickly validate the correctness of a program (Section 4.3). 

4.1 Multi-Modal Tensor Transformation 
Synthesis 

INTENT extends the bottom-up enumerative synthesis algorithm in 
TF-Coder [44] to support three types of speci�cations: 

• Input-output examples. Users can specify input-output tensors 
to demonstrate the desired transformation in the speci�cation 
panel (Figure 1 �2 ). Di�erent from TF-Coder[44], which only 
accepts one example, INTENT allows multiple examples. Since 
di�erent examples may specify di�erent aspects of the intended 
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Figure 7: System Architecture 

program behavior, we designed a ranking mechanism to balance 
multiple examples (detailed in Appendix A). 

• Natural-language descriptions. Input-output examples are known 
as partial speci�cations, since they only express speci�c behav-
iors on speci�c inputs. Therefore, natural language is often used 
to allow users to describe the overall behavior of the desired 
program. INTENT supports natural language descriptions as a 
complementary speci�cation modality to input-output examples; 
this is inherited from TF-Coder [44]. 

• Desired or undesired operators. Sometimes, users may roughly 
know which operators to use but do not know precisely how to 
use them together. Furthermore, when a synthesizer generates a 
wrong program, it is helpful if the synthesizer can be informed 
which operators are incorrect and should not be considered again 
in following synthesis iterations. Such hints have been shown ef-
fective in guiding the synthesis process [39]. Our interface allows 
users to either directly type in desired or undesired operators in 
the speci�cation panel (Figure 1 �2 ), or right-click on an operator 
node in the data�ow diagram and mark it as desired or undesired. 
This new modality is not supported by TF-Coder [44]. 

Appendix A describes the multi-modal synthesis algorithm in 
detail. Here we brie�y summarize how it works. Similar to TF-
Coder [44], INTENT uses a multilayer perceptron (MLP) model to 
rank tensor operators in TensorFlow based on input-output exam-
ples and a naive Bayes model to rank tensor operators based on 
natural language descriptions. These two rankings are combined 

to compute the cost of each operator. The higher a tensor operator 
ranks, the lower its cost is. If a user provides desired or undesired 
operators, INTENT will adjust the cost of these operators accord-
ingly. Given these weighted operators, INTENT constructs tensor 
transformation programs in a bottom-up manner. That is, it enu-
merates smaller programs �rst and then uses these programs as 
“building blocks” to construct bigger ones. The program construc-
tion process prioritizes programs with small costs (i.e., programs 
with highly ranked operators and few operators). This process con-
tinues until the �rst K programs that satisfy all given examples are 
found, where K is speci�ed by the user. 

4.2 Interactive Data�ow Visualization with 
Element-wise Data Provenance 

Previous studies show that a major barrier to adopting program 
synthesis in practice is the di�culty of understanding and validat-
ing synthesized programs [11, 38, 54]. This challenge is exacerbated 
in the domain of tensor transformation since tensor transformation 
often involves sophisticated linear algebra computations, and Ten-
sorFlow APIs are known to be hard to comprehend. To help users 
understand synthesized tensor transformation programs, INTENT 
visualizes a program as a data�ow diagram, which visualizes how 
the input tensors are transformed by each operator eventually to the 
output. Since all intermediate tensors are shown step by step, the 
gap between the input and output tensors is greatly alleviated (Fig-
ure 3). Furthermore, as tensors are essentially multi-dimensional 
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arrays, users might wonder how a speci�c element in a tensor is 
computed. To support this need, we designed element-wise data 
provenance (the red dotted lines in Figure 3). Users can click an 
element of interest in a tensor and trace which elements in other 
tensors are used to compute it. 

To construct the data�ow diagram of a program, INTENT �rst 
parses it to an Abstract Syntax Tree (AST) and traverses the AST 
to identify each tensor operator in the program. INTENT performs 
postorder traversal since the tensor operators executed �rst ap-
pear deeper in the AST than those executed later. The AST node 
of a tensor operator is then converted to a node in the data�ow 
diagram. INTENT computes data provenance in two ways. First, 
INTENT automatically generates the data provenance of 59 di�eren-
tiable operators using the automatic di�erentiation of TensorFlow. 
Given a target element in an output tensor, INTENT computes the 
gradient of each element in the input tensor. If the gradient of an 
input element is not zero, it means the output element depends 
on it and therefore a data provenance can be derived. Second, we 
manually write speci�cations to compute the data provenance of 
the remaining 52 operators. A formal description of the data prove-
nance computation method is provided in Appendix B. 

4.3 In Situ Program Editing and Validation 
As observed in prior work [52], users often get inspired by partially 
correct programs generated by a synthesizer. In such cases, instead 
of providing feedback to a synthesizer and waiting for it to regener-
ate the program, users prefer to directly edit the synthesized code 
and test its correctness. For example, suppose a user wants to write 
a program that sets all maximum values in the input tensor to zeros 
and she provides an input-output example below. 

in:[3, 1, 4, 5, 1, 8] ! out:[3, 1, 4, 5, 1, 0] 

INTENT will generate a program that is very close to the correct 
program, as shown below. 

tf.multiply(in, tf.cast(tf.greater( tf.constant(8) , in), 
tf.int32)). 

This solution is wrong since it contains a hardcoded value of 
8, which happens to be the maximum value in the given input 
tensor. Some users, especially those experienced with TensorFlow, 
may spot this mistake and come up with a quick �x that replaces 
tf.constant(8) with tf.reduce_max(in). 

tf.multiply(in, tf.cast(tf.greater( tf.reduce_max(in) , in), 
tf.int32)) 

Then, the user could validate the correctness of this modi�ed pro-
gram by running it against the input-output examples or some new 
test cases. Without INTENT, they have to open a Python IDE or a 
Jupyter notebook with TensorFlow pre-installed and then copy and 
paste the modi�ed program as well as test cases to run it. INTENT 
eliminates this hassle by incorporating a partial program validation 
component. This component automatically generates a complete 
Python program with test stub to run a modi�ed program with 
user-provided inputs from the speci�cation panel and compares 
the output with user-provided outputs. 

5 USER STUDY 
To evaluate the usefulness and usability of INTENT, we conducted 
a within-subjects user study with 18 programmers with di�erent 
levels of machine learning expertise. Given that INTENT is built 
upon TF-Coder [44], we choose TF-Coder as a comparison baseline. 
Since TF-Coder does not have an interface, we adapted the user 
interface of INTENT by disabling the new features we proposed to 
enable a fair comparison. Speci�cally, we disabled the data�ow vi-
sualization, element-wise data provenance, in situ program editing 
and validation, and the user annotation feature. 

5.1 Participants 
We recruited 18 CS graduate students (1 female, 17 male) at Purdue 
University using the department graduate mailing list. Most partic-
ipants had adequate training in programming. 8 had more than 5 
years of programming experience, 9 had 2 to 5 years, 1 had only 
1 year. However, they had diverse experience with TensorFlow. 4 
participants said that they were familiar with TensorFlow and had 
used it many times. 14 participants said they knew TensorFlow but 
only used it a few times. As a compensation for their participation, 
each participant received a $25 Amazon gift card. 

5.2 Tasks 
To re�ect how INTENT is used in real-world programming scenarios, 
we selected tensor transformation tasks from the TF-Coder bench-
mark [44]. Since many tasks in the TF-Coder benchmark were 
sampled from Stack Over�ow, we eliminated those tasks that users 
can easily �nd via Google Search. This was to prevent users from 
accidentally �nding a correct solution online since we allowed par-
ticipants to search online during the study. Eventually, we selected 
three tasks with di�erent levels of di�culty. 

The �rst task is considered easy to solve; the transformation 
is reasonably intuitive, and both synthesizers can solve it quickly 
in one iteration. Compared with the �rst task, the other two are 
considered harder: both synthesizers often give some plausible 
solutions that cannot handle some corner cases in the �rst iteration, 
thus requiring users to provide counterexamples to disambiguate 
their intent. The third task is considered the hardest since it involves 
a rarely used TensorFlow operator, tf.boolean_mask. When users 
see this solution, many may immediately consider it incorrect since 
it uses an operator that seems irrelevant to the task. 

For each task, we created a task description in natural language 
and also added an input-output example to illustrate the task. Dur-
ing the study, we encouraged participants to use their own language 
and examples as input for the assigned synthesizer. Note that there 
exist multiple correct solutions for each task. We considered a par-
ticipant to successfully complete the task once they reached any 
of the correct solutions. The natural language descriptions and 
input-output examples are listed below. 
Task 1. Divide the �rst tensor (i.e., input1) by the second ten-
sor (i.e., input2), but when dividing by 0, return the numerator. 
[ Post 53643339 ] 2 

input1=[3.0, 1.0, 4.0, 5.0, 2.0, 8.0, -6.0, -7.0] 

2This post has been deleted from Stack Over�ow. We �nd a snapshot of it on Web 
Archive and provide the link to the snapshot instead. 

https://web.archive.org/web/20181221032607/https://stackoverflow.com/questions/53643339/tensorflow-overriding-tf-divide-to-return-the-numerator-when-dividing-by-0
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input2=[0.5, 0.0, -2.0, 0.0, 1.0, -1.0, 0.0, 2.0] 
output=[6.0, 1.0, -2.0, 5.0, 2.0, -8.0, -6.0, -3.5] 

solution=tf.where(tf.cast(in2, tf.bool), x= 
tf.divide(in1, in2), y=in1) 

Task 2. Use the �rst input tensor (i.e., input1) as the boolean condi-
tion for multiplying by -10 with the second tensor. For example, if 
the �rst element in input1 is 1, then the �rst element in input2 will 
not be multiplied by -10. On the other hand, if the �rst element of 
input1 is 0, then the �rst element in input2 will be multiplied by 
-10. [ From an internal Google forum ] 

input1=[1, 0, 0, 1, 0] 
input2=[1, 2, 3, 4, 5] 
output=[1, -20, -30, 4, -50] 

solution=tf.multiply(in2, tf.gather( 
tf.constant((-10, 1)), in1)) 

Task 3. Select the values in the second tensor where the �rst tensor 
is greater than 1. [ Post 39045797 ] 

input1=[2, 1, 0, 1] 
input2=[3, 1, 2 ,1] 
output=[3] 

solution=tf.boolean_mask(in2, tf.greater(in1, 
tf.constant(1))) 

5.3 Protocols 
Each user study starts with an introduction and consent collection. 
Participants were assigned two tensor transformation tasks, one to 
be completed with INTENT and the other to be completed with TF-
Coder. To mitigate the learning e�ect, both task assignment order 
and tool assignment order were counterbalanced across participants. 
In total, 6 participants experienced each task in each condition. 
Before starting each task, participants �rst watched a tutorial video 
of the assigned synthesizer and spent about 5 minutes getting 
familiar with the assigned synthesizer. Then, they were given 20 
minutes to �nish the assigned task. A task was considered failed 
if participants did not �nd any solution after 20 minutes or if they 
provided a wrong solution. To simulate the real-world programming 
work�ow, participants were allowed to search online and refer to 
any online resources during the study. After completing each task, 
participants �lled out a post-task survey to give feedback. The 
post-task survey asked users what they liked or disliked about 
the assigned tool and what they wished to have. The survey also 
included a set of Likert-scale questions to ask users to rate the 
usefulness of key features in each assigned tool. To evaluate the 
cognitive load of �nishing a task with the assigned synthesizer, 
we included �ve NASA Task Load Index questions [13] as part of 
the post-task survey. After all tasks were completed, participants 
�lled out a �nal survey, where they directly compared the two 
synthesizers. We recorded each user study with the permission of 
the participants. A study took 64 minutes on average. 

6 RESULTS 
6.1 User Performance 
Table 1 shows participants’ performance on the three TensorFlow 
coding tasks using INTENT vs. TF-Coder. When using INTENT, all 18 
participants successfully completed the assigned tasks within the 
given time. By contrast, 14 of 18 participants successfully completed 
the assigned tasks when using TF-Coder. Speci�cally, when using 
TF-Coder, 1 participant provided a wrong program as their �nal 
solution, and 3 participants did not �nish the task within 20 minutes. 
Furthermore, when using INTENT, participants spent only half the 
time �nishing the assigned task compared with using TF-Coder. The 
average task completion time using INTENT is 5.8 minutes, while the 
average task completion time using TF-Coder is 11.0 minutes. The 
mean di�erence of 6.2 minutes is statistically signi�cant (unpaired 
t-test: t=4.11, df=25, p=0.0003). 

We analyzed the post-task survey responses and the recordings 
to understand why participants using INTENT performed better. 
First, we found that the data�ow visualization signi�cantly sped 
up the program comprehension process. Based on the recordings, 
all 18 participants using INTENT made heavy use of the data�ow 
visualization to understand the synthesized TensorFlow code. By 
contrast, participants using TF-Coder spent a lot of time reading 
o�cial TensorFlow documentation to understand the code. Over-
all, 14 out of 18 participants referred to online learning resources 
when using TF-Coder while only 3 participants did so when us-
ing INTENT. In the post-task survey, 15 of them strongly agreed 
that data�ow visualization helped them understand the synthesized 
code (Figure 10). P17 said, “I can see the explanation and the data�ow 
of the generated code, so I don’t need to think too much about the 
APIs.". 5 participants who tried INTENT before TF-Coder explicitly 
mentioned that they wished they could have the data�ow visual-
ization when using TF-Coder. P17 said “I cannot see the data �ow, 
modify the generated code, provide constraints compared with the 
�rst version, which is not convenient. And I need to search the API 
online to make sure my result is correct.” 

Second, 10 out of 18 participants marked certain operators as 
desired or undesired to guide the synthesizer towards the �nal 
solution. We observed that such feedback to the synthesizer signi�-
cantly reduced the synthesis time since it helped prune the search 
space of the synthesizer. As P17 said, “the ability to add constraints 
makes me help synthesize the program quickly and �exibly.” By 
contrast, when using TF-Coder, participants can only change the 
input-output examples to disambiguate their intent. In particular, 
6 TF-Coder users stopped tuning their examples in the middle of 
the task and tried to solve the task by themselves, searching for 
solutions online or coming up with their own solutions. 

Third, INTENT supports in situ program editing and validation, 
so users do not have to switch to an external test environment. 
When using TF-Coder, 8 participants opened a Jupyter notebook 
in Google Colab and manually edited and tested a synthesized 
program. By contrast, no participants switched to Google Colab 
or any IDE when using INTENT. P9 said, “[INTENT] felt more of a 
one-stop shop that helped me accomplish the task without having 
to use external stu� like trying out code locally myself or searching 
documentation online..” P14 said, “I can test my transformation in 
real-time which saves me a lot of time in testing.” In the post-task 

https://stackoverflow.com/questions/39045797/conditional-assignment-of-tensor-values-in-tensorflow
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Task 1 - Easy Task 2 - Medium Task 3 - Hard 
Control Experiment Control Experiment Control Experiment 

7 10 12 10 12 6 
8 4 8 4 12 4.5 
6 10 11 4 Incomplete 5.5 
12 3 Incomplete 6 10 4 
8 1.75 Incomplete 7.5 11.5 7.5 

2.5 5 7.5 7 12 4.5 
7.25 5.63 13.08 6.41 12.92 5.33 

Overall average time for all tasks combined 11.08 5.79 
Average Time 

Table 1: Task completion time. Incomplete means the participant did not �nish the assigned task within 20 min. Completion 
time colored in grey means the participant provided a wrong solution to the assigned programming task. 

survey, 4 participants mentioned that they spent a lot of e�ort 
validating the synthesized code when using TF-Coder. P5 said, “[I 
need] a convenient way to evaluate the synthesized program.” P2 said, 
“it would be great to have an integrated Python/TF session so that I 
can directly try the result in the real programming environment.” 

6.2 User Con�dence and Cognitive Overhead 
In the post-task survey, participants self-reported their con�dence 
in the synthesized code in a 7-point Likert scale question (1 means 
not con�dent at all and 7 means highly con�dent). As shown in Fig-
ure 8, participants reported higher con�dence when using INTENT, 
6.72 vs. 5.44 speci�cally. This mean di�erence of 1.28 is statistically 
signi�cant (unpaired t-test: t = -3.16, df = 20, p-value = 0.005). This 
con�dence improvement was largely attributed to a better under-
standing of synthesized code when using INTENT. P1 said, “the 
data�ow diagram provided a better guarantee of the correctness of 
the result.” P2 said, “the data�ow graph helps me better understand 
the synthesized expression and gives me higher con�dence about the 
result.” P15 said, “[INTENT] really helps me understand what the 
APIs are doing with the input, teach me what they do or con�rm my 
existing knowledge at its worst.” 

Since INTENT has more sophisticated features than TF-Coder, 
one may wonder if INTENT leads to more mental demand. After 
each task, participants self-reported the cognitive load of using the 
assigned tool in a NASA TLX questionnaire. As shown in Figure 9, 
participants felt less mental demand, e�ort, and stress when using 
INTENT. The reasons are two-fold. First, INTENT provides an intu-
itive data�ow visualization of a synthesized program, which renders 
individual steps and intermediate results. Thus, participants did not 
have to refer to external resources, such as TensorFlow API docu-
mentation, to understand the synthesized code. Second, with the 
quick validation feature in INTENT, participants no longer needed 
to switch to an external test environment to validate the correctness 
of synthesized code. P10 said, “when working with complex expres-
sions, it is indeed helpful to understand which function is contributing 
to which part of the computation. It feels very intuitive to validate 
the synthesized expression [with INTENT], which would have been 
overwhelming otherwise.” 

6.3 User Ratings of Individual Features 
In the post-task survey, participants rated the key features of IN�
TENT. Figure 10 shows the distribution of user ratings. We found 

Figure 8: The distribution of participants’ con�dence on the 
synthesis results when using INTENT vs. TF-Coder 

that the majority of participants were satis�ed with each feature in 
INTENT. Among all features, the data�ow visualization is the most 
appreciated feature. 14 of 18 participants strongly agreed that “it 
was helpful to see the data�ow diagram of synthesized code.” Further-
more, 13 participants agreed or strongly agreed that “it was helpful 
to see the element-wise data provenance.” Marking an operator as 
desired or undesired was the second most useful feature. 15 out 
of 18 participants agreed or strongly agreed that “it was helpful to 
mark transformation operators as desired or undesired in the data 
�ow diagram.” P7 said, “[I like INTENT better] because we can ad-
d/drop operations if I wanted to optimize the expression generated 
by the synthesizer.” In addition, 12 participants agreed or strongly 
agreed that “it was helpful to directly modify a synthesized program 
and get the instant feedback on test results.” P14 said, “I can test my 
transformation in real-time which saves me a lot time in testing.” P17 
said, “sometimes the generated code is just a little bit incorrect, it 
would be very helpful if I can modify it and then test it.” 

6.4 User Preference and Feedback 
All participants reported that they preferred to use INTENT when 
writing TensorFlow code. We coded participants’ responses to the 
question about what they like about INTENT. We identi�ed three 
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Figure 9: NASA Task Load Index Ratings. Entries with a star 
mean a statistically signi�cant di�erence between the con-
trol and experiment groups. 

themes. First, 17 participants mentioned INTENT helped them un-
derstand and validate the program easily. P8 said, “it allows me to 
know what exactly happens in each step of operation, thus increasing 
the system transparency and my understanding of the system.” P11 
said, “The data�ow graph with descriptions for each function is clear 
to understand. It makes me �nd the right solution quickly.” Second, 
5 participants pointed out that INTENT helped them validate the 
synthesis results. P9 said, “it helps me build a more accurate mental 
model to validate the correctness of code.” Third, 5 participants liked 
INTENT since it gives them more control over the synthesis process. 
P4 said, “giving desirable operations would (hopefully) mean faster 
inference of a small expression.” 

In the post-task survey, we also asked participants what addi-
tional features may help them better solve the task. 3 participants 
complained about the synthesis speed and hoped to see the progress 
of the synthesizer. 3 participants mentioned that it was tedious to 
come up with new examples or corner cases to validate a synthe-
sized program. They wished to have some automated test genera-
tion tools to facilitate the validation of synthesized code. Finally, 4 
participants suggested it would be helpful to provide a direct link 
to the o�cial documentation of each TensorFlow operator in the 
data�ow visualization for their convenience. 

7 DISCUSSION 
7.1 Design Implications 
The user study results suggest that interaction support for program 
comprehension and validation in the synthesis cycle can signi�-
cantly improve the productivity of the human-synthesizer team as 
well as users’ con�dence on a synthesizer. In the past, most research 
e�ort has been put into improving synthesis algorithms or applying 
program synthesis to new application domains. Our work shows 
that it is not su�cient to only optimize the synthesis algorithm 
without considering how users may make use of the synthesized 
code. Instead, we should treat a human user and a synthesizer as a 
team and optimize their collaborative performance. 

A program synthesizer is essentially an AI agent for program-
ming. Therefore, it su�ers from common usability issues of AI 

agents, e.g., lack of trust, lack of control, overreliance on AI, the 
interpretability challenge, miscommunication and misinterpreta-
tion, etc. [2, 8, 14, 19, 29, 46]. INTENT addresses the lack of trust 
and lack of control issues by (1) visualizing the intermediate steps 
in a synthesized program in a data�ow diagram with element-wise 
data provenance, (2) supporting in situ program editing and valida-
tion, and (3) allowing users to mark desired or undesired operators 
to guide the synthesis process. Based on the user study results, 
we found that without such interaction support, the task solving 
process was signi�cantly stagnated. 

The data�ow visualization is helpful for programming domains 
that involve heavy mathematical or sequential computation. For 
example, SQL query synthesis [47, 50] is another domain where 
the data�ow visualization can help one understand and validate 
synthesized code. Speci�cally, a SQL query can be visualized as 
a data�ow diagram where intermediate steps are atomic query 
operations such as �lter, join, sort, and intermediate results are 
SQL tables. By navigating through the data�ow diagram of a SQL 
query, users can easily understand how the �nal query result is 
computed step by step. However, there are some domains where 
it is more straightforward for users to directly look at the �nal 
program output instead of intermediate steps, such as visualization 
synthesis [48], or where intermediate steps are hard to visualize 
or comprehend, such as assembly code synthesis [15]. For such 
domains, data�ow visualization may not be a good �t. 

7.2 Handling Multi-Dimensional Tensors 
Though the previous examples only demonstrate INTENT on one-
dimensional tensors, INTENT supports multi-dimensional tensors 
as well. In the Supplementary Material, we have included more 
screenshots to demonstrate how multi-dimensional tensors are 
rendered in INTENT. Speci�cally, to ease the speci�cation of multi-
dimensional tensors, INTENT visualizes them as nested tables in 
the speci�cation panel (Figure 1 �1 ). Each dimension in the ta-
ble is assigned a unique background color to distinguish di�erent 
dimensions. 

If a tensor has too many dimensions (e.g., a 10D tensor), the 
data�ow visualization can become cluttered; yet, this may not be 
a major concern in practice, as real-world tensor transformation 
tasks often do not involve tensors with too many dimensions. To 
con�rm this, we manually checked the TF-Coder benchmark, which 
includes 70 tensor transformation tasks collected from an internal 
Google forum and StackOver�ow. Among these 70 tasks, none of 
them involve tensors with more than 4 dimensions. Speci�cally, 
2 of them involve the transformation of 4D tensors, 9 involve 3D 
tensors, and the rest only involve 1D or 2D tensors. 

Since some tensor operators make use of all input elements for all 
output elements, this might lead to many red dotted lines when ren-
dering data provenance. Among the 101 tensor operators supported 
by INTENT, we only �nd 13 such operators, such as tf.reduce_sum 
and tf.broadcast_to. In the Supplementary Material, we have 
included screenshots of the resulting visualizations involving those 
operators. We found these visualizations were not cluttered since 
the tensors have four dimensions or less. Furthermore, since the 
data provenance is only rendered on demand when users click an 
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Figure 10: Users’ ratings on features 

element in a tensor, those data provenance lines are unlikely to 
intersect with each other. 

7.3 Target User Groups and Use Cases 
INTENT is designed to empower users who already have program-
ming experience but are unfamiliar with deep learning. Note that 
programmers who are experienced in one domain (e.g., web de-
velopment) can still struggle with DL due to the cryptic APIs in 
TensorFlow and lack of conceptual and math background in DL, 
as shown in prior work [3]. Furthermore, several participants in 
our user study who were experts in TensorFlow also appreciated 
INTENT, since they did not have to recall which APIs to use during 
implementation. 

INTENT is not designed for end-users without programming ex-
perience. Therefore, our design and �ndings do not generalize to 
end-user programming. Indeed, it is hard for end-users to read a 
data�ow diagram or directly edit a program. To support end-user 
programming, one should consider converting synthesized pro-
grams to a representation that is comprehensible to end-users. For 
example, Mayer et al. [31] proposed translating the synthesized 
code to English descriptions to help end-users understand its behav-
ior. Zhang et al. [54] proposed to generate distinguishing examples 
and corner cases to help end-users validate the synthesized code. 

7.4 Limitations and Future Directions 
Our current user study design limits us to necessarily attributing 
participants’ success to individual features in INTENT. One can 
improve the study design by capturing the utility rate of each feature 
or comparing with variants with individual features disabled. In the 
post-task survey, participants rated the usefulness of each feature 
(Figure 10). Though this is a subjective measurement, it to some 
extent indicates which feature is more helpful. Among all features, 
the data�ow visualization is the most appreciated feature. 

INTENT normally takes more than 30 seconds or even longer 
to synthesize a program, which may stand in the way of rapid, 
iterative speci�cation of a program. This challenge is not unique to 

INTENT, but rather a byproduct of working with program synthe-
sizers with a large search space. We believe distributed computing 
can be leveraged to speed up program synthesis signi�cantly. The 
search process in program synthesis is highly parallelizable. Fur-
thermore, it may also be helpful to allow a synthesizer to quickly 
return some imperfect but promising solutions, so users can provide 
some early feedback, which would enable more rapid iteration to 
incrementally reach a �nal, perfect solution. 

Currently, INTENT can only generate TensorFlow code that uses 
tensor transformation APIs. As a future direction, it would be 
appealing if INTENT could be extended to support the construc-
tion of an entire neural network. This would require support-
ing more TensorFlow APIs in the synthesis framework, such as 
tf.keras.layers.LSTM. In addition, input-output examples may 
not be descriptive enough to specify the desired model. Instead, 
users may �nd it more intuitive to communicate model speci�ca-
tions in natural language (e.g., “the model should have an attention 
layer”) or constraints (e.g., !GPU && Memory >= 16GB). Other modal-
ities such as sketching is also worth considering to support rich 
speci�cation modalities in neural network synthesis. 

8 CONCLUSION 
This paper presents INTENT, an interactive program synthesizer 
that generates TensorFlow code to transform tensors on behalf of 
users. Since tensor transformation often involves multi-dimensional 
arrays and sophisticated linear algebra operations, INTENT provides 
an interactive data�ow visualization to render intermediate results 
and element-wise data provenance in a tensor transformation pro-
gram. With this feature, users can conveniently track how the �nal 
tensor and individual elements in it are computed step by step. 
INTENT also supports in situ program editing and validation to 
help users establish trust on the synthesis results and explore al-
ternative solutions. A user study with 18 programmers shows that 
participants �nished assigned tasks with only half the time, higher 
success rate, and more con�dence when using INTENT compared to 
using a baseline synthesizer without the aforementioned features. 
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A SYNTHESIS ALGORITHM 
Our algorithm is presented in Algorithm 1. It takes as input a set 
OP of tensor operators (e.g., TensorFlow APIs) and aims to generate 
programs using these operators. Each operator in OP is associated 
with a cost, which will later be used to guide the search. The overall 
goal here is to �nd a program that satis�es the provided examples 
with a smallest cost, guided by other types of speci�cations. 

Towards this goal, the algorithm begins by assigning costs to 
operators based on the user-provided examples E, natural language 
description N , as well as the desired/undesired operators D and U 
(lines 1-4). In a nutshell, these costs are constructed using machine 
learning models. For instance, we use the multilayer perceptron 
(MLP) model from [44] to update costs based on examples (line 2) 
and their TF-IDF model to handle natural languages (line 3). Both 
models are trained in a supervised manner; we refer interested 
readers to prior work [44] for details of these models. 

Di�erent from prior work, our work additionally leverages the 
operators preference information; that is, we also adjust costs based 
on the desired operators D and undesired operators U (line 4). 
Speci�cally, INTENT divides the cost of a desired operator by 3 
whereas it multiplies the cost of an undesired operator by 3. The 

factor of 3 is designed empirically. Note that we choose to penalize 
undesired operators instead of completely removing them from the 
pool of candidate operators; this is because user feedback may not 
always be correct, especially in the domain of tensor transforma-
tion where many tasks often involve complex, non-intuitive linear 
algebra operations. Users may not be aware of some operations 
that are indeed useful and may mistakenly mark them as undesired. 
For example, given the task “setting all values to zeros except for 
ones” as well as the following input/output example, 

in:[3, 1, 4, 5, 1, 8] ! out:[0, 1, 0, 0, 1, 0] 

it is tempting to mark tf.cast (a TensorFlow operator that changes 
an tensor’s data type) as undesired since it does not explicitly partici-
pate in any numerical value calculation but actually it is a important 
intermediate step to convert boolean mask to a binary vector, which 
can be multiplied to the input tensor to clear all ones in the input. 
The correct program is shown below. 
tf.multiply(in, tf.cast(tf.equal(in, tf.constant(1)), 

tf.int32)) 
By only penalizing operators that are mistakenly labeled as un-

desired, INTENT still has a chance to generate the correct program 
with these operators after trying many other operators. 

Lines 5-16 describe the bottom-up search process. Because the 
search space grows exponentially in the program size, we perform 
the so-called value-based memoization [1, 45] to optimize the search 
performance. At a high-level, this optimization clusters programs 
based on their outputs. That is, if two programs produce the same 
output, they will be treated as “one single program” e�ectively as 
the search algorithm progresses. Since multiple programs may yield 
the same output value, this optimization is able to reduce the search 
space quite dramatically (i.e., it searches the space of program values, 
rather than the space of programs). More speci�cally, the algorithm 
maintains a set V of values that current enumerated programs gen-
erated. V is initialized to contain only the user-provided constants 
and input tensors from the given examples (line 5); however, V 
grows as search progresses (line 14) by incorporating new values 
that are produced by newly discovered programs (line 10). Note 
that, the search is structured by �rst enumerating the costs T in 
the ascending order (line 6), which e�ectively prioritizes programs 
with smaller costs (i.e., less complex programs) over more complex 
programs with larger costs. Given T , the algorithm constructs all 
programs that have cost T (lines 7-16). In particular, it considers all 
operators in OP (line 7), and for each op, it executes op on current 
values in V (lines 8-10). Line 11 performs value-based memoization: 
we add � to V only if � is not yet seen in the past. Note that lines 
12-13 also update the meta-data associated with �; for example, it 
records the cost of this program. Finally, at line 14, it returns the 
current program if it already matches our examples E. This program 
is also guaranteed to have the smallest cost. 

B DATA PROVENANCE COMPUTATION 
Formally, we de�ne element-wise data provenance speci�cation for a 
tensor operator op as a function that maps from any element in the 
output tensor to a set of elements in the input tensors. Speci�cally, 
consider Y = f (X1, · · · , Xn , c1, · · · , cm ), where f is a function that 
transforms n input tensors X1, · · · , Xn to an output tensor Y using 
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Algorithm 1: Tesnfor transformation synthesis algorithm. 
Input: A set of input-output tensor examples E = {(Ii , Oi )}, a 

natural language description N , a set of tensor operators OP 
where each operator is associated with a weight, a set of 
user-provided constants C , a set of desired operators D , a set 
of undesired operators U 

Output: A tensor transformation program P such that 
8(Ii ,Oi )2E P (Ii ) = Oi . 

1 OP   I���������O�������C����(); 
2 OP   U�����C����B�E������(OP, E); 
3 OP   U�����C����B�NL(OP, N ); 
4 OP   U�����C����B�P���(OP, D); 
5 V   C�����I������V�����(C, E); 
6 for T = 1, 2, · · · do 
7 forall op 2 OP do 
8 n   op .ar it� ; w   op .wei�ht ; 
9 forall aÆ = [a1, a n 

2, · · · , an ] 2 V s.t.Õ 
T = w +  ai .i wei�ht and aÆ is valid arguments for op do 

10 �   E������(op, aÆ) ; 
11 if � < V then 
12 � .wei�ht   T ; 
13 � .pro�   op(a1 .pro�, · · · , an .pro�); 
14 V   V [ � ; 
15 if � .pro� satis�es E then 
16 return � .pro� 

m additional non-tensor parameters c1, · · · , cm . The element-wise 
data provenance speci�cation S for f would be of the form: 

S(   · · ·  · · · )(v) |, u) [, , , ,   v], , B {(Xi , Y  is  f compute  Y X1 Xn c1 cm d from Xi [u]}. 
Here, v is a vector (of indices) denoting the position of an element 
in the output tensor Y , and u is the position of an element in the 
input tensor Xi . This equation means computing the element at 
position v of Y “uses” the element at position u in Xi . 

Let us illustrate this using the following example. Consider a 
TensorFlow function tf.roll(X, shift=s, axis=a) which shifts 
the tensor elements on a speci�ed dimension. For instance, given 
inputs X = [[1, 2, 3, 4], [8, 6, 4, 2]] and s = 1, axis = 1, it gives output 
Y = [[4, 1, 2, 3], [2, 8, 6, 4]]. Here, tf.roll shifts each element by 
1 along axis 1. The following equations describe the provenance 
relationship in detail for this tf.roll operator. 

S(roll,Y ([ ]) {[ ]} ([ ]) {[ ]}, ,X ,1,1) 0  0  = 0, 3  S(roll,Y , , ,X ,1,1) 1  0  = 1  3  
S( ,r ll, , ,o Y X 1 ([, ,1) 0  1]) = {[0  0]},  S(roll,Y ,X ,1 [,1)([1  1]) = { 1, 0]} 
S(roll Y 0,X 1 1)([  2]) {, , , ,  = [0, 1]} S(roll,Y ([ ]) {[ ]}, , ,X 1,1) 1  2  = 1, 1  
S( ,roll,Y ,X ,1,1)([0  3]) = {[0, 2]} S(roll,Y ,X ,1,1)([1, 3]) = {[1, 2]} 
More generally, the provenance speci�cation is encoded symboli-

cally in INTENT. For instance, the symbolic provenance speci�cation 
for tf.roll is shown as follows. 
S(roll ([ · · ·, , ,Y X ,s,a) �1   ,�a , · · · ,�l ])

B {(X , [�1, · · · , (�a � s)%X .shape[a], · · · ,�l ])} 
This equation speci�es that the � a-th� �a -th element on the  dimension 
in Y is computed using the (�a � s)%X .shape[a] -th element on 
the a-th dimension from X . 
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To reduce the manual e�ort of writing data provenance speci-
�cations, we used the automatic di�erentiation of TensorFlow to 
automatically generate provenance for 59 out of 101 TensorFlow 
operators that are used in INTENT (Appendix C). We brie�y explain 
how this automated generation process works as follows. 

Suppose f : m⇥n qR  pR ⇥  ! is a di�erentiable TensorFlow func-
tion and X  m nR ⇥  2 is a tensor input. First, we obtain the output 
tensor f (X ). Then, if we want to know the provenance of f (X )[v], 
we can propagate the target output element f (X )[v] through the 
di�erentiable function f to derive the gradient with respect to X 

@ f (X )[v] n
D m⇥= 2 R

@X 
If D[u] , 0, f (X )[v] depends on X [u] and therefore a data prove-
nance is derived. 

S(f )(v) = {u | D[u] , 0}
On the other hand, since most of the remaining operators are dis-

crete (such as tf.argmax), we manually write their speci�cations. 
This is because automatic di�erentiation does not always work 
for discrete operators. To reduce this manual e�ort, we grouped 
similar TensorFlow functions into classes and manually wrote the 
speci�cation for each class. These classes are listed in Appendix D. 

C DIFFERENTIABLE TENSORFLOW 
FUNCTIONS 

(*) mark means the function is not di�erentiable w.r.t this input 
tensor, which will be handled specially. 

tf.abs(x) 
tf.add(x, y) 
tf.boolean_mask(tensor, mask) 
tf.broadcast_to(input, shape) 
tf.divide(x, y) 
tf.exp(x) 
tf.expand_dims(input, axis) 
tf.gather(params, indices) 
tf.gather(params, indices, axis, batch_dims) 
tf.math.cumsum(x, axis) 
tf.math.cumsum(x, axis, exclusive=True) 
tf.math.divide_no_nan(x, y) 
tf.math.negative(x) 
tf.math.reciprocal(x) 
tf.math.reciprocal_no_nan(x) 
tf.math.segment_max(data, *segment_ids) 
tf.math.segment_mean(data, *segment_ids) 
tf.math.segment_min(data, *segment_ids) 
tf.math.segment_prod(data, *segment_ids) 
tf.math.segment_sum(data, *segment_ids) 
tf.math.unsorted_segment_max( 

data, *segment_ids, num_segments) 
tf.math.unsorted_segment_mean( 

data, *segment_ids, num_segments) 
tf.math.unsorted_segment_min( 

data, *segment_ids, num_segments) 
tf.math.unsorted_segment_prod( 

data, *segment_ids, num_segments) 
tf.math.unsorted_segment_sum( 



INTENT: Interactive Tensor Transformation Synthesis UIST ’22, October 29-November 2, 2022, Bend, OR, USA 

data, *segment_ids, num_segments) 
tf.math.squared_difference(x, y) 
tf.matmul(a, b) 
tf.maximum(x, y) 
tf.minimum(x, y) 
tf.multiply(x, y) 
tf.pad(tensor, paddings, mode=�CONSTANT�) 
tf.pad(tensor, 

paddings, mode=�CONSTANT�, constant_values) 
tf.pad(tensor, paddings, mode=�REFLECT�) 
tf.pad(tensor, paddings, mode=�SYMMETRIC�) 
tf.reduce_max(input_tensor) 
tf.reduce_max(input_tensor, axis) 
tf.reduce_mean(input_tensor) 
tf.reduce_mean(input_tensor, axis) 
tf.reduce_min(input_tensor) 
tf.reduce_min(input_tensor, axis) 
tf.reduce_prod(input_tensor, axis) 
tf.reduce_sum(input_tensor) 
tf.reduce_sum(input_tensor, axis) 
tf.reshape(tensor, shape) 
tf.reverse(tensor, axis) 
tf.roll(input, shift, axis) 
tf.sort(values, axis) 
tf.sort(values, axis, direction=�DESCENDING�) 
tf.sqrt(x) 
tf.square(x) 
tf.squeeze(input) 
tf.squeeze(input, axis) 
tf.subtract(x, y) 
tf.tensordot(a, b, axes) 
tf.tile(input, multiples) 
tf.transpose(a) 
tf.transpose(a, perm) 
tf.where(condition) 
tf.where(condition, x, y) 

D SPECIFICATION CLASSES 
BROADCASTABLE 

tf.equal(x, y) 
tf.greater(x, y) 
tf.greater_equal(x, y) 
tf.not_equal(x, y) 

STACKLIIKE 

tf.add_n(inputs) 
tf.concat(values, axis) 
tf.stack(values, axis) 

ALONGAXIS 

tf.argmax(input, axis) 
tf.argmin(input, axis) 

ALONGSEG 

tf.math.segment_max(*data, segment_ids) 
tf.math.segment_mean(*data, segment_ids) 
tf.math.segment_min(*data, segment_ids) 
tf.math.segment_prod(*data, segment_ids) 
tf.math.segment_sum(*data, segment_ids) 
tf.math.unsorted_segment_max( 

*data, segment_ids, num_segments) 
tf.math.unsorted_segment_mean( 

*data, segment_ids, num_segments) 
tf.math.unsorted_segment_min( 

*data, segment_ids, num_segments) 
tf.math.unsorted_segment_prod( 

*data, segment_ids, num_segments) 
tf.math.unsorted_segment_sum( 

*data, segment_ids, num_segments) 

ARGSORT 

tf.argsort(values, axis, stable=True) 
tf.argsort( 

values, axis, direction=�DESCENDING�, stable=True) 

CONDITION 

tf.argsort( 

tf.boolean_mask(tensor, mask) 
values, axis, direction=�DESCENDING�, stable=True) 

ELEMENTWISE 

tf.cast(x, dtype) 
tf.clip_by_value(t, clip_value_min, clip_value_max) 
tf.constant(value) 
tf.math.ceil(x) 
tf.math.floor(x) 
tf.round(x) 
tf.sign(x) 

NO-TENSOR-INPUT 

tf.eye(num_rows) 
tf.eye(num_rows, num_columns) 
tf.eye(num_rows, dtype) 
tf.fill(dims, value) 
tf.one_hot(indices, depth) 
tf.ones(shape) 
tf.ones_like(input) 
tf.range(start) 
tf.range(start, limit, delta) 
tf.zeros(shape) 
tf.zeros_like(input) 

OTHERS 

tf.gather_nd(params, indices) 
tf.gather_nd(params, indices, batch_dims) 
tf.math.bincount(arr) 
tf.math.count_nonzero(input) 
tf.math.count_nonzero(input, axis) 
tf.scatter_nd(indices, updates, shape) 



UIST ’22, October 29-November 2, 2022, Bend, OR, USA Zhanhui Zhou, Man To Tang, Qiping Pan, Shangyin Tan, Xinyu Wang, and Tianyi Zhang 

tf.searchsorted( 
sorted_sequence, values, side=�left�) 

tf.searchsorted( 
sorted_sequence, values, side=�right�) 

tf.sequence_mask(lengths) 
tf.sequence_mask(lengths, maxlen) 

tf.shape(input) 
tf.tensor_scatter_nd_update( 

tensor, indices, updates) 
tf.unique_with_counts(x) 
tf.unstack(value, axis) 
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