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Abstract— In this paper, we propose a new tractable ordinary
differential equation formulation for dynamic simulation of
fabric-reinforced inflatable soft robots. The method performs a
lumped-parameter discretization of the continuum robot into
discrete discs (inertia), spring elements, and threads (represent-
ing the inextensible fabric reinforcement). Using the repetition
in the structure of the Lagrangian formulation of the dynamic
equations of motion, a method is developed that outputs
machine-readable analytical expressions for the equations of
motion. The method does not require symbolic computation of
derivatives. The recursive nature allows us to scale the model
to an arbitrary number N discs, and can represent buckling,
twisting, and pleating that is commonly seen in very soft robots.
The expressions generated were validated against manually-
derived equations of motion for the two-disc case using both
Lagrangian and Newton-Euler means. A simulation environ-
ment which parses and evaluates the analytical expressions
generated at run-time was used to numerically integrate and
predict the response of a four-disc example robot. Trajectories
observed varied smoothly and plausibly predicted the behavior
envisioned in robots like these.

I. INTRODUCTION

Soft Robots offer an exciting new paradigm with which to
approach real-world tasks; instead of trying to strictly avoid
contact with the environment save with the end-effector,
they can intentionally bump, scrape, and push against the
world with any part of their structure. Human operators have
serendipitously discovered ways that this exciting modality
can be used to perform tasks, such as crawling and grasping
[1]. However, to fulfil their true promise, soft robots need to
be able to conduct these tasks autonomously, without relying
on human intelligence and intuition [2]. To make decisions
in real time about how to take action, the robot needs to have
some representation of its configuration.

Unlike traditional manipulators, a soft robot is a contin-
uum with infinite degrees of freedom, and the choice of
variables to represent its current configuration is not obvious.
For real-time decision-making, and forward simulation and
estimation using ordinary differential equations, some dis-
cretization of the continuum is necessary. There are a myriad
of potential choices for how to discretize the continuum
and assign variables, since they are fictitious and do not
correspond to the motion of any specific physical part or
feature. Algorithms could even jump from one discretization
to another during operation.
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(a) wrinkling behavior in “Squishy” [3]
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Fig. 1: The disc-thread parameterization can capture wrin-
kling behavior (a) using the coordinates shown in (b). Re-
produced from [4] with permission.

Current literature on dynamic modeling for compliant con-
tinuum robots has its roots in what Marchese and Rus term
“hard continuum manipulators” (HCMs) [5]. Methods for
constructing system dynamic models based on Lagrangian
methods [6] Hamilton’s Principle [7] and the Principle of
Virtual Power [8] provide a fundamental mathematical tech-
nique. The decision of how to model a continuum robot is
usually a tradeoff between simplicity of the representation
and fidelity. At one end of the spectrum, the piece-wise con-
stant curvature assumption [9], [5], [10] simplifies the anal-
ysis and amount of computation needed, but loses accuracy
under gravity [11], not to mention interaction with a com-
paratively stiff environment. At the other end, high-fidelity
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models are predominantly based on Kirchoff/Cosserat Rod
theory which can predict higher order behaviors, such as
buckling [12]. Renda, et al. [13], use methods of geometric
mechanics and nonlinear material deformation models for a
cable-driven hydrostatic tentacle, extending this key method
for HCMs to a truly soft robot. Boyer, et al. [14] applied
related methods to the free-free case. Researchers have
explored using Finite Element Methods [15] for computing
kinematic behavior, but the computation of large numbers
of nodes using iterative methods still poses computational
difficulties in real-time beyond quasistatic motions.

Soft Robots are made of different materials than HCMs
and function very differently. Both the piecewise constant
curvature models and Kirchoff/Cosserat Rod models enforce
continuity and differentiability at the boundaries of each
discretized segment. Robots composed of fabric reinforced
inflatable chambers violate these assumptions regularly in
practice (see Fig. la for an example), suggesting a differ-
ent approach is needed. In this paper, we discretize the
physical robot at the outset, rather than discretizing an
elastic continuum model of the robot. The model consists
of a sequence of discs and inelastic threads. As the threads
exhibit no resistance to rotation at the discs, the model
does not inherently enforce any assumptions about continuity
of slope or curvature at the discretization boundaries. For
this reason, we believe that this model can capture kinking,
pleating and folding, kinematic conditions that are likely to
occur as inflatable elastomeric chambers perform complex
interactions with the environment. This is similar to [16],
[17], [18], except our model kinematics can capture kinking,
pleating, and folding at any location along the inflatable
chamber without knowledge of additional external forces or
constraints in the model. In addition, gravity and external
forces are naturally accounted for as part of the formulation
and need not be sources of additional error.

II. THE D1SC-THREAD PARAMETRIZATION

As with other dynamic models of continuum soft robots,
we will discretize the mass and stiffness of the continuum
into discrete elements. Our discretization differs from prior
models in that it does not consider the soft robot to be a
continuum elastica with a partial differential equation (PDE)
model broken into pieces, but rather discretizes the mass of
the chamber walls and the deformable portion of the chamber
as lumped-parameter elements. The inextensibility of the
fabric reinforcement is treated separately as a holonomic con-
straint. The nonlinear equations of motion are then developed
directly from the lumped parameter representation, without
any PDEs involved. To reiterate, the benefit of this approach
is that we expect to improve tractability and computational
efficiency both for simulation and model-based estimation
and control when performing complex interaction tasks.

The mass of each of the N segments of the chamber is
represented by a disc (which need not be strictly circular)
with corresponding mass and inertia tensor properties. The
robot does not need to be initially straight, but should
have a well-defined axial direction at each disc. As the

fabric reinforcement is inextensible, we represent this by an
inextensible thread connecting a pair of distinct points on
each pair of discs. Thus the discs can rotate and translate
in any manner, provided a constant distance between these
two points is maintained (i.e. the thread is always taut).
We use a single thread per disc pair as it allows the most
kinematic freedom; additional threads could be adjoined as
constraints or represented by an arbitrarily stiff spring. A pair
of adjacent discs with the thread between them is illustrated
in Fig. 1b. If the robot chamber has a continuous strip of
fabric from end to end, as in the “Squishy” robot [3], the
threads to the disc proximal and distal from a given disc
7+ 1 in the chain will emanate from the same point on
the disc as shown. The stiffness of the chamber walls is
represented as discrete springs, with each spring connecting
some point on disc ¢ to disc ¢ + 1 Vi. The advantage of this
over previous models is that the motion of the discs relative
to one another can represent behaviors seen in the physical
robot such as wrinkling and buckling. For instance, thread
1+ 1 could fold back nearly over thread ¢ without incident in
the disc-thread model, whereas with an elastica-based model
such high curvatures would lead to extremely high stresses.

The development shown here retains the spirit of orga-
nization of the Denavit-Hartenberg parameterization, but is
more parsimonious with regard to the number of coordinates,
as certain fictitious revolute joints can be omitted. We will
develop a set of generalized coordinates for the collections of
discs and threads. As shown in Fig. 1b, a frame is assigned
to each disc, with its origin placed where the disc is joined
by the thread. If the first, or “root” disc is considered fixed,
this, plus the holonomic constraint of the thread, reduces the
number of degrees of freedom from 6N to 5(N — 1).

The generalized coordinates are defined with regard to
three intermediate frames between frame ¢ and ¢ + 1, each
successive one denoted with an additional prime. In any
given configuration, like the one shown in Fig. 1b, the
inextensible thread in the model points in some direction
relative to frame ¢. This admits a convenient frame, one
with its coordinate axis z; directed along the thread. The
Z, axis is parameterized by two numerical values (angles)
a;, B; € [0,7]. Imagine pulling a thread away from the z;
axis in an arbitrary direction. The axis of rotation will lie
in the plane of the disc; «; is the angle between this axis
of rotation and the Xx; axis, which lies tangent to the disc.
The angle between 2z, and z; is denoted §;. This rotation is
represented by the rotation matrix R(«;, 8;). The subsequent
frame will involve translation along the inextensible thread
(of a fixed distance ¢; determined by the discretization, along
with a rotation about the inextensible thread by an amount

~i- i is defined so that the X, ¥/, z/ (red) frame is rotated

K3
from X}, y’, 2, until the X/ axis is perpendicular to both z/
and y;y1, (X{ = yi+1 x z;). This allows a rotation about
the X7 axis into the X, y!",z}" frame (green), for which
%/ = x!". The coordinate 1); is the angle measured between
vy and y}" = §,11. By rotating about ¥}’ (coincident with
the center line of disc ¢ 4+ 1) by an angle ¢;, X/ and z}”

are rotated into X; 1 and z;1, respectively. The coordinate
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directions after this sequence of rotations is now aligned with
the disc 7 + 1. Therefore,

LT = T(ey, B)T ()T ()T (), (1)

consisting of 5 variable rotations and a fixed translation,
where each homogeneous transformation matrix 7() is
defined as in Craig [19] and following the description above
(only T'(ry;) involves a translation).

This set of generalized coordinates «, 3,7, 1, ¢ is a min-
imal set of coordinates for the two disc system (two rigid
bodies, one constraint). So in free space, collecting the values
for each disc, we obtain a set of generalized coordinates:

[011,517’)’171/%7(%51“'

an—1,BN-1,YN-1,VN-1, ON—1]
R
III. EQUATIONS OF MOTION

In this section we present a condensed overview of the
process of developing machine-readable analytical expres-
sions for the equations of motion. The expressions use the
set of generalized coordinates of Section II. The formulation
is developed by writing the Euler-Lagrange equations for the
sequence of discs and threads with the constraints described
in Section II. It is guided by two observations: first, that
since the threads are inextensible, all motion is generated by
rotating each thread about the disc proximal to it and the
rotation of the discs about the thread proximal to it. Thus,
the center of mass velocities ‘v;; are simply an algebraic
function of the angular velocity of each disc ‘w;. The second
observation is that the sequence of discs forms an open
kinematic chain, and each ‘w; is a function of the angular
velocity of every disc proximal to it, but not the discs distal to
it. (The subscript denotes the disc, and the leading superscript
denotes the frame in which the components are represented).

A. Disc kinematics

We can derive the kinematic expressions as follows: Pro-
ceeding as if disc 7 is fixed, using the frame assignments as
described in Section II we write the angular velocity of disc
i+1 relative to the frame of disc ¢ in terms of the generalized
coordinates associated with the thread joining them:

a;
Bi
E(ai, Biyvisi) | % | 3)
¥
bi

The columns of E(«;, 8;,7i,%;) arise from products of the
rotation matrices between the intermediate frames described
in Section Il with the columns of those same matrices
corresponding to the axes of rotation of each ¢;. When i = 2,
(3) calculates the true angular velocity. For ¢ beyond disc 2,
‘We combine the iwi+17rel with the values for discs 1 to7—1
to form the angular velocity relative to an inertial frame:

7
Witl,rel =

i—1
L—l R k—
k=2

1 [ i—1
Wi = i—lR wk,rel"’ Wi rel | » (€]

where ! R is the rotation matrix between the frame of
disc ¢ — 1 and disc 7. The ;_; R are functions of q.

B. Disc kinetics

Since (4) gives us the angular velocity of each disc relative
to an inertial reference frame, we can use it to write the
Lagrangian £ for the entire set of discs and threads:

with m; and I ZG ¢ being the mass and inertia tensor about the
center of mass of disc ¢, fg being the force in the jth spring
joining disc ¢ to disc 7 —1, and k;; the spring constant, g the
acceleration due to gravity, j the direction against gravity,
and p; the radius of disc ¢. In this expression, iw,, and as a
result *v;¢, will be functions of the generalized coordinates
q and their time derivatives q. In addition, the fi? and T are
functions of q. From this one can see that the equations of

motion will follow directly from the partial derivatives 86“"
q;

(as well as 68""1, and partial derivatives within the spring

and gravity terms) Using the first and second observations
above, it can be shown that the partial derivatives 8“" follow
the sequence shown in Table I. A similar process was used
to derive tables for 88;1, and the potential energy partial
derviatives, but they are omitted here for brevity.

Due to the structure of Table I, it is possible to program-
matically generate analytical expressions for each element
of the table for any number of discs (up to available
memory limits). Using a symbolic mathematics package, the
expressions in the elements of the table can be generated
iteratively by copying the expressions for the previous disc,
using the string replace operator, and matrix multiplication,
without any symbolic differentiation required. Since this is
nothing more than operations on alphanumeric strings, the
algorithm will successfully complete. When needed at run-
time, the numerical quantities required are provided by a
function evaluation on the expressions generated.

To generate the equations of motion, one typically com-
putes the time derivative < g—é. Like with the construction

dat
of ‘w;, it is possible to exploit the structure of the disc-thread
parameterization so that this derivative need not be computed
on these expressions explicitly. It can be shown that the j, k
element of the mass matrix M, My, is given by

. T .
8"wi : azwi

+ = . . (6
Ban G 9d, ) (6)

Jiv ] C I'via
O a%

G
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TABLE I: Partial derivative of the angular velocities of each disc

i wa Bws A*wy
g a?j qul 94; T
an %R 9 ;J.erel gR %R 0 ;J.?,rel gR %R %R 0 ;).Q,Tral
; 2 alw(z,lrel 3 2 alw();,lrel 4 3 2 81"-"062,1'rel
81w21rel 81w217‘el 81""'217“&l
1| 2R o SR 2R e iR 3R 2R i
; 61wzlrel E alwzlrel < 81“‘?2/17"el
Y1 | 2R 0 SR IR i iR 3R 2R 87.’
; al“}él’rel alwd;lrel 81w1§1rel
b | 3R T2 R RR SRR fR 2
o ¢1 3R 82“’3,?; 4R SR 82"-’3,?;
2 28d2 3 2 28612
52 0 gR 0 w?,rel gR gR 0 w{'),rel
82352 823/52
. 3 W3 rel 4 3 W3 rel
Y2 R — R SR ———
: 823’72 a2 82372
'lj}Q %R w?,ral gR gR wf.’),rel
02 O
; 0?w3 el 02w3 el
o 3r o 4R 3p S 2red
¢2 823¢>2
. W3, rel
a %R SR BT;E
5s 0 0 iR 03wy el
T 500
. 4 Wq rel
R
7 3 33"Y3
7#‘3 4R 0 W4 rel
: 03
d)S iR 63“)4,?"61
i O3
0 0 0

Each term within (6) is just a function evaluation on the
expressions for the angular velocity ‘w; and the elements
of Table I. The structure of the equations of motion can be
simplified further by introducing the concept of the canonical
momenta vector p = % [20]. We can then write the
equations of motion in the following form:

a [0 M q 0
(5)=(0 "% )(o)| % q-am )
dq

(7) Fig. 2: Disc N under chamber pressure

oL . . .
where — is found using a process similar to the one used

to find Tgble I, Q represents the generalized forces, which
is derived from any physical forces which have an analytical
model (e.g. asymmetrical weaves of fabric, other anisotropic
behavior), and AgA is used to adjoin environmental contact
constraints with Lagrange multipliers.

disc N in the chain. By defining an area element dA as in
Fig 2 and integrating over disc N, we determined analytical
expressions for each of the generalized forces ); € Q that
appears in (7) due to the inflation pressure. The mathematical

C. Effect of inflation development has been abbreviated here. Inflation is only

When inflated with pressurized air, on the timescale of
robot motion we assume the pressure will be uniform within
the chamber. This means that the effect of chamber pressure
will integrate to zero over each disc, except for the final

one force that can be represented through Q. Given suitable
models for fabric bunching, pleats, elastomer wall buckling
and other configuration-dependent forces, these could be
introduced by adding corresponding terms to Q.
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IV. MODEL IMPLEMENTATION AND VALIDATION

Despite the number of potential software libraries that
can perform symbolic computations related to Lagrange’s
equations, the complexity of these equations for our pro-
posed model quickly exceeds the capabilities of current
libraries as the number of discs increases. Therefore, we
developed a method to construct the equations of motion
that does not rely on symbolic differentiation, but rather
replacement operators on strings according to the recursive
structure exhibited in Table I. Beginning with (3), our method
constructs the expression for w and its partial derivatives
for disc 2, and proceeding iteratively, builds all expressions
in Table I. This is saved to an ASCII text file which can
be parsed and automatically converted to Python code. The
resulting equations can then be evaluated for specific values
of q. These equations include methods to calculate the
Mass matrix, Gravity vector, spring forces (which are only
dependent on the relative position of two discs), and required
velocity vectors for each disc. We then use the resulting
equations to perform numerical integration using a fourth-
order Runge-Kutta method. In the results presented in this
paper, the robot was assumed to be lightweight and the
velocities relatively small. Because of this the contribution
of centripetal and Coriolis accelerations were minimal. To
simplify the implementation, the g—ﬁ term in (7) included
only the effects of elasticity and gravity.

As the analytical expressions involved reach several pages
with even only a few discs, validation of the equations of
motion and the correctness of the implementation is certainly
a concern. Aslanov and Yudintsev in their analysis of a space
tug [21] approached a somewhat similar problem, albeit
consisting of a single rigid body connected to a thread,
under a somewhat different set of assumptions. They too
used a Lagrangian formulation to develop the equations
of motion, and validated the approach by comparing the
system trajectories to those generated by the variation of
the angular momentum vector about the point occupied by
space tug. Inspired by this approach, we examined the two-
disc (one fixed, one moving) system. For the system with a
single moving disc, it is still tractable, though cumbersome,
to generate equations of motion for the five generalized
coordinates using both Euler-Lagrange and Newton-Euler
methods. We compared the numerical values of the mass
matrix, gravity vector, and spring forces from our Python
code implementation with those generated by the direct
Newton-Euler and Euler-Lagrange approaches for the two
disc system. We used a wide selection of arbitrary values
for «y, B;,7i,vi, and ¢; and found agreement to within
reasonable numerical accuracy among all three models.

V. SIMULATION RESULTS

We simulated a fabric-reinforced soft robot discretized
into four discs, with the first (root) disc stationary. This is
the same discretization as Bui and Schultz [4], [22] used
in their estimator demonstration which was designed based
on the disc-thread parametrization. While it is possible to
simulate higher numbers of discs, four discs is sufficiently

complex to demonstrate the method without running into
limitations from long run-times, numerical integration dif-
ficulties, and memory usage challenges, none of which have
yet been optimized in the current implementation. The four-
disc discretization means that there are 15 state variables
(q € R'). Constants were normalized so the simulation
would be unitless. To represent the elasticity of the elastomer
chamber, we included three springs between each set of
discs. The springs were placed at 90, 180, and 270 degrees
counterclockwise from the thread around the discs, each
with a spring constant of 1. For this example, the resting
lengths of the springs were selected so that in the unstrained
configuration, the chamber would be straight. For simplicity,
each disc was given a radius of 1, and the thread lengths
were all 1 as well. Discs 1-3 had a mass of 2, and disc 4
had a mass of 4 to represent additional payload. The inertia
tensor for a thin hoop was used for each disc. Damping was
introduced by subtracting a term b;q; from each of the lower
15 rows of (7) with b; = 100 Vj a damping constant.

A variety of initial conditions were chosen to simulate. The
simulation took about 2 seconds to run on a standard desktop
computer. In some scenarios the chamber pressure was set
to zero and the discs were allowed to fall under gravity. The
disc trajectories returned by the simulation output appeared
plausible. In certain simulations, we varied the inflation
pressure of the chamber until gravity and the effects of
inflation would reach some equilibrium pose. Starting the
simulation at an initial condition away from this equilibrium
eventually converged toward the pressure-gravity equilibrium
point.

The filmstrip in Fig. 3 and animation in the accompanying
video show one example. In this example, the chamber
pressure was set to 12000 Pa, and the initial condition was
61 =0.1, B2 = B3 = 0.01. All other generalized coordinates
were set to be initially zero. The robot initially falls under
gravity due to the long moment arm of the more distal
discs. Once the robot reaches a downward pose, with smaller
moment arms due to gravity, the inflation is able to lift the
robot until it reaches the curled pose at the right, where
inflation forces and gravity are approaching equilibrium. This
is qualitatively consistent with the behavior of the “Squishy”
robot at The University of Tulsa and the “Kaa” robot at
Brigham Young (see [23], [24]) under similar conditions.

Because the robot was configured to be straight at the
reference configuration (essentially unstrained), the robot
shown in Fig. 3 did not have a tendency for the «;,y;, and
¢; to change due to the motion. This would be different
for robots with a curved fabric strip, such as “Squishy”. As
expected, the generalized coordinates initially set to zero did
not change during the simulation. The time histories of the
£ and 1) values for each disc are shown in Fig 4. Notice
that ¢, shows some visible oscillation and all discs initially
show a second order response. In addition, the proximal discs
change more rapidly than the more distal ones, as would be
expected due to the larger gravitational moment arm.

Some difficulties were observed that are inherent to the
disc-thread mathematical formulation. Certain configurations

3227

Authorized licensed use limited to: McFarlin Library The University of Tulsa. Downloaded on December 20,2022 at 19:53:59 UTC from IEEE Xplore. Restrictions apply.



Direction of gravity

[ R

Fig. 3: Frames showing the motion of the simulation output
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Fig. 4: Simulation output showing the time evolution of
generalized coordinates /3 and ¢ for each moving disc

caused mass matrix singularities. One of these occurs when
a (3; is zero. The physical explanation is that the axis
of rotation corresponding to changes in «; lines up with
that corresponding to changes in ;. At this configuration
there are an infinite combinations of the two variables that
represent the same pose. There are many other examples of
singularities that can occur and this is an area for further
study. Several of the simulations run had a tendency to
become numerically unstable after several seconds, with the
trajectories deviating from the smooth ones observed earlier
in the simulation. Examination of the condition number
showed that the mass matrix was poorly conditioned at the
time this behavior occurred. A combination of heuristics near
poses determined to be singular, further analysis, and refine-
ments should improve performance of the implementation.

VI. CONCLUSION

In this paper, we developed a formulation for the dynamic
equations of an inflatable, fabric-reinforced soft robot and
a simulation environment based on the dynamic equations.
This formulation differs from prior ones in that we discretize
the elastomeric materials into discrete discs and springs, with
the fabric reinforcement as an inextensible thread, rather
than discretizing the partial differential equations for the
continuum. This lumped parameter model of the system
leads directly to ordinary differential equations of motion.
Because the discretization does not impose any restrictions
on curvature from disc to disc, this model is capable of
capturing behaviors of soft robots such as kinking, pleating,
wrinkling, and folding without difficulty. In discretizations of
a PDE continuum model, these high curvatures would lead
to high stresses and be difficult to represent.

We presented a method for building up analytical ex-
pressions for the equations of motion of a disc-thread dis-
cretization. It produces a set of machine-readable ASCII
expressions which can be evaluated for the mass matrix,
stiffness, gravitation, and acceleration terms at run-time.
These expressions can be computed even for high numbers of
discs. Numerical simulations showed disc and thread motions
that qualitatively seemed to follow soft robot behavior.

While the simulation environment successfully produces
smooth, plausible output trajectories, there are plenty of
opportunities for future work. The numerical properties
of the simulation could be improved and motions near
singularities should be further investigated. The effects of
the the number of discs on simulation accuracy should be
assessed. A parameter identification effort on existing soft
robots would allow this method to be used in applications
to predict real robots’ behavior. The simulation could be
extended to consider changes in disc dimensions under
chamber pressure or dynamic effect. Studies using this
simulation environment with large payloads or high-speed
motions could possibly predict unique soft robot behaviors,
such as oscillations which involve kinking from side to
side at moderate pressures with heavy payloads. Finally, the
examples simulated were relatively slow moving, to where
centripetal and Coriolis terms could be neglected. While
these terms are included in the mathematical formulation,
we plan to implement and validate them in future versions
of the simulation environment for more faithful simulation
of high-speed motions.
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