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Abstract. We consider numerical approximations of spectral fractional Laplace-
Beltrami problems on closed surfaces. The proposed numerical algorithms rely
on their Balakrishnan integral representation and consist of a sinc quadrature
coupled with standard finite element methods for parametric surfaces. Possi-
bly up to a log term, optimal rates of convergence are observed and derived
analytically when the discrepancies between the exact solution and its numer-
ical approximations are measured in L

2 and H
1. The performances of the

algorithms are illustrated in di↵erent settings including the approximation of
Gaussian fields on surfaces.

1. Introduction

In this paper, we consider finite element approximations of the spectral fractional
Laplace-Beltrami problem

(���)
seu = ef on �, (1)

where � is a closed, compact and C3 hyper-surface in Rn (n = 2, 3) and where
the data f is square integrable in � while satisfying the compatibility conditionR
�

ef = 0. Such system finds applications for instance in the study of Gaussian

random fields on surfaces [27, 26, 5].
As we shall see, the spectral negative fractional powers of the Laplace-Beltrami

operator L := ��� are defined using the Balakrishnan formula [3]

L�s ef :=
sin(⇡s)

⇡

Z 1

0
µ�s(µI + L)�1 ef dµ, s 2 (0, 1). (2)

This representation is equivalent to the spectral representation more often used as
detailed in Section 2.3.

On Euclidean domains, a two-step numerical approximation strategy based on
(2) is proposed in [6, 14] for the standard Laplacian. After a change of variable, an
exponentially converging sinc quadrature [12]

Q�s

k
(L) ef =

k sin(⇡s)

⇡

NX

`=�M

e(1�s)y`(ey`I + L)�1 ef, (3)

is advocated for the approximation of the outer integral in (2). Here k > 0 is
the quadrature spacing, y` = `k, and M,N 2 O(k�2) are positive integers. In
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2 A. BONITO AND W. LEI

[6, 14], each of the sub-problems (ey`I + L)�1 ef are approximated independently
using a standard continuous piecewise linear finite element method. We refer to
[4] for extensions to hp-discretization methods. For completeness, we also mention
the reviews [7, 28] describing alternate algorithms for fractional powers of elliptic
operators on Euclidean domains.

Regarding the Laplace-Beltrami operator on closed surface, several algorithms
for its approximation are available as well. Parametric finite element methods [20]
and trace finite element methods [30, 31, 17] rely on polygonal approximations
� of the exact surface �. Instead, other numerical methods like the narrow band
methods [16, 17] are defined on a neighborhood of �. We refer to [11, 21] for reviews
of these methods and others. All the above mentioned numerical approaches have
in common an inherent geometric errors (or consistency errors) resulting from the
approximation of �, thereby leading to the uncharted territory (in the context of
approximation of fractional operators) of non-conforming methods.

The main contribution of this work is to develop a new analysis to incorporate
the approximation by parametric finite element methods within the framework de-
veloped in [14]. The approximate polygonal surface on which the finite element
method is defined is related to the exact surface via a C2 orthogonal projection
P : � ! � given by P(x) = x � d(x)rd(x), where d is the signed distance func-
tion to �. In [20, 19] this typical choice of lift is put forward in view of its O(h2)
approximation of the geometry at the expense of requiring surfaces � of class C3.
Here h stands for typical diameter of the faces constituting the approximation �.
In opposition, favoring practical implementations and applicability to rougher sur-
faces, a generic continuous piecewise C2 lift is considered in [29, 9, 8] leading to
a reduced O(h) approximation of the geometry. The latter is su�cient to con-
trol with optimal order the H1, but not L2, discrepancy between the solution to
the standard Laplace-Beltrami operator and its parametric linear finite element
approximations. However, the analysis of algorithms based on the integral repre-
sentation (2) requires space discretization methods to perform simultaneously well
in H1 and L2, thereby exacerbating even more the intricate relation between sur-
face approximations and finite element approximations on approximate surfaces.
For completeness, we mention that recently the two approaches were reconciled
in [10] for C3 surface, where a generic lift is used to define the algorithm leaving
the use of the signed distance function only as theoretical tool. Later in [11], this
technology has been extended to C2 surfaces. Whether these new developments
can be applied to the approximations of fractional powers of the Laplace-Beltrami
operator remains open.

In Section 2, we introduce preliminary notations and justify the integral rep-
resentation (2). In Section 3, we describe the proposed algorithms and present
numerical simulations indicating that the expected rate of convergence of the re-
sulting approximations matches the Euclidean case [6, 14] when using the signed
distance function or generic lifts. Following [5], we also illustrate how the proposed
algorithms can be used for e�cient approximation of Gaussian random fields on
surfaces. The convergence rates obtained in Section 3 are investigated in Section 4,
where it is shown that the method delivers (up to a logarithmic term) error esti-

mate of order O(e�c/k) + O(hmin(2,�+s)) in L2 whenever the data ef as fractional
regularity in L2 of order 2� and of order O(e�c/k) +O(hmin(2,�+s)�1) in H1 under
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the additional restriction � + s > 1
2 . The main results are Theorem 4.2 (space

discretization) and Corollary 4.3 (total error).
In what follows, we write a . b to mean a  Cb, with a constant C that does

not depend on a, b, or the discretization parameters. Finally, a ⇠ b indicates a . b
and b . a. We also denote kFkX!Y the induced norm of the linear functional F
mapping from X to Y . We reserve the e. notation for quantities defined on � and
discrete functions in space are denoted with capitals.

2. Fractional Powers of the Laplace-Beltrami Operator

The aim of this section is to provide a definition of the fractional powers of the
Laplace-Beltrami operator. We start by introducing interpolation spaces.

2.1. Interpolation Spaces. Let L2(S) be the space of square integrable functions
on a Lipschitz hyper-surface S and (., .)S be the associated inner product. We use
Hr(S) to denote the Hilbert space consisting of L2-functions with all weak deriva-
tives of total order  r in L2. To account for the compatibility conditions satisfied
by ef in (6), we also consider the subspaces of vanishing mean value functions

L2
#(S) := H0(S) :=

�
v 2 L2(S) : (v, 1)S = 0

 
,

Hi

#(S) := Hi(S) \ L2
#(S), i = 1, 2, 3, ....

For 0  s  2, we denote by Hs(S) := [L2(S), H2(S)]s/2,2 the fractional spaces,
where [X,Y ]r,2 are the intermediate spaces between X and Y obtained using the
real interpolation method. Similarly, we set Hs

#(S) := [L2
#(S), H2

#(S)]s/2,2 and

point out that they are equivalent to Hs(S) \ L2
#(S) with a norm equivalence

constant depending on S according to Lemma 2.1 and A1 in [22]. The dual spaces
of Hs(S) (resp. Hs

#(S)) are denoted H�s(S) (resp. H�s

# (S)). We use h., .iA to

denote the duality pairing between A and its dual. Furthermore, we identify L2(S)
with its dual leading to the embeddings

Hs(S) ⇢ L2(S) ⇢ H�s(S), Hs

#(S) ⇢ L2
#(S) ⇢ H�s

# (S), s � 0,

which are frequently used in the following without further mentioning it.

2.2. The Laplace-Beltrami Problem. We assume that � is a C3 closed hyper-
surface of Rn, n = 2, 3, and that we have access to its signed distance function
d : Rn ! R. The latter induces an orthogonal projection

P(x) = x� d(x)rd(x) (4)

to � in a tubular neighborhood N of � of fixed diameter depending on the curvature
of �; refer for e.g. to [11] and the reference therein for more details. This allows to
define the tangential operators using extensions and standard di↵erential operators
in Rn. For example, the surface gradient is given by

r�ev = (I �rd⌦rd)rv|� , �� := r� ·r� ,

where v is the extension of ev to N defined as v(x) := (Pev)(x) := ev(P(x)), x 2 N .

Given ef 2 H�1
# (�), we consider the weak formulation

a�( ew, ev) :=
Z

�

r� ew ·r�ev = h ef, eviH1
#(�), for all ev 2 H1

#(�), (5)
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of the Laplace-Beltrami problem

��� ew = ef. (6)

The bilinear form a� : H1(�) ⇥ H1(�) is continuous and thanks to the Poincaré-
Friederich inequality

kṽkL2(�) . kr� ṽkL2(�), 8ṽ 2 H1
#(�), (7)

see e.g. [11], it is coercive onH1
#(�). Thus, the Lax-Milgram theory guarantees that

there exists a unique ew 2 H1
#(�) satisfying the variational problem (5). We denote

by T : L2
#(�) ! H1

#(�) the solution operator T ef := ew and by L := (���) := T�1

its inverse with domain D(L) := Range(T ).

2.3. Fractional Powers and Dotted Spaces. By construction, the unbounded
operator L is regularly accretive. The negative fractional powers L�s = (���)�s,
s 2 (0, 1), can be defined via the general framework of regularly accretive operators

[24]: for ef 2 L2
#(�), we set

(���)
�s ef :=

sin(⇡s)

⇡

Z 1

0
µ�s(µI ���)

�1 ef dµ. (8)

The above representation is referred to as the Balakrishnan formula [3]. For positive
powers, we denote by D(Ls) := {v 2 L2

#(�) : Ls�1v 2 D(L)} the domain of the

fractional operator Ls and (���)s ef := L(Ls�1 ef). Our goal is to approximate

eu := (���)
�s ef (9)

for ef 2 L2
#(�) and s 2 (0, 1).

Although the Balakrishnan formula (8) is the basis of the proposed numeri-
cal scheme, we now show it reduces to a more standard spectral decomposition.
The compact embedding H1

#(�) ⇢ L2(�) guarantees that there exists an L2(�)-

orthonormal basis of eigenfunctions { e j}1j=1 ⇢ H1
#(�) of T with non-increasing

positive eigenvalues {eµj}1j=1. Note that { e j}1j=1 is also an L2(�)-orthonormal ba-

sis of eigenfunctions of L with corresponding eigenvalues e�j = 1/eµj . The spectral
decompositions of L o↵ers a representation of the fractional powers for �1 < s < 1,
namely

Lsev =
1X

j=1

e�s
j
hev, e jiH1

#(�)
e j . (10)

Furthermore, the domainsD(Ls) of the fractional operators satisfyD(Ls) = Ḣ2s
# (�),

where for r � �1, Ḣr

#(�) is the set of functions in H�1
# (�) such that the norm

kevk
Ḣr(�) :=

✓ 1X

j=1

e�r
j
|hev, e jiH1

#(�)|2
◆1/2

(11)

is finite. Refer for instance to [14, Theorem 2.1] for more details on this equivalence.
In particular, we deduce that

(���) ef 2 Ḣ2s+r(�) for ef 2 Ḣr(�), r � �1. (12)
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Furthermore, The spaces Hr

#(�) and Ḣr

#(�) coincide for r 2 [�1, 2] with equiv-
alent norms

k.kHr(�) ⇠ k.k
Ḣr(�) = kLr/2.kL2(�). (13)

We refer to [22] for the cases r 2 [�1, 1] and to [14] for the extension to r 2 [1, 2]
pointing out that the latter hinges on the fact that

T is an isomorphism from L2
#(�) to H2

#(�)

when � is of class C2, see Theorem 3.3 in [21] or Lemma 3 in [11].
We end this section with some estimates involving the Laplace-Beltrami operator.

We start by noting that the Poincaré-Friederich inequality (7) implies that

k(µI ���)
�1egkL2(�) . min(1, µ�1)kegkL2(�), for µ > 0 and eg 2 L2

#(�). (14)

One direct consequence of the norm equivalence (13) is that (12) implies

(���)
�s ef 2 H2s+r

# (�) for ef 2 Hr

#(�) (15)

provided r � �1 and 2s+ r  2. Furthermore there holds

k(���)
�s efkH2s+r(�) . k efkHr(�). (16)

Another direct consequence of the norm equivalence (13), is the following finer
version of estimate (14): Let r 2 [0, 1], t 2 [0, 2] satisfying r + t 2 [0, 2]. Given
eg 2 Ht

#(�) and µ 2 (0,1), there holds

k(���)(µI ���)
�1egkH�r(�) . µ�(r+t)/2kegkHt(�). (17)

Refer to Lemma 6.5 in [14] for a proof; see also Proposition 4.1 and Lemma 4.5 in
[6].

3. Numerical schemes

3.1. Outer Quadrature Formula. We follow [12] and use a sinc numerical quad-
rature to approximate the integral with respect to the variable µ = ey in (8):

(���)
�s ef ⇡ Q�s

k
(L) ef :=

k sin(⇡s)

⇡

NX

`=�M

e(1�s)y`(ey`I ���)
�1 ef, (18)

where k > 0 is the quadrature spacing,

N :=

⇠
⇡2

4sk2

⇡
and M :=

⇠
⇡2

4(1� s)k2

⇡
, (19)

and y` := k`, ` = �M, ..., N . This particular choice of M and N balances the three
sources of quadrature errors: the approximation of the integral from y�M to yN
and the contributions of the integrals from �1 to y�M as well as from yN to 1
not accounted for in (18), see [12, Remark 3.1]. We shall see in Section 4.1 that
this quadrature approximation is exponentially convergent in k.

In order to simplify the notations, we denote by eu` := eu`(f) the unique function
in H1

#(�) satisfying the variational formulation

ey`(eu`, ev) + a�(eu`, ev) = ( ef, ev), 8ev 2 H1
#(�).

Note that for ef 2 L2
#(�), we have

R
�

ef = 0 and so eu` 2 H1
#(�) is also characterized

as the unique function in H1(�) satisfying

ey`(eu`, ev) + a�(eu`, ev) = ( ef, ev), 8ev 2 H1(�), (20)
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which is more amenable to finite element approximations. Regardless, using eu` in
the quadrature approximation (18) we arrive at

euk := Q�s

k
(L) ef =

k sin(⇡s)

⇡

NX

`=�M

e(1�s)y`eu`. (21)

3.2. Parametric Finite Element Method. We now discuss the approximation
of elliptic operator on hype-surface using the parametric finite element methods.
We assume that � is a (n� 1)-dimensional polyhedral surface lying in N so that P
in (4) is a C2 di↵eomorphism from � to �. The orthogonal projection (4) provided
a higher order approximation of the geometry compared to generic lifts P, see e.g.
(46). However, this is at the expense of requiring C3 smoothness on the surface
rather than C2. In [11], it is shown that it was possible to win both ways and design
an algorithm for the Laplace-Beltrami problem using a generic lift while taking
advantage of the orthogonality of (4) only in the analysis for C2 surface. Whether
this technology can be adapted to the current context remains an open problem
not addressed in the current work (see Conclusions section) but point out that the
numerical observations reported in Section 3.3 indicate that the convergence of the
algorithm is not a↵ected when using generic lifts. We thus restrict our consideration
to algorithms defined using the signed distance function lift (4) and assume, to avoid
additional technicalities, that the vertices of � lie on � (see [18] for a discussion
on how to relax such assumption). Furthermore, from now on we assume that the
geometry of � is su�ciently well approximated by � so that � ⇢ N and thus the
lift P is well defined on �.

We denote by T the collection of the faces1, which are assumed to be all ei-
ther triangles or quadrilaterals. When using triangular subdivisions, the reference
element b⌧ is the unit triangle and we set P to be the set of linear polynomials.
Instead, when the subdivisions are made of quadrilaterals, the reference element b⌧
is the unique square and we set P to be the set of bi-linear polynomials. Associated
to each face ⌧ 2 T , we denote by F⌧ : b⌧ ! ⌧ 2 [P]n�1 the map from the reference
element to the physical element. We let cJ := cJ(T ) be such that

c�1
J

|w|  |DF⌧w|  cJ |w|, 8w 2 Rn�1, 8⌧ 2 T .

Furthermore, we denote by h⌧ , ⌧ 2 T , the diameter of ⌧ and by cq := cq(T ) the
quasi-uniformity constant

h := max
T2T

hT = cq min
T2T

hT .

For polyhedral surfaces, the number of faces sharing the same vertex is not
controlled by the quasi-uniformity constant cq (think of a surface zigzaging around
a vertex as depicted in Fig. 1 in [10]). Thus, we denote by cv := cv(T ) this valence,
namely

cv := max
v vertex of T

#{T 2 T : v is a vertex of T}. (22)

The constants appearing in the analysis below may depend on cJ , cq and cv but
not on h. At this point, it is worth mentioning that there are algorithms construct-
ing sequences of surface approximations with uniformly bounded cJ , cq and cv.
Examples are subdivisions {�i := IiP(�

i
)}1

i=1, where Ii is the standard Lagrange

1We use the names of quantities corresponding to 2-dimensional surfaces even if � could be a
curve.
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nodal interpolant associated with the subdivision �
i
and {�

i
}1
i=1 is a sequence of

uniform refinements of an initial polyhedral surface �0; refer for instance to [13] for
subdivisions obtained by uniform refinements and to [9, 8] for adaptively refined
meshes.

The finite element space associated with the subdivision T is denoted V(T ) and
is given by

V(T ) := {v 2 H1(�) : v|⌧ � F⌧ 2 P, 8⌧ 2 T }.
Note that V(T ) is not restricted to vanishing mean value functions. Rather, it is
tailored for the approximation of the sub-problems (20). More precisely, we propose
to approximate eu` in (20) by U ` 2 V(T ) satisfying

ey`

Z

�
U `V +

Z

�
r�U ` ·r�V =

Z

�
V P ef�, for all V 2 V(T ). (23)

Recall that P : L2(�) ! L2(�) is defined with P ef = ef � P and � : � ! R is
the ratio between the area element of � and � associated with the parametrization
P : �! �. We will also use the notation P# := �P : L2(�) ! L2(�) and note thatR
� P#

ef =
R
� P

ef� =
R
�

ef = 0 whenever ef 2 L2
#(�). As a consequence, U ` satisfiesR

� U
` = 0 as well. In view of (18), the approximation Uk 2 V(T ) \ L2

#(�) to u in
(9) is defined as

Uk := Q�s

k
(LT )P#

ef =
k sin(⇡s)

⇡

NX

`=�M

e(1�s)y`U ` 2 V(T ) \ L2
#(�). (24)

Remark 3.1 (Other approximate right hand sides in (23)). The term P ef� in

the right hand side (23) can be substituted by any O(h2) approximation of P ef with
vanishing mean value on �; refer to [18] for a discussion on the resulting consistency

term. For example, one could consider Ih(P ef)� 1
|�|

R
� Ih(P

ef) where Ih stands for

the Lagrange interpolant. Whether one can relax the O(h2) approximation to an
O(h) approximation like for the standard case s = 1 as in [11] remains an open
question.

3.3. Numerical Illustration.

3.3.1. Convergence Tests. For this numerical experiment, � is the unit sphere in

the three dimensional space. The data ef 2 H
1
2�"

# , " > 0, is the step function

ef(x1, x2, x3) =

⇢
1, if x3 � 0,

� 1, if x3 < 0.
(25)

The exact solution eu is represented using an eigenfunction expansion in the spherical
coordinate system (✓,�) 2 [0,⇡] ⇥ [0, 2⇡], with ✓ and � indicating the latitudinal
and longitudinal directions, respectively. That is

eu(x) = eu(✓,�) =
1X

j=1

jX

m=�j

��s

j
( ef, eYmj(✓,�))eYmj(✓,�),

where {eYmj} for j = 0, 1, . . . and m = �j, . . . , j is the sequence of spherical har-

monic functions. Since ef is independent of �, ( ef, eYmj) = 0 for m 6= 0. Whence, we
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obtain

eu(x) = eu(✓,�) =
1X

j=1

��s

j
( ef, e⇣j(✓,�))e⇣j(✓,�),

where e⇣j(✓,�) = eY0j(✓,�) =
p
(2j + 1)/(4⇡) epj(cos(✓)) and {epj}j�1 are the Le-

gendre polynomials. The first 10, 000 modes are retained for the evaluation of eu(x)
so that the overall error is not a↵ected by the truncation.

The discrete surfaces � are obtained by uniform refinements of the coarse sub-
division depicted in Figure 1. The algorithm is implemented using the deal.II
finite element library [1]2. In terms of the matrix computation for the formula (24),
we note that we invert the matrix system on the left hand side of (23) using the
direct solver from UMFPACK3 but multigrid solvers [25, 13] could be used for larger
problems. The sinc quadrature parameter k is set to k = 0.15 so that the space
discretization error dominates the total error.

Figure 1. A coarse quadrilateral subdivision of the unit sphere.

On Euclidean domains, we expect (Theorem 6.2 in [14]) that for ef 2 H1/2�✏

# (�)

we have kP eu�UkkL2(�) ⇠ hmax(2, 12+2s) ⇠ #DoFs�min(1, 14+s) and kP eu�UkkH1(�) ⇠
hmax(1,2s� 1

2 ) ⇠ #DoFs�min( 1
2 ,s�

1
4 ). This matches the convergence rates observed

for the Laplace-Beltrami operator as reported in Figure 2. The analysis below (see
Theorem 4.2) provides a rigorous justification. To illustrate the influence of the
fractional power s on the exact solution and its approximations, we also report in
Figure 3 the approximate solution Uk for s = 0.3 and the values of Uk for di↵erent
s along a geodesic from the south pole to the north pole.

We also consider the numerical scheme (24) using a generic lifting operator Pg

instead of P in the sub-problem (23). To explicit Pg, we define for i = 1, 2, 3

D+
i
:= {x 2 R3 : xi � |xj |, j 6= i} and D�

i
:= {x 2 R3 : xi  �|xj |, j 6= i}

in such a way that D±
i

subdivide the unit sphere in six regions. Whence, we set

Pg
ef = f �Pg, where the lift Pg is defined by the following piecewise lift onto �: for

x 2 D±
i
, set Pi,±

g
(x) = z, where zj = xj if j 6= i and zi = ±

q
1�

P
k 6=i

x2
k
. Using

2see also a tutorial problem at https://www.dealii.org/current/doxygen/deal.II/step 38.html.
3https://people.engr.tamu.edu/davis/suitesparse.html
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Figure 2. The errors kP eu� UkkL2(�) (left) and kP eu� UkkH1(�)

(right) against the number of degree of freedoms for s = 0.3, 0.5
and 0.7. For each error plot, the slope of the last segment is re-
ported along with the convergent rate (in parenthesis) guaranteed
by Theorem 4.2 below.

Figure 3. (Left) Approximated solution Uk for s = 0.3. The

blue color corresponds to a value of -1 in ef while the red color to
1. (Right) Values of the approximate solutions along the geodesic
from the south pole to the north pole for s = 0.3, 0.5 and 0.7. As s
increases the smoothing e↵ect generated by the application of L�s

increases as well. The visualizations are obtained using Paraview
[2].

this lifting operator to compute U ` in (23) does not a↵ect the convergence rate as
reported in Figure (4).

3.3.2. Application to Gaussian Random Fields. In this section, we discuss the nu-
merical simulation of Gaussian random fields on a closed surface. The latter is
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Figure 4. The errors kPgeu�UkkL2(�) (left) and kPgeu�UkkH1(�)

(right) versus the number of degree of freedoms for s = 0.3, 0.5
and 0.7. For each error plot, the slope of the last segment together
with the predicted convergence rate are also reported and matches
the decay in Figure 2 (which uses the signed distance function).

characterized as the solution eu to the stochastic partial di↵erential equation

(2 ���)
seu = W, on �, (26)

where s > 4
d
, > 0 are regularity parameters and W denotes white noise. Note

that W can be represented by the Karhumen-Loéve expansion with respect to the
orthonormal eigenbasis { e j}1j=1 in L2(�), i.e. W =

P1
j=1 ⇠j

e j with {⇠j} denot-
ing a sequence of independent real-values standard normally distributed random
variables. In [23], a surface finite element is proposed to approximate (26) on the
sphere with the truncated Karhumen-Loéve expansion.

Here we follow the idea from [5] to approximate the white noise in the finite

element space V(T ). Define W :=
P

N

j=1 ⇠j j , where N denotes the number of

degrees of freedom for V(T ) and { j}Nj=1 is the set of eigenfunctions for the discrete
Laplace-Beltrami operator. More precisely,  j 2 V(T ) satisfies

Z

�
r� j ·r�V = �j

Z

�
 jV.

To avoid the computation of discrete eigenfunctions, we can alternatively calcu-
late W� =

P
j=1 ⌘j�j . Here {�j} are the shape functions on the vertices and

(⌘1, . . . , ⌘N )T = R�1(⇠1, . . . , ⇠N )T , where RTR = M with M denoting the mass
matrix with the entries Mij =

R
� �j�i. Lemma 2.8 of [5] shows that E[kW �

W�k2
L2(�)] = 0. In practice, the data vector for the discrete system should be Gz

with z ⇠ N (0, IN⇥N ) with G denoting a Cholesky factor of the mass matrix.
Applying our numerical method in Section 3.2, we report a discrete solution to

the problem (26) in Figure 5. Here s = 0.75,  = 0.5, and the surface � is a torus
with the following parametrization: for ✓,� 2 [0, 2⇡)

x(✓,�) = (2 + 0.5 cos ✓) cos�,

y(✓,�) = (2 + 0.5 cos ✓) sin�,

z(✓,�) = 0.5 sin ✓.
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Figure 5. (Left) The random vector z and (right) the cor-
responding approximated random field sample Uk for (26) with
s = 0.75 and  = 0.5.

4. Error Estimates

In this section, we provide L2 and H1 estimates for the discrepancy between the
solution P eu = PL�s ef and its fully discrete approximation Uk = Q�s

k
(LT )P#

ef . We
discuss the error associated with the sinc quadrature first and move to the finite
element error in a second step.

4.1. Exponentially Convergent Sinc Quadrature. We start by proving the
stability of Q�s

k
.

Lemma 4.1 (Stability). Let 2s  t  2+2s. Assume that ef 2 Ht�2s
# (�) ⇢ L2

#(�).
Then for any ✏ > 0, the sinc approximation euk given by (21) satisfies

keukkḢt�✏(�) . max(1, ✏�1)k efkHt�2s(�).

Proof. We start with expression (21) for euk and estimate

keukkḢt�✏(�) . k
NX

`=�M

e(1�s)y`keu`k
Ḣt�✏(�). (27)

We now obtain bounds for the inner problems eu` := (µ`I+L)�1 ef , where µ` := ey` .
Using the definition of the dotted norms (11), we deduce that

keu`k2
Ḣt�✏(�)

= k(µ`I + L)�1L(t�✏)/2 efk2
L2(�) .

1X

j=1

e�t�2s
j

⇣ e�s�✏/2
j

e�j + µ`

⌘2
| efj |2, (28)

where efj := h ef, e jiH1
#(�). Note that

e�s�✏/2
j

e�j+µ`
. min(1, µs�1�✏/2

`
) because

e�s�✏/2
j

e�j + µ`

 e�s�1�✏/2
j

. 1
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and, using a Young inequality,

e�s�✏/2
j

e�j + µ`

= µs�1�✏/2
`

µ1�s+✏/2
`

e�s�✏/2
j

e�j + µ`

 µs�1�✏/2
`

.

As a consequence, (28) yields

keu`k2
Ḣt�✏(�)

. min(1, µs�1�✏/2
`

)k efk2
Ḣt�2s(�)

. min(1, µs�1�✏/2
`

)k efk2
Ht�2s(�),

where for the last estimate we used the equivalence of norms (13). Returning to
(27), we obtain the desired estimate

keukkḢt�✏(�) . k efkHt�2s(�)k

✓ 1X

`=�M

e(1�s)y` +
NX

`=0

e�✏y`/2

◆

. max(1, ✏�1)k efkHt�2s(�).

⇤
We remark that except for the factor ✏, the above stability is expected since

eu := (���)�s ef 2 Ḣt(�) for ef 2 Ht�2s
# (�) and thus it reads

keukkḢt�✏(�) . max(1, ✏�1)keuk
Ḣt(�).

In addition, when t  2 the dotted spaces can be replaced by the regular interpo-
lation spaces. However, the analysis below requires such estimate for t > 2.

Regarding the convergence of Q�s

k
(L) towards L�s, it follows from Theorem 3.2

and Remark 3.1 in [12]: Given ef 2 H2t
# (�) with t 2 [0, 1] and �t  r < s, there

holds
k(L�s �Q�s

k
(L)) efkH2(r+t)(�) . ⇢(k, r, t)k efkH2t(�), (29)

where

⇢(k, r, t) :=
e�⇡

2
/(2k)

sinh (⇡2/(2k))
+ e�(s�r

+)Nk + e�(1�s)Mk, r+ := max(0, r). (30)

Balancing three terms in the definition of ⇢(k, r, t) yields

⇢(k, r, t) ⇠ C

✓
1

s� r+
+

1

1� s

◆
e�⇡

2
/(2k), as k ! 0,

where the constant C is independent of k and s; see Remark 3.3 in [12].

4.2. Space Discretization. The next theorem assesses the discrepancy between
the sinc quadrature approximation (lifted to �) P euk = PQ�s

k
(L) ef and the fully

discrete approximation Uk 2 V(T ). Its proof relies on several intermediate results
and is therefore postponed to Section 4.7.

Theorem 4.2 (space discretization). Let 0  �  1. Assume that ef 2 H2�
# (�).

Let euk = Q�s

k
(L) ef be the sinc quadrature approximation (21) of Uk 2 V(T ) in turn

given by (24). Assume that h is su�ciently small so that � ⇢ N and h  e�1.
Then there holds

kP euk � UkkL2(�) . "(h)k efkH2�(�),

where

"(h) :=

(
h2, if � + s > 1,

ln(h�1)h2(�+s), if � + s  1.
(31)
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If in addition � + s > 1
2 , then we have

kP euk � UkkH1(�) . "(h)h�1k efkH2�(�).

When combing the error estimates from the sinc approximation and space dis-
cretization, we obtain the following corollary for the total error.

Corollary 4.3 (total error). Let 0  �  1. Assume that ef 2 H2�
# (�). Let

u = L�s ef and Uk 2 V(T ) its approximation given by (24). Assume that h is
su�ciently small so that � ⇢ N and h  e�1. Then there holds

kP eu� UkkL2(�) . ("(h) + ⇢(k, 1� �, �))k efkH2�(�),

where "(h) is given by (31) and ⇢(k, 1� �, �) by (30). If in addition �+ s > 1
2 then

we have
kP eu� UkkH1(�) . ("(h)h�1 + ⇢(k, 1

2 � �, �))k efkH2�(�).

The proof of this corollary is also postponed to Section 4.7.

4.2.1. L2(�)-orthogonal projection. The L2(�) orthogonal projection ⇡T : L2(�) !
V(T ) onto V(T ) will be instrumental in the analysis below. For v 2 L2(�), it is
defined by the relations

Z

�
(⇡T v � v)W = 0, 8W 2 V(T ) (32)

and have similar properties as the standard L2 projection on Euclidean domain.
We summarize the properties needed for the analysis in the following proposition.

Proposition 4.4. The L2 projection ⇡T is both L2 and H1 stable and in particular
for v 2 Hr(�), r 2 [0, 1], there holds

k⇡T vkHr(�) . kvkHr(�). (33)

Consequently, for 0  r, t  1 and ev 2 Hr+t(�) we have

k(I � ⇡T )PevkHt(�) . hrkevkHr+t(�). (34)

The proof of the above results does not di↵er from the standard Euclidean case.
In fact, the L2 stability and error estimates directly follows from the definition of the
L2 projection and the approximation properties of the Scott-Zhang interpolant [32].
The H1 stability and error estimates can be derived using the Bramble-Xu trick
[15], which also require the approximation properties of the Scott-Zhang interpolant
along with those of the cell-wise L2 projection. Interpolating the stability results
betweenH1 and L2 yield (33) while interpolating the approximation results between
H1 and L2 yield (34). It is worth mentioning that the constant hidden in the “ .00

signs depends on the quasi-uniformity constant cq, the Jacobian constant cJ and
the maximum valence constant cv all defined in Section 3.2. The details are omitted
for brevity.

4.3. Operator Representation of the Discrete Approximations. As in Sec-
tion 2.2, we rewrite (24) in operator form by defining the discrete counter-parts of
T and L. We denote by TT : V(T ) \ L2

#(�) ! V(T ) \ L2
#(�) the discrete solution

operator defined by TT G := W , where W 2 V(T ) \ L2
#(�) is the unique solution

(again guaranteed by Lax-Milgram) of

a�(W,V ) :=

Z

�
r�W ·r�V =

Z

�
GV, for all V 2 V(T ). (35)
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Its inverse on V(T )\L2
#(�) is denoted LT , i.e. LT := T�1

T : V(T )\L2
#(�) ! V(T )\

L2
#(�). Note that LT is invertible on V(T ) \ L2

#(�) but it will be convenient for
the analysis below to extend its action on the whole V(T ) (LT 1 = 0). Regardless,

for ef 2 L2
#(�), the solution Uk 2 V(T ) \ L2

#(�) given by (24) satisfies

Uk = Q�s

k
(LT )P#

ef :=
k sin(⇡s)

⇡

NX

`=�M

e(1�s)y`(ey`I + LT )
�1⇡T P#

ef, (36)

where ⇡T is the L2(�) orthogonal projection onto V(T ) (see Section 4.2.1) and

P# : L2
#(�) ! L2

#(�), is given by P#eg = �Peg.

In particular, we observe that ⇡T P#
ef 2 V(T ) \ L2

#(�) when
ef 2 L2

#(�).
Next we shall collect some instrumental estimates corresponding to discrete ver-

sions of (14) and (17). We gather both results in the next lemma.

Lemma 4.5. For µ 2 (0,1), we have

k(µI + LT )
�1GkL2(�) . µ�1kGkL2(�), 8G 2 V(T ). (37)

In addition, for 0  r  t  1 and µ 2 (0,1), there holds

kLT (µI + LT )
�1GkHr(�) . µ(r�t)/2kGkHt(�), 8G 2 V(T ). (38)

Proof. For G 2 V(T ), we set W := (µI + LT )�1G 2 V(T ) which satisfies

µ

Z

�
WV + a�(W,V ) =

Z

�
GV, 8V 2 V(T ).

With this, (37) readily follows by choosing V = W .
To derive (38), we start with the cases (r, t) = (0, 0), (1, 1) and (0, 1). Thanks to

the stability of the L2-projection ⇡T (33), the discrete dotted norms kLr/2
T .kL2(�)

are equivalent to the classical Hr(�) norms k.kHr(�) on the discrete space V(T ),
i.e.

kLr/2
T V kL2(�) ⇠ kV kHr(�), 8V 2 V(T ), r 2 [0, 1].

We refer for e.g. to [14] for a proof. Whence, the choice V = LT W and the
definition of a� in (35) yield

µkL1/2
T WkL2(�) + kLT WkL2(�) = a�(G,W ). (39)

This in (39) implies that

µkWk2
H1(�) + kLT Wk2

L2(�) . a�(G,W )

so that two di↵erent Young inequalities lead to

kLT (µI + LT )
�1GkL2(�) . kLT WkL2(�) . kGkL2(�) (40)

and
µkWkH1(�) + µ1/2kLT WkL2(�) . kGkH1(�). (41)

Relation (40) and (41) are the desired estimates (38) for r = 0 and t = 0, 1, while
(41) also implies that

kLT (µI + LT )
�1GkH1(�) . kGkH1(�) + µkWkH1(�) . kGkH1(�), (42)

which is (38) for r = 1 and t = 1.
The general results for 0  r  t  1 follows by interpolation. The case r = t

case follows from the interpolation between the case (r, t) = (0, 0) and (1, 1), i.e.
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(41) and (42) while the case t = 1 (r 2 [0, 1]) is derived from the interpolation
between (40) and (41). Interpolation between the case r = t and the case t = 1
gives (38) in general. ⇤

4.4. Error Representation. We now derive a representation of the di↵erence
P euk � Uk instrumental for the analysis of the method. First, we introduce ⇡T P euk

and write

P euk � Uk = (P euk � ⇡T P euk) + (⇡T P euk � Uk).

The first di↵erence P euk � ⇡T P euk concerns the approximation properties of the L2

projection and can be estimated using Proposition 4.4. The second di↵erence is
more problematic. We start by deriving an error representation instrumental for
the proposed analysis.

We expand the expression for ⇡T P euk � Uk using (21) and (36) to arrive at

⇡T P euk � Uk =
k sin(⇡s)

⇡

NX

`=�M

µ1�s

`
W`

ef, (43)

where µ` := ey` and

W`
ef := ⇡T P (µ`I + L)�1 ef � (µ`I + LT )

�1⇡T P#
ef. (44)

After several algebraic manipulations, we rewrite the above relation as

W`
ef = (µ`I + LT )

�1 ((µ`I + LT )⇡T P � ⇡T P#(µ`I + L)) (µ`I + L)�1 ef

= LT (µ`I + LT )
�1(⇡T PT � TT ⇡T P#)L(µ`I + L)�1 ef

+ µ`(µ`I + LT )
�1⇡T (P � P#)(µ`I + L)�1 ef =: W1

`
ef +W2

`
ef.

(45)

Note that the term ⇡T PT � TT ⇡T P# in W1
`
relates to the approximation of the

solution to the Laplace-Beltrami problem (5) by the finite element method (35)
while ⇡T (P�P#) inW2

`
is of geometric nature and is dictated by the approximation

of � by �. We will estimate these two term separately.

4.5. Geometric Approximation. We recall that we assume that � ⇢ N and
list several instrumental estimates regarding to approximation of � with �. For
their proofs, we refer for instance to [11]. We recall that thanks to the orthogonal
property of P, there exists a constant c� only depending on � satisfying,

k1� �kL1(�)  c�h
2 (46)

and 0 < c  |�(x)|  C, x 2 �, for some constants c and C only depending on �.
Furthermore, the discrepancy between the bilinear forms a� and a� satisfies

Z

�
r�Pev ·r�P ew �

Z

�

r�ev ·r� ew =

Z

�

r�ev ·Er� ew, (47)

where the error matrix E reflects the approximation of � by � and satisfies

kEkL1(�) . h2; (48)

see Lemma 15 and equation (56) in [11].
Thanks to the C3 regularity assumption on �, the lift P 2 C2(N )n and we have

the equivalence of norms

kPevkHj(�) ⇠ kevkHj(�)
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for all ev 2 Hj(�), j = 0, 1, 2. By interpolation, we also deduce that for r 2 [0, 2]

kPevkHr(�) ⇠ kevkHr(�), 8ev 2 Hr(�). (49)

With these results, we are able to estimate W2
`
in the error representation (45).

Lemma 4.6. For ef 2 L2
#(�) we have

kW2
`
efkHj(�) . min(1, µ�1

`
)h2�jk efkL2(�), j = 0, 1.

Proof. We note that for j = 0, 1,

kW2
`
kL2(�)!Hj(�) . µ`k(µ`I + LT )

�1⇡T kL2(�)!Hj(�)

k(1� �)PkL2(�)!L2(�)k(µ`I + L)�1kL2(�)!L2(�)

. h�jµ`k(µ`I + LT )
�1⇡T kL2(�)!L2(�)

k(1� �)PkL2(�)!L2(�)k(µ`I + L)�1kL2(�)!L2(�),

where we applied the inverse inequality to justify the second inequality. Using the
geometric estimates (46) and (49), we find that

k(1� �)PkL2(�)!L2(�) . k1� �kL1(�)kPkL2(�)!L2(�) . h2

and so

kW2
`
kL2(�)!Hj(�) . h2�jµ`k(µ`I+LT )

�1⇡T kL2(�)!L2(�)k(µ`I+L)�1kL2(�)!L2(�).

This, together with (37), (14) and the stability of the L2 projection (33) yields the
desired estimate. ⇤

4.6. Error Estimate for the Laplace-Beltrami problem. As already pointed
out, the error representation (43) requires estimates for the di↵erence between

PT ef , the solution to Laplace-Beltrami problem (5) mapped to � via P and its

finite element approximation TT ⇡T P ef . When the distortion is measured in H1 or
in L2, Theorem 37 and 38 in [11] guarantee that

k(PT � TT ⇡T P#) efkL2(�) + hk(PT � TT ⇡T P#) efkH1(�) . h2k efkL2(�). (50)

Using the approximation property of the L2 projection (34) and the regularity
estimate (16) for s = 1 and r = 0, we deduce a slight modification of the above
error estimate

k(⇡T PT � TT ⇡T P#) efkL2(�) + hk(⇡T PT � TT ⇡T P#) efkH1(�) . h2k efkL2(�). (51)

The following proposition provides the error estimates in interpolation scales.

Proposition 4.7. Let ef 2 L2
#(�) and ↵ 2 [0, 1]. Then there hold

k(⇡T PT � TT ⇡T P#) efkH1(�) . h↵k efkH↵�1(�) (52)

and

k(⇡T PT � TT ⇡T P#) efkH1�↵(T ) . h2↵k efkH↵�1(�). (53)

We postpone the proof in Appendix A to focus on the estimation of W1
`
from

the error representation (45).
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Lemma 4.8. Let ↵ 2 [0, 1] and � 2 [0, (1 + ↵)/2]. For ef 2 H2�
# (�) there holds

kW1
`
efkL2(�) . µ↵���1

`
h2↵k efkH2�(�).

Furthermore, for ↵ 2 [ 12 , 1] and � 2 [0,↵], we have

kW1
`
efkH1(�) . µ↵���1

`
h2↵�1k efkH2�(�).

Proof. The L2 estimate is derived upon composing the following three estimates

kL(µ`I + L)�1egkH↵�1(�)  µ
��+↵�1

2
`

kegkH2�(�), 8eg 2 H2�
# (�)

k(⇡T PT � TT ⇡T P#)egkH1�↵(�) . h2↵kegkH↵�1(�), 8eg 2 H↵�1
# (�),

kLT (µ`I + LT )
�1GkL2(�) . µ

↵�1
2

`
kGkH1�↵(�), 8G 2 V(T ).

The first estimate follows from (17) with r = 1�↵ and t = 2�, the second estimate
is (53), and the third estimate follows from the discrete estimate (38) with r = 0
and t = 1� ↵.

Similarly for the H1(�) estimate, we invoke the following three estimate

kL(µ`I + L)�1egkH2↵�2(�) . µ��+↵�1
`

kegkH2�(�), 8eg 2 H2�
# (�),

k(⇡T PT � TT ⇡T P#)egkH1(�) . h2↵�1kegkH2↵�2(�), 8eg 2 H2↵�2
# (�),

kLT (µ`I + LT )
�1GkH1(�) . kGkH1(�), 8G 2 V(T ),

where this time the first estimate follows from (17) with r = 2� 2↵ and t = 2�, the
second estimate is (52), and the third estimate follows from the discrete estimate
(38) with r = t = 1. ⇤
4.7. Proof of Theorem 4.2 and Corollary 4.3. We are now in a position to
prove Theorem 4.2 and Corollary 4.3.

4.7.1. Proof of Theorem 4.2. We only prove the L2 estimate with � + s  1 and
comment on how to similarly derive all the other cases at the end of the proof.

As mentioned in the beginning of Section 4.4, we decompose the di↵erence P euk�
Uk into two parts

P euk � Uk = (P euk � ⇡T P euk) + (⇡T P euk � Uk)

and estimate each term separately. We set ↵⇤ := s+ � � ✏0 for some 2✏0 < s+ � to
be chosen later.

1 For the L2 projection error term we have

k(I � ⇡T )P eukkL2(�) . h2↵⇤
keukkH2�+2s�2✏(�) ( (34) with t = 0, r = 2� + 2s� 2✏0)

. h2↵⇤
keukkḢ2�+2s�2✏(�) (norm equivalence (13))

. 1

✏0
h2↵⇤

k efkH2�(�). (Lemma 4.1with t = 2� + 2s, ✏ = 2✏0)

2 It remains to estimate k⇡T P euk � UkkL2(�). According to (43), we write

k⇡T P euk � UkkL2(�) . k
NX

`=�M

µ1�s

`
kW`

efkL2(�). (54)

Di↵erent arguments are needed depending on whether µ` 2 (0, 1), µ` 2 [1, h�2↵⇤
/s)

and µ` 2 [h�2↵⇤
/s,1).
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3 For µ` 2 [h�2↵⇤
/s,1), we use (44) to write

kW`
efkL2(�) . k⇡T P (µ`I + L)�1 efkL2(�) + k(µ`I + LT )

�1⇡T P#
efkL2(�).

Estimates (37), (14) together with the stability of the L2-projection (33) and the
equivalence of norms (49) guarantee that

kW`
efkL2(�) . µ�1

`
k efkL2(�).

As a consequence, we arrive at the final estimate for this ranges of µ

k
X

µ`�h�2↵⇤/s

µ1�s

`
kW efkL2(�) . k efkL2(�)k

X

µ`�h�2↵⇤/s

µ�s

`

 k efkL2(�)

kµ�s

`0

1� e�ks
 h2↵⇤

k efkL2(�)
k

1� e�ks
. h2↵⇤

k efkL2(�),

where `0 is the smallest integer satisfying µ`0 � h�2↵⇤
/s. We also note that to

derive the last inequality, we used the fact µ` = ey` = ek` and that for all a > 0,
k/(1� e�ka) . 1

a
.

4 For µ` 2 [1, h�2↵⇤
/s), we take advantage of the error representation (45), the

estimates provided in Lemma 4.8 with ↵ = ↵⇤ 2 [0, 1] and Lemma 4.6 to write

k
X

1µ`<h�2↵⇤/s

µ1�s

`
kW efkL2(�)

. h2↵⇤
k efkH2�(�)k

X

1µ`<h�2↵⇤/s

µ�s+↵
⇤��

`
+ h2k efkL2(�)k

X

1µ`<h�2↵⇤/s

µ�s

`

. h2↵⇤
k efkH2�(�)

k

1� e�k✏0
+ h2 k

1� eks
k efkL2(�)

. 1

✏0
h2↵⇤

k efkH2�(�) +
1

s
h2k efkL2(�).

5 For µ` 2 (0, 1), we proceed similarly as in the previous step invoking Lemma 4.8
with ↵ = 1, � = 0 and Lemma 4.6 to get

k
X

0<µ`<1

µ1�s

`
kW`

efkL2(�) . h2k efkL2(�)k
X

0<µ`<1

µ1�s

`
. h2↵⇤

k efkL2(�).

6 Gathering the estimates obtained at each step, we arrive at

kP euk � UkkL2(�) .
h�2✏0

✏0
h2(�+s)k efkH2�(�),

which, upon setting ✏0 = (� + s)/(2 ln(h�1)) satisfying 0 < 2✏0 < � + s thanks to
the assumption h  1/e, is the desired L2 estimate for � + s  1.

7 The H1 error estimate is obtained identically except that an inverse estimate
is used at the beginning of step 3 to get

kW`
efkH1(�) . h�1µ�1

`
k efkL2(�).

The case � + s > 1 also follows using similar arguments, the noticeable di↵erences
being that ↵⇤ = 1 and thus the estimate is free from ✏0 terms. The details are
omitted.
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4.7.2. Proof of Corollary 4.3. We start with the L2-estimate. The total error is
decomposed into the sinc quadrature error and the finite element error

kP eu� UkkL2(�)  kP (eu� uk)kL2(�) + kP euk � UkkL2(�).

For the sinc quadrature error, we invoke the norm equivalence kP.kHj(�) ⇠ k.kHj(�)

valid for j = 0, 1 (see (49)) and the sinc quadrature error (29) with t = � and r = ��.
Theorem 4.2 provides the desired results for the space discretization error. The H1

error estimate follows similarly but upon invoking (29) with t = � and r = 1
2 � �.

5. Conclusions

We proposed a numerical scheme to approximate the negative powers of the
Laplace-Beltrami operator by discretizing the outer integral of the Balakrishnan
formula with a sinc quadrature and using a parametric finite element method to
approximate the evaluation of the integrant at each quadrature point. We show
that if the surface is of class C3 and when the signed distance function is used as
lift to define the parametric finite element method, the numerical scheme delivers
the same rates of convergence as on Euclidean domains.

Whether a generic lift can be used within the proposed algorithm remains an
open question. The arguments used in the analysis of the algorithm relies on the
second order approximation property of the geometric quantities � and E; see for
instance Lemma 4.6 and (58) in Appendix. For generic lifts, such as Pg defined
in Section 3, the geometric quantities are only approximated to first order. To
illustrate this fact, we report in Figure 6 the behavior of k� � 1kL1(�) versus the

number of degree of freedoms (which is equivalent to h�1/n) for the lift Pg. It
is conceivable that the arguments provided in [11] and in particular the technical
proposition (Proposition 34 in [11]) can be extended in this context to explain the
convergence results obtained in Section 3.3 when using Pg.

102 103
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10�2

10�1

h2 ⇠ #DoFs�1

h ⇠ #DoFs�1/2

#DoFs

k�
�

1k
L

1
(�

)

using distance function
using a generic function

Figure 6. Behavior k� � 1kL1(�) versus the number of degree of
freedoms using P and Pg. The space discretization setting is the
same as we introduced in Section 3. Here we approximate the norm
by computing the maximum of |� � 1| at all 6th-order Gaussian
quadrature points in each cell of T .
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Appendix A. Proof of Proposition 4.7

We start by noting that

k(PT � TT ⇡T P#) efkH1(�)  kPT efkH1(�) + kTT ⇡T P#
efkH1(�)

so that the stability of the L2 projection (33), the norm equivalence property (49)
and standard energy estimates yield

k(PT � TT ⇡T P#) efkH1(�) . k efkH�1(�). (55)

Whence, the interpolation between the above estimate and the standard H1 error
estimate (50) for the Laplace-Beltrami problem imply that

k(PT � TT ⇡T P#) efkH1(�) . h↵k efkH↵�1(�).

To derive (52) it su�ces to note that the approximation property of the L2 pro-
jection (34) for t = 1 and r = ↵, the equivalence of norms (49), and the regularity
estimate (16) guarantee that

k(PT � ⇡T PT ) efkH1(�) . h↵kPT efkH1+↵(�) . h↵k efkH↵�1(�).

To prove (53), we argue again that in view of the approximation properties of
the L2 projection (34), it su�ces to show that for ↵ 2 [0, 1].

keekH1�↵(�) . h2↵k efkH↵�1(�), (56)

where ẽ := (T � P�1TT ⇡T P#) ef . Note that ẽ does not have vanishing mean value
on �. However, we have

ē :=
1

|�|

Z

�

ee = � 1

|�|

Z

�
TT ⇡T P#

ef� =
1

|�|

Z

�
TT ⇡T P#

ef(1� �)

because
R
�
T ef =

R
� TT ⇡T P#

ef = 0. As a consequence, in view of estimate (46) for

k1� �kL1(�), the equivalence of norms (49) and the estimate

kTT GkH1(�) . kGkH�1(�) 8G 2 V(T ), (57)

we deduce that

kēkH1�↵(�) . |ē| . h2kTT ⇡T P#
efkL2(�) . h2k efkL2(�)

and so
keekH1�↵(�) . kee� ēkH1�↵(�) + h2k efkL2(�). (58)

To estimate kee � ēkH1�↵(�), we borrow a duality argument proposed in [11,
Theorem 38] by proceeding as follows. We compute

kee� ēkH1�↵(�) = sup
ew2H

↵�1
# (�)

hee� ē, ewi
H

1�↵
# (�)

k ewkH↵�1(�)

= sup
ew2H

↵�1
# (�)

a�(ee� ē, T ew)
k ewkH↵�1(�)

= sup
ew2H

↵�1
# (�)

a�(ee, T ew � P�1TT ⇡T P#T ew) + a�(ee, P�1TT ⇡T P#T ew)
k ewkH↵�1(�)

.

For the first term, we invoke the norm equivalence property (49) to write

a�(ee, T ew � P�1TT ⇡T P#T ew) . kPeekH1(�)kPT ew � TT ⇡T P#T ewkH1(�).
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This, coupled with the estimate (55) and the regularity estimate (16) for s = 1 and
r = ↵� 1, yield

a�(ee, T ew � P�1TT ⇡T P#T ew) . h2rk efkH↵�1(�)kT ewkH↵+1(�)

. h2rk efkH↵�1(�)k ewkH↵�1(�).

For the second term, we use the definition of ee and take advantage of the geo-
metric estimate (47) relating the bilinear forms a� and a� to show that

a�(ee, P�1TT ⇡T P#T ew) =
Z

�

r�(P
�1TT ⇡T P#

ef) ·Er�(P
�1TT ⇡T P#T ew),

where kEkL1(�) . h2 according to (48). Whence, the equivalence of norms (49)
and estimate (57) imply that

a�(ee, P�1TT ⇡T P#T ew)

. h2kTT ⇡T P#
efkH1(�)kTT ⇡T P#T ewkH1(�) . h2k efkL2(�)k ewkH↵�1(�).

Returning to kee� ēkH1�↵(�) we obtain

kee� ēkH1�↵(�) . h2rk efkH↵�1(�)

and thus (56) follows from (58). This ends the proof.
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