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Abstract

We consider the mathematical analysis and numerical approximation of a system of nonlinear partial

differential equations that arises in models that have relevance to steady isochoric flows of colloidal

suspensions. The symmetric velocity gradient is assumed to be a monotone nonlinear function of the

deviatoric part of the Cauchy stress tensor. We prove the existence of a weak solution to the problem, and

under the additional assumption that the nonlinearity involved in the constitutive relation is Lipschitz

continuous we also prove uniqueness of the weak solution. We then construct mixed finite element

approximations of the system using both conforming and nonconforming finite element spaces. For both

of these we prove the convergence of the method to the unique weak solution of the problem, and in the

case of the conforming method we provide a bound on the error between the analytical solution and its

finite element approximation in terms of the best approximation error from the finite element spaces. We

propose first a Lions–Mercier type iterative method and next a classical fixed-point algorithm to solve

the finite-dimensional problems resulting from the finite element discretisation of the system of nonlinear

partial differential equations under consideration and present numerical experiments that illustrate the

practical performance of the proposed numerical method.

Keywords: Non-Newtonian fluids, implicit constitutive theory, existence of weak solutions, mixed finite
element approximation, convergence analysis
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1 Introduction

The classical incompressible Navier–Stokes constitutive equation and its usual generalisations, the constitu-
tive relations for the incompressible Stokesian fluid, are explicit expressions for the Cauchy stress in terms
of the symmetric part of the velocity gradient. The Stokesian fluid is defined by the constitutive expression

T = −pI + f(D), (1.1)

where T is the Cauchy stress, −pI is the indeterminate part of the stress due to the constraint of incom-
pressibility and D is the symmetric part of the velocity gradient, D = 1

2 (∇u+ (∇u)t). The incompressible
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Navier–Stokes fluid is a special sub-class of (1.1) that is linear in the symmetric part of the velocity gradient
and is defined through:

T = −pI + 2µD, (1.2)

where µ is the viscosity of the fluid. Power-law fluids are another popular sub-class of (1.1), the power-law
fluid being defined through the constitutive equation

T = −pI + 2µ0

(
1 + αtr(D2)

)m
D, (1.3)

where µ0 and α are positive constants and m is a constant; if m is zero we recover the Navier–Stokes fluid
model, if it is negative we have a shear-thinning fluid model and if it is positive we have a shear-thickening
fluid model. There are however many fluids that cannot be described by constitutive equations of the form
(1.1) but require “relations”, in the true mathematical sense of the term, between the Cauchy stress and the
symmetric part of the velocity gradient. Implicit constitutive relations that involve higher time derivatives of
the stress and the symmetric part of the velocity gradient have been proposed to describe the response of non-
Newtonian fluids that exhibit viscoelastic response1 (see Burgers (1939) [13], Oldroyd (1950) [30]); that is
fluids that exhibit phenomena like stress relaxation. However, purely implicit algebraic relationship between
the stress and the symmetric part of the velocity gradient were not considered to describe non-Newtonian
fluids until recently. Such models are critical if one is interested in describing the response of fluids which
do not exhibit viscoelasticity but whose material properties depend on the mean value of the stress and the
shear rate, a characteristic exhibited by many fluids and colloids, as borne out by numerous experiments.
Consider for example an incompressible fluid whose viscosity depends on the mechanical pressure2 (mean
value of the stress) and is shear-thinning, whose constitutive relation takes the form

T = −pI + 2µ
(
p, tr(D2)

)
D. (1.4)

Since tr(D) = div(u) = 0,

tr(T ) = −3p, i.e., p = −
1

3
tr(T ), (1.5)

the above equation takes the form

T =
1

3
(tr(T ))I + 2µ

(1
3
tr(T ), tr(D2)

)
D. (1.6)

(The factor 1/3 is related to the number of space dimensions d = 3; in two dimensions it would be replaced
by 1/2.) The above expression is of the form

f(T ,D) = 0, (1.7)

which is an implicit relationship between the stress and the symmetric part of the velocity gradient. Ra-
jagopal (2003) [34], (2006) [35] introduced the implicit relationship of the above form (and also the much more
general implicit relationship between the history of the stress and the history of the deformation gradient) to
describe materials whose properties depend upon the pressure and the shear rate. In fact, the properties of
all fluids depend upon the pressure: it is just a matter of how large the variation of the pressure is in order for
one to take the variation of the properties into account. The book by Bridgman (1931) [9] entitled “Physics
of High Pressures” provides copious references to the experimental literature before 1931 on the variation
of the viscosity of fluids with pressure, and one can find recent references to the experimental literature on
the dependence of viscosity on pressure in Málek and Rajagopal (2006) [27]. Stokes (1845) [40] recognised
that the viscosity of fluids varies with pressure, but in the case of sufficiently slow flows in channels and
pipes he assumed that the viscosity could be considered a constant. Suffice to say, constitutive relations of
the class (1.7) are necessary to describe the response of fluids whose viscosity depends on the pressure. Also
as mentioned earlier, the implicit constitutive relation (1.7) is useful to describe the behaviour of colloids.

1While the Maxwell fluid (see Maxwell (1866) [28]) is defined through a constitutive relation involving the derivative of the
stress, it is not an implicit model in that the symmetric part of the velocity gradient can be explicitly defined in terms of the
stress and the time derivative of the stress.

2The terminology “pressure” is often misused, especially in nonlinear fluids; for a detailed discussion of the same see Rajagopal
(2015) [37].
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Recently, Perlácová and Prǔša (2015) [32] (see also LeRoux and Rajagopal (2013) [39]) used an implicit
model belonging to a sub-class of (1.7) to describe the response of colloidal solutions as presented in the
experimental work of Boltenhagen et al. (1997) [4], Hu et al. (1998) [21], Lopez-Diaz et al. (2010) [26] among
others. Notice that while one always expresses the incompressible Navier–Stokes fluid by the representation
(1.2), it is perfectly reasonable to describe it as

D = ϕI +
1

2µ
T , where ϕ =

p

2µ
. (1.8)

In fact, it is the representation (1.8) that is in keeping with causality as the stress is the cause and the
velocity and hence its gradient is the effect, and this fact cannot be overemphasised. Such a representation
would imply that the Stokes assumption that is often appealed to is incorrect (see Rajagopal (2013) [36]
for a detailed discussion of the same). Málek et al. (2010) [33] generalised (1.8) to stress power-law fluids,
namely constitutive relations of the form:

T = −pI + T
d,

D = γ
[
1 + βtr((T d)2)

]n
T

d,
(1.9)

where T d is the deviatoric part of the Cauchy stress, γ and β are positive constants, and n is a constant that
can be positive, negative or zero. The constitutive relation (1.9) is capable of describing phenomena that
the classical power-law models are incapable of describing. For instance, the constitutive models (1.9) can
describe limiting strain rate as well as fluids which allow the possibility of the strain rate initially increasing
with stress and later decreasing with stress; both such responses cannot be described by the classical power-
law fluid model (1.3) (see the discussion in Málek et al. (2010) [33] with regard to the difference in the
response characteristics of the stress power-law fluid and the classical power-law fluid). We are interested in
a further generalization of the constitutive relation of the form (1.9) that is appropriate for describing the
response of colloidal solutions. This constitutive relation takes the form:

D =
{
γ
[
1 + βtr((T d)2)

]n
+ α

}
T

d, (1.10)

where α, β, and γ are positive constants, n is a real number, and T
d is the deviatoric part of the Cauchy

stress. The shear stress in a fluid undergoing simple shear flow, that is described by the constitutive relation
given above, increases from zero to a maximum, then decreases to a local minimum, and then increases
monotonically as the shear stress increases from zero. As discussed by Le Roux and Rajagopal [39], and
Perlácová and Prǔša [32], many colloids exhibit such behavior. The constitutive relation that we introduce
first in (2.10) and next in (3.1) includes (1.10) as a special sub-class. It can be posed within a Hilbert space
setting owing to the presence of the coefficient α in (1.10), but nevertheless, it is a challenging problem as it
involves two nonlinearities: the monotone part in the constitutive relation and the inertial (convective) term.
The problem without the inertial term, see Subsection 2.2 below, has already been analysed in [5], while
the analysis of the steady-state incompressible Navier–Stokes equations is well-established, see for instance
[41, 20]. With both nonlinearities present in the model, proving the existence of a weak solution, for instance,
to the best of our knowledge cannot be done by simply coupling the techniques used for these two problems,
namely the Browder–Minty theorem and the Galerkin method combined with Brouwer’s fixed point theorem
and a weak compactness argument. More refined arguments are needed; they are crucial to the proofs of
Lemmas 4 and 5 below.

This work is organised as follows. The notation and the functional-analytic setting are recalled in the
next subsection. In Section 2, both linear and fully nonlinear versions of the formulation are briefly analysed
for the Stokes system, i.e., without the inertial (convective) term. The theoretical analysis of the complete
nonlinear system is carried out in Section 3. The main results of this section are Theorem 1 for the existence of
a solution and Proposition 2 for the uniqueness of a solution under additional assumptions on the input data.
In Section 4, conforming finite element approximations of these models are proposed and error estimates
are derived. The cases of both simplicial and hexahedral elements are discussed. The analysis of the
latter is less satisfactory as it requires subdivisions consisting of parallelepipeds and suffers from a higher
computational cost. This motivates the introduction of nonconforming approximations in Section 5. In
Section 6, two decoupling algorithms are presented and compared: a Lions–Mercier algorithm adapted

3



to a system with a monotone part and an elliptic part, and a classical fixed-point algorithm alternating
between the approximation of a Navier-Stokes system and the nonlinear constitutive relation for the stress.
Numerical experiments are performed with conforming finite elements on a square mesh in two dimensions.
The theoretically established convergence of the scheme is confirmed and convergence of both decoupled
algorithms is observed.

1.1 Notation and preliminaries

Let Ω ⊂ Rd, d ∈ {2, 3}, be a bounded, open, simply connected Lipschitz domain. We consider the function
spaces

Q := L2
0(Ω), V := H1

0 (Ω)
d and M := {S ∈ L2(Ω)d×d

sym : tr(S) = 0}, (1.11)

for the pressure, the velocity, and the deviatoric stress tensor, respectively. As usual,

L2
0(Ω) =

{
q ∈ L2(Ω) :

∫

Ω
q = 0

}
,

the zero mean value constraint being introduced to fix the undetermined additive constant in the mechanical
pressure. Here the subscript sym indicates that the d × d tensors under consideration are assumed to
be symmetric. Henceforth, the symmetric gradient of the velocity field v (or, briefly, symmetric velocity
gradient) will be denoted by

D(v) :=
1

2
(∇v + (∇v)t) (1.12)

and the deviatoric part of a d× d tensor S is defined by

S
d := S −

1

d
tr(S)I (1.13)

with I the d× d identity tensor; thus the trace of Sd is zero. We denote by V the subspace of V consisting
of all divergence-free functions contained in V ; that is,

V := {v ∈ V : div(v) = 0}. (1.14)

For vector-valued functions v : Ω → Rd, we write

‖v‖L2(Ω) := ‖ |v| ‖L2(Ω) and ‖v‖L∞(Ω) := ‖ |v| ‖L∞(Ω)

with | · | signifying the Euclidean norm on Rd, while for tensor-valued functions S : Ω → Rd×d, we define

‖S‖L2(Ω) := ‖ |S| ‖L2(Ω),

where now
|S| :=

√
S : S

is the Frobenius norm of S. Clearly, M is a Hilbert space with this norm. We recall the Poincaré and Korn
inequalities, which are, respectively, the following: there exist positive constants CP and CK such that

‖v‖L2(Ω) ≤ CP ‖∇v‖L2(Ω) ∀ v ∈ H1
0 (Ω) (1.15)

and
‖∇v‖L2(Ω) ≤ CK‖D(v)‖L2(Ω) ∀v ∈ V. (1.16)

We endow V (and V) with the norm
‖ · ‖V := ‖D(·)‖L2(Ω). (1.17)

Both V and V are Hilbert spaces with this norm, because ‖ · ‖V is equivalent to both the H1(Ω)d×d norm
and the H1(Ω)d×d semi-norm, thanks to (1.15), (1.16) and the trivial relation ‖D(v)‖L2(Ω) ≤ ‖∇v‖L2(Ω).
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2 Stokes system with linear and nonlinear constitutive relations

In this section we study two preliminary model problems without the inertial term; the first one simply
reduces to the Stokes system, while the second model problem involves a monotone nonlinearity treated by
the Browder–Minty approach.

2.1 The Stokes system

Let us consider the problem 




− div(T ) = f in Ω,
D(u) = αT d in Ω,
div(u) = 0 in Ω,

u = 0 on ∂Ω,

(2.1)

where f : Ω → Rd is a prescribed external force, D(u) is defined by (1.12), the unknown tensor T is
symmetric, and α is a given positive constant, the reciprocal of the viscosity coefficient. Here, we assume
that f ∈ L2(Ω)d for simplicity, but a similar analysis holds for the general case f ∈ V ′ = H−1(Ω)d; see for
instance Remark 1 in Section 3. By decomposing the Cauchy stress T as T = T

d + 1
d
tr(T )I and inserting

this in the first equation of (2.1) we arrive at the following equivalent problem:





− div(T d)− 1
d
∇tr(T ) = f in Ω,
D(u) = αT d in Ω,
div(u) = 0 in Ω,

u = 0 on ∂Ω,

(2.2)

which we recognise to be the Stokes system where the mechanical pressure (mean normal stress) is p :=
− 1

d
tr(T ). Recalling the spaces M,V,Q defined in (1.11) and using the relation

D(v) : S = ∇v : S,

which holds3 for any symmetric tensor S, the weak formulation of problem (2.2) can be written as follows:
find a triple (T d,u, p) ∈ M × V ×Q such that

∫

Ω
T

d : D(v) −
∫

Ω
p div(v) =

∫

Ω
f · v ∀v ∈ V,

α

∫

Ω
T

d : S −
∫

Ω
S : D(u) = 0 ∀S ∈ M,

−
∫

Ω
q div(u) = 0 ∀ q ∈ Q.

(2.3)

For any S ∈ M , v ∈ V , and q ∈ Q, we set

b1(S,v) :=

∫

Ω
S : D(v),

b2(v, q) := −
∫

Ω
q div(v).

As is usual for the Stokes problem, the unknown pressure can be eliminated from (2.3) by restricting the
test functions v to V . In addition, the variable u can also be eliminated by treating the first line of (2.3)
as a constraint, thus leading to an equivalent (reduced) problem for which the two variables p and u are
eliminated. The equivalence is based on the following (inf-sup) conditions

inf
v∈V

sup
S∈M

b1(S,v)

‖S‖L2(Ω)‖D(v)‖L2(Ω)
≥ 1 (2.4)

3For any R,S ∈ Rd×d, with S symmetric, we have that S : R =
(

S+S
t

2

)

: R = 1

2
S : R+ 1

2
St : R = 1

2
S : R+ 1

2
S : Rt =

S :
(

R+R
t

2

)

.
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and

∃β > 0 : inf
q∈Q

sup
v∈V

b2(v, q)

‖q‖L2(Ω)‖D(v)‖L2(Ω)
≥ inf

q∈Q
sup
v∈V

b2(v, q)

‖q‖L2(Ω)‖∇v‖L2(Ω)
≥ β, (2.5)

where we have used that ‖D(v)‖L2(Ω) ≤ ‖∇v‖L2(Ω). It is well-known that the spaces V and Q defined in
(1.11) satisfy the inf-sup condition (2.5), see for instance [20], while the relation (2.4) can be easily shown
by observing that, for a given v ∈ V , we have R := D(v) ∈ M since tr(R) = tr(D(v)) = div(v) = 0 and
D(v) is symmetric. Therefore, b1(R,v) = ‖D(v)‖2L2(Ω) and thus

sup
S∈M

b1(S,v)

‖S‖L2(Ω)
≥

b1(R,v)

‖R‖L2(Ω)
= ‖D(v)‖L2(Ω).

We can then eliminate the incompressibility constraint by seeking u ∈ V , yielding the (partially reduced)
problem: find (T d,u) ∈ M × V such that

∫

Ω
T

d : D(v) =

∫

Ω
f · v ∀v ∈ V ,

α

∫

Ω
T

d : S −
∫

Ω
S : D(u) = 0 ∀S ∈ M.

(2.6)

Clearly, each solution of (2.3) satisfies (2.6). Conversely, it follows from the inf-sup condition (2.5) that for
any solution (T d,u) of (2.6) there exists a unique p ∈ Q such that (T d,u, p) is the solution of (2.3); see [20].
Hence these two problems are equivalent. Furthermore, we can eliminate the unknown u by proceeding as
follows; see [5]. First, we introduce the decomposition M = M⊕M⊥ with

M := {S ∈ M : b1(S,v) = 0 ∀v ∈ V}, (2.7)

the kernel of b1, and

M⊥ := {S ∈ M :

∫

Ω
S : R = 0 ∀R ∈ M}

its orthogonal complement in M , and we write T d = T
d

0 +T
d

f with T
d

0 ∈ M and T
d

f ∈ M⊥. The condition
(2.4) ensures the existence and uniqueness of T d

f ∈ M⊥ satisfying

b1(T
d

f ,v) =

∫

Ω
f · v ∀v ∈ V and ‖T d

f ‖L2(Ω) ≤ CPCK‖f‖L2(Ω) (2.8)

with CP and CK the constants in Poincaré’s and Korn’s inequalities (1.15) and (1.16), respectively. We
finally get the (fully reduced) problem: find T

d

0 ∈ M such that

α
∫
Ω T

d

0 : S = −α
∫
Ω T

d

f : S ∀S ∈ M. (2.9)

The well-posedness of problem (2.9) follows from the Lax–Milgram lemma, while its equivalence to the
original problem (2.3) is guaranteed by (2.4) and (2.5).

Of course, in this simple model with a linear constitutive relation, T d
0 = 0 since the right-hand side of

(2.9) vanishes and α(·, ·)Ω is an inner product on M. However, the framework developed here will be used
in the sequel in a more general setting.

2.2 Stokes model with a nonlinear constitutive relation

Next, we consider the following Stokes-like system with a nonlinear relation between the stress and the
symmetric velocity gradient:






− div(T d)− 1
d∇tr(T ) = f in Ω,

D(u) = αT d + γµ(|T d|)T d in Ω,
div(u) = 0 in Ω,

u = 0 on ∂Ω

(2.10)
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with γ a given positive constant, and where µ ∈ C1((0,+∞)) ∩ C0([0,+∞)) is a given function satisfying

d

da
(µ(a)a) > 0 ∀ a ∈ R>0 (2.11)

and
µ(a) > 0 and µ(a)a ≤ C1 ∀ a ∈ R≥0 (2.12)

for some positive constant C1. Since µ is continuous on any subinterval of R≥0, the second part of (2.12)
implies that µ is bounded above and we denote its maximum by µmax,

0 < µ(a) ≤ µmax ∀ a ∈ R≥0. (2.13)

Moreover, proceeding as in the proof of [12, Lemma 4.1], we deduce from (2.11) and (2.12) that for any
R,S ∈ Rd×d, the following monotonicity property hold:

(µ(|R|)R − µ(|S|)S) : (R − S) ≥ 0, (2.14)

with equality if and only if R = S.
Introducing again p := − 1

d
tr(T ), the weak formulation of problem (2.10) reads as follows: find a triple

(T d,u, p) ∈ M × V ×Q such that

∫

Ω
T

d : D(v) −
∫

Ω
p div(v) =

∫

Ω
f · v ∀v ∈ V,

α

∫

Ω
T

d : S + γ

∫

Ω
µ(|T d|)T d : S −

∫

Ω
S : D(u) = 0 ∀S ∈ M,

−
∫

Ω
q div(u) = 0 ∀ q ∈ Q.

(2.15)

Proceeding exactly as in Section 2.1, we first eliminate the pressure, and we thus deduce that problem
(2.15) is equivalent to the following problem: find (T d,u) ∈ M × V such that

∫

Ω
T

d : D(v) =

∫

Ω
f · v ∀v ∈ V ,

α

∫

Ω
T

d : S + γ

∫

Ω
µ(|T d|)T d : S −

∫

Ω
S : D(u) = 0 ∀S ∈ M,

(2.16)

which is further equivalent to the following problem: find T
d

0 ∈ M such that

α
∫
Ω(T

d

0 + T
d

f ) : S + γ
∫
Ω µ(|T d

0 + T
d

f |)(T
d

0 + T
d

f ) : S = 0 ∀S ∈ M, (2.17)

with T
d

f ∈ M⊥ the solution of (2.8). The Browder–Minty theorem, see for instance [29], guarantees the
existence of a solution to problem (2.17). Indeed, let A : M → M ′ be defined for R,S ∈ M by

〈A(R),S〉M := α

∫

Ω
R : S + γ

∫

Ω
µ(|R|)R : S, (2.18)

where 〈·, ·〉M denotes the duality pairing between M and its dual space, M ′. It then easily follows that the
mapping T

d

0 2→ A(T d

0 + T
d

f ) is bounded, monotone, coercive and hemi-continuous. By the Browder–Minty
theorem these imply surjectivity of A and thereby existence of a solution, while its uniqueness follows from
the strict monotonicity of A.
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3 Navier–Stokes with nonlinear constitutive relation

Now, we focus on our problem of interest, where a convective term is added to the first equation of (2.10),
i.e., we consider the problem






(u ·∇)u− div(T ) = f in Ω,
D(u) = αT d + γµ(|T d|)T d in Ω,
div(u) = 0 in Ω,

u = 0 on ∂Ω.

(3.1)

We prove a priori estimates, construct a solution, and give sufficient conditions for global uniqueness.

3.1 Reformulation

By introducing the pressure p := − 1
d
tr(T ), problem (3.1) can be rewritten as follows:






(u ·∇)u− div(T d) +∇p = f in Ω,
D(u) = αT d + γµ(|T d|)T d in Ω,
div(u) = 0 in Ω,

u = 0 on ∂Ω.

(3.2)

In order to bring forth an elliptic term on the left-hand side of the first equation of (3.2), we rewrite the
second equation in (3.2) as

T
d =

1

α
D(u)−

γ

α
µ(|T d|)T d, (3.3)

and thus by substituting this relation into the first equation of (3.2) we get





(u ·∇)u− 1
α div(D(u)) +∇p = f − γ

α div(µ(|T d|)T d) in Ω,

αT d + γµ(|T d|)T d = D(u) in Ω,

div(u) = 0 in Ω,
u = 0 on ∂Ω.

(3.4)

The weak formulation of (3.4) reads: find (T d,u, p) ∈ M × V ×Q such that
∫

Ω
[(u ·∇)u] · v +

1

α

∫

Ω
D(u) : D(v) −

∫

Ω
p div(v) =

∫

Ω
f · v +

γ

α

∫

Ω
µ(|T d|)T d : D(v),

α

∫

Ω
T

d : S + γ

∫

Ω
µ(|T d|)T d : S =

∫

Ω
D(u) : S,

∫

Ω
q div(u) = 0

(3.5)

for all (S,v, q) ∈ M × V ×Q.
As previously, we eliminate the pressure by restricting the test functions to V , and we thus obtain the

following equivalent reduced problem: find (T d,u) ∈ M × V such that
∫

Ω
[(u ·∇)u] · v +

1

α

∫

Ω
D(u) : D(v) =

∫

Ω
f · v +

γ

α

∫

Ω
µ(|T d|)T d : D(v), (3.6)

α

∫

Ω
T

d : S + γ

∫

Ω
µ(|T d|)T d : S =

∫

Ω
D(u) : S (3.7)

for all (S,v) ∈ M × V .
Interestingly, (3.6), (3.7) can be further reduced by observing that, given u, (3.7) uniquely determines T d

thanks to the Browder–Minty theorem; see the end of Section 2.2. Thus, we define the mapping G : V → M
by u 2→ T

d with T
d ∈ M being the unique solution of

〈A(T d),S〉M =

∫

Ω
D(u) : S ∀S ∈ M, (3.8)

8



where we recall that A is defined in (2.18). With this mapping, (3.6), (3.7) is equivalent to the following
problem: find u ∈ V such that

∫

Ω
[(u ·∇)u] · v +

1

α

∫

Ω
D(u) : D(v) =

∫

Ω
f · v +

γ

α

∫

Ω
µ(|G(u)|)G(u) : D(v). (3.9)

Before embarking on the proof of existence of a solution to problem (3.6), (3.7) we establish a series of a
priori estimates under the assumption that a solution exists.

3.2 A priori estimates

Assuming that problem (3.6), (3.7) has a solution, the following a priori estimates hold for any solution
(T d,u) ∈ M × V .

Lemma 1. (First a priori estimates) Let |Ω| denote the measure of Ω. Then,

‖D(u)‖L2(Ω) ≤ αCPCK‖f‖L2(Ω) + γC1|Ω|
1

2 (3.10)

and
‖T d‖L2(Ω) ≤ CPCK‖f‖L2(Ω) +

γ

α
C1|Ω|

1

2 (3.11)

with CP and CK signifying the constants in Poincaré’s and Korn’s inequality, respectively, and C1 the
constant in (2.12).

Proof. Taking S = T
d in (3.7) yields

α‖T d‖2L2(Ω) + γ

∫

Ω
µ(|T d|)|T d|2 =

∫

Ω
D(u) : T d ≤ ‖D(u)‖L2(Ω)‖Td‖L2(Ω).

Using then the positivity of µ, see (2.12), we get

‖T d‖L2(Ω) ≤
1

α
‖D(u)‖L2(Ω). (3.12)

To obtain a bound for u, we recall the well-known relation
∫

Ω
[(u ·∇)v] · v = 0 ∀u ∈ V , ∀v ∈ V, (3.13)

which is easily obtained by integration by parts, as follows:
∫

Ω
[(u ·∇)v] · v =

1

2

∫

Ω
u ·∇(|v|2) = −

1

2

∫

Ω
div(u)|v|2 = 0.

Therefore, taking v = u in (3.6) and using (2.12) we obtain

1

α
‖D(u)‖2L2(Ω) =

∫

Ω
f · u+

γ

α

∫

Ω
µ(|T d|)T d : D(u)

≤
(
CPCK‖f‖L2(Ω) +

γ

α
C1|Ω|

1

2

)
‖D(u)‖L2(Ω),

from which we directly deduce (3.10); (3.11) follows by applying (3.10) to (3.12).

Lemma 2. (Second a priori estimates) Recall that µmax := sups∈[0,∞) µ(s). We also have

‖D(u)‖L2(Ω) ≤ (α + γµmax)CPCK‖f‖L2(Ω) (3.14)

and

‖T d‖L2(Ω) ≤
1

α
(α + γµmax)CPCK‖f‖L2(Ω). (3.15)
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The advantage of the estimates (3.14) and (3.15) is that if f = 0, then we can directly deduce that u = 0
and T

d = 0 (and consequently p = 0).

Proof. The ingredients of the proof are similar to those used in the proof of Lemma 1 and only the derivation
of the bound for D(u) is different. First notice that combining (3.6) and (3.7) we have

∫

Ω
[(u ·∇)u] · v +

∫

Ω
T

d : D(v) =

∫

Ω
f · v ∀v ∈ V . (3.16)

Taking v = u in (3.16) we then find that
∫

Ω
T

d : D(u) ≤ CPCK‖f‖L2(Ω)‖D(u)‖L2(Ω). (3.17)

Notice that T d : D(u) ≥ 0 a.e. in Ω. Indeed, from (3.7) we have that
(
α+ γµ(|T d|)

)
T

d = D(u) in M ′ (3.18)

and thus (
α+ γµ(|T d|)

)

︸ ︷︷ ︸
>0

T
d : D(u) = |D(u)|2 ≥ 0 a.e. in Ω.

Therefore, taking S = D(u) in (3.7) and using the upper bound µmax for µ and the bound (3.17) we have

‖D(u)‖2L2(Ω) = α

∫

Ω
T

d : D(u) + γ

∫

Ω
µ(|T d|)T d : D(u)

≤ (α+ γµmax)

∫

Ω
T

d : D(u)

≤ (α+ γµmax)CPCK‖f‖L2(Ω)‖D(u)‖L2(Ω),

which yields (3.14). Finally, the bound (3.15) for T d is obtained by substituting (3.14) in (3.12).

Remark 1. Similar a priori estimates can be derived in the case when f ∈ V ′ (with V ′ = H−1(Ω)d). More
precisely, all occurrences of CPCK‖f‖L2(Ω) can be replaced by ‖f‖V′ , where

‖f‖V′ := sup
v∈V

〈f ,v〉V
‖v‖V

= sup
v∈V

〈f ,v〉V
‖D(v)‖L2(Ω)

, (3.19)

and 〈·, ·〉V denotes the duality pairing between V ′ and V . The same observation holds for all that follows.

Remark 2. By a direct argument we can also prove that

‖D(u)‖L2(Ω) ≤
1

α
(α+ γµmax)

2CPCK‖f‖L2(Ω). (3.20)

This leads to the same a priori bound (3.15) for T d,

‖T d‖L2(Ω) ≤
1

α
(α + γµmax)CPCK‖f‖L2(Ω).

Indeed, the choice S = D(u) in (3.7) gives directly (without invoking (3.18))

‖D(u)‖2L2(Ω) = α

∫

Ω
T

d : D(u) + γ

∫

Ω
µ(|T d|)T d : D(u) ≤ (α + γµmax)‖T d‖L2(Ω)‖D(u)‖L2(Ω).

Hence
‖D(u)‖L2(Ω) ≤ (α+ γµmax)‖T d‖L2(Ω)

and
‖D(u)‖2L2(Ω) ≤ (α + γµmax)

2‖T d‖2L2(Ω).

Then (3.20) follows by substituting the bound

α‖T d‖2L2(Ω) ≤
∫

Ω
D(u) : T d =

∫

Ω
f · u ≤ CPCK‖f‖L2(Ω)‖D(u)‖L2(Ω)

into the preceding inequality. This also yields (3.15).
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3.3 Construction of a solution

In this subsection we prove the existence of a solution in a bounded Lipschitz domain without any restrictions
on the data, other than those stated at the beginning of Section 2.2. The first part of the construction is fairly
standard: a suitable sequence of (finite-dimensional) Galerkin approximations to the infinite-dimensional
problem is constructed, followed by Brouwer’s fixed point theorem to prove that each finite-dimensional
problem in the sequence has a solution; uniform a priori estimates, similar to those derived in Lemma 1,
are established for the Galerkin solutions, which are then used for passing to the (weak) limit, via a weak
compactness argument. However, because of the combined effect of the nonlinearities, identifying the limit
as a solution to the infinite-dimensional problem requires a more refined argument.

For the sake of clarity, the argument is split into several steps.
Step 1 (Finite-dimensional approximation). Formulation (3.9) lends itself readily to a Galerkin discreti-

sation. Since the only unknown is u in V , a separable Hilbert space, we introduce a countably infinite basis
{w1,w2, . . .} of orthonormal functions of V with respect to the inner product

(u,v) :=

∫

Ω
D(u) : D(v), (3.21)

whose span is dense in V . Next, we truncate this basis, i.e., for each m ≥ 1 we define

Vm := span{w1, . . . ,wm},

and for um ∈ Vm we denote by ûm ∈ Rm its representation with respect to this basis. Finally, we fix m ≥ 1
and consider the following finite-dimensional problem: find um ∈ Vm such that, for all 1 ≤ j ≤ m,

∫

Ω
[(um ·∇)um] ·wj +

1

α

∫

Ω
D(um) : D(wj) =

∫

Ω
f ·wj +

γ

α

∫

Ω
µ(|T d

m|)T d

m : D(wj) (3.22)

with T
d

m := G(um). In other words, T d

m ∈ M solves

α

∫

Ω
T

d

m : S + γ

∫

Ω
µ(|T d

m|)T d

m : S =

∫

Ω
D(um) : S ∀S ∈ M. (3.23)

Problem (3.22), which can be seen as the projection of (3.9) onto Vm, is equivalent to the following: find
ûm ∈ Rm such that

F(ûm) = 0,

where F = (F1, . . . , Fm)t : Rm → Rm is the continuous function defined, for j = 1, . . . ,m, by

Fj(ûm) :=

∫

Ω
[(um ·∇)um] ·wj +

1

α

∫

Ω
D(um) : D(wj)−

∫

Ω
f ·wj −

γ

α

∫

Ω
µ(|T d

m|)T d

m : D(wj).

Step 2 (Existence of a discrete solution). Problem (3.22) is a system of m nonlinear equations in
m unknowns. The existence of a solution to this problem can be established by the following variant of
Brouwer’s fixed point theorem (see e.g. [17, 20]).

Lemma 3. Let F : Rm → Rm be a continuous function that satisfies

F(x) · x ≥ 0 if |x| = r

for some r > 0. Then, there exists a point x ∈ Bm(0, r) := {x ∈ Rm : |x| ≤ r} such that

F(x) = 0.

Proposition 1. Problem (3.22) has at least one solution um ∈ Vm that satisfies the uniform bound

‖D(um)‖L2(Ω) ≤ αCPCK‖f‖L2(Ω) + γC1|Ω|
1

2 . (3.24)

Moreover, T d

m = G(um) satisfies the uniform bound

‖T d

m‖L2(Ω) ≤
1

α
‖D(um)‖L2(Ω) ≤ CPCK‖f‖L2(Ω) +

γ

α
C1|Ω|

1

2 . (3.25)
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Proof. We infer from Lemma 3 that F has a zero in the ball Bm(0, r) with

r := αCPCK‖f‖L2(Ω) + γC1|Ω|
1

2 .

Indeed, using the antisymmetry property (3.13), which holds because um ∈ Vm ⊂ V , we get

F(ûm) · ûm =
1

α

∫

Ω
|D(um)|2 −

∫

Ω
f · um −

γ

α

∫

Ω
µ(|T d

m|)T d

m : D(um)

≥
(
1

α
‖D(um)‖L2(Ω) − CPCK‖f‖L2(Ω) −

γ

α
C1|Ω|

1

2

)
‖D(um)‖L2(Ω),

where we have used Poincaré’s and Korn’s inequalities (1.15) and (1.16), respectively, to bound the second
term and the relation (2.12) for the third one. As ‖D(um)‖L2(Ω) = |ûm|, we deduce from the last inequality
that if |ûm| = r with r as defined above, then

F(ûm) · ûm ≥
(
1

α
|ûm|− CPCK‖f‖L2(Ω) −

γ

α
C1|Ω|

1

2

)
|ûm| = 0.

Thanks to Lemma 3, there exists a point ûm ∈ Bm(0, r) such that F(ûm) = 0, i.e., problem (3.22) has a
solution um ∈ Vm that satisfies the uniform bound (3.24). Finally, it is easily shown that T

d

m := G(um)
satisfies the bound (3.25).

Step 3 (Passage to the limit m → ∞ and identification of the limit). We consider the sequences (um)m≥1

and (T d

m)m≥1 with um ∈ Vm and T
d

m = G(um) ∈ M . Thanks to the uniform estimates (3.24) and (3.25)
there exist two subsequences (not relabelled) such that

lim
m→∞

um = ū weakly in H1
0 (Ω)

d (and thus also in V),

lim
m→∞

um = ū strongly in Lq(Ω)d with 1 ≤ q < ∞ if d = 2, and 1 ≤ q < 6 if d = 3,

lim
m→∞

T
d

m = T̄
d

weakly in L2(Ω)d×d (and thus also in M),

for some ū ∈ V and T̄
d ∈ M . Our objective is to show that the pair (T̄

d
, ū) ∈ M × V is a solution to the

problem under consideration by passing to the limit in (3.22), (3.23).
Passing to the limit in (3.22), (3.23) is however not straightforward because of the lack of strong con-

vergence of T d

m in M . Identifying the pair (T̄
d
, ū) ∈ M × V as a solution will be achieved by means of the

following two lemmas, the first of which (Lemma 4) relies on the equations and the strong convergence of the
sequence (um)m≥1 in Lq(Ω)d shown above, and the second lemma (Lemma 5) follows from the monotonicity
property (2.14).

The proof, included below, that the pair (T̄
d
, ū) satisfies (3.7) is inspired by the arguments in [11], where

a more general constitutive relation than (3.3) was considered. Specifically, the conclusion of Lemma 5
follows from [11, Lemma 2.4.1], the hypothesis (2.12) of [11, Lemma 2.4.1] being fulfilled thanks to Lemma
4; however we provide a proof here that is directly tailored to our problem.

Lemma 4. The following limit holds:

lim
m→∞

∫

Ω
T

d

m : D(um) =

∫

Ω
T̄

d
: D(ū). (3.26)

Proof. By testing equation (3.23) with S = D(wj) and substituting into (3.22) we deduce that
∫

Ω
[(um ·∇)um] ·wj +

∫

Ω
T

d

m : D(wj) =

∫

Ω
f ·wj ∀ 1 ≤ j ≤ m. (3.27)

Multiplying (3.27) by (ûm)j , summing over j, and applying (3.13), we derive
∫

Ω
T

d

m : D(um) =

∫

Ω
f · um. (3.28)
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Thus we obtain on the one hand

lim
m→∞

∫

Ω
T

d

m : D(um) = lim
m→∞

∫

Ω
f · um =

∫

Ω
f · ū. (3.29)

On the other hand, letting m tend to infinity in (3.27) for fixed j and considering the strong convergence of
um, we infer that ∫

Ω
[(ū ·∇)ū] ·wj +

∫

Ω
T̄

d
: D(wj) =

∫

Ω
f ·wj ∀ j ≥ 1,

and the density of
⋃

m≥1 Vm in V therefore implies that

∫

Ω
[(ū ·∇)ū] · v +

∫

Ω
T̄

d
: D(v) =

∫

Ω
f · v ∀v ∈ V . (3.30)

In view of (3.13), the choice v = ū in (3.30) yields
∫

Ω
T̄

d
: D(ū) =

∫

Ω
f · ū, (3.31)

and (3.26) then follows from (3.29) and (3.31).

Lemma 5. We have that
T̄

d
= G(ū). (3.32)

Proof. Let T̃
d

:= G(ū); since T
d

m := G(um), we have by definition

α

∫

Ω
(T d

m − T̃
d

) : S + γ

∫

Ω
(µ(|T d

m|)T d

m − µ(|T̃
d

|)T̃
d

) : S =

∫

Ω
(D(um − ū)) : S

for all S ∈ M . Taking then S = T
d

m − T̃
d

and using the monotonicity property (2.14) we get

α

∫

Ω
|T d

m − T̃
d

|2 ≤
∫

Ω
(D(um − ū)) : (T d

m − T̃
d

)

=

∫

Ω

[
D(um) : T d

m −D(um) : T̃
d

−D(ū) : (T d

m − T̃
d

)
]
.

Finally, we take the limit m → ∞ of both sides and apply (3.26) to obtain

α lim
m→∞

∫

Ω
|T d

m − T̃
d

|2 ≤
∫

Ω

[
D(ū) : T̄

d −D(ū) : T̃
d

−D(ū) : (T̄
d − T̃

d

)
]
= 0,

which implies (3.32) as well as the strong convergence in M of T d

m to T̄
d
.

Theorem 1. (Existence of a solution) The pair (T̄
d
, ū) ∈ M × V solves (3.6), (3.7).

Proof. It follows from Lemma 5 that on the one hand (T̄
d
, ū) solves (3.7) and on the other hand,

lim
m→∞

µ(|T d

m|)T d

m = µ(|T̄ d|)T̄ d
weakly in M.

Indeed, passing to the limit in (3.23) gives, for any S ∈ M ,

lim
m→∞

γ

∫

Ω
µ(|T d

m|)T d

m : S = lim
m→∞

(∫

Ω
D(um) : S − α

∫

Ω
T

d

m : S

)

=

∫

Ω
D(ū) : S − α

∫

Ω
T̄

d
: S

= γ

∫

Ω
µ(|T̄ d|)T̄ d

: S.
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Therefore, taking the limit as m → ∞ in (3.22) we get
∫

Ω
[(ū ·∇)ū] ·wj +

1

α

∫

Ω
D(ū) : D(wj) =

∫

Ω
f ·wj +

γ

α

∫

Ω
µ(|T̄ d|)T̄ d

: D(wj)

for each j = 1, 2, . . ., and thus the density of
⋃

m≥1 Vm in V implies that
∫

Ω
[(ū ·∇)ū] · v +

1

α

∫

Ω
D(ū) : D(v) =

∫

Ω
f · v +

γ

α

∫

Ω
µ(|T̄ d|)T̄ d

: D(v) ∀v ∈ V ,

which is precisely (3.6).

3.4 Global conditional uniqueness

We now prove global uniqueness of the solution under additional assumptions on the function µ and the
input data. The notion of uniqueness we establish is global and conditional in the sense that it holds under
suitable restrictions on the data, but it is also global because no other solution exists.

Let Rd×d
sym,0 denote the space of symmetric d× d matrices with vanishing trace and let CS be the smallest

positive constant in the following Sobolev embedding:

‖v‖L4(Ω) ≤ CS‖∇v‖L2(Ω) ∀v ∈ V. (3.33)

Proposition 2. (Uniqueness) Assume that the function T
d 2→ µ(|T d|)T d is Lipschitz continuous in Rd×d

sym,0,
i.e., there exists a positive constant Λ such that

|µ(|T d|)T d − µ(Sd)Sd| ≤ Λ|T d − S
d| ∀T d,Sd ∈ Rd×d

sym,0. (3.34)

If the input data satisfy
γ

α
Λ + α2C2

SCPC
4
K‖f‖L2(Ω) + αγC2

SC
3
KC1|Ω|

1

2 < 1 (3.35)

then the solution of problem (3.6), (3.7) is unique.

Proof. We use a variational argument. Suppose that (T d

1 ,u1), (T
d

2 ,u2) ∈ M ×V are solutions of (3.6), (3.7).
Let us write δT d := T

d

1 − T
d

2 and δu := u1 − u2. Subtracting the equations solved by (T d

2 ,u2) from those
solved by (T d

1 ,u1) we get for all (S,v) ∈ M × V the following pair of equalities:
∫

Ω
[(u1 ·∇)u1 − (u2 ·∇)u2] · v +

1

α

∫

Ω
D(δu) : D(v) =

γ

α

∫

Ω

(
µ(|T d

1 |)T
d

1 − µ(|T d

2 |)T
d

2

)
: D(v), (3.36)

α

∫

Ω
δT d : S + γ

∫

Ω

(
µ(|T d

1 |)T
d

1 − µ(|T d

2 |)T
d

2

)
: S =

∫

Ω
D(δu) : S. (3.37)

The choice S = δT d in (3.37), thanks to the monotonicity property (2.14), leads to

‖δT d‖L2(Ω) ≤
1

α
‖D(δu)‖L2(Ω). (3.38)

Then, by noting that
∫

Ω
[(u1 ·∇)u1 − (u2 ·∇)u2] · v =

∫

Ω
[(δu ·∇)u1] · v +

∫

Ω
[(u2 ·∇)δu] · v,

by testing (3.36) with v = δu, and recalling (3.13) we obtain

1

α
‖D(δu)‖2L2(Ω) =

γ

α

∫

Ω

(
µ(|T d

1 |)T
d

1 − µ(|T d

2 |)T
d

2

)
: D(δu)−

∫

Ω
[(δu ·∇)u1] · δu

(3.34)
≤

γ

α
Λ‖δTd‖L2(Ω)‖D(δu)‖L2(Ω) + ‖δu‖2L4(Ω)‖∇u1‖L2(Ω)

(3.33), (1.16)
≤

γ

α
Λ‖δTd‖L2(Ω)‖D(δu)‖L2(Ω) + C2

SC
3
K‖D(u1)‖L2(Ω)‖D(δu)‖2L2(Ω)

(3.38), (3.10)
≤

[ γ

α2
Λ + C2

SC
3
K

(
αCPCK‖f‖L2(Ω) + γC1|Ω|

1

2

)]
‖D(δu)‖2L2(Ω).
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The assumption (3.35) on the data guarantees that the factor on the right-hand side of the last inequality is
strictly smaller than 1

α , thus implying that ‖D(δu)‖L2(Ω) = 0, i.e., u1 = u2. Finally, applying this result to

(3.38) yields T d

1 = T
d

2 .

Remark 3. The strategy used in deriving the second a priori estimate stated in Lemma 2 leads to uniqueness
when (3.35) is replaced by

γ

α
Λ+ αC2

SCPC
4
K(α+ γµmax)‖f‖L2(Ω) < 1. (3.39)

In fact both strategies lead to the same condition (3.39); namely, we also get (3.39) by using (3.14) instead
of (3.10) to bound ‖D(u1)‖L2(Ω) in the proof of Proposition 2.

Note that both (3.35) and (3.39) hold when γ and f are sufficiently small.

Remark 4. Under the Lipschitz condition (3.34), the proof of (3.20) and (3.15) is valid with µmax replaced
by Λ, and the L2(Ω)d norm of f (multiplied by CPCK) replaced by its norm in V ′, see Remark 1. More
precisely,

‖D(u)‖L2(Ω) ≤
1

α
(α+ γΛ)2‖f‖V′ , (3.40)

‖Td‖L2(Ω) ≤
1

α
(α+ γΛ)‖f‖V′. (3.41)

3.5 Comparison of the a priori estimates

At this stage, it is useful to compare the a priori estimates derived in the previous sections. We have

‖D(u)‖L2(Ω) ≤ Cu := min

{
(α+ γµmax)‖f‖V′ ,α‖f‖V′ + γC1|Ω|

1

2 ,
1

α
(α+ γΛ)2‖f‖V′

}
, (3.42)

‖T d‖L2(Ω) ≤ CT d := min

{
1

α
(α + γµmax)‖f‖V′ , ‖f‖V′ +

γ

α
C1|Ω|

1

2 ,
1

α
(α+ γΛ)‖f‖V′

}
, (3.43)

where Λ is replaced by µmax if we do not make the Lipschitz assumption (3.34). For p we have

‖p‖L2(Ω) ≤
1

β

(
C2

SC
2
KC2

u + ‖f‖(V⊥)′ +min

{
min

(
1,

γµmax

α
,
γΛ

α

)
CT d ,

γ

α
C1|Ω|

1

2

})
,

where V⊥ denotes the orthogonal complement of V in V with respect to the inner product (3.21).

Remark 5. We can replace C2
S by the product CpCr of the smallest constants Cp and Cr from the Sobolev

embedding of H1(Ω)d into Lp(Ω)d and Lr(Ω)d, respectively, with p = 6 and r = 3. We could also use the
best constant Ĉ such that

∫

Ω
[(u ·∇)v] ·w ≤ Ĉ‖∇u‖L2(Ω)‖∇v‖L2(Ω)‖∇w‖L2(Ω),

or even ∫

Ω
[(u ·∇)v] ·w ≤ Ĉ‖D(u)‖L2(Ω)‖D(v)‖L2(Ω)‖D(w)‖L2(Ω).

In the former case, Ĉ ≤ CpCr while in the latter case, Ĉ ≤ C3
KCpCr.

4 Conforming finite element approximation

In this section, we study conforming finite element approximations of problem (3.2), where conformity
refers to the discrete velocity space. To facilitate the implementation, it is useful to relax the zero trace
restriction on the discrete tensor space, but this is not quite a nonconformity because the theoretical analysis
of the preceding sections holds without this condition. In particular, the inf-sup condition (2.4) is still valid
(supremum over a larger space).

We start with the numerical analysis of general conforming approximations, including existence of discrete
solutions, convergence, and error estimates, and give specific examples further on.

15



4.1 General conforming approximation

As stated above, here M = L2(Ω)d×d
sym . Up to this modification, we propose to discretise the formulation

derived from (3.2): find (T d,u, p) ∈ M × V ×Q such that
∫

Ω
[(u ·∇)u] · v +

∫

Ω
T

d : D(v) + b2(v, p) =

∫

Ω
f · v ∀v ∈ V,

α

∫

Ω
T

d : S + γ

∫

Ω
µ(|T d|)T d : S =

∫

Ω
D(u) : S ∀S ∈ M,

b2(u, q) = 0 ∀ q ∈ Q.

(4.1)

Note that, since div(u) = 0, by taking S = I the second line of (4.1) implies that the solution T
d of (4.1)

satisfies tr(T d) = 0 a.e. in Ω, even though this condition was not explicitly imposed on elements of M .
Let h > 0 be a discretisation parameter that will tend to zero and, for each h, let Vh ⊂ V , Qh ⊂ Q and

Mh ⊂ M be three finite-dimensional spaces satisfying the following basic approximation properties, for all
S ∈ M , v ∈ V and q ∈ Q:

lim
h→0

inf
Sh∈Mh

‖Sh − S‖L2(Ω) = 0, lim
h→0

inf
vh∈Vh

‖D(vh − v)‖L2(Ω) = 0, lim
h→0

inf
qh∈Qh

‖qh − q‖L2(Ω) = 0.

Moreover, let
Vh,0 := {vh ∈ Vh : b2(vh, qh) = 0 ∀ qh ∈ Qh}. (4.2)

We assume on the one hand that the pair (Vh, Qh) is uniformly stable for the divergence, i.e.,

inf
qh∈Qh

sup
vh∈Vh

b2(vh, qh)

‖D(vh)‖L2(Ω)‖qh‖L2(Ω)
≥ β∗ (4.3)

for some constant β∗ > 0, independent of h, and on the other hand that Mh and Vh,0 are compatible in the
sense that

D(vh) ∈ Mh ∀vh ∈ Vh,0. (4.4)

Note that the latter assumption may be prohibitive when considering conforming finite elements on quadri-
lateral (d = 2) or hexahedral (d = 3) meshes, see Subsection 4.2; this motivates the study of non-conforming
finite elements considered in Section 5. The inf-sup condition (4.3) guarantees that

lim
h→0

inf
vh∈Vh,0

‖D(vh − u)‖L2(Ω) = 0. (4.5)

Indeed, (4.3) implies the relation

inf
vh,0∈Vh,0

‖D(u− vh,0)‖L2(Ω) ≤
(
1 +

cb
β∗

)
inf

vh∈Vh

‖D(u− vh)‖L2(Ω), (4.6)

which can be shown using a standard argument; see for instance [20]. Here, cb denotes the continuity constant
of b2(·, ·) on V ×Q.

As the divergence of functions of Vh,0 is not necessarily zero, the antisymmetry property (3.13) does not
hold in the discrete spaces. Since this property is a crucial ingredient in the analysis of our problem, it is
standard (see for instance [41, 20]) to introduce the trilinear form d : V × V × V → R defined by

d(u;v,w) :=
1

2

∫

Ω
[(u ·∇)v] ·w−

1

2

∫

Ω
[(u ·∇)w] · v. (4.7)

The trilinear form d is obviously antisymmetric and it is consistent thanks to the fact that

d(u;v,w) =

∫

Ω
[(u ·∇)v] ·w ∀u ∈ V , ∀v,w ∈ V.

Moreover, a standard computation shows that there exists a constant D̂ ≤ min(C2
S , C3C6)C3

K such that

d(u;v,w) ≤ D̂‖D(u)‖L2(Ω)‖D(v)‖L2(Ω)‖D(w)‖L2(Ω) ∀u,v,w ∈ V. (4.8)
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We then consider the following approximation of problem (4.1): find (T h,uh, ph) ∈ Mh ×Vh ×Qh such that

d(uh;uh,vh) +

∫

Ω
T h : D(vh) + b2(vh, ph) =

∫

Ω
f · vh ∀vh ∈ Vh,

α

∫

Ω
T h : Sh + γ

∫

Ω
µ(|T h|)T h : Sh =

∫

Ω
D(uh) : Sh ∀Sh ∈ Mh,

b2(uh, qh) = 0 ∀ qh ∈ Qh.

(4.9)

4.1.1 Existence of a discrete solution

Existence of a solution to problem (4.9) without restrictions on the data is established by Brouwer’s fixed
point theorem, as in Section 3.3. To begin with, for any function v ∈ V , we define the discrete analogue of
the mapping G, see (3.8); namely, Gh(v) ∈ Mh is the unique solution of

α

∫

Ω
Gh(v) : Sh + γ

∫

Ω
µ(|Gh(v)|)Gh(v) : Sh =

∫

Ω
D(v) : Sh ∀Sh ∈ Mh. (4.10)

This finite-dimensional square system has one and only one solution Gh(v) thanks to the properties of the
left-hand side: the first term is elliptic and the second term is monotone. As in Section 3.3, in view of the
inf-sup condition (4.3), problem (4.9) is equivalent to finding uh ∈ Vh,0 solution of

d(uh;uh,vh) +

∫

Ω
T h : D(vh) =

∫

Ω
f · vh ∀vh ∈ Vh,0, (4.11)

where T h := Gh(uh). By proceeding as in Proposition 1, it is easy to prove that problem (4.11) has at least
one solution uh ∈ Vh,0, and by the above equivalence, each solution uh determines a pair (T h, ph) ∈ Mh×Qh

so that (T h,uh, ph) solves problem (4.9). Moreover, each solution of problem (4.9) satisfies the same estimates
as in (3.10) and (3.11). For the sake of simplicity, since the approximation is conforming, we state them in
terms of the norm of f in H−1(Ω)d,

‖D(uh)‖L2(Ω) ≤ α‖f‖H−1(Ω) + γC1|Ω|
1

2 (4.12)

and
‖T h‖L2(Ω) ≤ ‖f‖H−1(Ω) +

γ

α
C1|Ω|

1

2 . (4.13)

Regarding the other a priori bounds, (3.20) and (3.15) are satisfied by uh and T h and, if (3.34) holds, so are
(3.41) and (3.40), all up to the above norm for f . In contrast, however, we do not have enough information
to claim that (3.14) is valid because it relies on the nonnegativity of T h : D(uh) almost everywhere in Ω;
the integral average is positive but this does not always guarantee pointwise nonnegativity. Thus we replace
the constant Cu of (3.42) by the constant C̃u in the following inequality:

‖D(uh)‖L2(Ω) ≤ C̃u := min

{
1

α
(α+ γµmax)

2‖f‖H−1(Ω),α‖f‖H−1(Ω) + γC1|Ω|
1

2 ,
1

α
(α+ γΛ)2‖f‖H−1(Ω)

}
,

(4.14)

where the last term is included when (3.34) holds. Because Cu ≤ C̃u, we shall use C̃u to bound both u and
uh in order to simplify the constants in the computations that will now follow.

Finally, let us establish the convergence of the sequence of discrete solutions in the limit of h → 0. The
above uniform a priori estimates imply that, up to a subsequence of the discretisation parameter h,

lim
h→0

uh = ū weakly in H1
0 (Ω)

d,

lim
h→0

uh = ū strongly in Lq(Ω)d with 1 ≤ q < ∞ if d = 2, and 1 ≤ q < 6 if d = 3,

lim
h→0

T h = T̄ weakly in L2(Ω)d×d,
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for some ū ∈ H1
0 (Ω)

d and T̄ ∈ L2(Ω)d×d. Clearly, the symmetry of T h implies that of T̄ and div(ū) = 0
follows from the fact that uh belongs to Vh,0. Then the approximation properties of the discrete spaces and
(4.5) permit to replicate the steps of the proof of Lemma 4 and yield

lim
h→0

∫

Ω
T h : D(uh) =

∫

Ω
T̄ : D(ū). (4.15)

To fully identify the limit, in addition to T̃
d

:= G(ū), which has trace zero since div(ū) = 0, we introduce
the auxiliary tensor T̃ h := Gh(ū). On the one hand

α

∫

Ω
(T̃ h − T̃

d

) : Sh + γ

∫

Ω

(
µ(|T̃ h|)T̃ h − µ(|T̃

d

|)T̃
d)

: Sh = 0 ∀Sh ∈ Mh,

thus implying that, for all Sh in Mh,

α‖T̃ h−T̃
d

‖2L2(Ω) + γ

∫

Ω

(
µ(|T̃ h|)T̃ h − µ(|T̃

d

|)T̃
d)

: (T̃ h − T̃
d

)

= α

∫

Ω
(T̃ h − T̃

d

) : (Sh − T̃
d

) + γ

∫

Ω

(
µ(|T̃ h|)T̃ h − µ(|T̃

d

|)T̃
d)

: (Sh − T̃
d

).

Since both T̃ h and T̃
d

are bounded in M uniformly with respect to h, and

‖µ(|T̃ h|)T̃ h − µ(|T̃
d

|)T̃
d

‖L2(Ω) ≤ 2C1|Ω|
1

2 ,

again a uniform bound, then the approximation properties of Mh and the monotonicity property (2.14)
imply that

lim
h→0

‖T̃ h − T̃
d

‖L2(Ω) = 0. (4.16)

On the other hand, the auxiliary tensor T̃ h permits us to argue as in the proof of Lemma 5. Indeed, the
monotonicity property (2.14) yields

α‖T h − T̃ h‖2L2(Ω) ≤
∫

Ω
D(uh) : (T h − T̃ h)−

∫

Ω
D(ū) : (T h − T̃ h)

=

∫

Ω
D(uh) : T h −

∫

Ω
D(uh) : T̃ h −

∫

Ω
D(ū) : (T h − T̃ h).

From (4.15) and (4.16), we easily derive that the above right-hand side tends to zero. Hence

lim
h→0

‖T h − T̃ h‖L2(Ω) = 0,

and then combining this with (4.16) we infer that

lim
h→0

‖T h − T̃
d

‖L2(Ω) = 0. (4.17)

Hence uniqueness of the limit implies that T̄ = T̃
d

= G(ū). This, and (4.3), permit to identify the limit as
in Lemma 5 and Theorem 1, and proves convergence to a weak solution without restrictions on the data.
Thus we have proved the following result.

Theorem 2. (Convergence for all data) Under the above approximation properties and compatibility of the
discrete spaces, up to a subsequence,

lim
h→0

uh = u weakly in H1
0 (Ω)

d,

lim
h→0

uh = u strongly in Lq(Ω)d with 1 ≤ q < ∞ if d = 2, and 1 ≤ q < 6 if d = 3,

lim
h→0

T h = T
d strongly in L2(Ω)d×d,

lim
h→0

ph = p weakly in L2(Ω),

where (T d,u, p) is a solution of (3.6), (3.7).
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4.1.2 Error estimate

We now prove an a priori error estimate between (T d,u, p) and (T h,uh, ph), under the assumption (3.34)
that has not been used so far, and the small data condition (4.18) below. Note that this small data condition

is in fact the same as the uniqueness condition (3.35), upon replacing Cu by C̃u. To simplify the notation
and compress some of the long displayed lines of mathematics, we shall write ‖ · ‖V , ‖ · ‖M and ‖ · ‖Q instead
of ‖D(·)‖L2(Ω) (as a norm on V ), ‖ · ‖L2(Ω) (as a norm on M) and ‖ · ‖L2(Ω) (as a norm on Q), respectively.

Theorem 3. In addition to (3.34), let the input data satisfy

γ

α
Λ+ αD̂C̃u ≤ θ < 1, (4.18)

where 0 < θ < 1 and D̂ is the constant from (4.8). Then, there exists a constant C > 0 independent of h
such that the difference between the solution (T h,uh, ph) of (4.9) and (T d,u, p) of (4.1) satisfies

‖u− uh‖V + ‖T d − T h‖M + ‖p− ph‖Q ≤ C

[
inf

vh∈Vh

‖u− vh‖V + inf
Sh∈Mh

‖Td − Sh‖M + inf
qh∈Qh

‖p− qh‖Q
]
.

(4.19)

Proof. Since we are using conforming finite element spaces, taking (S,v, q) = (Sh,vh, qh) in (4.1) and
subtracting the equations of (4.9) we easily get

d(u;u,vh)− d(uh;uh,vh) +

∫

Ω
(T d − T h) : D(vh) + b2(vh, p− ph) = 0 ∀vh ∈ Vh,

α

∫

Ω
(T d − T h) : Sh + γ

∫

Ω
(µ(|T d|)T d − µ(|T h|)T h) : Sh =

∫

Ω
D(u− uh) : Sh ∀Sh ∈ Mh, (4.20)

b2(u− uh, qh) = 0 ∀ qh ∈ Qh.

The rest of the proof is divided into three steps.
Step 1 (Error bound for the pressure). By the triangle inequality we have, for any qh ∈ Qh,

‖p− ph‖Q ≤ ‖p− qh‖Q + ‖qh − ph‖Q,

and it therefore suffices to derive a bound on ‖qh − ph‖Q. From the (discrete) inf-sup condition we have

β∗‖ph − qh‖Q ≤ sup
vh∈Vh

b2(vh, ph − qh)

‖vh‖V
.

Again, using the first equation of (4.20) we have

b2(vh, ph − qh) = b2(vh, ph − p) + b2(vh, p− qh)

= d(u;u,vh)− d(uh;uh,vh) +

∫

Ω
(T d − T h) : D(vh) + b2(vh, p− qh)

≤
[
(D̂‖u‖V + D̂‖uh‖V )‖u− uh‖V + ‖Td − T h‖M + cb‖p− qh‖Q

]
‖vh‖V

≤
[
2D̂C̃u‖u− uh‖V + ‖Td − T h‖M + cb‖p− qh‖Q

]
‖vh‖V ,

where we can take cb = CK using the relation ‖ div(v)‖2L2(Ω)+‖ rot(v)‖2L2(Ω) = ‖∇v‖2L2(Ω) that holds because

we have homogeneous Dirichlet boundary conditions (otherwise take cb =
√
dCK). Thus, we obtain

‖p− ph‖Q ≤
2D̂C̃u

β∗ ‖u− uh‖V +
1

β∗ ‖T
d − T h‖M +

(
1 +

cb
β∗

)
‖p− qh‖Q (4.21)

for any qh ∈ Qh.
Step 2 (Error bound for the stress tensor). Again, we start with the triangle inequality; for any Sh ∈ Mh

we have that
‖T d − T h‖M ≤ ‖T d − Sh‖M + ‖Sh − T h‖M ,
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and we then bound ‖T h − Sh‖M . Thanks to the monotonicity property (2.14) and the second equation of
(4.20), we have

α‖T h − Sh‖2M ≤ α

∫

Ω
|T h − Sh|2 + γ

∫

Ω
(µ(|T h|)T h − µ(|Sh|)Sh) : (T h − Sh)

= α

∫

Ω
(T h − T

d + T
d − Sh) : (T h − Sh) + γ

∫

Ω
(µ(|T h|)T h − µ(|Sh|)Sh) : (T h − Sh)

=

∫

Ω
D(uh − u) : (T h − Sh) + γ

∫

Ω
(µ(|T d|)T d − µ(|Sh|)Sh) : (T h − Sh) + α

∫

Ω
(T d − Sh) : (T h − Sh)

≤
[
‖u− uh‖V + α‖T d − Sh‖M + γΛ‖Td − Sh‖M

]
‖T h − Sh‖M ,

and thus

‖T d − T h‖M ≤
1

α
‖u− uh‖V +

(
2 +

γΛ

α

)
‖Td − Sh‖M (4.22)

for any Sh ∈ Mh.
Step 3 (Error bound for the velocity). Recalling the definition of Vh,0 in (4.2), let vh,0 ∈ Vh,0 and let

vh := vh,0 − uh ∈ Vh,0. We will first show the relation (4.19) by taking the infimum over Vh,0 instead of Vh.
As before, we use the triangle inequality to get

‖u− uh‖V ≤ ‖u− vh,0‖V + ‖vh,0 − uh‖V .

Thanks to the assumption (4.4), we can take Sh = D(vh) in the second equation of (4.20) yielding
∫

Ω
D(u− uh) : D(vh) = α

∫

Ω
(T d − T h) : D(vh) + γ

∫

Ω

(
µ(|T d|)T d − µ(|T h|)T h

)
: D(vh).

Using the first equation of (4.20), we can easily derive the equality

‖vh,0 − uh‖2V =

∫

Ω
D(vh,0 − uh) : D(vh) =

∫

Ω
D(vh,0 − u) : D(vh)− α(d(u;u,vh)− d(uh;uh,vh))

− αb2(vh, p− qh) + γ

∫

Ω
(µ(|T d|)T d − µ(|T h|)T h) : D(vh),

thanks to the fact that b2(vh, qh − ph) = 0. To bound the convective term, we use

d(u;u,vh)− d(uh;uh,vh) = d(u− uh;u,vh) + d(uh;u− uh,vh)

= d(u− vh,0;u,vh) + d(vh,0 − uh;u,vh)

+ d(uh;u− vh,0,vh) + d(uh;vh,0 − uh,vh)︸ ︷︷ ︸
=0

≤
[
D̂‖u‖V ‖u− vh,0‖V + D̂‖u‖V ‖vh,0 − uh‖V + D̂‖uh‖V ‖u− vh,0‖V

]
‖vh,0 − uh‖V

≤
[
2D̂C̃u‖u− vh,0‖V + D̂C̃u‖vh,0 − uh‖V

]
‖vh,0 − uh‖V ,

from which we get

‖vh,0 − uh‖V ≤ ‖u− vh,0‖V + 2αD̂C̃u‖u− vh,0‖V
+ αcb‖p− qh‖Q + γΛ‖Td − T h‖M + αD̂C̃u‖vh,0 − uh‖V .

Now using (4.22) we arrive at

‖vh,0 − uh‖V ≤ (1 + 2αD̂C̃u)‖u− vh,0‖V + αcb‖p− qh‖Q +
γΛ

α
‖u− uh‖V

+ γΛ

(
2 +

γΛ

α

)
‖T d − Sh‖M + αD̂C̃u‖vh,0 − uh‖V

≤
(
1 + 2αD̂C̃u +

γΛ

α

)
‖u− vh,0‖V + γΛ

(
2 +

γΛ

α

)
‖T d − Sh‖M

+ αcb‖p− qh‖Q +

(
γΛ

α
+ αD̂C̃u

)
‖vh,0 − uh‖V .
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Therefore, using the assumption (4.18) on the input data, we obtain

‖vh,0 − uh‖V ≤
1

1− θ

[(
1 + 2αD̂C̃u +

γΛ

α

)
‖u− vh,0‖V + γΛ

(
2 +

γΛ

α

)
‖T d − Sh‖M + αcb‖p− qh‖Q

]

and thus

‖u− uh‖V ≤

(
1 +

1 + 2αD̂C̃u + γΛ
α

1− θ

)
‖u− vh,0‖V +

γΛ
(
2 + γΛ

α

)

1− θ
‖Td − Sh‖M +

αcb
1− θ

‖p− qh‖Q (4.23)

for any vh,0 ∈ Vh,0. Finally, combining (4.21), (4.22) and (4.23) we obtain

‖u−uh‖V +‖Td−T h‖M +‖p−ph‖Q ≤ c1 inf
vh,0∈Vh,0

‖u−vh,0‖V +c2 inf
Sh∈Mh

‖T d−Sh‖M +c3 inf
qh∈Qh

‖p−qh‖Q

with

c1 :=

[
1 +

2D̂C̃u

β∗ +
1

α

(
1 +

1

β∗

)](
1 +

1 + 2αD̂C̃u + γΛ
α

1− θ

)
,

c2 :=

(
1 +

1

β∗

)(
2 +

γΛ

α

)
+

[
1 +

2D̂C̃u

β∗ +
1

α

(
1 +

1

β∗

)] γΛ
(
2 + γΛ

α

)

1− θ
,

c3 :=

(
1 +

cb
β∗

)
+

[
1 +

2D̂C̃u

β∗ +
1

α

(
1 +

1

β∗

)](
αcb
1− θ

)
.

We can then conclude the proof using (4.6).

4.2 Examples of conforming approximation

From now on, we assume that the boundary of the Lipschitz domain Ω ⊂ Rd is a polygonal line (when d = 2)
or a polyhedral surface (when d = 3), so that it can be exactly meshed. For each h, let Th be a conforming
mesh on Ω consisting of elements E, triangles or quadrilaterals in two dimensions, tetrahedra or hexahedra
(all planar-faced) in three dimensions, conforming in the sense that the mesh has no hanging nodes. As
usual, the diameter of E is denoted by hE ,

h = sup
E∈Th

hE ,

and (E is the diameter of the largest ball inscribed in E.

4.2.1 The simplicial case

In the case of simplices, the family of meshes Th is assumed to be regular in the sense of Ciarlet [14]: i.e., it
is assumed that there exists a constant σ > 0, independent of h, such that

hE

(E
≤ σ ∀E ∈ Th. (4.24)

This condition guarantees that there is an invertible affine mapping FE that maps the unit reference simplex
onto E.

For any integer k ≥ 0, let Pk denote the space of polynomials in d variables of degree at most k. In each
element E, the functions will be approximated in the spaces Pk. The specific choice of finite element spaces is
dictated by two considerations. First, conditions (4.3) and (4.4) must be satisfied. Next, since the number of
unknowns in (4.9) is large, the degree k of the finite element functions should be small. It is well-known that
the lowest degree of conforming approximation of (u, p) satisfying (4.3), without modification of the bilinear
forms, is the Taylor-Hood Pd

2–P1 element, see [20, 3], provided each element has at least one interior vertex.
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In view of (4.4), this implies that T d is approximated by Pd×d
1 . Thus the corresponding finite element spaces

are

Vh := {vh ∈ H1
0 (Ω)

d : vh E ∈ Pd
2 ∀E ∈ Th},

Qh := {qh ∈ H1(Ω) ∩ L2
0(Ω) : qh E ∈ P1 ∀E ∈ Th},

Mh := {Sh ∈ L2(Ω)d×d
sym : Sh E ∈ (P1)

d×d
sym ∀E ∈ Th}.

It is easy to check that with these spaces on a simplicial mesh, under condition (4.24), problem (4.9) has at
least one solution. Furthermore, if the data satisfy (4.18), then Theorem 3 yields

‖D(u− uh)‖L2(Ω) + ‖T d − T h‖L2(Ω) + ‖p− ph‖L2(Ω) ≤ C h2, (4.25)

provided that the solution is sufficiently smooth, namely u ∈ H3(Ω)d ∩ H1
0 (Ω)

d, T
d ∈ H2(Ω)d×d, and

p ∈ H2(Ω) ∩ L2
0(Ω). Therefore the scheme has order two for an optimal number of degrees of freedom, i.e.,

this order of convergence cannot be achieved with fewer degrees of freedom.

4.2.2 The quadrilateral/hexahedral case

The notion of regularity is more complex for quadrilateral and much more complex for hexahedral elements.
In the case of quadrilaterals [20], the family of meshes is regular if the elements are convex and, moreover,
the subtriangles associated to each vertex (there is one per vertex) all satisfy (4.24). In the case of hexahedra
with plane faces, convexity and the validity of (4.24) for the subtetrahedra associated to each vertex are
necessary but not sufficient. This difficulty has been investigated by many authors, see for instance [42, 23];
the most relevant publication concerning hexahedra with plane faces is however [22], where the minimum
of the Jacobian in the reference cube Ê is bounded below by the minimum of the coefficients of its Bézier
expansion and this minimum is determined by an efficient algorithm. The details of this are beyond the
scope of this work, and we shall simply assume here that the minimum of these Bézier coefficients is strictly
positive and that furthermore, denoting by JE the Jacobian determinant of FE ,

JE(x̂) ≥ ĉ(3E ∀ x̂ ∈ Ê (4.26)

with a constant ĉ independent of E and h. If these conditions hold, there is an invertible bi-affine mapping
FE in two dimensions or tri-affine in three dimensions that maps the unit reference square or cube onto E.

We let Qk be the space of polynomials in d variables of degree at most k in each variable. In contrast
to the case of simplicial meshes, the space Qk is not invariant under the composition with FE, which makes
the compatibility condition (4.4) between D(Vh) and Mh problematic. To circumvent this issue, we restrict
ourselves to affine maps FE , thereby allowing subdivisions consisting of parallelograms/parallelepipeds. In
addition, the situation is less satisfactory when a quadrilateral or hexahedral mesh is used, because although
the Taylor-HoodQd

2–Q1 element satisfies (4.3), the second condition (4.4) does not hold if T d is approximated
by Qd×d

1 since the components of the gradient of Q2 functions belong to a space, intermediate between Q2

and Q1, that is strictly larger than both Q1 and P2. Therefore, in order to satisfy (4.4), the simplest option
is to discretise each component of T d by Q2. The corresponding finite element spaces are

Vh := {vh ∈ H1
0 (Ω)

d : vh E ∈ Qd
2 ∀E ∈ Th},

Qh := {qh ∈ H1(Ω) ∩ L2
0(Ω) : qh E ∈ Q1 ∀E ∈ Th},

Mh := {Sh ∈ L2(Ω)d×d
sym : Sh E ∈ (Q2)

d×d
sym ∀E ∈ Th}.

With these spaces and under the above regularity conditions, problem (4.9) has at least one solution and
the error estimate (4.25) holds if the data satisfy (4.18). However, this triple of spaces is no longer optimal,
because the degree two approximation of T d now requires far too many degrees of freedom with no gain in
accuracy. For instance, when d = 3, its approximation by (Q2)3×3

sym requires 27 × 6 = 162 unknowns inside
each element instead of 8× 6 = 48 unknowns for (Q1)3×3

sym .
The nonconforming finite element approximations discussed in Section 5 do not require an affine map-

ping FE and, by considering P-type approximations on the physical element E, do not suffer from the
computational cost overhead mentioned above.
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5 Nonconforming finite element approximation

The nonconforming approximations developed here will not only allow the use of elements of degree one for
u, but will also lead to locally mass-conserving schemes. Because of the discontinuity of the finite element
functions, the proofs are in some cases more complex; this is true in particular for the proof of the inf-sup
condition for the discrete divergence.

5.1 The quadrilateral/planar-faced hexahedral case

Here we consider quadrilateral/hexahedral grids Th with planar faces, satisfying the regularity assumptions
stated in Section 4.2. There is a wide choice of possible approximations with nonconforming finite elements.
Here we propose globally discontinuous velocities in Pd

k, k ≥ 1, in each cell associated with globally discon-
tinuous pressures and stresses both of degree at most k − 1. Thus we consider Vh ⊂ L2(Ω)d, Qh ⊂ L2

0(Ω)
and Mh ⊂ L2(Ω)d×d

sym defined by

Vh := {vh ∈ L2(Ω)d : vh E ∈ Pd
k ∀E ∈ Th}, (5.1)

Qh := {qh ∈ L2
0(Ω) : qh E ∈ Pk−1 ∀E ∈ Th}, (5.2)

Mh := {Sh ∈ L2(Ω)d×d
sym : Sh E ∈ (Pk−1)

d×d
sym ∀E ∈ Th}. (5.3)

As usual, the full nonconformity of Vh is compensated by adding to the forms consistent jumps and averages
on edges when d = 2 or faces when d = 3; see for instance [38]. Let Γh = Γi

h ∪ Γb
h denote the set of all

edges when d = 2 or all faces when d = 3 with Γi
h and Γb

h signifying the set of all interior and the set of all
boundary edges (d = 2) or faces (d = 3), respectively. A unit normal vector ne is attributed to each e ∈ Γh;
its direction can be freely chosen. Here, the following rule is applied: if e ∈ Γb

h, then ne = nΩ, the exterior
unit normal to Ω; if e ∈ Γi

h, then ne points from Ei to Ej , where Ei and Ej are the two elements of Th
adjacent to e and the number i of Ei is smaller than that of Ej . The jumps and averages of any function f
on e (smooth enough to have a trace) are defined by

[f(x)]e := f(x) Ei
− f(x) Ej

, when ne points from Ei to Ej ,

{f(x)}e :=
1

2

(
f(x) Ei

+ f(x) Ej

)
.

When e ∈ Γb
h, the jump and average are defined to coincide with the trace on e.

The terms involving jumps and averages that are added to each form are not unique; here we make the
following fairly standard choice:

∫

Ω
S : D(v) 4 b1h(Sh,vh) :=

∑

E∈Th

∫

E

Sh : D(vh)−
∑

e∈Γh

∫

e

{Sh}ene · [vh]e. (5.4)

The trilinear form d is approximated by a centred discretisation, as follows:

dh(uh;vh,wh) :=
∑

E∈Th

∫

E

[(uh ·∇)vh] ·wh +
1

2

∑

E∈Th

∫

E

div(uh)(vh ·wh)

−
1

2

∑

e∈Γh

∫

e

[uh]e · ne{vh ·wh}e −
∑

e∈Γi
h

∫

e

{uh}e · ne[vh]e · {wh}e.
(5.5)

The divergence form b2 is approximated by

b2h(vh, qh) := −
∑

E∈Th

∫

E

qh div(vh) +
∑

e∈Γh

∫

e

[vh]e · ne{qh}e. (5.6)

Clearly, the jump terms in (5.4) and (5.6) vanish when vh belongs to H1
0 (Ω)

d. Likewise, the jump and
divergence terms in (5.5) vanish when uh and vh belong to H1

0 (Ω)
d and div(uh) = 0. Moreover, (5.5) is

constructed so that dh is antisymmetric,

dh(uh;vh,wh) = −dh(uh;wh,vh) ∀uh,vh,wh ∈ Vh. (5.7)
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Finally, the following positive definite form acts as a penalty to compensate the nonconformity of uh:

Jh(uh,vh) :=
∑

e∈Γh

σe

he

∫

e

[uh]e · [vh]e, (5.8)

where he is the average of the diameter of the two elements adjacent to e, if e ∈ Γi
h, or the diameter of the

element adjacent to e otherwise. The parameters σe > 0 will be chosen below to guarantee stability of the
scheme, see (5.28) and (5.24). This form is also used to define the norm on Vh by

‖vh‖Vh
:=
(
‖D(vh)‖2h + Jh(vh,vh)

) 1

2

, (5.9)

where

‖D(vh)‖h :=
( ∑

E∈Th

‖D(vh)‖2L2(E)

) 1

2

(5.10)

denotes the associated semi-norm. Also, in view of (5.6), we define the space of discretely divergence-free
functions,

Vh,0 := {vh ∈ Vh : b2h(vh, qh) = 0 ∀ qh ∈ Qh}. (5.11)

The discrete scheme reads: find (T h,uh, ph) ∈ Mh × Vh ×Qh solution of

dh(uh;uh,vh) + b1h(T h,vh) + b2h(vh, ph) + Jh(uh,vh) =

∫

Ω
f · vh ∀vh ∈ Vh,

α

∫

Ω
T h : Sh + γ

∫

Ω
µ(|T h|)T h : Sh = b1h(Sh,uh) ∀Sh ∈ Mh,

b2h(uh, qh) = 0 ∀ qh ∈ Qh.

(5.12)

As expected, b2h(vh, 1) = 0, and therefore the system (5.12) is unchanged when the zero mean value con-
straint is lifted from the functions of Qh.

5.1.1 Properties of the norm and forms

All constants below depend on the regularity of the mesh but are independent of h. In particular, we shall
use C to denote such generic constant independent of h. In addition, we shall use the following “edge to
interior” inequality. There exists a constant Ĉ, depending only on the dimension d and the degree of the
polynomials, such that for all vh ∈ Vh, all e ∈ Γh and any element E, adjacent to e,

‖vh‖L2(e) ≤ Ĉ

(
|e|
|E|

) 1

2

‖vh‖L2(E). (5.13)

It is easy to check that (5.9) defines a norm on Vh. Next, the results in [6, 7] yield the following consequences
of a discrete Korn inequality:

‖vh‖L2(Ω) ≤ C‖vh‖Vh
∀vh ∈ Vh, (5.14)

and
‖∇hvh‖L2(Ω) ≤ C‖vh‖Vh

∀vh ∈ Vh, (5.15)

where ∇hvh is the broken gradient (i.e., the local gradient in each element). Moreover, by following the
work in [19, 24, 10], this can be generalised for all finite p ≥ 1 when d = 2 and all p ∈ [1, 6] when d = 3, to

‖vh‖Lp(Ω) ≤ C(p)‖vh‖Vh
∀vh ∈ Vh. (5.16)

With this norm, the following compactness result holds for any sequence vh in Vh, see [10, 19, 2]: if there
exists a constant C independent of h such that

‖vh‖Vh
≤ C,

24



then there exists a function v̄ ∈ H1
0 (Ω)

d such that for all finite p ≥ 1 when d = 2 and all p ∈ [1, 6) when
d = 3,

lim
h→0

‖vh − v̄‖Lp(Ω) = 0. (5.17)

Regarding the forms, a straightforward finite-dimensional argument shows that, for all uh,vh,wh ∈ Vh,

∣∣∣
∑

e∈Γh

∫

e

[uh]e · ne{vh ·wh}e
∣∣∣ ≤ C

(
Jh(uh,uh)

) 1

2 ‖vh‖L4(Ω)‖wh‖L4(Ω), (5.18)

∣∣∣
∑

e∈Γi
h

∫

e

{uh}e · ne[vh]e · {wh}e
∣∣∣ ≤ C‖uh‖L4(Ω)

(
Jh(vh,vh)

) 1

2 ‖wh‖L4(Ω). (5.19)

Hence we have, for all uh,vh,wh ∈ Vh,

∣∣dh(uh;vh,wh)
∣∣ ≤ C‖uh‖L4(Ω)

(
Jh(vh,vh)

) 1

2 ‖wh‖L4(Ω)

+
[
‖∇hvh‖L2(Ω)‖uh‖L4(Ω) +

1

2

(( ∑

E∈Th

‖ div(uh)‖2L2(E)

) 1

2 + C
(
Jh(uh,uh)

) 1

2

)
‖vh‖L4(Ω)

]
‖wh‖L4(Ω).

(5.20)

Similarly,
∣∣∣b2h(vh, qh)

∣∣∣ ≤
(( ∑

E∈Th

‖ div(vh)‖2L2(E)

) 1

2 + C
(
Jh(vh,vh)

) 1

2

)
‖qh‖L2(Ω) ∀vh ∈ Vh, qh ∈ Qh, (5.21)

∣∣∣b1h(Sh,vh)
∣∣∣ ≤

(
‖D(vh)‖h + C

(
Jh(vh,vh)

) 1

2

)
‖Sh‖L2(Ω) ∀vh ∈ Vh,Sh ∈ Mh. (5.22)

Finally, the inequality below is used in choosing σe. Its proof is fairly straightforward, but it is included here
for the reader’s convenience.

Proposition 3. For any uh ∈ Vh, any choice of σe > 0 and any real number δ > 0, we have

∣∣∣
∑

e∈Γh

∫

e

{D(uh)}ene · [uh]e
∣∣∣ ≤

1

2

(1
δ
Jh(uh,uh) + δ

Ch

mine∈Γh
σe

‖D(uh)‖2h
)
, (5.23)

where

Ch := 2d Ĉ2max

(
max
e∈Γi

h

(
he max

j=1,2

|e|
|Ej |

)
,max
e∈Γb

h

(
he

|e|
|E|

))
, (5.24)

E1 and E2 are the elements that share the face e ∈ Γi
h, E is the element that has face e ∈ Γb

h, and Ĉ is the
constant appearing in inequality (5.13) solely depending on d and the polynomial degree.

Proof. For a face e ∈ Γi
h, which is shared by elements E1 and E2, we have

∣∣∣
∫

e

{D(uh)}ene · [uh]e
∣∣∣ ≤

(
σe

he

) 1

2

‖[uh]e‖L2(e)

(
he

σe

) 1

2 Ĉ

2

2∑

j=1

(
|e|
|Ej |

) 1

2

‖D(uh)‖L2(Ei)

≤
1

2

(
1

δ

σe

he
‖[uh]e‖2L2(e) + δ

he

2σe
Ĉ2 max

j=1,2

|e|
|Ej |

(
‖D(uh)‖2L2(E1)

+ ‖D(uh)‖2L2(E2)

))
.

Similarly, for e ∈ Γb
h, which is the face of an element E adjacent to ∂Ω, we have

∣∣∣
∫

e

{D(uh)}ene · [uh]e
∣∣∣ ≤

1

2

(
1

δ

σe

he
‖[uh]e‖2L2(e) + δ

he

σe
Ĉ2 |e|

|E|
‖D(uh)‖2L2(E)

)
.

By using the last two inequalities in

∣∣∣
∑

e∈Γh

∫

e

{D(uh)}ene · [uh]e
∣∣∣ ≤

∑

e∈Γh

∣∣∣
∫

e

{D(uh)}ene · [uh]e
∣∣∣
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and splitting the sum on the right-hand side into sums over the disjoint sets Γb
h and Γi

h, we have that

∣∣∣
∑

e∈Γh

∫

e

{D(uh)}ene · [uh]e
∣∣∣ ≤

1

2

(
1

δ

∑

e∈Γb
h

σe

he
‖[uh]e‖2L2(e) + δ

∑

e∈Γb
h

he

σe
Ĉ2 |e|

|E|
‖D(uh)‖2L2(E)

)

+
1

2

(
1

δ

∑

e∈Γi
h

σe

he
‖[uh]e‖2L2(e) + δ

∑

e∈Γi
h

he

2σe
Ĉ2 max

j=1,2

|e|
|Ej |

(
‖D(uh)‖2L2(E1) + ‖D(uh)‖2L2(E2)

))

with the notational convention that when summing over e ∈ Γb
h the element E under the summation sign is

the element adjacent to ∂Ω with face e, and when summing over e ∈ Γi
h the elements E1 and E2 under the

summation sign are the ones that share the face e. Hence,

∣∣∣
∑

e∈Γh

∫

e

{D(uh)}ene · [uh]e
∣∣∣ ≤

1

2



1

δ
Jh(uh,uh) +

δ

mine∈Γb
h
σe

Ĉ2 max
e∈Γb

h

(
he

|e|
|E|

) ∑

e∈Γb
h

‖D(uh)‖2L2(E)





+
1

2

(
δ

mine∈Γi
h
σe

Ĉ2maxe∈Γi
h

(
he max

j=1,2

|e|
|Ej |

) ∑

e∈Γi
h

1

2

(
‖D(uh)‖2L2(E1)

+ ‖D(uh)‖2L2(E2)

))
.

The asserted result (5.23) follows from the last inequality by noting that, for each E ∈ Th, the factor
‖D(uh)‖2L2(E) appears at most 2d times.

Concerning the expression appearing in (5.24) we note that, thanks to the regularity assumption on the

family of meshes, we have that he
|e|
|E| ≤ C and so

Ch ≤ C. (5.25)

5.1.2 First a priori estimates

By testing the first equation of (5.12) with vh = uh, applying the third equation and the antisymmmetry
(5.7) of dh, we obtain

b1h(T h,uh) + Jh(uh,uh) =

∫

Ω
f · uh.

Next, by testing the second equation of (5.12) with Sh = T h and substituting the above equality, we deduce
that

α‖T h‖2L2(Ω) + Jh(uh,uh) ≤
∫

Ω
f · uh.

Thus, in view of (5.14), we have our first bound:

α‖T h‖2L2(Ω) + Jh(uh,uh) ≤ C‖f‖L2(Ω)‖uh‖Vh
. (5.26)

A further bound is arrived at by testing the second equation of (5.12) with Sh = D(uh); hence,

α

∫

Ω
T h : D(uh) + γ

∫

Ω
µ(|T h|)T h : D(uh) = ‖D(uh)‖2h −

∑

e∈Γh

∫

e

{D(uh)}ene · [uh]e.

Then Proposition 3 gives, for any δ > 0,

‖D(uh)‖2h ≤ α‖T h‖L2(Ω)‖D(uh)‖h+γC1|Ω|
1

2 ‖D(uh)‖h+
1

2

(1
δ
Jh(uh,uh)+δ

Ch

mine∈Γh
σe

‖D(uh)‖2h
)
. (5.27)

We choose δ = 1 and, upon recalling (5.25), assume that σe is chosen so that

mine∈Γh
σe ≥ Ch. (5.28)
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Next, by adding Jh(uh,uh) to both sides of (5.27), applying (5.26) to bound this term, and using the norm
of Vh, we infer that

‖uh‖2Vh
≤ α‖T h‖L2(Ω)‖D(uh)‖h + γC1|Ω|

1

2 ‖D(uh)‖h + C‖f‖L2(Ω)‖uh‖Vh
+

1

2
‖uh‖2Vh

and thus
1

2
‖uh‖Vh

≤ α‖T h‖L2(Ω) + γC1|Ω|
1

2 + C‖f‖L2(Ω). (5.29)

To close the estimates, we return to (5.26) and get

α‖T h‖2L2(Ω) + Jh(uh,uh) ≤
1

2

(
δ2‖uh‖2Vh

+
C2

δ2
‖f‖2L2(Ω)

)

for any δ2 > 0. Thus

α‖T h‖L2(Ω) ≤
√
α√
2δ2

C‖f‖L2(Ω) +

√
αδ2√
2

‖uh‖Vh
,

and the choice δ2 = 1
8α yields

α‖T h‖L2(Ω) ≤ 2αC‖f‖L2(Ω) +
1

4
‖uh‖Vh

.

Thus we have shown the following uniform and unconditional bounds:

‖uh‖Vh
≤ 4C(1 + 2α)‖f‖L2(Ω) + 4γC1|Ω|

1

2 , ‖T h‖L2(Ω) ≤
C

α
(4α+ 1)‖f‖L2(Ω) +

γ

α
C1|Ω|

1

2 . (5.30)

An a priori estimate for the pressure requires an inf-sup condition. This is the subject of the next
subsection.

5.1.3 An inf-sup condition

In the nonconforming case considered here, the analogue of (4.3) reads

inf
qh∈Qh

sup
vh∈Vh

b2h(vh, qh)

‖vh‖Vh
‖qh‖L2(Ω)

≥ β∗ (5.31)

with a constant β∗ > 0 independent of h. To check this condition, recall Fortin’s lemma; see for instance [20].

Lemma 6. The discrete condition (5.31) holds uniformly with respect to h if, and only if, there exists an
approximation operator Πh ∈ L(H1

0 (Ω)
d;Vh) such that, for all v ∈ H1

0 (Ω)
d,

b2h(Πh(v) − v, qh) = 0 ∀ qh ∈ Qh, (5.32)

and
‖Πh(v)‖Vh

≤ C|v|H1(Ω) (5.33)

with a constant C independent of h.

Originally, Fortin’s lemma was stated for discrete functions in subspaces of H1
0 (Ω)

d, but the extension
to spaces of discontinuous functions is straightforward, as long as the form b2h(·, ·) is consistent with the
divergence, which is the case here.

As the proof of (5.32), (5.33) is fairly technical, we restrict the discussion to the first order case, i.e.,
k = 1, in hexahedra. The quadrilateral case is much simpler.
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5.1.4 The inf-sup condition in planar-faced hexahedra for k = 1

The construction of a suitable operator Πh is usually done by correcting a good approximation operator Rh.
For instance, we can use the L2 projection onto the space of polynomials of degree one defined locally in each
element, so that Rh(v) belongs to Vh and satisfies optimal approximation properties; see for instance [8].
Then Rh(v) is corrected by constructing ch ∈ Vh such that

b2h(ch, qh) = b2h(Rh(v) − v, qh) ∀ qh ∈ Qh. (5.34)

By expanding b2h and denoting by qE the value of qh in E, (5.34) reads

−
∑

E∈Th

qE

∫

E

div(ch)+
∑

e∈Γh

∫

e

[ch]e ·ne{qh}e = −
∑

E∈Th

qE

∫

E

div(Rh(v)−v) +
∑

e∈Γh

∫

e

[Rh(v)−v]e ·ne{qh}e.

Green’s formula in each element yields

−
∑

E∈Th

qE

∫

∂E

ch ·nE+
∑

e∈Γh

∫

e

[ch]e ·ne{qh}e = −
∑

E∈Th

qE

∫

∂E

(Rh(v)−v) ·nE +
∑

e∈Γh

∫

e

[Rh(v)−v]e ·ne{qh}e

(5.35)
with nE the unit exterior normal to E. Consider now an interior face e shared by E1 and E2, so that ne is
interior to E2; the contribution of e to the left-hand side of (5.35) is

−qE1

∫

e

ch E1
· ne + qE2

∫

e

ch E2
· ne +

∫

e

1

2
(qE1

+ qE2
)(ch E1

− ch E2
) · ne = −

∫

e

[qh]e{ch}e · ne

with a similar contribution to the right-hand side. Notice also that the contribution of a boundary face
e ∈ Γb

h is equal to zero on both sides of (5.35). Therefore a sufficient condition for (5.35) is that

∫

e

ch E · ne =

∫

e

(Rh(v) − v) E · ne. (5.36)

We will thus construct ch ∈ Vh by imposing (5.36) for each element E ∈ Th and each face e ∈ ∂E. To
simplify the notation, we will write from now on ch and (Rh(v) − v) instead of ch E and (Rh(v)− v) E ,
respectively.

Let E be an arbitrary hexahedral element of Th with faces ei, centre of face bi, and exterior unit normal
ni, 1 ≤ i ≤ 6. To be specific, let ai, i = 1, 2, 3, 4, be the vertices of e1, ai, i = 1, 3, 5, 6, the vertices of e2, ai,
i = 1, 2, 5, 7, the vertices of e3, ai, i = 5, 6, 7, 8, the vertices of e4, ai, i = 2, 4, 7, 8, the vertices of e5, and ai,
i = 3, 4, 6, 8, the vertices of e6. The ordering of the nodes is illustrated in Figure 1. Note that for i = 1, 2, 3,
ei+3 is the face opposite to ei, opposite in the sense that its intersection with ei is empty.

Without loss of generality, we assume that the vertex a1 is located at the origin and that the face e1 lies
on the x3 = 0 plane. Indeed, this situation can be obtained via a rigid motion (translation plus rotation),
which preserves all normal vectors. Therefore, the normal to the face e1 is parallel to the x3 axis. Now, the
idea is to transform E onto a “reference” element Ê by an affine mapping FE so that the subtetrahedron
S1 of E based on e1 and containing the origin a1 is mapped onto the unit tetrahedron Ŝ1. More precisely,
as e2 and e3 are both adjacent to e1, S1 is the subtetrahedron with vertices a1, a2, a3, and a5, and Ŝ1 has
vertices â1 = (0, 0, 0), â2 = (0, 1, 0), â3 = (1, 0, 0), â5 = (0, 0, 1), see Figure 1 for an illustration and some
notation. This transformation and notation will be used till the end of this subsection. It stems from the
regularity of the family of triangulations that there exists a constant M , independent of E and h, such that

diameter(Ê) ≤ M. (5.37)

The affine mapping FE has the expression

x = FE(x̂) = Bx̂,

where the constant term is zero since a1 is the origin, and the matrix B is nonsingular; its columns are
respectively a3 = (a13, a

2
3, 0)

t, a2 = (a12, a
2
2, 0)

t and a5 = (a15, a
2
5, a

3
5)

t. The image of the remaining vertices of
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â1 â2

â3
â4

â5

â6

â7

â8

ê1

ê2

ê3

ê4

ê5
ê6

x̂1

x̂2

x̂3

Figure 1: Some notation for the “reference” element Ê.

E are âi = F−1
E (ai), i = 4, 6, 7, 8. As FE is an affine transformation, it transforms faces onto faces, edges

onto edges, and vertices onto vertices. Thus, since a4 is in the plane x3 = 0, then â4 is in the plane x̂3 = 0.
Likewise, â6 is in the plane x̂2 = 0, â7 in the plane x̂1 = 0, and â8 in the plane determined by â4, â2, â7, as
well as the plane determined by â7, â5, â6, and the plane determined by â6, â3, â4, hence in the intersection
of these three planes. Therefore Ê is located in the first octant of R3. Let n̂i denote the unit exterior normal
vector to êi. It is related to ni by the general formula

n̂i =
B

tni

|Btni|
. (5.38)

The advantage of having e1 on the plane x3 = 0 is that n̂1 = n1 = (0, 0,−1)t. We also have n̂2 = (0,−1, 0)t,
and n̂3 = (−1, 0, 0)t. Thus

|n̂3
1| = |n̂2

2| = |n̂1
3| = 1, (5.39)

and the regularity of the family Th implies that there exists a constant ν0, independent of h and E, such
that

|n̂3
4|, |n̂2

5|, |n̂1
6| ≥ ν0. (5.40)

With this transformation, and after cancelling |detB| on both sides, (5.36) reads locally

∫

ê

ĉh · (Bt)−1n̂ê =

∫

ê

(R̂h(v̂)− v̂) · (Bt)−1n̂ê,

where the hat denotes composition with FE . Thus, by performing the change of variable

d̂h = B
−1ĉh

and defining the face moment

mê(f) :=
1

|ê|

∫

ê

f,

(5.36) is equivalent to

mêi(d̂h) · n̂i = ĝi :=
1

|êi|

∫

êi

B
−1(R̂h(v̂)− v̂) · n̂i, 1 ≤ i ≤ 6. (5.41)

This is a linear system of six equations in twelve unknowns, the coefficients of d̂h. Therefore, we can freely
choose six coefficients and we have the following existence lemma.
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Lemma 7. There exists exactly one polynomial vector d̂h = (d̂1, d̂2, d̂3)t that satisfies (5.41) and the following
six conditions:

mê1(d̂1) = mê5(d̂1) = mê1(d̂2) = mê6(d̂2) = mê5(d̂3) = mê6(d̂3) = 0. (5.42)

Proof. Once the six conditions (5.42) are prescribed, we are left with a square linear system of six equations
in six unknowns. Therefore it suffices to prove that the only solution of the corresponding homogeneous
system is the zero solution. To begin with, we consider the lines i = 5 and i = 6 in (5.41). In view of (5.39)
and (5.40), the strategy for the choice (5.42) is to set to zero the coefficients of n̂2

6 and n̂3
6 and those of n̂1

5

and n̂3
5, i.e., prescribe mê5(d̂1) = mê6(d̂2) = mê5(d̂3) = mê6(d̂3) = 0. With this assumption, the lines i = 6

and i = 5 reduce respectively to
mê6(d̂1) = 0, mê5(d̂2) = 0. (5.43)

Next, we consider the line i = 1. As n̂3
1 = −1 is the only nonzero component, it reduces to

mê1(d̂3) = 0. (5.44)

Similarly, when i = 2 and i = 3 we have, respectively

mê2(d̂2) = 0, mê3(d̂1) = 0. (5.45)

Collecting these results and the two extra assumptions mê1(d̂1) = mê1(d̂2) = 0 in (5.42), we find that

mê1(d̂1) = mê5(d̂1) = mê6(d̂1) = mê3(d̂1) = 0

mê1(d̂2) = mê5(d̂2) = mê6(d̂2) = mê2(d̂2) = 0.

The three faces ê1, ê5, ê6 share the vertex â4, and the regularity of the hexahedron implies that the three
vectors along the segments [â4, â3], [â4, â8], and [â4, â2] is a set of three linearly independent vectors of R3.
Then the regularity of the hexahedron implies that a polynomial of degree one is uniquely determined by
its moments on the four faces ê1, ê5, ê6, êi for any i in the set {2, 3, 4}. Hence, as d̂1 (respectively, d̂2)
is a polynomial of degree one, the first set (respectively, second set) of equalities and the regularity of the
hexahedron imply that d̂1 = 0, respectively, d̂2 = 0. When i = 4, this leads to mê4(d̂3) = 0. Consequently,

mê1(d̂3) = mê5(d̂3) = mê6(d̂3) = mê4(d̂3) = 0,

and d̂3 = 0. Thus d̂h = 0 and the system has a unique solution.

Let M Ê be the 6 × 6 matrix of the system (5.41) under the restriction (5.42). It stems from Lemma 7
that M Ê is nonsingular. Furthermore, the regularity of the hexahedron implies that M Ê is a continuous

function of Ê, thus continuous in a compact set of R3. Hence the norm of its inverse is bounded by a constant
Ĉ, independent of Ê,

|M−1
Ê

| ≤ Ĉ. (5.46)

The stability of the correction follows now easily.

Lemma 8. There exists a constant Ĉ, independent of h and E, such that for all E in Th and all e in Γh,

‖ch‖L2(E) ≤ Ĉ hE |v|H1(E), |ch|H1(E) ≤ Ĉ|v|H1(E),

(
σe

he

) 1

2

‖[ch]e‖L2(e) ≤ Ĉ
(
|v|H1(E1) + |v|H1(E2)

)
,

(5.47)
where E1 and E2 are the two elements sharing e, when e is an interior face, and the sum is reduced to one
term, namely the element E adjacent to e, when e is a boundary face.

Proof. The notation Ĉ below refers to different constants that are all independent of h and E. Recalling
(5.41), (5.37) and the transformation from Ŝ1 onto S1, we observe that, for any i,

|ĝi| ≤
Ĉ

(S1

‖R̂h(v̂)− v̂‖L1(êi) ≤
Ĉ

(S1

‖R̂h(v̂)− v̂‖L2(êi).
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By a trace inequality in Ê and the approximation property of R̂h in Ê, we have

6∑

i=1

‖R̂h(v̂)− v̂‖L2(êi) ≤ Ĉ‖R̂h(v̂)− v̂‖H1(Ê) ≤ Ĉ|v̂|H1(Ê).

Then, by reverting to E,
6∑

i=1

‖R̂h(v̂)− v̂‖L2(êi) ≤ Ĉ
hS1

|E| 12
|v|H1(E).

In view of (5.46) and the regularity of the family Th, the above relations lead to the following bound on d̂h:

‖d̂h‖L∞(Ê) ≤
Ĉ

|E| 12
hS1

(S1

|v|H1(E) ≤
Ĉ

|E| 12
|v|H1(E);

with ĉh = Bd̂h, this yields

‖ch‖L∞(E) = ‖ĉh‖L∞(Ê) ≤ Ĉ
hS1

|E| 12
|v|H1(E). (5.48)

Since hS1
< hE , we immediately deduce from (5.48) the first two inequalities in (5.47). Finally, the third

inequality follows from (5.48) and

(
σe

he

) 1

2

‖ch‖L2(e) ≤
(
σe

he

) 1

2

|e|
1

2 ‖ch‖L∞(E).

That completes the proof of the lemma.

As a consequence of Lemma 8 we have the following bounds:

‖ch‖L2(Ω) ≤ Ĉ h |v|H1(Ω), ‖ch‖Vh
≤ Ĉ|v|H1(Ω). (5.49)

Finally, since the construction of Lemma 7 yields a unique correction, it is easy to check that the mapping
v 2→ ch defines a linear operator from Vh into itself, i.e., ch = ch(v).

On the other hand, we infer from standard approximation properties of Rh and the regularity of the
mesh, that

‖v−Rh(v)‖L2(E) ≤ Ĉ hE |v|H1(E), |Rh(v)|H1(E) ≤ Ĉ|v|H1(E),
(
σe

he

) 1

2

‖[Rh(v)]e‖L2(e) ≤ Ĉ
(
|v|H1(E1) + |v|H1(E2)

) (5.50)

and
‖v−Rh(v)‖L2(Ω) ≤ Ĉ h |v|H1(Ω), ‖Rh(v)‖Vh

≤ Ĉ|v|H1(Ω). (5.51)

Thus Πh(v) = Rh(v)− ch(v) satisfies the conditions (5.32) and (5.33) of Lemma 6. This proves the inf-sup
condition as stated in the next theorem.

Theorem 4. Let the family of hexahedra Th be regular in the sense defined above. Then the form b2h defined
in (5.6) with the pair spaces Vh and Qh for k = 1, see (5.1) and (5.2), satisfies the inf-sup condition (5.31)
with a constant β∗ > 0 independent of h.

5.1.5 A bound on the pressure

As usual, the inf-sup condition (5.31) yields a bound on the pressure. Indeed, it follows from the first
equation of (5.12) together with (5.22), (5.20), (5.15) and (5.16) that

|b2h(vh, ph)| ≤ C
(
‖T h‖L2(Ω) + ‖uh‖Vh

+ ‖uh‖2Vh
+ ‖f‖L2(Ω)

)
‖vh‖Vh

.
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Then (5.30) implies, with a constant C independent of h (but depending on α), that

|b2h(vh, ph)| ≤ C ‖vh‖Vh
∀vh ∈ Vh.

With the inf-sup condition (5.31), this implies that

‖ph‖L2(Ω) ≤ C, (5.52)

for another constant C independent of h.

5.1.6 Existence and convergence

The proof of existence of a solution of (5.12) is the same as in the conforming case. Recall that the case
of interest is k = 1, which is assumed for the remainder of this subsection, but all of what follows can be
straightforwardly extended to a general polynomial degree k ≥ 1 as long as the inf-sup condition (5.31) holds.
First, the problem is reduced to one equation by testing the first equation of (5.12) with vh ∈ Vh,0 and by
observing that the second equation determines for each uh ∈ Vh a unique T h in Mh. This is expressed by
writing T h = Gh,DG(uh). Then, (5.12) is equivalent to finding a uh ∈ Vh,0 such that

dh(uh;uh,vh) + b1h(Gh,DG(uh),vh) + Jh(uh,vh) =

∫

Ω
f · vh ∀vh ∈ Vh,0. (5.53)

By means of the a priori estimates (5.30), existence of a solution is deduced by Brouwer’s fixed point theorem.
Regarding convergence, the a priori estimates (5.30) and (5.52) together with (5.17) imply that there

exist functions T̄ ∈ L2(Ω)d×d
sym , ū ∈ H1

0 (Ω)
d, and p̄ ∈ L2

0(Ω) such that, up to subsequences,

lim
h→0

‖uh − ū‖Lq(Ω) = 0 with 1 ≤ q < ∞ if d = 2, and 1 ≤ q < 6 if d = 3,

lim
h→0

T h = T̄ weakly in L2(Ω)d×d,

and
lim
h→0

ph = p̄ weakly in L2(Ω).

However, in order to pass to the limit in the equations of the scheme, following [16], we need to introduce
discrete differential operators related to distributional differential operators. These are Gsym

h (vh) ∈ Mh and
Gdiv

h (vh) ∈ Θh, defined for all vh ∈ Vh by, respectively,
∫

Ω
Gsym

h (vh) : Rh = b1h(Rh,vh) =
∑

E∈Th

∫

E

D(vh) : Rh −
∑

e∈Γh

∫

e

[vh]e · {Rh}ene ∀Rh ∈ Mh, (5.54)

∫

Ω
Gdiv

h (vh) rh = b2h(vh, rh) = −
∑

E∈Th

∫

E

rh div(vh) +
∑

e∈Γh

∫

e

[vh]e · ne{rh}e ∀ rh ∈ Θh, (5.55)

where
Θh = {θh ∈ L2(Ω) : θh E ∈ P1 ∀E ∈ Th}.

The polynomial degree one in this space is convenient for proving the convergence of the nonlinear term; see
(5.62). The straightforward scaling argument used in proving Proposition 3 shows that

‖Gsym
h (vh)‖L2(Ω) ≤ C ‖vh‖Vh

∀vh ∈ Vh, (5.56)

and

‖Gdiv
h (vh)‖L2(Ω) ≤

( ∑

E∈Th

‖ div(vh)‖2L2(E)

) 1

2

+ C Jh(vh,vh)
1

2 ,

and thus by (5.15)
‖Gdiv

h (vh)‖L2(Ω) ≤ C‖vh‖Vh
∀vh ∈ Vh (5.57)

with different constants C independent of h. At the same time, this gives existence of these two operators.
The next proposition relates Gsym

h (uh) and D(ū). The proof is an easy extension of that written in [16], but
we include it below for the reader’s convenience.
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Proposition 4. Up to a subsequence, we have

lim
h→0

Gsym
h (uh) = D(ū) weakly in L2(Ω)d×d. (5.58)

Proof. On the one hand, the bounds (5.56) and (5.30) imply that there exists a function w̄ ∈ L2(Ω)d×d
sym such

that, up to a subsequence,
lim
h→0

Gsym
h (uh) = w̄ weakly in L2(Ω)d×d. (5.59)

On the other hand, take any tensor F in H1(Ω)d×d
sym and let P 0

h (F ) be its orthogonal L2(Ω)d×d projection on
constants in each E. We have

∣∣∣
∫

Ω
Gsym

h (uh) :
(
F − P 0

h (F )
)∣∣∣ ≤ C‖uh‖Vh

‖F − P 0
h (F )‖L2(Ω),

that tends to zero with h. Therefore, the definition (5.54) of Gsym
h (uh) implies that

lim
h→0

∫

Ω
Gsym

h (uh) : F = lim
h→0

b1h(P
0
h (F ),uh) = lim

h→0

(
b1h(P

0
h (F )− F ,uh) + b1h(F ,uh)

)

and a straightforward argument yields that the first term tends to zero. Hence

lim
h→0

∫

Ω
Gsym

h (uh) : F = lim
h→0

b1h(F ,uh) ∀F ∈ H1(Ω)d×d
sym .

Now, an application of Green’s formula in each E gives

b1h(F ,uh) = −
∑

E∈Th

∫

E

uh · div(F ).

Therefore

lim
h→0

∫

Ω
Gsym

h (uh) : F = −
∫

Ω
ū · div(F ) =

∫

Ω
D(ū) : F ∀F ∈ H1

0 (Ω)
d×d
sym .

A comparison with (5.59) and uniqueness of the limit yield

D(ū) = w̄,

thus proving (5.58).

Remark 6. The fact that ū belongs to H1
0 (Ω)

d is an easy consequence of the above proof.

A similar argument to the one in Proposition 4 gives that

lim
h→0

Gdiv
h (uh) = div(ū) weakly in L2(Ω). (5.60)

Hence, by passing to the limit in the last equation of (5.12), we immediately deduce that div(ū) = 0; thus
ū belongs to V and satisfies the third equation of (4.1).

In the next theorem, these results are used to show that the limit satisfies the remaining equations of
(4.1).

Theorem 5. Let the family of hexahedra Th be regular in the sense defined above. Then the triple (T̄ , ū, p̄)
solves (4.1).

Proof. The proof proceeds in two steps.
Step 1. Let us start with the first equation of (5.12). Take a function v ∈ D(Ω)d and let vh ∈ Vh be

the L2(Ω)d orthogonal projection of v on Pd
1 in each element. It is easy to check that

lim
h→0

Gsym
h (vh) = D(v) strongly in L2(Ω)d×d.
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Therefore the weak convergence of T h and the definition of Gsym
h (vh) imply that

lim
h→0

b1h(T h,vh) =

∫

Ω
D(v) : T̄ .

Similarly,

lim
h→0

b2h(vh, ph) = −
∫

Ω
p̄ div(v).

Also
lim
h→0

Jh(uh,vh) = 0.

As the right-hand side tends to
∫
Ω f · v, it remains to examine dh(uh;uh,vh). Recall that

dh(uh;uh,vh) =
∑

E∈Th

∫

E

[(uh ·∇)uh] · vh −
1

2
b2h(uh,uh · vh)−

∑

e∈Γi
h

∫

e

{uh}e · ne[uh]e · {vh}e.

Thanks to the antisymmetry of dh, we have

dh(uh;uh,vh) = −
∑

E∈Th

∫

E

[(uh ·∇)vh] · uh +
1

2
b2h(uh,uh · vh) +

∑

e∈Γi
h

∫

e

{uh}e · ne[vh]e · {uh}e. (5.61)

For the first term, the strong convergence of uh in L4(Ω)d and the strong convergence of the broken gradient
∇hvh in L2(Ω)d×d imply that

− lim
h→0

∑

E∈Th

∫

E

[(uh ·∇)vh] · uh = −
∫

Ω
[(ū ·∇)v] · ū =

∫

Ω
[(ū ·∇)ū] · v,

since ū ∈ V . For the second term, take any piecewise constant approximation v̄h of v. Then

b2h(uh,uh · vh) = b2h(uh,uh · (vh − v̄h)) + b2h(uh,uh · v̄h).

The boundedness of uh in Vh and the convergence to zero of vh − v̄h in L∞(Ω)d imply that the first term
tends to zero. For the second term, we deduce from the definition of Gdiv

h (uh) that

b2h(uh,uh · v̄h) =

∫

Ω
Gdiv

h (uh)(uh · v̄h). (5.62)

As div(ū) = 0, Gdiv
h (uh) tends to zero weakly in L2(Ω). Then the strong convergence of uh in L2(Ω)d and

that of v̄h in L∞(Ω)d show that this second term tends to zero. It remains to examine the last term of
(5.61). Here we use the fact that, for any v ∈ W 2,∞(Ω)d,

‖vh − v‖L∞(e) ≤ Ch2
e|v|W 2,∞(Ω).

This, with the boundedness of uh in Vh, gives that this last term tends to zero. Thus, we conclude that

lim
h→0

dh(uh;uh,vh) =

∫

Ω
[(ū ·∇)ū] · v ∀v ∈ W 2,∞(Ω)d ∩H1

0 (Ω)
d.

The conclusion of these limits and a density argument is that the triple (T̄ , ū, p̄) satisfies the first equation
of (4.1) ∫

Ω
[(ū ·∇)ū] · v +

∫

Ω
T̄ : D(v)−

∫

Ω
p̄div(v) =

∫

Ω
f · v ∀v ∈ H1

0 (Ω)
d. (5.63)

Step 2. The argument for recovering the constitutive relation T̄ = G(ū) is close to that for the conforming
case, up to some changes. On the one hand, we observe that

lim
h→0

(
b1h(T h,uh) + Jh(uh,uh)

)
=

∫

Ω
f · ū
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and, since Jh(uh,uh) is positive and bounded, this implies that

lim
h→0

b1h(T h,uh) ≤
∫

Ω
f · ū.

On the other hand, we infer from (5.63) that
∫

Ω
T̄ : D(ū) =

∫

Ω
f · ū.

Hence

lim
h→0

b1h(T h,uh) ≤
∫

Ω
D(ū) : T̄ . (5.64)

Next, we set

T̃
d

= G(ū)

and define T̃ h = Gh,DG(ū), i.e.,

α

∫

Ω
T̃ h : Sh + γ

∫

Ω
µ(|T̃ h|)T̃ h : Sh = b1h(Sh, ū) =

∫

Ω
D(ū) : Sh ∀Sh ∈ Mh,

where the second equality holds thanks to the fact that ū belongs to H1
0 (Ω)

d. The fact that div(ū) = 0

implies that the trace of T̃
d

is zero and justifies the above superscript. Therefore

α

∫

Ω
(T̃ h − T̃

d

) : Sh + γ

∫

Ω

(
µ(|T̃ h|)T̃ h − µ(|T̃

d

|)T̃
d)

: Sh = 0 ∀Sh ∈ Mh,

and, as in the conforming case, we conclude that

lim
h→0

‖T̃ h − T̃
d

‖L2(Ω) = 0. (5.65)

Finally, the difference between the equations satisfied by T h and T̃ h yields

α

∫

Ω
(T h − T̃ h) : Sh + γ

∫

Ω

(
µ(|T h|)T h − µ(|T̃ h|)T̃ h

)
: Sh = b1h(Sh,uh)−

∫

Ω
D(ū) : Sh ∀Sh ∈ Mh.

By testing this equation with Sh = T h − T̃ h and using the monotonicity property (2.14), we deduce that

α‖T h − T̃ h‖2L2(Ω) ≤ b1h(T h,uh)− b1h(T̃ h,uh)−
∫

Ω
D(ū) : (T h − T̃ h). (5.66)

However, by (5.54),

b1h(T̃ h,uh) =

∫

Ω
Gsym

h (uh) : T̃ h,

and it follows from Proposition 4 and (5.65) that

lim
h→0

b1h(T̃ h,uh) =

∫

Ω
D(ū) : T̃

d

.

Then, by passing to the limit in (5.66), we obtain in view of (5.64) the inequality

α lim
h→0

‖T h − T̃ h‖2L2(Ω) ≤
∫

Ω
D(ū) : T̄ −

∫

Ω
D(ū) : T̃

d

−
∫

Ω
D(ū) : (T̄ − T̃

d

) = 0,

whence
lim
h→0

‖T h − T̃ h‖L2(Ω) = 0,

and uniqueness of the limit yields

T̄ = T̃
d

= G(ū).

This proves that (T̄ , ū) satisfies the second equation of (4.1).
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5.2 The tetrahedral case

Here we study briefly two examples of finite element discretisations on tetrahedral meshes, the triangular case
being simpler. Many of the details are skipped because they follow closely those in the previous subsection.
The family of meshes Th is assumed to be regular as in (4.24). Let us start with the same spaces Vh,
Qh, and Mh defined on Th by (5.1), (5.2), and (5.3), respectively, and the same bilinear forms b1h(Sh,vh),
dh(uh;vh,wh), and b2h(vh, qh) defined by (5.4), (5.5), and (5.6), respectively. Then the scheme is again
given by (5.12) and, under assumption (4.24), all proofs from the previous subsections are valid in this case,
except possibly the proof of the inf-sup condition. In fact, Theorem 4 holds with a much simpler proof.
Indeed, take any tetrahedron E. Recalling that the case of interest is k = 1, a polynomial of P1 is uniquely
determined in E by its values at the centre points be of its four faces e. Then, instead of (5.36), we can use
the sufficient condition

ch(be) E =
1

|e|

∫

e

(Rh(v) − v) E ∀E ∈ Th, ∀ e ∈ ∂E, (5.67)

and this defines uniquely the correction ch. Furthermore, thanks to (4.24), the stability of this correction
follows from the fact that E is the image of the unit tetrahedron Ê by an invertible affine mapping whose
matrix satisfies the same properties as the matrix B used above. Thus the conclusion of Theorem 4 is valid
in this case.

As a second example, it would be tempting to use the Crouzeix–Raviart element of degree one on
tetrahedra; see [15]. This would be possible if the analysis did not invoke Korn’s inequality (with respect to
the broken symmetric gradient), because it is not satisfied by the Crouzeix–Raviart element; cf [18]. Thus,
the simplest way to bypass this difficulty is to introduce the jump penalty term Jh(uh,vh) defined in (5.8).
Let us describe this discretisation. Again, we suppose that (4.24) holds. The discrete spaces Qh and Mh are
the same, with k = 1, as in (5.2) and (5.3), respectively. However, instead of Vh, we now use the space V CR

h

whose elements are also piecewise polynomials of degree one in each element, but in contrast with (5.1), they
are continuous at the centre points of all interior faces e ∈ Γi

h, and are set to zero at the centre points of
all boundary faces e ∈ Γb

h. Thanks to this pointwise continuity and boundary condition, the scheme now
involves the following bilinear/trilinear forms, compare with (5.4), (5.5), (5.6):

∫

Ω
D(v) : S 4 bCR

1h (Sh,vh) :=
∑

E∈Th

∫

E

D(vh) : Sh, (5.68)

dCR
h (uh;vh,wh) :=

1

2

[ ∑

E∈Th

∫

E

[(uh ·∇)vh] ·wh −
∑

E∈Th

∫

E

[(uh ·∇)wh] · vh

]
, (5.69)

bCR
2h (vh, qh) := −

∑

E∈Th

∫

E

qh div(vh). (5.70)

With these new forms, analogously to (5.12), the finite element approximation of the problem reads as
follows: find a triple (T h,uh, ph) ∈ Mh × V CR

h ×Qh such that

dCR
h (uh;uh,vh) + bCR

1h (T h,vh) + bCR
2h (vh, ph) + Jh(uh,vh) =

∫

Ω
f · vh ∀vh ∈ V CR

h ,

α

∫

Ω
T h : Sh + γ

∫

Ω
µ(|T h|)T h : Sh = bCR

1h (Sh,uh) ∀Sh ∈ Mh,

bCR
2h (uh, qh) = 0 ∀ qh ∈ Qh.

(5.71)

Note that bCR
1h (Sh,vh) coincides with b1h(Sh,vh) and bCR

2h (vh, qh) coincides with b2h(vh, qh) because the
additional face terms vanish for elements of the space V CR

h . This is not necessarily the case with dCR
h and

dh, but dCR
h is obviously antisymmetric and is simpler. Although the norm of the broken gradient is a norm

on V CR
h , the mapping vh 2→ ‖D(vh)‖h is not a norm on V CR

h . According to [6, 7], we have instead (5.14)
and (5.15). That is why we use again the norm ‖vh‖Vh

defined in (5.9) and keep the term Jh(uh,vh) in the
first line of (5.71). Note however that the parameters σe need not be tuned by Proposition 3 since there
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are no surface terms in bCR
1h (T h,vh); thus it suffices for instance to take σe = 1 for each face e. Moreover,

the analysis used for the general discontinuous elements substantially simplifies here. First, as there are no
surface terms in the bilinear forms, the bounds are simpler. Next, the operator Πh satisfying the statement
of Lemma 6 is constructed directly by setting, for v in H1

0 (Ω)
d,

Πh(v)(be) E =
1

|e|

∫

e

v ∀E ∈ Th, ∀ e ∈ ∂E, (5.72)

see [15]. Clearly, as v ∈ H1
0 (Ω)

d, (5.72) defines a piecewise polynomial function of degree one in V CR
h .

Finally, convergence of the scheme is derived without the discrete differential operators Gsym
h and Gdiv

h .
Indeed, property (5.17) can be extended as is asserted in the proposition.

Proposition 5. Let the family Th satisfy (4.24). If vh is a sequence in V CR
h such that

‖vh‖Vh
≤ C

with a constant C independent of h, then there exists a function v̄ ∈ H1
0 (Ω)

d satisfying (5.17) and

lim
h→0

Dh(vh) = D(v̄) weakly in L2(Ω)d×d, (5.73)

where Dh stands for the broken symmetric gradient.

The proof, contained in [15], relies on the fact that the integral average of the jump [vh]e vanishes on
any face e and hence, for any tensor F in H1(Ω)d×d,

∫

e

Fne · [vh]e =

∫

e

(F −C)ne · [vh]e ∀C ∈ Rd×d.

Thus, there is no need for Gsym
h ; the same is true for Gdiv

h . This permits to pass directly to the limit in
(5.71).

6 Numerical illustrations

We introduce two decoupled iterative algorithms. The first one is based on a Lions–Mercier decoupling
strategy while the second one is a fixed point algorithm. All the algorithms are implemented using the
deall.ii library [1]. For simplicity, we focus on conforming finite element approximations for which an a
priori error estimate has been derived in Subsection 4.1.2. Performing numerical experiments in the case of
the nonconforming approximation scheme will be the subject of future work.

The general setup is the following:

• Dirichlet boundary conditions are imposed on the entire domain boundary (not necessarily homoge-
neous);

• A sequence of uniformly refined meshes with square elements of diameter h =
√
2/2n, n = 2, . . . , 6

(level of refinement) are considered for the mesh refinement analysis;

• The finite element spaces Mh, Vh, and Qh consist, respectively, of discontinuous piecewise polynomials
of degree 2, continuous piecewise polynomials of degree 2, and continuous piecewise polynomials of
degree 1 (see Subsection 4.2.2).

Following [5], we replace the constitutive relation

αT d + γµ(|T d|)T d −D(u) = 0

by
αT d + γµ(|T d|)T d −D(u) = g

to design an exact solution. Then, given T
d, u and p, we compute the corresponding right-hand sides g and

f (forcing term), where we recall that

f = (u ·∇)u−
1

α
div(D(u)) +∇p+

γ

α
div(µ(|T d|)T d).

Finally, we choose µ(s) = 1√
1+s2

which corresponds to (1.10) with β = 1 and n = −1/2.

37



6.1 Lions–Mercier decoupled iterative algorithm

We present here an iterative algorithm to compute approximately the solution to problem (3.5), which is
based on the formulation (3.4): find (T h,uh, ph) ∈ Mh × Vh ×Qh such that

d(uh;uh,vh) +
1

α

∫

Ω
D(uh) : D(vh)−

∫

Ω
ph div(vh) =

∫

Ω
f · vh +

γ

α

∫

Ω
µ(|T h|)T h : D(vh),

α

∫

Ω
T h : Sh + γ

∫

Ω
µ(|T h|)T h : Sh =

∫

Ω
D(uh) : Sh,

∫

Ω
qh div(uh) = 0

(6.1)

for all (Sh,vh, qh) ∈ Mh × Vh ×Qh, where d : V × V × V → R is defined in (4.7). Note that problem (6.1)
is equivalent to problem (4.9) analysed in Section 4.

To compute the solution to problem (6.1), we propose a decoupled algorithm based on a Lions–Mercier
splitting algorithm [25] (alternating-direction method of the Peaceman–Rachford type [31]) applied to the
unknown T h. Following the discussion in [5, Section 7], the algorithm reads, for a pseudo-time step τ > 0:

Initialisation: find (T (0)
h ,u(0)

h , p(0)h ) ∈ Mh × Vh ×Qh such that

d(u(0)
h ;u(0)

h ,vh) +
1

α

∫

Ω
D(u(0)

h ) : D(vh)−
∫

Ω
p(0)h div(vh) =

∫

Ω
f · vh ∀vh ∈ Vh,

α

∫

Ω
T

(0)
h : Sh =

∫

Ω
D(u(0)

h ) : Sh ∀Sh ∈ Mh,
∫

Ω
qh div(u

(0)
h ) = 0 ∀ qh ∈ Qh.

(6.2)

Then, for k = 0, 1, . . . , perform the following two steps:

Step 1: Find T
(k+ 1

2
)

h ∈ Mh such that

1

τ

∫

Ω
(T

(k+ 1

2
)

h − T
(k)
h ) : Sh + γ

∫

Ω
µ(|T (k+ 1

2
)

h |)T (k+ 1

2
)

h : Sh =

∫

Ω
D(u(k)

h ) : Sh − α

∫

Ω
T

(k)
h : Sh ∀Sh ∈ Mh.

Step 2: Find (T (k+1)
h ,u(k+1)

h , p(k+1)
h ) ∈ Mh × Vh ×Qh such that

d(u(k+1)
h ;u(k+1)

h ,vh) +
1

α

∫

Ω
D(u(k+1)

h ) : D(vh)−
∫

Ω
p(k+1)
h div(vh)

=

∫

Ω
f · vh +

γ

α

∫

Ω
µ(|T (k+ 1

2
)

h |)T (k+ 1

2
)

h : D(vh),

1

τ

∫

Ω
(T (k+1)

h − T
(k+ 1

2
)

h ) : Sh + α

∫

Ω
T

(k+1)
h : Sh =

∫

Ω
D(u(k+1)

h ) : Sh − γ

∫

Ω
µ(|T (k+ 1

2
)

h |)T (k+ 1

2
)

h : Sh,
∫

Ω
qh div(u

(k+1)
h ) = 0

(6.3)

for all (Sh,vh, qh) ∈ Mh × Vh ×Qh.

The solution to (6.2) is obtained by first determining u(0)
h and p(0)h as the solution to a standard steady-

state Navier–Stokes equation (first and third equations in (6.2)) and then by setting T
(0)
h = 1

α
D(u(0)

h ).
Similarly, the solution to problem (6.3) can be obtained by first solving the first and third equations for

u(k+1)
h and p(k+1)

h and then solving the second equation for T
(k+1)
h . A standard argument shows that the

above algorithm generates uniformly bounded sequences. Thus they converge up to subsequences. However,
the identification of a unique limit for the entire sequence is currently unclear.

Regarding the implementation, we make the following comments:
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• Stopping criterion: For the main loop (Lions–Mercier algorithm), the stopping criterion is

‖T (k+1)
h − T

(k)
h ‖L2(Ω) + ‖∇(u(k+1)

h − u(k)
h )‖L2(Ω) + ‖p(k+1)

h − p(k)h ‖L2(Ω)

‖T (k+1)
h ‖L2(Ω) + ‖∇u(k+1)

h ‖L2(Ω) + ‖p(k+1)
h ‖L2(Ω)

≤ 10−5; (6.4)

• Initialisation: We solve the Navier–Stokes system associated to problem (6.2) using Newton’s method
(the iterates are indexed by m) until the following stopping criterion is met:

‖∇(u(m+1)
h − u(m)

h )‖L2(Ω) + ‖p(m+1)
h − p(m)

h ‖L2(Ω)

‖∇u(m+1)
h ‖L2(Ω) + ‖p(m+1)

h ‖L2(Ω)

≤ 10−6.

As an initial guess, we take the solution of the associated Stokes system without the convective term.

The solution to each saddle-point system of the form

(
A BT

B 0

)(
U
P

)
=

(
F
G

)

is obtained using a Schur complement formulation

BA−1BTP = BA−1F−G, AU = F−BTP.

To solve for P, we use the conjugate gradient algorithm in the case of the Stokes problem and GM-
RES for the (linearised) Navier–Stokes problems. In both cases, the pressure mass matrix is used as
preconditioner and the tolerance for the iterative algorithm is set to 10−6‖BA−1F − G‖$2 . A direct
method is advocated for every occurrence of A−1 and also to obtain T

(0).

• Step 1 (monotone part): T
(k+ 1

2
)

h is the zero of the functional

F (T h) := T h + τγµ(|T h|)T h − τD(u(k)
h )− (1− ατ)T (k)

h .

Recall that discontinuous piecewise polynomial approximations are used for the stress and so T h is
determined locally on each element E ∈ Th as the solution to

∫

E

F (T h) : Sh = 0 ∀Sh ∈ Q2.

We again employ Newton’s method starting with T
(0)
h = T

(k)
h E

and use the stopping criterion

‖F (T (m)
h )‖L2(E) ≤ 10−6

√
|E|√
|Ω|

so that the global residual is less than 10−6. Note that in this case, it might happen that no iteration

is needed (e.g. when γ = 0), in which case T
(k+ 1

2
)

h E
= T

(k)
h E

.

• Step 2 : This step is similar to the initialisation step except that we take (u(k)
h , p(k)h ) as our initial guess

for Newton’s method for solving the finite element approximation of the Navier–Stokes system.

6.1.1 Case 1: smooth solution

We consider the case Ω = (0, 1)2 and

T
d =

(
cos(2πx)−cos(2πy)

4 0

0 cos(2πy)−cos(2πx)
4

)
, u =

(
− cos(πx) sin(πy)
sin(πx) cos(πy)

)
, p = −

cos(2πx) + cos(2πy)

4
.
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Note that T d is the deviatoric part of T defined by

T =

(
cos(2πx)

2 0

0 cos(2πy)
2

)
,

and in particular it has vanishing trace. We observe that u is divergence-free. Moreover, the pressure satisfies
p = − 1

2 tr(T ) and has zero mean. We report in Table 1 the error for each component of the solution for the
case α = 1 and γ = 0, while Table 2 contains the results for α = γ = 1. Note that we use the H1 semi-norm
for the velocity and not the (equivalent) L2(Ω)2×2 norm of the symmetric gradient. We observe in Table 2

n h ‖T d − T h‖L2(Ω) ‖∇(u− uh)‖L2(Ω) ‖p− ph‖L2(Ω) iter

2 0.354 6.04199×10−2 7.51266×10−2 3.02263×10−2 1
3 0.177 1.44750×10−2 1.82293×10−2 6.18331×10−3 1
4 0.088 3.58096×10−3 4.52460×10−3 1.46371×10−3 1
5 0.044 8.92901×10−4 1.12913×10−3 3.60874×10−4 1
6 0.022 2.23079×10−4 2.82155×10−4 8.99041×10−5 1

Table 1: Case 1, α = 1, γ = 0, δ = 10−5, τ = 0.01.

n h ‖T d − T h‖L2(Ω) ‖∇(u− uh)‖L2(Ω) ‖p− ph‖L2(Ω) iter

2 0.354 3.57579×10−2 8.21275×10−2 3.01953×10−2 183
3 0.177 7.78829×10−3 1.86706×10−2 6.18695×10−3 182
4 0.088 2.00882×10−3 4.55378×10−3 1.50017×10−3 182
5 0.044 8.86597×10−4 1.13687×10−3 4.91418×10−4 182
6 0.022 7.66438×10−4 3.05389×10−4 3.45733×10−4 182

Table 2: Case 1, α = γ = 1, δ = 10−5, τ = 0.01.

that all three errors are O(h2). The deterioration of the convergence rate we observe for T d and p in Table
2 is due to the stopping criterion. Indeed, if we use 10−6 instead of 10−5 in the stopping criterion (6.4) for
the main loop, then for h = 0.044 (n = 5) we need 250 iterations and we get

‖T d−T h‖L2(Ω) = 4.66898×10−4, ‖u−uh‖L2(Ω) = 1.13118×10−3 and ‖p−ph‖L2(Ω) = 3.62581×10−4,

compare with the fourth row of Table 2.
We give in Tables 3, 4 and 5 the results obtained when a larger pseudo-time step is used. We see that

n h ‖T d − T h‖L2(Ω) ‖∇(u− uh)‖L2(Ω) ‖p− ph‖L2(Ω) iter

2 0.354 3.57161×10−2 8.21200×10−2 3.02043×10−2 47
3 0.177 7.74372×10−3 1.86697×10−2 6.18194×10−3 47
4 0.088 1.86276×10−3 4.55240×10−3 1.46465×10−3 47
5 0.044 4.77556×10−4 1.13167×10−3 3.65463×10−4 47
6 0.022 1.72916×10−4 2.85469×10−4 1.06995×10−4 47

Table 3: Case 1, α = γ = 1, δ = 10−5, τ = 0.05.

the larger the pseudo-time step, the fewer the number of iterations. Moreover, for all cases τ = 0.05, τ = 0.1
and τ = 0.5, there is no deterioration of the convergence rate in contrast to what we observed in Table 2
(due to the stopping criterion).
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n h ‖T d − T h‖L2(Ω) ‖∇(u− uh)‖L2(Ω) ‖p− ph‖L2(Ω) iter

2 0.354 3.57060×10−2 8.21133×10−2 3.02054×10−2 26
3 0.177 7.74150×10−3 1.86693×10−2 6.18213×10−3 26
4 0.088 1.85887×10−3 4.55234×10−3 1.46384×10−3 26
5 0.044 4.63124×10−4 1.13153×10−3 3.61829×10−4 26
6 0.022 1.27963×10−4 2.84928×10−4 9.37426×10−5 26

Table 4: Case 1, α = γ = 1, δ = 10−5, τ = 0.1.

n h ‖T d − T h‖L2(Ω) ‖∇(u− uh)‖L2(Ω) ‖p− ph‖L2(Ω) iter

2 0.354 3.57028×10−2 8.21057×10−2 3.02063×10−2 10
3 0.177 7.73342×10−3 1.86606×10−2 6.18238×10−3 7
4 0.088 1.85742×10−3 4.55172×10−3 1.46368×10−3 7
5 0.044 4.59753×10−4 1.13121×10−3 3.60876×10−4 7
6 0.022 1.15437×10−4 2.83829×10−4 8.99203×10−5 7

Table 5: Case 1, α = γ = 1, δ = 10−5, τ = 0.5.

6.1.2 Case 2: non-smooth velocity

We consider now the L-shaped domain Ω = (−1, 1)2 \ [0, 1)2; we take T
d and p as above, but here

u =

(
y(x2 + y2)

1

3

−x(x2 + y2)
1

3

)
,

which is divergence-free. The results when α = 1 and γ = 0 are given in Table 6 while Tables 7 and 8 contain
the results for the case α = γ = 1 with τ = 0.01 and τ = 0.5, respectively.

n h ‖T d − T h‖L2(Ω) ‖∇(u− uh)‖L2(Ω) ‖p− ph‖L2(Ω) iter

2 0.354 3.65187×10−2 3.80529×10−2 5.22497×10−2 1
3 0.177 5.61550×10−3 6.85310×10−3 1.07102×10−2 1
4 0.088 1.32332×10−3 1.86233×10−3 2.53671×10−3 1
5 0.044 3.95496×10−4 5.79343×10−4 6.25652×10−4 1
6 0.022 1.24435×10−4 1.83765×10−4 1.55951×10−4 1

Table 6: Case 2, α = 1, γ = 0, δ = 10−5, τ = 0.5.

6.2 A fixed-point algorithm

Instead of the Lions–Mercier type algorithm introduced in Subsection 6.1, we explore the following fixed-point
strategy.

Initialisation: (T (0)
h ,u(0)

h , p(0)h ) = 0.

Then for k = 0, 1, . . ., do the following two steps.

Step 1: Find (u(k+1)
h , p(k+1)

h ) ∈ Vh ×Qh such that

d(u(k+1)
h ;u(k+1)

h ,vh) +
1

α

∫

Ω
D(u(k+1)

h ) : D(vh)−
∫

Ω
p(k+1)
h div(vh) =

∫

Ω
f · vh +

γ

α

∫

Ω
µ(|T (k)

h |)T (k)
h : D(vh),

∫

Ω
qh div(u

(k+1)
h ) = 0
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n h ‖T d − T h‖L2(Ω) ‖∇(u− uh)‖L2(Ω) ‖p− ph‖L2(Ω) iter

2 0.354 3.51269×10−2 6.79039×10−2 5.22609×10−2 198
3 0.177 4.65311×10−3 9.59150×10−3 1.07129×10−2 198
4 0.088 1.10623×10−3 2.04375×10−3 2.55916×10−3 198
5 0.044 7.88026×10−4 6.03974×10−4 7.14457×10−4 198
6 0.022 7.63053×10−4 2.28218×10−4 3.79151×10−4 198

Table 7: Case 2, α = γ = 1, δ = 10−5, τ = 0.01.

n h ‖T d − T h‖L2(Ω) ‖∇(u− uh)‖L2(Ω) ‖p− ph‖L2(Ω) iter

2 0.354 3.50999×10−2 6.78690×10−2 5.22585×10−2 11
3 0.177 4.56878×10−3 9.56288×10−3 1.07075×10−2 8
4 0.088 8.00090×10−4 2.03639×10−3 2.53571×10−3 7
5 0.044 2.08125×10−4 5.91247×10−4 6.25280×10−4 7
6 0.022 6.85220×10−5 1.92531×10−4 1.55842×10−4 7

Table 8: Case 2, α = γ = 1, δ = 10−5, τ = 0.5.

for all (uh, qh) ∈ Vh ×Qh.

Step 2: Find T
(k+1)
h ∈ Mh such that

α

∫

Ω
T

(k+1)
h : Sh + γ

∫

Ω
µ(|T (k+1)

h |)T (k+1)
h : Sh =

∫

Ω
D(u(k+1)

h ) : Sh ∀Sh ∈ Mh.

It is easy to show that this algorithm produces uniformly bounded sequences.
The solvers used for these two steps are similar to those described in Subsection 6.1. In particular, we take

(u(k)
h , p(k)h ) as initial guess for Newton’s method for the finite element approximation of the Navier–Stokes

system, except when k = 0, in which case we use the solution of the associated Stokes problem.
The results obtained using the stopping criterion (6.4) are given in Table 9. There are similar to those

obtained in Table 5.

n h ‖T d − T h‖L2(Ω) ‖∇(u− uh)‖L2(Ω) ‖p− ph‖L2(Ω) iter

2 0.354 3.57082×10−2 8.21052×10−2 3.02063×10−2 10
3 0.177 7.73745×10−3 1.86629×10−2 6.18241×10−3 8
4 0.088 1.85777×10−3 4.55234×10−3 1.46369×10−3 8
5 0.044 4.60268×10−4 1.13344×10−3 3.60885×10−4 8
6 0.022 1.17442×10−4 2.92590×10−4 8.99455×10−5 8

Table 9: Case 1, α = γ = 1, δ = 10−5.

Concerning the computational cost when similar results are obtained, i.e., when τ = 0.5 for the Lions–
Mercier type algorithm, we note that the latter requires the solution of one more equation per iteration,

namely the linear equation for T (k+1)
h in Step 2.
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