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Abstract

We consider the mathematical analysis and numerical approximation of a system of nonlinear partial
differential equations that arises in models that have relevance to steady isochoric flows of colloidal
suspensions. The symmetric velocity gradient is assumed to be a monotone nonlinear function of the
deviatoric part of the Cauchy stress tensor. We prove the existence of a weak solution to the problem, and
under the additional assumption that the nonlinearity involved in the constitutive relation is Lipschitz
continuous we also prove uniqueness of the weak solution. We then construct mixed finite element
approximations of the system using both conforming and nonconforming finite element spaces. For both
of these we prove the convergence of the method to the unique weak solution of the problem, and in the
case of the conforming method we provide a bound on the error between the analytical solution and its
finite element approximation in terms of the best approximation error from the finite element spaces. We
propose first a Lions—Mercier type iterative method and next a classical fixed-point algorithm to solve
the finite-dimensional problems resulting from the finite element discretisation of the system of nonlinear
partial differential equations under consideration and present numerical experiments that illustrate the
practical performance of the proposed numerical method.

Keywords: Non-Newtonian fluids, implicit constitutive theory, existence of weak solutions, mixed finite
element approximation, convergence analysis
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1 Introduction

The classical incompressible Navier—Stokes constitutive equation and its usual generalisations, the constitu-
tive relations for the incompressible Stokesian fluid, are explicit expressions for the Cauchy stress in terms
of the symmetric part of the velocity gradient. The Stokesian fluid is defined by the constitutive expression

T = —pI + (D), (1.1)

where T is the Cauchy stress, —pI is the indeterminate part of the stress due to the constraint of incom-
pressibility and D is the symmetric part of the velocity gradient, D = %(Vu + (Vu)?). The incompressible
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Navier—Stokes fluid is a special sub-class of (1)) that is linear in the symmetric part of the velocity gradient
and is defined through:
T = —pI+2uD, (1.2)

where p is the viscosity of the fluid. Power-law fluids are another popular sub-class of (LI]), the power-law
fluid being defined through the constitutive equation

T =—pI+2pu(1+ atr(D2))mD, (1.3)

where po and « are positive constants and m is a constant; if m is zero we recover the Navier—Stokes fluid
model, if it is negative we have a shear-thinning fluid model and if it is positive we have a shear-thickening
fluid model. There are however many fluids that cannot be described by constitutive equations of the form
(LI) but require “relations”, in the true mathematical sense of the term, between the Cauchy stress and the
symmetric part of the velocity gradient. Implicit constitutive relations that involve higher time derivatives of
the stress and the symmetric part of the velocity gradient have been proposed to describe the response of non-
Newtonian fluids that exhibit viscoelastic responsd. (see Burgers (1939) [13], Oldroyd (1950) [30]); that is
fluids that exhibit phenomena like stress relaxation. However, purely implicit algebraic relationship between
the stress and the symmetric part of the velocity gradient were not considered to describe non-Newtonian
fluids until recently. Such models are critical if one is interested in describing the response of fluids which
do not exhibit viscoelasticity but whose material properties depend on the mean value of the stress and the
shear rate, a characteristic exhibited by many fluids and colloids, as borne out by numerous experiments.
Consider for example an incompressible fluid whose viscosity depends on the mechanical pressurdg (mean
value of the stress) and is shear-thinning, whose constitutive relation takes the form

T = —pI + 2u(p, tr(D?)) D. (1.4)
Since tr(D) = div(u) = 0,
1
tr(T) = —3p, ie, p= —gtr(T), (1.5)
the above equation takes the form
1 1
T = g(tr(T))I + Zu(gtr(T), tr(D?))D. (1.6)

(The factor 1/3 is related to the number of space dimensions d = 3; in two dimensions it would be replaced
by 1/2.) The above expression is of the form

f(T,D) = 0, (1.7)

which is an implicit relationship between the stress and the symmetric part of the velocity gradient. Ra-
jagopal (2003) [34], (2006) [35] introduced the implicit relationship of the above form (and also the much more
general implicit relationship between the history of the stress and the history of the deformation gradient) to
describe materials whose properties depend upon the pressure and the shear rate. In fact, the properties of
all fluids depend upon the pressure: it is just a matter of how large the variation of the pressure is in order for
one to take the variation of the properties into account. The book by Bridgman (1931) [9] entitled “Physics
of High Pressures” provides copious references to the experimental literature before 1931 on the variation
of the viscosity of fluids with pressure, and one can find recent references to the experimental literature on
the dependence of viscosity on pressure in Malek and Rajagopal (2006) [27]. Stokes (1845) [40] recognised
that the viscosity of fluids varies with pressure, but in the case of sufficiently slow flows in channels and
pipes he assumed that the viscosity could be considered a constant. Suffice to say, constitutive relations of
the class (7)) are necessary to describe the response of fluids whose viscosity depends on the pressure. Also
as mentioned earlier, the implicit constitutive relation (7)) is useful to describe the behaviour of colloids.

IWhile the Maxwell fluid (see Maxwell (1866) [28]) is defined through a constitutive relation involving the derivative of the
stress, it is not an implicit model in that the symmetric part of the velocity gradient can be explicitly defined in terms of the
stress and the time derivative of the stress.

2The terminology “pressure” is often misused, especially in nonlinear fluids; for a detailed discussion of the same see Rajagopal
(2015) [317].



Recently, Perldcovd and Prusa (2015) [32] (see also LeRoux and Rajagopal (2013) [39]) used an implicit
model belonging to a sub-class of (7)) to describe the response of colloidal solutions as presented in the
experimental work of Boltenhagen et al. (1997) [4], Hu et al. (1998) [21], Lopez-Diaz et al. (2010) [26] among
others. Notice that while one always expresses the incompressible Navier—Stokes fluid by the representation
([L2), it is perfectly reasonable to describe it as

1
D=opl+ ET, where ¢ = % (1.8)

In fact, it is the representation (L8) that is in keeping with causality as the stress is the cause and the
velocity and hence its gradient is the effect, and this fact cannot be overemphasised. Such a representation
would imply that the Stokes assumption that is often appealed to is incorrect (see Rajagopal (2013) [36]
for a detailed discussion of the same). Mélek et al. (2010) [33] generalised (L.8)) to stress power-law fluids,
namely constitutive relations of the form:

T = —pI +T9,

D =~[1+ Btr((T4)?)]" T, (19)
where T is the deviatoric part of the Cauchy stress, v and (8 are positive constants, and n is a constant that
can be positive, negative or zero. The constitutive relation (L.9) is capable of describing phenomena that
the classical power-law models are incapable of describing. For instance, the constitutive models (L9)) can
describe limiting strain rate as well as fluids which allow the possibility of the strain rate initially increasing
with stress and later decreasing with stress; both such responses cannot be described by the classical power-
law fluid model ([L3]) (see the discussion in Malek et al. (2010) [33] with regard to the difference in the
response characteristics of the stress power-law fluid and the classical power-law fluid). We are interested in
a further generalization of the constitutive relation of the form (L.9) that is appropriate for describing the
response of colloidal solutions. This constitutive relation takes the form:

D= {7[1 + Btr((TH2)]" + a}Td, (1.10)

where «, 3, and -y are positive constants, n is a real number, and T4 is the deviatoric part of the Cauchy
stress. The shear stress in a fluid undergoing simple shear flow, that is described by the constitutive relation
given above, increases from zero to a maximum, then decreases to a local minimum, and then increases
monotonically as the shear stress increases from zero. As discussed by Le Roux and Rajagopal [39], and
Perldcovéd and Prusa [32], many colloids exhibit such behavior. The constitutive relation that we introduce
first in (2.10) and next in (B.1) includes (1.10) as a special sub-class. It can be posed within a Hilbert space
setting owing to the presence of the coefficient « in (L.I0), but nevertheless, it is a challenging problem as it
involves two nonlinearities: the monotone part in the constitutive relation and the inertial (convective) term.
The problem without the inertial term, see Subsection 2.2] below, has already been analysed in [5], while
the analysis of the steady-state incompressible Navier—Stokes equations is well-established, see for instance
[41,20]. With both nonlinearities present in the model, proving the existence of a weak solution, for instance,
to the best of our knowledge cannot be done by simply coupling the techniques used for these two problems,
namely the Browder-Minty theorem and the Galerkin method combined with Brouwer’s fixed point theorem
and a weak compactness argument. More refined arguments are needed; they are crucial to the proofs of
Lemmas [4 and [{ below.

This work is organised as follows. The notation and the functional-analytic setting are recalled in the
next subsection. In Section [2, both linear and fully nonlinear versions of the formulation are briefly analysed
for the Stokes system, i.e., without the inertial (convective) term. The theoretical analysis of the complete
nonlinear system is carried out in Section3. The main results of this section are Theoreml[L for the existence of
a solution and Proposition 2 for the uniqueness of a solution under additional assumptions on the input data.
In Section [, conforming finite element approximations of these models are proposed and error estimates
are derived. The cases of both simplicial and hexahedral elements are discussed. The analysis of the
latter is less satisfactory as it requires subdivisions consisting of parallelepipeds and suffers from a higher
computational cost. This motivates the introduction of nonconforming approximations in Section [Bl In
Section [6] two decoupling algorithms are presented and compared: a Lions—Mercier algorithm adapted



to a system with a monotone part and an elliptic part, and a classical fixed-point algorithm alternating
between the approximation of a Navier-Stokes system and the nonlinear constitutive relation for the stress.
Numerical experiments are performed with conforming finite elements on a square mesh in two dimensions.
The theoretically established convergence of the scheme is confirmed and convergence of both decoupled
algorithms is observed.

1.1 Notation and preliminaries

Let Q C R, d € {2,3}, be a bounded, open, simply connected Lipschitz domain. We consider the function

spaces
Q:=L3Q), V:=H}(Q)? and M :={Sec >0 tr(S) =0}, (1.11)

sym

for the pressure, the velocity, and the deviatoric stress tensor, respectively. As usual,

@ ={oc 2@ [ o=,

the zero mean value constraint being introduced to fix the undetermined additive constant in the mechanical
pressure. Here the subscript sym indicates that the d x d tensors under consideration are assumed to
be symmetric. Henceforth, the symmetric gradient of the velocity field v (or, briefly, symmetric velocity
gradient) will be denoted by

D(v) = %(vV + (V) (1.12)

and the deviatoric part of a d x d tensor S is defined by
1
sd.— 85— ~tr($)1 (1.13)

with I the d x d identity tensor; thus the trace of S is zero. We denote by V the subspace of V. consisting
of all divergence-free functions contained in V; that is,

V:={veV:dv(v) =0} (1.14)
For vector-valued functions v : Q — R%, we write

||V||L2(Q) =l vl ||L2(Q) and ||V||L°°(Q) =l vl ||L°°(Q)

RdXd

with | - | signifying the Euclidean norm on R?, while for tensor-valued functions S :  — , we define

HS||L2(Q) = || |S] ||L2(Q)7

where now

S| :=VS:8S

is the Frobenius norm of S. Clearly, M is a Hilbert space with this norm. We recall the Poincaré and Korn
inequalities, which are, respectively, the following: there exist positive constants C'p and Ck such that

[Vl z2(0) < CplIVollLz@) Yo € Hy(Q) (1.15)
and
19l 2@ < Cx D)2y ¥V € V. (1.16)
We endow V' (and V) with the norm
1 1lv = 11Dz @)- (1.17)
Both V and V are Hilbert spaces with this norm, because || - ||y is equivalent to both the H'(£)?*¢ norm

and the H'(€)?*¢ semi-norm, thanks to (LI5), (LI6) and the trivial relation | D(v)||r2q) < |[VV]12(0)-



2 Stokes system with linear and nonlinear constitutive relations

In this section we study two preliminary model problems without the inertial term; the first one simply
reduces to the Stokes system, while the second model problem involves a monotone nonlinearity treated by
the Browder—Minty approach.

2.1 The Stokes system

Let us consider the problem

—div(T) = f in Q,
Du) = oT? in £,
div(u) = 0 in Q, (2.1)
u = 0 on 012,

where f : Q@ — R? is a prescribed external force, D(u) is defined by (LI2)), the unknown tensor T is
symmetric, and « is a given positive constant, the reciprocal of the viscosity coefficient. Here, we assume
that £ € L2(Q)? for simplicity, but a similar analysis holds for the general case f € V' = H~(Q)%; see for
instance Remark [Ilin Section 3. By decomposing the Cauchy stress T as T = T9 + Ltr(T)I and inserting
this in the first equation of we arrive at the following equivalent problem:

—div(T?) - Ivtr(T) = f in 0,
Du) = oT? inQ, (2.2)
diviu) = 0 in Q, '
u =0 on 0f),

which we recognise to be the Stokes system where the mechanical pressure (mean normal stress) is p :=
—%tr(T). Recalling the spaces M, V, @ defined in and using the relation

D(v):8=Vv:S§S,

which holdd for any symmetric tensor S, the weak formulation of problem can be written as follows:
find a triple (T, u,p) € M x V x Q such that

/Td:D(V)—/pdiV(v):/f-V Vvev,
Q Q Q
a/Td:S—/S:D(u)zo VS e M, (2.3)
Q Q
—/qdiv(u):O VqeQ.
Q
For any S € M, v eV, and ¢ € ), we set
b1(S,v) ::/ S : D(v),
Q
bo(v,) i= - [ adiv(v),
Q

As is usual for the Stokes problem, the unknown pressure can be eliminated from by restricting the
test functions v to V. In addition, the variable u can also be eliminated by treating the first line of
as a constraint, thus leading to an equivalent (reduced) problem for which the two variables p and u are
eliminated. The equivalence is based on the following (inf-sup) conditions

inf sup b1(5,v)

> 1 2.4
B, S ST I DM ey = (24)

3For any R, S € R?*4_ with S symmetric, we have that S : R = (SJFTSt) R = %S R+ %St "R = %S R+ %S 'R =
. ( R+R!
S: (B,



and

b b
346 >0: inf sup 2(v, q) > inf sup 2(v, q)
a€Qvev a2 1PV L2) — €@ vev llallz2 @) IV VL2 (o)

> B, (2.5)

where we have used that |D(v)|[z2(q) < [|[VV||L2(q). It is well-known that the spaces V' and @ defined in
(L11) satisfy the inf-sup condition (2.5]), see for instance [20], while the relation ([2.4) can be easily shown
by observing that, for a given v € V, we have R := D(v) € M since tr(R) = tr(D(v)) = div(v) = 0 and
D(v) is symmetric. Therefore, b1 (R, v) = | D(v)||72(q, and thus

b1(S,v) bi (R, V)
Y Z =||D(v .
SeM ||S||L2(Q) ||R||L2(Q) H ( )||L2(Q)

We can then eliminate the incompressibility constraint by seeking u € V), yielding the (partially reduced)
problem: find (T%,u) € M x V such that

/Td:D(v):/f-v Vvevy,
Q Q

o Td:S—/S:D(u):O VS e M.
Q Q

(2.6)

Clearly, each solution of (2.3)) satisfies (2.6]). Conversely, it follows from the inf-sup condition (2.5) that for
any solution (T'9,u) of (2.6)) there exists a unique p € Q such that (T'%,u, p) is the solution of (2.3); see [20].
Hence these two problems are equivalent. Furthermore, we can eliminate the unknown u by proceeding as
follows; see [5]. First, we introduce the decomposition M = M & M+ with

M:={SeM:b(Sv)=0 VveV} (2.7)
the kernel of b1, and

Mt={SeM: | S:R=0 YRec M}
Q

its orthogonal complement in M, and we write T9 = T§ +T§ with T§ € M and T§ € M. The condition
(@4) ensures the existence and uniqueness of T's € M- satisfying

bl(T?,v):/f-v VveV and [T e < CrCxllflia (2.8)
Q

with Cp and Ck the constants in Poincaré’s and Korn’s inequalities (L.15) and (L.16), respectively. We
finally get the (fully reduced) problem: find Tg € M such that

af, TG :S=-af,T¢:S VSeM. (2.9)

The well-posedness of problem (2.9)) follows from the Lax—Milgram lemma, while its equivalence to the

original problem (2.3)) is guaranteed by (2.4 and (2.5)).
Of course, in this simple model with a linear constitutive relation, Tg = 0 since the right-hand side of

([2.9) vanishes and «(,-)q is an inner product on M. However, the framework developed here will be used
in the sequel in a more general setting.

2.2 Stokes model with a nonlinear constitutive relation

Next, we consider the following Stokes-like system with a nonlinear relation between the stress and the
symmetric velocity gradient:

—div(T?) - Ivtr(T) = ¢ in Q,
D(u) = oT*+yu(T)T? inQ, (2.10)
div(u) = 0 in €, '
u = 0 on 02



with 7 a given positive constant, and where p € C*((0,+00)) N CY([0, +00)) is a given function satisfying

%(u(a)a) >0 VaeRsg (2.11)

and
pla) >0 and p(a)a<Ci; VaeRsg (2.12)

for some positive constant C;. Since p is continuous on any subinterval of R>q, the second part of (2.12)
implies that p is bounded above and we denote its maximum by pimax,

0< p(a) < pimax  Va € Rxo. (2.13)

Moreover, proceeding as in the proof of [12, Lemma 4.1], we deduce from (2.11) and (2.12) that for any
R, S € R¥*4, the following monotonicity property hold:

(W(RNR = u(|S])S) - (R - S) >0, (2.14)

with equality if and only if R = S.
Introducing again p := —2tr(T), the weak formulation of problem (2.10) reads as follows: find a triple
(Td,u,p) € M x V x @ such that

Td:D(v)—/pdiv(V)z f-v Vvev,

Q Q Q

a/Td:S+”y/u(|Td|)Td:S—/S:D(u):0 VS e M, (2.15)
Q Q Q
—/qdiv(u)zO Vg€ Q.
Q

Proceeding exactly as in Section 2.1 we first eliminate the pressure, and we thus deduce that problem
(@15) is equivalent to the following problem: find (T%,u) € M x V such that

Td:D(v):/f~v Vvey,

Q Q

(2.16)
a/Td:S—i—v/u(|Td|)Td:S—/S:D(u):0 VS e M,
Q Q Q
which is further equivalent to the following problem: find Tg € M such that
a[o(T§+TF): S+ [ou(T§ +TEN(TG+TF):S=0 VSeM, (2.17)

with T§ € M* the solution of (2.8). The Browder Minty theorem, see for instance [29], guarantees the
existence of a solution to problem (2.17). Indeed, let A : M — M’ be defined for R, S € M by

(A(R), S)n = a/QR : S—i—’y/ﬂ uw(|RHR: S, (2.18)

where (-, )y denotes the duality pairing between M and its dual space, M'. It then easily follows that the
mapping TS — A(TS + T¢) is bounded, monotone, coercive and hemi-continuous. By the BrowderMinty
theorem these imply surjectivity of A and thereby existence of a solution, while its uniqueness follows from
the strict monotonicity of A.



3 Navier—Stokes with nonlinear constitutive relation

Now, we focus on our problem of interest, where a convective term is added to the first equation of (2.10),
i.e., we consider the problem

(u-Vyu—div(T) = f in ,
D) = oT*+~yu(T)T? inQ, (3.1)
div(u) = 0 in €, ’
u = 0 on 0f).
We prove a priori estimates, construct a solution, and give sufficient conditions for global uniqueness.
3.1 Reformulation
By introducing the pressure p := —%tr(T), problem can be rewritten as follows:
(u-Vu—div(TY) +Vvp = f in Q,
D(u) = aT? + 'y,u(|Td|)Td in €, (3.2)
diviu) = 0 in Q, ’
u =0 on 0f).

In order to bring forth an elliptic term on the left-hand side of the first equation of (3.2]), we rewrite the
second equation in (8.2) as

1 gl
¢ = L)~ Ly(rdre, (33)
and thus by substituting this relation into the first equation of we get
(u-Viu-2div(D(u)) +Vp = - 2div(u(|T)T?) inQ,
aT? + yu(IT)T? = D(u) in Q, (3.4)
diviu) = 0 in £,
u =0 on 0f).
The weak formulation of (3.4) reads: find (T%,u,p) € M x V x @ such that
1
/[(u V)u]-v+ = [ D): D(v) - / pdiviv) = [ £-v+ 1/ W(T)T : D(v),
Q @ Ja Q Q @ Jo
T S+7/ p(T)TY: 8= | D(u):8S, (3.5)
Q Q Q

/ gdiv(u) =0
Q
for all (S,v,q) e M xV x Q.
As previously, we eliminate the pressure by restricting the test functions to V, and we thus obtain the
following equivalent reduced problem: find (Td, u) € M x V such that

/[(u-V)u]-V—i—é D(u): D(v) = f-v—i—g/ u(|T)TY - D(v), (3.6)
Q Q Q Q
d. dhrd . 8§ = u) : .
of T .S—I—”y/guﬂT T .S_/QD( ): S (3.7)

for all (S,v) € M x V.

Interestingly, (3.6]), (3.7) can be further reduced by observing that, given u, (3.7) uniquely determines T
thanks to the Browder—-Minty theorem; see the end of Section 2.2l Thus, we define the mapping G : V — M
by u — T with T € M being the unique solution of

(AT, 8)y = QD(u) 'S VSeM, (3.8)



where we recall that A is defined in (2.18). With this mapping, 8.6), (8.7) is equivalent to the following
problem: find u € V such that

. uj-v l u): V)= ' 1 u u) : v
[1ta-9-v < [ D)D) = [ £2v+ 2 [ oo : D). (39)

Before embarking on the proof of existence of a solution to problem (8.6)), (8.7) we establish a series of a
priori estimates under the assumption that a solution exists.

3.2 A priori estimates

Assuming that problem (8.6l), (3.7) has a solution, the following a priori estimates hold for any solution
(T u) e M x V.

Lemma 1. (First a priori estimates) Let |Q| denote the measure of Q. Then,
ID(W)l|z2(e) < aCPCrcE] 2oy +7C1I0% (3.10)

and
17 220) < CrCik 2oy + 2 Cal2f (3.11)

with Cp and Cg signifying the constants in Poincaré’s and Korn’s inequality, respectively, and Cy the

constant in (2.12]).
Proof. Taking S = T in B.1) yields

| T22q) +”Y/Qu(|Td|)|Td|2 = /QD(H) : T9 < || D)l 20 1T 22 ()
Using then the positivity of u, see (2.12), we get
1
1T 2@ < SIDW)l 2 o). (3.12)
To obtain a bound for u, we recall the well-known relation
/[(u~V)v]-v:0 YueV, Vvev, (3.13)
Q
which is easily obtained by integration by parts, as follows:
1 2 1 . 2
[(u-V)v]-v== [ u-V(v]*) = —= [ div(u)|v]* =0.
Q 2 Jo 2 Jo
Therefore, taking v = u in (8.6) and using (2.12]) we obtain
L D)oy = [ £-ut? )T : D
—[|D(u)||72(q) = ‘u+— [ p(|T)T : D(u)
@ Q @ Ja
i 1
< (CrCx itz + 2C1l01F ) D) 120,

from which we directly deduce (B.10); (B.11)) follows by applying (B.10) to (B.12]). O

Lemma 2. (Second a priori estimates) Recall that jimax = SUDse[o,0) 1(8). We also have

[D(u)]|z2(0) < (@ + Vpimax) CPCk ||f|| L2 () (3.14)

and
1
[T 20 < E(a + Vpmax) CPOK ||| L2 () - (3.15)



The advantage of the estimates (8.14]) and (8.15) is that if £ = 0, then we can directly deduce that u =0
and T9 =0 (and consequently p = 0).

Proof. The ingredients of the proof are similar to those used in the proof of Lemma/[ll and only the derivation
of the bound for D(u) is different. First notice that combining B.6) and (B.7) we have

/[(u~V)u]-v—|— Td:D(v):/f~v Vve. (3.16)
Q Q Q
Taking v = u in (B.16) we then find that
[ 1% Dw) < CoCiclfl 2o I D] 20 (3.17)
Q
Notice that T9 : D(u) > 0 a.e. in €. Indeed, from (3.7) we have that
(a + 7u(|Td|)) T9=D(u) in M’ (3.18)
and thus
(a + w(|Td|)) T¢:D(u) = D) >0 ae. in Q.
—_———
>0

Therefore, taking S = D(u) in (8.17) and using the upper bound pmax for p and the bound (B.17) we have
1D = o [ T4: D)+ [ w(T)T?: Doy

< (@ + Yitmas) / T4 . D(u)
Q
<(a+ ”Y/LmaX)CPOKHfHH(Q) ||D(u)HL2(Q)7
which yields (3.14). Finally, the bound (8.15) for T is obtained by substituting (3.14) in B.12). O

Remark 1. Similar a priori estimates can be derived in the case when f € V' (with V' = H=1(Q)%). More
precisely, all occurrences of CpCrk||f[|12(q) can be replaced by ||f||y-, where

<f, V>V <f, V>V
flly ==sup —— =sup ————, 3.19
b= 3 e = 8 Tl .
and (-, -}y denotes the duality pairing between V' and V. The same observation holds for all that follows.

Remark 2. By a direct argument we can also prove that
1
1D 22(0) < = (e + Yhmax)*CrCr [l 20y (3.20)
This leads to the same a priori bound (3.15) for T,

1
1T 220 < E(OZ + Vimax) CPCK If | L2(0) -
Indeed, the choice S = D(u) in (B.7) gives directly (without invoking (B.18)))

1D =a [ T4: D)+ [ wTT: D) < (@4 21ima) |7 0| D) 100
Hence
D) r2(0) < (@ + Ymax) [T 22(0)
and
ID(W)[[72(0) < (@ + Ypmax) [T 20 -
Then (B8.20)) follows by substituting the bound

Al T2 0 < / D(u): T = / £u < CpCrllfll Loy | D(W) 2o

into the preceding inequality. This also yields (3.13]).
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3.3 Construction of a solution

In this subsection we prove the existence of a solution in a bounded Lipschitz domain without any restrictions
on the data, other than those stated at the beginning of Section[2.2l The first part of the construction is fairly
standard: a suitable sequence of (finite-dimensional) Galerkin approximations to the infinite-dimensional
problem is constructed, followed by Brouwer’s fixed point theorem to prove that each finite-dimensional
problem in the sequence has a solution; uniform a priori estimates, similar to those derived in Lemma [T,
are established for the Galerkin solutions, which are then used for passing to the (weak) limit, via a weak
compactness argument. However, because of the combined effect of the nonlinearities, identifying the limit
as a solution to the infinite-dimensional problem requires a more refined argument.

For the sake of clarity, the argument is split into several steps.

Step 1 (Finite-dimensional approximation). Formulation (3.9) lends itself readily to a Galerkin discreti-
sation. Since the only unknown is u in V, a separable Hilbert space, we introduce a countably infinite basis
{w1,wa, ...} of orthonormal functions of V with respect to the inner product

(u,v) := / D(u): D(v), (3.21)
Q
whose span is dense in V. Next, we truncate this basis, i.e., for each m > 1 we define
V= span{wi,..., Wy, },

and for u,, € V,,, we denote by 1,, € R™ its representation with respect to this basis. Finally, we fix m > 1
and consider the following finite-dimensional problem: find u,, € V,, such that, for all 1 < j < m,

1
19l ow;+ % [ D) : Dewy) = [ w4+ 2 [ w8 )T Dissy) (3:22)
Q @ Ja Q @ Ja
with T9 := G(u,,). In other words, T9, € M solves

a/T;:S+y/u(|Ti|)Ti:S:/D(um);s VS e M. (3.23)
Q Q Q

Problem (3.22), which can be seen as the projection of (8.9) onto V,,, is equivalent to the following: find
U, € R™ such that
F(a,,) =0,

where F = (Fy,..., F,)t : R™ — R™ is the continuous function defined, for j = 1,...,m, by

Fy(i) = [ [t D -y + 5 [ Dl Do) = [ £ow, =2 [ p(Ta)Ts D).

Step 2 (Existence of a discrete solution). Problem (8.22) is a system of m nonlinear equations in
m unknowns. The existence of a solution to this problem can be established by the following variant of
Brouwer’s fixed point theorem (see e.g. [17, 20]).

Lemma 3. Let F : R"™ — R™ be a continuous function that satisfies
F(x)- x>0 if |[x|=r
for some r > 0. Then, there exists a point x € By, (0,7) :={x € R™: |x| < r} such that
F(x) = 0.
Proposition 1. Problem ([B.22) has at least one solution u,, € V,, that satisfies the uniform bound
ID(um)llz2() < aCpCx||f] L2y +7C1|02. (3.24)

Moreover, TS, = G(u,,) satisfies the uniform bound

1 1
1T 20y < EHD(um)Hm(sz) < CpCxk|f]z2(0) + g01|9|5- (3.25)

11



Proof. We infer from Lemma B that F has a zero in the ball B,,(0,r) with
r = aCpCrk £l r2() + 7C1|0.

Indeed, using the antisymmetry property (3.13]), which holds because u,, € V,,, C V, we get
N . 1 ol
Pan) i = [ D) = [ fu, =2 [ u(TA)TS : D(w,)
@ Ja Q @ Ja
1 v 1
> (21D o) — CrCallliney — LRI ) 1D e

where we have used Poincaré’s and Korn’s inequalities (L15]) and (L.16]), respectively, to bound the second
term and the relation (2.12)) for the third one. As ||D(un)| z2(0) = [Qm|, we deduce from the last inequality
that if |Q,,| = r with r as defined above, then

. . 1. PR
(i) - 2 (31| = CrCirlfloe) — 2C1101 ) | =0

Thanks to Lemma [3, there exists a point @, € B, (0,r) such that F(a,,) = 0, i.e., problem (8.22) has a
solution u,, € V,, that satisfies the uniform bound (3.24). Finally, it is easily shown that TS := G(u,,)
satisfies the bound (B.25]). O

Step 3 (Passage to the limit m — oo and identification of the limit). We consider the sequences (U, )m>1
and (T9),,>1 with u,, € V, and TS = G(u,,) € M. Thanks to the uniform estimates (3.24) and (3.25)
there exist two subsequences (not relabelled) such that

lim w, =u  weakly in Hi(Q)? (and thus also in V),

m—0o0

lim u,, =a  strongly in LY(Q)? with 1 <g< oo if d=2, and 1< ¢ <6 if d =3,
m—0o0

lim T¢ = T%  weakly in L? (Q)4*? (and thus also in M),
m—0o0

for some @ € V and T € M. Our objective is to show that the pair (Td, u) € M x V is a solution to the
problem under consideration by passing to the limit in (8.22), (3.23)).

Passing to the limit in (8.22), (8.23) is however not straightforward because of the lack of strong con-
vergence of Ti in M. Identifying the pair (Td, u) € M x V as a solution will be achieved by means of the
following two lemmas, the first of which (Lemmal4)) relies on the equations and the strong convergence of the
sequence (W, )m>1 in L4(Q)? shown above, and the second lemma (Lemmal5)) follows from the monotonicity
property (2.14)).

The proof, included below, that the pair (Td, @) satisfies (B.7)) is inspired by the arguments in [11], where
a more general constitutive relation than (8.3) was considered. Specifically, the conclusion of Lemma [5
follows from [11l Lemma 2.4.1], the hypothesis (2.12) of [11l Lemma 2.4.1] being fulfilled thanks to Lemma
[4; however we provide a proof here that is directly tailored to our problem.

Lemma 4. The following limit holds:

lim Ti:D(um)z/ﬂTd;D(a). (3.26)

m—r oo Q

Proof. By testing equation (3.23) with S = D(w;) and substituting into ([8.22) we deduce that
/[(um -Vu,] - w; —|—/ T : D(w;) = / f-w; VI<j<m. (3.27)
Q Q Q
Multiplying (8.27) by (@,,);, summing over j, and applying (3.13), we derive

T . D(u,,) = / fu,. (3.28)

Q Q

12



Thus we obtain on the one hand

im [ T9: D(u,) = lim f-um:/f-ﬁ. (3.29)
Q

On the other hand, letting m tend to infinity in ([8.27) for fixed j and considering the strong convergence of
u,,, we infer that

@9y [ 19 Dw) = [ £owy iz

and the density of Um21 V., in V therefore implies that

/[(ﬁ -V)a] - v+ T D(v)= [ f-v VYve. (3.30)
Q

/ 7% : D(u) = / f.q, (3.31)
Q Q
and (8.26) then follows from (B8.29) and (3.31)). O
Lemma 5. We have that 4

T =G(un). (3.32)

Proof. Let T4 = G(a); since TY := G(u,,), we have by definition
a Q(Tm -T):S+y Q(AL(ITml)Tm (T NT"): S = Q(D(um —0):S

~d
for all S € M. Taking then S = Tgl — T and using the monotonicity property (2.14]) we get

a/ T TP < /(D(um —w): (T - T
Q Q
~d

_ / (D) : 75, — D(w,) - 77— D) - (73, - 7))
Q
Finally, we take the limit m — oo of both sides and apply (B.26) to obtain

m—r oo

a lim /Q|T:‘n —T2 < /Q [D(a) T _D@w): T - D) : (T® - Td)} -0,

which implies (8.32) as well as the strong convergence in M of TS, to T O
Theorem 1. (Ezistence of a solution) The pair (Td,ﬁ) € M xV solves (3.6), (8.7).
Proof. Tt follows from Lemma [5 that on the one hand (Td, u) solves (B.7) and on the other hand,

lim p(|T3NT = u(|T)T weakly in M.

m—r oo
Indeed, passing to the limit in ([8.23) gives, for any S € M,
lim 7/ p(ITENTE : S = lim (/ D(u,,) : S—a/ Td . S)
= D@:S-a T8

Q Q
=d |\ 4nd
= [ wrpzt s,
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Therefore, taking the limit as m — oo in (8.22]) we get
_ _ 1 _ Y =d |\ d
[(@-V)u]-wj+— | D(): D(w;) = | f-wj+— | p(T)T": D(w;)
Q aJa Q @ Ja

for each j = 1,2, ..., and thus the density of Um21 Vi in V implies that

/Q[(ﬁ'v)ﬁ]-V-l-é/QD(ﬁ):D(v):/ﬂf-v—i—%/QuUTdDTd:D(v) Vv e,

which is precisely (3.6). O

3.4 Global conditional uniqueness

We now prove global uniqueness of the solution under additional assumptions on the function p and the
input data. The notion of uniqueness we establish is global and conditional in the sense that it holds under
suitable restrictions on the data, but it is also global because no other solution exists.

Let R4 " denote the space of symmetric d x d matrices with vanishing trace and let C's be the smallest

sym,0
positive constant in the following Sobolev embedding:
HV||L4(Q) < CsHVVHLz(Q) VvelV. (333)
Proposition 2. (Uniqueness) Assume that the function T — p(|T®|)T? is Lipschitz continuous in ngxrgo,
i.e., there exists a positive constant A such that
(TINT? - (5989 < AT - §9] vT9, 5% e R . (3.34)
If the input data satisfy
gA+a2c§cpc§<||f||L2(m +ayCECECyQ)F < 1 (3.35)

then the solution of problem (B.6)), (B.7) is unique.

Proof. We use a variational argument. Suppose that (T, u;), (TS, uz) € M x V are solutions of (3.6), (3.7).
Let us write 0T% := T — TS and du := u; — uy. Subtracting the equations solved by (T'S,uy) from those
solved by (TS, u;) we get for all (S,v) € M x V the following pair of equalities:

[ w91 = - Vv + = [ DGGw): D) = 2 [ (u(T)Td - (TE)TE) D). (3.30)
a/Q(STd : S+7/ (T T — (| TI))TS) - /D su) (3.37)
The choice S = 6T9 in (3.31), thanks to the monotonicity property (2.14]), leads to
16Ty < D) 120 (3.38)
Then, by noting that
[ -9 = - Vv = [ - Vvt [ (e V)] v

by testing (8.36]) with v = du, and recalling (8.13)) we obtain

1 g
DG, = 2 [ riT - w(rdhTd) s Dow ~ [ [Gu- V] -u
G35 o
= AT e IDEW ey + 90 V01 e
(333), @I6)
<

Y
aA|\5Td||L2(sz)|\D(5u)||L2(sz) + CECK | D(w)| L2 (o 1 D (W) |72 )

G3D), BID [~ s
< | HA+ CECk (aCrCxEll e +1C1121 )] 1DOW)32 -
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The assumption (8.35) on the data guarantees that the factor on the right-hand side of the last inequality is
strictly smaller than 1, thus implying that || D(du)||r2() = 0, i.e., u; = uy. Finally, applying this result to
B.38) yields TS = T9. O
Remark 3. The strategy used in deriving the second a priori estimate stated in Lemmal[2 leads to uniqueness
when (B.35]) is replaced by

%A + aC2CpCE (a + Y pimax) £ 2 () < 1. (3.39)

In fact both strategies lead to the same condition (8.39); namely, we also get (3.39) by using (B.14) instead
of (B3.10) to bound [|[D(uy)||z2(q) in the proof of Proposition [2.

Note that both (3.35) and (3.39) hold when ~ and f are sufficiently small.

Remark 4. Under the Lipschitz condition (8.34), the proof of (8.20) and (8.15]) is valid with pmax replaced
by A, and the L2(Q)? norm of f (multiplied by CpCx) replaced by its norm in V', see Remark [ More
precisely,

(e +yA)|[E][vr, (3.40)

SEs

[D(u)| 2y <

(a+yA)[E][y (3.41)

S

1T 12y <

3.5 Comparison of the a prior: estimates

At this stage, it is useful to compare the a priori estimates derived in the previous sections. We have

. 11

D@0y < Cui= min { -+ )l +9CHIOE, Lot aAP e |, (342
. 1 11

TN ey < o = min { 2+ i)l [+ 2R St} G43)

where A is replaced by fimax if we do not make the Lipschitz assumption (8.34]). For p we have
1 max A 1
Il < 5 (CBCRCE -+ flyay + min fimin (1,222, 22 €, Zrjo }).

where V- denotes the orthogonal complement of V in V with respect to the inner product (3.21).

Remark 5. We can replace CZ by the product C,C, of the smallest constants C,, and C,. from the Sobolev
embedding of IAil(Q)d into LP(Q)¢ and L"(Q)9, respectively, with p = 6 and r = 3. We could also use the
best constant C' such that

/Q[<u VIV - w < Gl V¥ Lz [ VW L2,

or even

/Q (0= V)v] - w < D) 2o | DO 2 ) | DOW) 2.

In the former case, C < C,C, while in the latter case, C < C%CPOT.

4 Conforming finite element approximation

In this section, we study conforming finite element approximations of problem (B.2), where conformity
refers to the discrete velocity space. To facilitate the implementation, it is useful to relax the zero trace
restriction on the discrete tensor space, but this is not quite a nonconformity because the theoretical analysis
of the preceding sections holds without this condition. In particular, the inf-sup condition (2.4)) is still valid
(supremum over a larger space).

We start with the numerical analysis of general conforming approximations, including existence of discrete
solutions, convergence, and error estimates, and give specific examples further on.

15



4.1 General conforming approximation

As stated above, here M = L2(Q)gyxrg. Up to this modification, we propose to discretise the formulation

derived from (3.2): find (T%, u,p) € M x V x Q such that

/[(u-V)u]-v—l— Td:D(v)+b2(v,p):/f-v VveV,
Q Q Q

e Td:S—i-’y/,u(|Td|)Td:S: D(u): S VS e M, (4.1)
Q Q

Q

Note that, since div(u) = 0, by taking § = I the second line of (&.I]) implies that the solution T'9 of (1))
satisfies tr(Td) =0 a.e. in £, even though this condition was not explicitly imposed on elements of M.

Let A > 0 be a discretisation parameter that will tend to zero and, for each h, let V}, C V, Q) C @ and
Mj, C M be three finite-dimensional spaces satisfying the following basic approximation properties, for all
SeM,veVandqeQ:

lim shuelszh |Sh — S22y =0, %lg%vilgfh [D(vh = v)|lL2) =0, lim thggh llan — qllL2() = 0.

Moreover, let
Vh,O = {Vh eV : bg(Vh,qh) =0 th S Qh} (4.2)

We assume on the one hand that the pair (V3, Qp,) is uniformly stable for the divergence, i.e.,

b
inf sup Q(Vha qh) *

4.3
0 €Qn vyevy, [[D(Vi)ll2@)llanllzz) — 43)

for some constant 5* > 0, independent of , and on the other hand that M}, and V}, o are compatible in the
sense that
D(Vh) e M, Vvy,e€ Vh,O- (4.4)

Note that the latter assumption may be prohibitive when considering conforming finite elements on quadri-
lateral (d = 2) or hexahedral (d = 3) meshes, see Subsection [4.2} this motivates the study of non-conforming
finite elements considered in Section 5l The inf-sup condition ([4.3]) guarantees that

lim inf ||D(Vh — u)HL2(Q) =0. (4.5)

h—0vVhrEVi o

Indeed, (4.3) implies the relation

. C .
inf ||D(11 — Vh,O)HL?(Q) < (1 + —i) inf ||D(11 — Vh)||L2(Q)7 (46)
ﬁ \ S

Vi,0EVh,0

which can be shown using a standard argument; see for instance [20]. Here, ¢}, denotes the continuity constant
of ba(+,-) on V x Q.

As the divergence of functions of V}, ¢ is not necessarily zero, the antisymmetry property (3.13) does not
hold in the discrete spaces. Since this property is a crucial ingredient in the analysis of our problem, it is
standard (see for instance [41], [20]) to introduce the trilinear form d : V' x V x V' — R defined by

dlu;v,w) :== % /Q [(u-V)V] - w— %/Q[(u -V)w] - v. (4.7)

The trilinear form d is obviously antisymmetric and it is consistent thanks to the fact that

d(u;v,w):/[(u-V)v]-W YueV, Vv,weV.
Q

Moreover, a standard computation shows that there exists a constant D < min(C%, C3C6)C% such that

d(w; v, w) < D||D(u)||r2(0) | D(V)|| 220 | D(W)| p2()  Yu,v,w € V. (4.8)
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We then consider the following approximation of problem (4I): find (T's,up, pn) € My x Vi, x Qp, such that

d(uh;uh,vh) + /Th : D(Vh) + bg(Vh,ph) = /f -V Vv € Va,
Q Q

« Th:Sh+’7/u(|Th|)Th:ShZ/D(uh) : Sy VS, € My,
Q Q Q

ba(up,qn) =0 Van € Qn.

4.1.1 Existence of a discrete solution

Existence of a solution to problem (4.9) without restrictions on the data is established by Brouwer’s fixed
point theorem, as in Section [3.3] To begin with, for any function v € V', we define the discrete analogue of
the mapping G, see ([8.8); namely, G,(v) € M, is the unique solution of

a/ Gn(v) Sh—|—7/ 1(1Gh (V)G (v) : Sh:/D(v) . Sn VSh € My, (4.10)
Q Q Q

This finite-dimensional square system has one and only one solution G, (v) thanks to the properties of the
left-hand side: the first term is elliptic and the second term is monotone. As in Section 3.3] in view of the
inf-sup condition (4.3]), problem (4.9) is equivalent to finding up € V4, ¢ solution of

d(uh;uh,vh) —|—/ T : D(Vh) e / f-vy, Vv,e€ Vh,07 (4.11)
Q Q

where T', := Gp(u,). By proceeding as in Proposition[I] it is easy to prove that problem (AI1]) has at least
one solution uy, € Vj, 9, and by the above equivalence, each solution uy, determines a pair (T, pn) € Mp X Qp
so that (T'y,, up, pr) solves problem (4.9). Moreover, each solution of problem (4.9) satisfies the same estimates
as in (3.10) and ([B.11). For the sake of simplicity, since the approximation is conforming, we state them in
terms of the norm of f in H~1(Q),

ID(un) |20y < allfll 1) +~C1|Q2 (4.12)

and ; )
ITnllz2) < Ell-10) + ~CilQf=. (4.13)

Regarding the other a priori bounds, (3.20) and (B.15) are satisfied by uj, and T, and, if (8.34) holds, so are
(B.41) and (8.40), all up to the above norm for f. In contrast, however, we do not have enough information
to claim that (8.14)) is valid because it relies on the nonnegativity of T, : D(uy) almost everywhere in €;
the integral average is positive but this does not always guarantee pointwise nonnegativity. Thus we replace
the constant Cy, of (8.42) by the constant Cy, in the following inequality:

~ . 1 11
| D(un)|2(0) < Cyu := min {a(a + Vitmax) I zr-1 ), @£l -1 (02) + 7C1 1€ 2, a(a + ’VA)2|f|H1(Q)} ;
(4.14)
where the last term is included when (B.34]) holds. Because Cy < C\, we shall use Cy to bound both u and
uy, in order to simplify the constants in the computations that will now follow.

Finally, let us establish the convergence of the sequence of discrete solutions in the limit of A — 0. The
above uniform a priori estimates imply that, up to a subsequence of the discretisation parameter h,

limu, =a weakly in Hi(Q)?,

h—0

%in%uhzﬁ strongly in LY(Q)? with 1 <g < oo if d=2, and 1< q<6 if d =3,
—

lim T, =T weakly in L?(Q)4*9,

h—0

17



for some @ € HE(Q)? and T € L?(Q)?*9. Clearly, the symmetry of T, implies that of T and div(a) = 0
follows from the fact that u, belongs to V}, . Then the approximation properties of the discrete spaces and
(4.5) permit to replicate the steps of the proof of Lemma [4] and yield

Jim, QTh:D(uh):/QT:D(ﬁ). (4.15)

To fully identify the limit, in addition to 74— G(1), which has trace zero since div(@) = 0, we introduce
the auxiliary tensor T'j, := Gp(@). On the one hand

~ ~d ~ ~ ~d, ~d
a/(Th—T ):Sh+~y/ (w(|Th)Th — (T NDT) : Sp=0 VS) € My,
Q Q

thus implying that, for all S, in My,
- -d S ~d  ~d ~ ~d
M=oy +7 [ (uTW DT =TT 5 (2 = T
d

~ ~d ~d ~ ~ ~d . ~d ~
—a [(@n =1 (81 =T v [ (uTDT - TDE) - (8, - T,
Since both T, and Td are bounded in M uniformly with respect to h, and
L ~d | ~d 1
(| Th)Th — p(IT T (|22 < 2C1|9Q2]2,

again a uniform bound, then the approximation properties of M}, and the monotonicity property (2.14)
imply that

um sd
Lim [Th =T |202) = 0. (4.16)

On the other hand, the auxiliary tensor T, permits us to argue as in the proof of Lemma [Bl Indeed, the
monotonicity property (2.14]) yields

ol Th - T 2oy < /Q D(uy,) : (T), — Ty) - /Q D(@) : (T) - T»)

= / D(uh) 2Ty — / D(uh) : Th — / D(l_l) : (Th — Th)
Q Q Q
From (4.15) and (4.16), we easily derive that the above right-hand side tends to zero. Hence
%ig% ITh — Thllz2) =0,
and then combining this with (4.16]) we infer that

. - d
Lim [T =T [l 220 = 0. (4.17)

By |
Hence uniqueness of the limit implies that T =T = G(u). This, and (43]), permit to identify the limit as
in Lemma [5l and Theorem [1, and proves convergence to a weak solution without restrictions on the data.
Thus we have proved the following result.

Theorem 2. (Convergence for all data) Under the above approximation properties and compatibility of the
discrete spaces, up to a subsequence,

limu, =u  weakly in H}(Q)?,

h—0

}llir%uh =u  strongly in LY(Q)? with1 < g<oo if d=2, and 1 <q <6 if d=3,
—

lim T), =T strongly in L*(Q)%*?,

h—0

lim pp, = p weakly in L? (%),
h—0
where (T, 0, p) is a solution of (3.6), B.7).
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4.1.2 Error estimate

We now prove an a priori error estimate between (T, u,p) and (T, us,ps), under the assumption (3.34)
that has not been used so far, and the small data condition (4.18) below. Note that this small data condition

is in fact the same as the uniqueness condition (3.35)), upon replacing Cy, by Cy. To simplify the notation
and compress some of the long displayed lines of mathematics, we shall write || - ||v, || - ||ar and || - || instead
of ||D(-)[|z2(q) (as a norm on V), || - |[12(q) (as a norm on M) and || - || z2(q) (as a norm on @), respectively.

Theorem 3. In addition to [B.34)), let the input data satisfy
%A—i—af)a; <0<, (4.18)

where 0 < 0 < 1 and D is the constant from 4.8). Then, there exists a constant C > 0 independent of h
such that the difference between the solution (T'h,uy,pn) of A9) and (T9, u,p) of (@) satisfies
u—wyllv + T4 = Thllar + lp - <C| inf [lu— + _inf |79~ Sylla+ inf |p— :
I nllv +1] v+ P = palle < Lirelvh o =vallv + inf | nllar +_inf llp —anlle
(4.19)
Proof. Since we are using conforming finite element spaces, taking (S,v,q) = (Sh,vh,qn) in (4I) and

subtracting the equations of ([4.9]) we easily get

d(u;u,vp) — d(up;up, vp) + / (Td —T4): D(vp) +ba(vi,p—pn) =0 Vv, € Vi,
Q

a/ (T T, : Sy + 7/ ((TNT — J(|Th)T) - S = /D(u ) Sy VSh € My, (4.20)
Q Q Q
ba(u —up,qn) =0 Van € Qn-

The rest of the proof is divided into three steps.
Step 1 (Error bound for the pressure). By the triangle inequality we have, for any g, € Qp,

o —pulle < llp—anllo + llan — pulle,

and it therefore suffices to derive a bound on ||g;, — pp||@. From the (discrete) inf-sup condition we have

b _
B*lpn — anll@ < sup ba(Vh, P — 4n)
VeV [vallv

Again, using the first equation of (4.20) we have
b2(Vi,pr — qn) = b2(Vh,pn — p) + b2(Va,p — qn)

=d(u;u,vy) —d(up;up, vi) + / (Td —T4): D(vi) + ba(Ve,p — an)
Q

< [Dlully + Dlfanlv)lu = wnlly + 1T = Tallar + ollp = anlle] Ivallv
< [215011”11 —willv + [T = Thllm + allp - %HQ] Ivallv,

where we can take ¢, = Ck using the relation || diV(v)||2L2(Q) +Il rot(v)||%2(ﬂ) = ||Vv||2L2(Q) that holds because

we have homogeneous Dirichlet boundary conditions (otherwise take ¢, = v/dCg ). Thus, we obtain

u

/8*

2 1 Cp
lp—pullg < ||u—uh||v+§|le—Th||M+ (1+—) lp—anllo (4.21)

ﬂ*
for any qn, € Q.

Step 2 (Error bound for the stress tensor). Again, we start with the triangle inequality; for any Sy, € My,
we have that

IT = Th|ae < |T = Shllas +11Sh — Tllar,
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and we then bound ||T), — Sh|/as. Thanks to the monotonicity property (2.14) and the second equation of

(4.20), we have

ol = Sull <a [ 1Tw=SuP 4y [ (TN = n(ISu)SH): (T~ $1)
Q Q

= a/ﬂ(Th ~T9+T9—S)): (T, — Sp) + V/Q(N(|Th|)Th — 1(|SK))Sh) : (Th — S)

— [ D =) (=847 [ (TDT = w(184)S1) : (Th =8 +a [ (T9=80): (T - 1)
Q Q Q

< [l = wnllv +all T = Sullar +AIT* = Sulla] ITn = Sullar,

and thus ) A
179~ Tullr < 2wl + (2 22 ) 17 = Sl 4:22)
for any S}, € My,.
Step 3 (Error bound for the velocity). Recalling the definition of V3o in (4.2), let vj 0 € V30 and let

vy, = V0 — Uy, € Vi 0. We will first show the relation (4.19) by taking the infimum over V}, ¢ instead of V.
As before, we use the triangle inequality to get

o —wunllv < flu=vnollv +l[vao—anlv.
Thanks to the assumption ([4.4]), we can take S}, = D(v},) in the second equation of (£.20) yielding

D(u-w): Diva) =a [ (T~ 1): Dvi) + [ (W(TNT* = u(T4l)Ts) : D).

Q Q Q

Using the first equation of (4.20), we can easily derive the equality

IVho — uh||%, = / D(vpo—up): D(vp) = [ D(vpo—u): D(vy) — ald(u;u,vy) — d(up; up, vi))
Q Q

—abs(vip— an) £ /Q(u(ITdI)Td — W(ITH)Ts) : D(v),

thanks to the fact that ba(vp, ¢n — pn) = 0. To bound the convective term, we use
d(u;u, vy) — d(up; up, vi) = d(u —up;u, vy) + d(up;u — up, vy)
=d(u—vpo;u,vy) +d(Vho — upiu, vy)

+ d(up;u— Vi, Vi) + d(Up; Vio — Up, Vi)

=0

< [f)HquHu —viollv + Dluflv[[vio = anllv + Dlfunllvlfa = viollv | Vo — anllv

< [2DCullu = viollv + DCullvio = wallv] Vo = wnllv
from which we get
1Vho = wnlly < [lu=vaollv +2aDCullu - vaolv
+ac|[p — anllg + VAT = Thllar + aDCul[vho — unlly-
Now using (4.22) we arrive at

\ o~ A
Vo —unllv < (1+2aDCy)||lu—viollv + acllp — gullo + %HU —up|lv
A N
+ "yA (2 + %) ||Td — Sh”M + aDCu||vh70 — uh||V

A A
< (1 +2aDCy + %) la = violly +7A (2 + %) 1T — Sillar

yA

+ acyllp — anllq + (; + aﬁ@) [Vh,o0 — anllv.
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Therefore, using the assumption (4.I8]) on the input data, we obtain

1 L A A
||Vh70 — uhHV < T-0 [(1 +2aDCy + %) ||11 — Vh,O”V + A (2 + %) ||Td — Sh”M + achp — qh||Q

and thus

N A
1+ 2aDC, + 22 ”YA(“%

) QCp
- < (1 - N e ypd 2 ) 42
[u—uullv < < + T ) [u—vnolv + T [ Shlla+ 1_9Hp anlle (4.23)

for any vy, 0 € V3 0. Finally, combining (4.21)), (4.22) and (4.23) we obtain

u—u +Td—T +|lp— <ec inf u—v +co Inf T8 +c3 Inf —
I rllv + 1l rllar+llp—pullg < 1Vh,oevh,0|| nollv 2ShthH nllam 3qhthHp anllq

with
2DC, | 1 1 1+ 2aDC, + 2
= |1 —(1+=)| (1 @
(&) + B* +a( +ﬁ*) < 1_0 5
\ A
S S N O I T Y ()
e=U"p a g Ta\ "B -6
Cp 2136’; 1 1 Qacy
=(1+2 1 —(1+— .
am (1) e 55 2 (0 7) | (75)
We can then conclude the proof using (4.6). O

4.2 Examples of conforming approximation

From now on, we assume that the boundary of the Lipschitz domain  C R¢ is a polygonal line (when d = 2)
or a polyhedral surface (when d = 3), so that it can be exactly meshed. For each h, let T, be a conforming
mesh on € consisting of elements F, triangles or quadrilaterals in two dimensions, tetrahedra or hexahedra
(all planar-faced) in three dimensions, conforming in the sense that the mesh has no hanging nodes. As
usual, the diameter of E is denoted by hg,

h = sup hg,
EcTh

and pp is the diameter of the largest ball inscribed in F.

4.2.1 The simplicial case

In the case of simplices, the family of meshes 7}, is assumed to be regular in the sense of Ciarlet [14]: i.e., it
is assumed that there exists a constant ¢ > 0, independent of h, such that

h
£ <6 VEET. (4.24)
OF

This condition guarantees that there is an invertible affine mapping Fg that maps the unit reference simplex
onto E.

For any integer k > 0, let P, denote the space of polynomials in d variables of degree at most k. In each
element F, the functions will be approximated in the spaces P;. The specific choice of finite element spaces is
dictated by two considerations. First, conditions (4.3)) and (4.4) must be satisfied. Next, since the number of
unknowns in (4.9) is large, the degree k of the finite element functions should be small. It is well-known that
the lowest degree of conforming approximation of (u, p) satisfying (4.3]), without modification of the bilinear
forms, is the Taylor-Hood P4-P; element, see [20, [3], provided each element has at least one interior vertex.
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In view of (4.4]), this implies that T4 is approximated by ]P’fXd. Thus the corresponding finite element spaces
are

Vii={va € HY(Q)": vmpeP VEEeT},
Qn={an € H'QNLHY): aqnpePrt VEET,
My, = {8, € L*Q)¥2: Shipe (P)d YEcT,).

sym sym

It is easy to check that with these spaces on a simplicial mesh, under condition (4.24]), problem (4.9) has at
least one solution. Furthermore, if the data satisfy ([4.18]), then Theorem [ yields

[D(u—up)|lz2(0) + 1T = Thllrz@) + P — pallz20) < CH2, (4.25)

provided that the solution is sufficiently smooth, namely u € H3(Q)¢ N H(Q)?, T € H?(Q)?*9, and
p € H?() N L3(Q). Therefore the scheme has order two for an optimal number of degrees of freedom, i.e.,
this order of convergence cannot be achieved with fewer degrees of freedom.

4.2.2 The quadrilateral /hexahedral case

The notion of regularity is more complex for quadrilateral and much more complex for hexahedral elements.
In the case of quadrilaterals [20], the family of meshes is regular if the elements are convex and, moreover,
the subtriangles associated to each vertex (there is one per vertex) all satisfy (4.24). In the case of hexahedra
with plane faces, convexity and the validity of (4.24) for the subtetrahedra associated to each vertex are
necessary but not sufficient. This difficulty has been investigated by many authors, see for instance [42] [23];
the most relevant publication concerning hexahedra with plane faces is however [22], where the minimum
of the Jacobian in the reference cube E is bounded below by the minimum of the coefficients of its Bézier
expansion and this minimum is determined by an efficient algorithm. The details of this are beyond the
scope of this work, and we shall simply assume here that the minimum of these Bézier coefficients is strictly
positive and that furthermore, denoting by Jg the Jacobian determinant of Fg,

Je(X) > éof, VXeE (4.26)

with a constant ¢ independent of E' and h. If these conditions hold, there is an invertible bi-affine mapping
Fg in two dimensions or tri-affine in three dimensions that maps the unit reference square or cube onto FE.

We let Qi be the space of polynomials in d variables of degree at most k£ in each variable. In contrast
to the case of simplicial meshes, the space Q is not invariant under the composition with Fg, which makes
the compatibility condition (4.4) between D(V}) and M), problematic. To circumvent this issue, we restrict
ourselves to affine maps Fg, thereby allowing subdivisions consisting of parallelograms/parallelepipeds. In
addition, the situation is less satisfactory when a quadrilateral or hexahedral mesh is used, because although
the Taylor-Hood Q%-Q; element satisfies (4.3)), the second condition (&.4) does not hold if T'¢ is approximated
by Q‘{lx’i since the components of the gradient of Qo functions belong to a space, intermediate between Qg
and Q1, that is strictly larger than both Q1 and Ps. Therefore, in order to satisfy (4.4)), the simplest option
is to discretise each component of T9 by Q2. The corresponding finite element spaces are

= {VhEHé(Q)d: VhIEEQg VEEE}u
Qn={gm e H'(Q)NLYQ): qnrp€eQ VEET},
My = {8 € X% Spipe (@)l VEe T}

With these spaces and under the above regularity conditions, problem (4.9) has at least one solution and
the error estimate (4.25) holds if the data satisfy (4.18)). However, this triple of spaces is no longer optimal,
because the degree two approximation of T now requires far too many degrees of freedom with no gain in
accuracy. For instance, when d = 3, its approximation by (@2)2’;13 requires 27 x 6 = 162 unknowns inside
each element instead of 8 x 6 = 48 unknowns for (Q)2%2.

The nonconforming finite element approximations discussed in Section [5l do not require an affine map-
ping Fg and, by considering P-type approximations on the physical element E, do not suffer from the

computational cost overhead mentioned above.
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5 Nonconforming finite element approximation

The nonconforming approximations developed here will not only allow the use of elements of degree one for
u, but will also lead to locally mass-conserving schemes. Because of the discontinuity of the finite element
functions, the proofs are in some cases more complex; this is true in particular for the proof of the inf-sup
condition for the discrete divergence.

5.1 The quadrilateral/planar-faced hexahedral case

Here we consider quadrilateral/hexahedral grids 7, with planar faces, satisfying the regularity assumptions
stated in Section 4.2l There is a wide choice of possible approximations with nonconforming finite elements.
Here we propose globally discontinuous velocities in ]P’z, k > 1, in each cell associated with globally discon-
tinuous pressures and stresses both of degree at most k — 1. Thus we consider V;, C L?(Q)?, Q, C L&(2)
and M, C L?(0)2Xd defined by

sym
Vii={vn e L2 ()*: vypeP! VEeT}, (5.1)
Qn:={am € Ly(Q):  anip €Pr1 YEE T}, (5-2)
My = {Sn € X% : Snip € (Pl VE €T}

As usual, the full nonconformity of V4, is compensated by adding to the forms consistent jumps and averages
on edges when d = 2 or faces when d = 3; see for instance [38]. Let I', = Ty, UT? denote the set of all
edges when d = 2 or all faces when d = 3 with T}, and Fz signifying the set of all interior and the set of all
boundary edges (d = 2) or faces (d = 3), respectively. A unit normal vector n. is attributed to each e € I'y;
its direction can be freely chosen. Here, the following rule is applied: if e € I‘Z, then n, = ng, the exterior
unit normal to §; if e € I'}, then n. points from E; to E;, where E; and FE; are the two elements of 7y,
adjacent to e and the number 7 of F; is smaller than that of F;. The jumps and averages of any function f
on e (smooth enough to have a trace) are defined by

[f(@)le :== f(2)|p, — f(#)|g,, when n. points from E; to Ej,

F@e = 5 (F@ls, + /@],

When e € I‘Z, the jump and average are defined to coincide with the trace on e.
The terms involving jumps and averages that are added to each form are not unique; here we make the
following fairly standard choice:

/SD( )Nblh Sh,Vh
Q

Z/Sh (vh) Z/{Sh}ene [Vhe- (5.4)

Ec€T, ecl'y,
The trilinear form d is approximated by a centred discretisation, as follows:

dh(uh,vh,wh Z/ uh Vvh wp + = Z /le uh Vh Wh)

EcTy, EGT

- = Z/uhe ne{vy Wpte — Z/{“h} “De[Vle - {Wn}e.

eEFh eel},

The divergence form bs is approximated by

ban(Vh, qn) Z / qn div(vy) Z /vh6 ne{qnte- (5.6)

EcTy, ecly,

Clearly, the jump terms in (5.4) and (5.6) vanish when v}, belongs to H(Q)?. Likewise, the jump and
divergence terms in (5.5) vanish when u; and v, belong to H}(Q)¢ and div(uy) = 0. Moreover, (5.5) is
constructed so that dj, is antisymmetric,

dh(uh;vh,wh) = —dh(uh;wh,vh) Vuh,vh,wh (S Vh. (57)
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Finally, the following positive definite form acts as a penalty to compensate the nonconformity of uy:

oe
n(an, vi) Z / e - [Vale (5.8)

ecl’y,

where h. is the average of the diameter of the two elements adjacent to e, if e € I'%, or the diameter of the
element adjacent to e otherwise. The parameters o, > 0 will be chosen below to guarantee stability of the
scheme, see (B.28) and (5.24). This form is also used to define the norm on V}, by

IWallvi o= (IPEIE + Ju(visva)) (5.9)

where
IDE = (X 1D e (5.10)
E€7—h

denotes the associated semi-norm. Also, in view of (5.6)), we define the space of discretely divergence-free
functions,

Vh70 = {Vh eV : bgh(vh,qh) =0 th S Qh} (5.11)
The discrete scheme reads: find (T'y, upn,pn) € My, x Vi, X Qp, solution of

dn(up;up, vi) + b1n(Th, Vi) + bon (Vi pr) + Jn(un, vi) = [ £-vy Vv € Wy,
0

Ty :Sh +7/ p(|Tr|)Th : Sk = bin(Sh,up) YV Sy € My, (5.12)

Q
bon(un, qn) =0 Van € Qn-

As expected, bap(vp, 1) = 0, and therefore the system (5.12) is unchanged when the zero mean value con-
straint is lifted from the functions of @Qp,.

5.1.1 Properties of the norm and forms

All constants below depend on the regularity of the mesh but are independent of h. In particular, we shall
use C' to denote such generic constant independent of h. In addition, we shall use the following “edge to
interior” inequality. There exists a constant C, depending only on the dimension d and the degree of the
polynomials, such that for all v;, € V},, all e € T'j, and any element E, adjacent to e,

le|
IVallzze) < C(|E| thHLQ(E)' (5.13)

It is easy to check that (5.9) defines a norm on V},. Next, the results in [6, 7] yield the following consequences
of a discrete Korn inequality:
Ivill2) < Cllvallv,  Vva € Vi, (5.14)

and
||Vth||L2(Q) < C”Vh”Vh Vv € Va, (5.15)

where Vj vy, is the broken gradient (i.e., the local gradient in each element). Moreover, by following the
work in [19, 24} [10], this can be generalised for all finite p > 1 when d = 2 and all p € [1,6] when d = 3, to

[villee) < CO@)IVillvi, Vv € Vi (5.16)

With this norm, the following compactness result holds for any sequence vy in Vj,, see [10, [19, 2]: if there
exists a constant C independent of A such that

[vhllv, <€,
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then there exists a function v € H}(2)? such that for all finite p > 1 when d = 2 and all p € [1,6) when
d=3,
lim [[vh V]| o () = 0. (5.17)

Regarding the forms, a straightforward finite-dimensional argument shows that, for all uy, vy, wy € Vp,

1
| e nedvn - wide]| < COnan ) Vil aeco Wil (515)
ecl'y,
1
| [t nedvil. (T vhv) 1wl oo (5.19)
861”

Hence we have, for all uy, vy, wy € Vj,

1
|dn (wp; Vi, wi)| < Cllun| s sz) (Jh(Vth)) *whllzaa)

1
[thvhHL?(Q)||uh||L4(Q) + (0 ldiv(un)lfiem)? +O(Jh(uhvuh))2)||VhHL4(Q)}Hwh||L4(Q)
EcTy,

(5.20)

Similarly,

[N

th V}th ||le Vi HLQ E) +C(Jh(Vh,Vh))
(E)
E€7h

)||QhHL2(Q) Vv € Vi, qn € Qn, (5.21)

1
‘blh(shavh)’ < (”D(Vh)Hh + C(Jn(vVi,vn)) 2)||ShHL2(Q) Vvp € Vi, Sh € M. (5.22)
Finally, the inequality below is used in choosing o.. Its proof is fairly straightforward, but it is included here
for the reader’s convenience.
Proposition 3. For any u;, € V},, any choice of 0o > 0 and any real number 6 > 0, we have

‘Z/{Duh}ne-[uh]

(5Jh(uh,uh) (5
ecl'y,

ID@)}). (5.23)

mlneEF;Ue
where
C), = 2dC? he e heﬂ 5.24
g max <“”( S TE ) R\ e ) (5.24)

E1 and Es are the elements that share the face e € Ti, E is the element that has face e € I‘ 7, and C is the
constant appearing in inequality (B.13) solely dependmg on d and the polynomial degree.

Proof. For a face e € 1"};, which is shared by elements E; and E», we have

(Z—:)%|[uh1e||m>((’f—j)égi (|'E'|> D022z

1 106 2 h/e | | 2 2
5 (57 Ml + 630 mas KL (1D s, + 1D s,) )

IN

| [Py e

Similarly, for e € I‘Z, which is the face of an element F adjacent to 0¢), we have

| [(DGw)}ne - .

1 /1o,
< 5 (RNl + 02 D@ B, ).

By using the last two inequalities in

> [iDad. | <

ey, eGFh ¢

{D(up)}ene - [up)e
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and splitting the sum on the right-hand side into sums over the disjoint sets 1"2 and 1"};, we have that

S Dl < ;(; > Z@H[uu oo+ 0 3 22C2 Ll ID ) s

ecly Ef‘b
le

Y . 0% s L (1D o, + 1D )

eGI” eel“

with the notational convention that when summing over e € I'Y the element E under the summation sign is
the element adjacent to 92 with face e, and when summing over e € I'}, the elements E; and E, under the
summation sign are the ones that share the face e. Hence,

1(1 1) A
<=|=J —C? E , D(
—21\4 n(an, wn) + min, ey Oc ?é?‘%j( |E|) cert 1B HLQ(E)

‘ > / (up)}ene - [uple

ecl'y,

1 g A2 le] 1 2 2
# 5 (g Cmasery (e g ek ) S GG iy + 1D rcs,) )

milleer oe = et

The asserted result (5.23) follows from the last inequality by noting that, for each E € Ty, the factor
D (un)||7: () appears at most 2d times. O

Concerning the expression appearing in (5.24) we note that, thanks to the regularity assumption on the
family of meshes, we have that h, “EI‘ < C and so

Cn<C. (5.25)

5.1.2 First a prior: estimates

By testing the first equation of (5.12) with v;, = up, applying the third equation and the antisymmmetry
B of dp, we obtain

bin(Th,up) + Ju(up,up) = [ f-up.
Q

Next, by testing the second equation of (.12 with S;, = T's, and substituting the above equality, we deduce
that

Ty + Tl w) < [ £,
Q
Thus, in view of (5.14]), we have our first bound:
|| Thll7zq) + Ja(un, un) < Cllfl L2 l[unllv;,- (5.26)

A further bound is arrived at by testing the second equation of (B.12)) with S = D(uy); hence,

T : D(w,) +~ /Qu<|Th|>Th:D<uh>:n ()2 / {(D(w,)}en, - [up]..

Q e€l'y

Then Proposition 3 gives, for any § > 0,

1 1/1
HD(uh)H,%goe|\Th||L2(Q)|\D(uh)||h+701|(2|2|\D(uh)|\h+§(th(uh,uh)M D (uh)lli)- (5.27)

mlnethUe
We choose 6 = 1 and, upon recalling (5.25), assume that o is chosen so that

mineer, 0 > Ch. (5.28)
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Next, by adding Jx(up, up) to both sides of (5.27)), applying (5.26]) to bound this term, and using the norm
of V,, we infer that

1 1
unll¥s, < allThll ) D(up)lln +vC1IQ12 [ D(up)lln + ClIE || L2y llanlly, + §||uh|\%/h,

and thus 1
1
slhunllvi < @l Tallrzi) +7CUQIE + Clf]l22(0)- (5.29)

To close the estimates, we return to (0.26) and get

1 C?
AT gy + JnCuans ) < 5 (Slhunl + S 1o

for any do > 0. Thus

\/5 \/0452
al|Thllr2@) < —==CllfllL2@) + —==llunllv,

V202 V2
and the choice d2 = é yields
1
alTnllr2(e) < 2aC|£l L2 + 7 lunllvi.-

Thus we have shown the following uniform and unconditional bounds:

1 C 1
lunllvi, < AC(1+20) £l 2oy + LI, [ Talluaey < = (a+ Dlflaey + LCrjalt. (5.30)

An a priori estimate for the pressure requires an inf-sup condition. This is the subject of the next
subsection.
5.1.3 An inf-sup condition

In the nonconforming case considered here, the analogue of (4.3]) reads

inf sup ban (v, Gn) > B (5.31)

n€Qn vyevy, [[VallvillgnllL2o)

with a constant 5* > 0 independent of h. To check this condition, recall Fortin’s lemma; see for instance [20].

Lemma 6. The discrete condition (5.31) holds uniformly with respect to h if, and only if, there exists an
approzimation operator 11, € L(HZ(Q)%; V) such that, for all v € H} ()4,

bor(IIn(v) —v,qn) =0 VYgu € Qn, (5.32)

and

T (V) [vi, < Clvlm ) (5.33)

with a constant C independent of h.

Originally, Fortin’s lemma was stated for discrete functions in subspaces of H}(Q)?, but the extension
to spaces of discontinuous functions is straightforward, as long as the form bap(+,-) is consistent with the
divergence, which is the case here.

As the proof of (5.32)), (5.33)) is fairly technical, we restrict the discussion to the first order case, i.e.,
k =1, in hexahedra. The quadrilateral case is much simpler.
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5.1.4 The inf-sup condition in planar-faced hexahedra for £k =1

The construction of a suitable operator 11 is usually done by correcting a good approximation operator Ry,.
For instance, we can use the L? projection onto the space of polynomials of degree one defined locally in each
element, so that Ry(v) belongs to V}, and satisfies optimal approximation properties; see for instance [8].
Then Rp(v) is corrected by constructing c;, € Vj, such that

ban(Ch, qn) = ban(Ru(v) = v,qn) Van € Qn. (5.34)

By expanding by, and denoting by ¢g the value of g5, in E, (5.34) reads

- > QE/ div(en) + Y /Ch nfgnte=— QE/ div(Rp(v +y /Rh e Nefgnte.

EcTy, ecly, EE€Th ecly,

Green’s formula in each element yields

- Z QE/ Chp-ng+ Z /Ch ‘ne{gnte = — Z QE/ (Rp(v)—v) ng+ Z /Rh e Nefqnte

EcTy, ecly, EcTy, ecly,
(5.35)

with ng the unit exterior normal to E. Consider now an interior face e shared by F; and Fs, so that n. is
interior to Fa; the contribution of e to the left-hand side of (5.38) is

1
—4B: | ChlpMetam | Cnip, Met [ 5(am + ) (Chim — Chipy) Me = — [ an]e{cne ne
€ € € €
with a similar contribution to the right-hand side. Notice also that the contribution of a boundary face
e € I'Y is equal to zero on both sides of (5.35). Therefore a sufficient condition for (5.37) is that

/cmE-ne:/(Rh(v)—V)|E-ne. (5.36)
e €

We will thus construct ¢, € Vj, by imposing (5.36)) for each element E € T;, and each face e € OE. To
simplify the notation, we will write from now on c¢;, and (Rj(v) — v) instead of cj 1 and (Rx(V) — V)|g,
respectively.

Let F be an arbitrary hexahedral element of 7, with faces e;, centre of face b;, and exterior unit normal
n;, 1 <1i <6. To be specific, let a;, i = 1,2, 3,4, be the vertices of ey, a;, i = 1, 3, 5,6, the vertices of es, a;,
i=1,2,5,7, the vertices of e3, a;, i = 5,6, 7,8, the vertices of ey, a;, i = 2,4,7,8, the vertices of e5, and a;,
i = 3,4,6,8, the vertices of eg. The ordering of the nodes is illustrated in Figure[l. Note that for i = 1,2, 3,
ei+3 is the face opposite to e;, opposite in the sense that its intersection with e; is empty.

Without loss of generality, we assume that the vertex a;j is located at the origin and that the face e; lies
on the z3 = 0 plane. Indeed, this situation can be obtained via a rigid motion (translation plus rotation),
which preserves all normal vectors. Therefore, the normal to the face e; is parallel to the x3 axis. Now, the
idea is to transform E onto a “reference” element F by an affine mapping Fg so that the subtetrahedron
S1 of E based on e; and containing the origin a; is mapped onto the unit tetrahedron Sy. More precisely,
as eg and eg are both adjacent to ey, Sy is the subtetrahedron with vertices a;, as, as, and as, and S‘l has
vertices & = (0,0,0), & = (0,1,0), a3 = (1,0,0), a5 = (0,0, 1), see Figure [l for an illustration and some
notation. This transformation and notation will be used till the end of this subsection. It stems from the
regularity of the family of triangulations that there exists a constant M, independent of E and h, such that

diameter(E) < M. (5.37)
The affine mapping Fr has the expression
x = Fr(x) = Bx,
where the constant term is zero since a; is the origin, and the matrix B is nonsingular; its columns are

respectively ag = (a3, a%,0)!, ag = (ad,a3,0)! and a5 = (a}, a2, a?)!. The image of the remaining vertices of
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Figure 1: Some notation for the “reference” element E.

FE are a; = ]-El(ai), 1 =4,6,7,8. As Fg is an affine transformation, it transforms faces onto faces, edges
onto edges, and vertices onto vertices. Thus, since a4 is in the plane x5 = 0, then a4 is in the plane 23 = 0.
Likewise, a¢ is in the plane 5 = 0, a7 in the plane &; = 0, and ag in the plane determined by a4, as, a7, as
well as the plane determined by a7, as, a6, and the plane determined by ae, a3, a4, hence in the intersection
of these three planes. Therefore E is located in the first octant of R3. Let f; denote the unit exterior normal
vector to é;. It is related to n; by the general formula
Btni
n,=——. 5.38
! |Btni| ( )
The advantage of having e on the plane x3 = 0 is that fi; = n; = (0,0, —1)!. We also have Ny = (0, —1,0)?,
and ng = (—1,0,0)*. Thus
~3 ~92 ~
1] = [ng| = [ha| =1, (5.39)

and the regularity of the family 7 implies that there exists a constant vy, independent of h and FE, such
that
73], [a2], |Ad] > vo. (5.40)

With this transformation, and after cancelling |det B| on both sides, (5.36]) reads locally
Jen B e = [ () - %) (B e
where the hat denotes composition with Fg. Thus, by performing the change of variable
d, = B '¢,

and defining the face moment

1
mé(f) =T /f7
lel Je
(E.36) is equivalent to

1 —~
méi(dh) . fli = gi = | / Bil(Rh(\A’) — {’) . fli, 1 < ) < 6. (541)

lé

This is a linear system of six equations in twelve unknowns, the coefficients of d),. Therefore, we can freely
choose six coefficients and we have the following existence lemma.
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Lemma 7. There exists exactly one polynomial vector d, = (cfl , Jg, d},)t that satisfies (5.41) and the following
siz conditions:

me, (Czl) = Mey (Czl) = Me, (CZQ) = Meg (622) = Mey (623) = Meg (d3) =0. (542)

Proof. Once the six conditions (£.42) are prescribed, we are left with a square linear system of six equations
in six unknowns. Therefore it suffices to prove that the only solution of the corresponding homogeneous
system is the zero solution. To begin with, we consider the lines i = 5 and ¢ = 6 in (5.41). In view of (5.39)
and (5.40), the strategy for the choice (5.42) is to set to zero the coefficients of 7% and 7§ and those of Al
and 72, i.e., prescribe me, (dy) = me, (da) = me, (ds) = me, (ds) = 0. With this assumption, the lines i = 6
and ¢ = 5 reduce respectively to

meg(di) =0, me,(dz) = 0. (5.43)
Next, we consider the line i = 1. As 2 = —1 is the only nonzero component, it reduces to
me, (ds) = 0. (5.44)

Similarly, when ¢ = 2 and i = 3 we have, respectively

me,(ds) = 0, e, (dy) = 0. (5.45)

Collecting these results and the two extra assumptions me, (dy) = me, (dz) = 0 in (5.42), we find that

me, (dl) = Mey (dl) = Meg (dl) = My (dl) =0

me, (d2) = My (dQ) = Mg (d2) = Mey (d2) =0.
The three faces é;1, €5, ég share the vertex a4, and the regularity of the hexahedron implies that the three
vectors along the segments [a4, &3], [a4,ag], and [a4, &z] is a set of three linearly independent vectors of R3.
Then the regularity of the hexahedron implies that a polynomial of degree one is uniquely determined by
its moments on the four faces é1, és, ég, é; for any 4 in the set {2,3,4}. Hence, as Jl (respectively, Jg)
is a polynomial of degree one, the first set (respectlvely, second set) of equalities and the regularity of the
hexahedron imply that d; = 0, respectively, do = 0. When i = 4, this leads to me, (dg) = 0. Consequently,

me, (d3) = My (d3) = Mg (d3) = Me, (d3) =0,
and ds = 0. Thus d;, = 0 and the system has a unique solution. O

Let M ; be the 6 x 6 matrix of the system (5.41)) under the restriction (5.42)). It stems from Lemma [T
that M g is nonsingular. Furthermore, the regularity of the hexahedron implies that M 4 is a continuous

function of E ; thus continuous in a compact set of R3. Hence the norm of its inverse is bounded by a constant
C, independent of F, .
M <C. (5.46)

The stability of the correction follows now easily.

Lemma 8. There exists a constant C', independent of h and E, such that for all E in Ty and all e in Ty,

~ N o 2 ~
lenllacey < € bVl lenliney < Cvlnger, (5 ) lenlelloo < C0¥laney + Wl ).
(5.47)
where E1 and Es are the two elements sharing e, when e is an interior face, and the sum is reduced to one
term, namely the element E adjacent to e, when e is a boundary face.

Proof. The notation C below refers to different constants that are all independent of h and E. Recalling
(B.41), (5.37) and the transformation from S; onto Sp, we observe that, for any i,

(V) = Vllzie) <

|9:] < (V) = ¥llL2e))-
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By a trace inequality in E and the approximation property of I/EZ in E, we have
6 —~ —~
SOBRE) =¥ ie) < CIRRE) = s ) < Clolin -
i=1

Then, by reverting to F,

6

— R ~h
STIRRE) = V2 < C— vl ()
=1

|E|2

In view of (5.46) and the regularity of the family 7y, the above relations lead to the following bound on dp:

- C hs
d oy < — 2L < ;
|| h”L (B) = |E|% 05, |V|H1(E) = |E|% |V|H1(E)
with &, = Bdy, this yields
. 5 hs
lenllLee )y = llenll ooy < C—|E|1% Va1 (E)- (5.48)

Since hg, < hg, we immediately deduce from (5.48) the first two inequalities in (5.47). Finally, the third
inequality follows from (5.48) and

Oe % Oe % 1
(7)) eallzzo = (22) el enllmcon

That completes the proof of the lemma. O

As a consequence of Lemma [§ we have the following bounds:
lenllzz@) < Chlvim@,  lenlv < Clvla ). (5.49)

Finally, since the construction of Lemma [7 yields a unique correction, it is easy to check that the mapping
v — ¢, defines a linear operator from V}, into itself, i.e., ¢, = cp (V).

On the other hand, we infer from standard approximation properties of Ry and the regularity of the
mesh, that

v = Ru()|lz2(m) < Chelvim @), |[Ba(v)lm e < CIvime),
3 . (5.50)
(—) VB2 < C (vl oy + IV (o)

and
[v—Ru(V)llz2 < Ch|vligi), [R.(W)llv, <CVligiq)- (5.51)

Thus ITj,(v) = Rp(v) — cp(v) satisfies the conditions (5.32) and (£.33) of Lemmal6. This proves the inf-sup
condition as stated in the next theorem.

Theorem 4. Let the family of hexahedra Ty be reqular in the sense defined above. Then the form bap, defined

in (B.0) with the pair spaces Vi, and Qy, for k =1, see (B.1) and (5.2), satisfies the inf-sup condition (5.31)
with a constant B* > 0 independent of h.

5.1.5 A bound on the pressure

As usual, the inf-sup condition (5.31) yields a bound on the pressure. Indeed, it follows from the first
equation of (5.12)) together with (5.22)), (5.20), (5.15) and (5.16]) that

b2n (Vi pr)| < C (1Tl 2(0) + anllv, + lasll3, + 1El22@) [1Vallv, -
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Then (5.30) implies, with a constant C' independent of h (but depending on «), that
|b2n (Va, pn)| < Cllvallvi, Vvh € Vi
With the inf-sup condition (5.31]), this implies that
lonllz2) < C, (5.52)

for another constant C' independent of h.

5.1.6 Existence and convergence

The proof of existence of a solution of (5.12) is the same as in the conforming case. Recall that the case
of interest is kK = 1, which is assumed for the remainder of this subsection, but all of what follows can be
straightforwardly extended to a general polynomial degree k > 1 as long as the inf-sup condition (5.31)) holds.
First, the problem is reduced to one equation by testing the first equation of (5.12) with v;, € V3o and by
observing that the second equation determines for each u;, € V3 a unique T, in Mj. This is expressed by
writing T, = Gn.pe(up). Then, (5.12) is equivalent to finding a uy, € V3 o such that

dn(up;up, vi) + b1n(Gr,pa(un), vi) + Ju(uap, vi) = / f-vip Vv € Vo (5.53)
Q

By means of the a priori estimates (5.30)), existence of a solution is deduced by Brouwer’s fixed point theorem.
Regarding convergence, the a priori estimates (5.30) and (5.52) together with (5.17) imply that there
exist functions T € L2(Q)4%4, @ € HL(Q)?, and p € LE(Q) such that, up to subsequences,

sym

%IinloHUh—ﬁHLq(Q):O with 1 <g< oo if d=2, and 1 <¢g<6 if d =3,
—

lim T, =T weakly in L?(Q)%*¢,
h—0

and
lim pp, =p weakly in L?(Q).
h—0

However, in order to pass to the limit in the equations of the scheme, following [16], we need to introduce
discrete differential operators related to distributional differential operators. These are G}"™ (v;,) € M}, and
GV (vy,) € Op, defined for all vy, € Vj, by, respectively,

/Giym(vh) Ry, = bin(Rp, vi) = Z /Dvh Ry — Z/Vh {Rp}en. VR, €M, (5.54)
Q

Ee€T, ecl'y,
/ G (V) Th = bon(Vh, h) Z / rp, div(vp) Z /vh e ndrpte Vrn € Op, (5.55)
Q2 Ec€T, eel'y,

where

On={0,cL*Q): Ohlp P, VEET,}

The polynomial degree one in this space is convenient for proving the convergence of the nonlinear term; see
(.62)). The straightforward scaling argument used in proving Proposition Bl shows that

IGE ™ (vi)llL2) < Cllvallvi, Yva € Vi, (5.56)

and

=

IGE Wllzz@ < (D2 aiv(va)l3es)” +C Ta(va,va)t,

EcTh

and thus by (G.15]) .
1GAY (vi)ll L2y < Clivallve Vva € Vi (5.57)

with different constants C' independent of h. At the same time, this gives existence of these two operators.
The next proposition relates G;"™ (u;) and D(@). The proof is an easy extension of that written in [16], but
we include it below for the reader’s convenience.
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Proposition 4. Up to a subsequence, we have

Jim G3™(up) = D(u) weakly in L?(Q)4*<. (5.58)
—

Proof. On the one hand, the bounds (5.56) and (5.30) imply that there exists a function w € L*(2)%%¢ such
that, up to a subsequence,
%in% GY™(up,) =w  weakly in L2(Q)4*, (5.59)
—

On the other hand, take any tensor F in H'(Q)%%? and let P{(F) be its orthogonal L?(Q2)**? projection on
constants in each E. We have

| [ Gt (P - PR < Clul |F - PR e
that tends to zero with h. Therefore, the definition (5.54) of G}"™ (uy) implies that

Jim i G (up): F = Jim, bin(PP(F),up) = lim (bin(PY(F) — F,up) + bin(F,up))

and a straightforward argument yields that the first term tends to zero. Hence

lim [ G (uy): F = }lllg}a bin(F,up) VF e H' ()41

h—0 Q sym

Now, an application of Green’s formula in each F gives

bin(Foup) == Y /Euh~div(F).

E€Th
Therefore
lim [ G} (up): F = —/ u-div(F)= [ D(a): F VF e H)(Q)
h=0Jq Q Q '
A comparison with (5.59) and uniqueness of the limit yield
D(u) =w,
thus proving (5.58)). O

Remark 6. The fact that @ belongs to Hg(Q2)? is an easy consequence of the above proof.

A similar argument to the one in Proposition 4 gives that

lim G$V(u,) = div(n) weakly in L*(9). (5.60)

h—0

Hence, by passing to the limit in the last equation of (5.12)), we immediately deduce that div(u) = 0; thus
u belongs to V and satisfies the third equation of (4.IJ).
In the next theorem, these results are used to show that the limit satisfies the remaining equations of

(.1).
Theorem 5. Let the family of hexahedra Ty, be regular in the sense defined above. Then the triple (T',,p)

solves (4.1l).

Proof. The proof proceeds in two steps.
Step 1. Let us start with the first equation of (5.12). Take a function v € D(Q)? and let v;, € V}, be
the L2(2)? orthogonal projection of v on P¢ in each element. It is easy to check that

%irr%) GY™(vy) = D(v) strongly in L?(Q)?*?,
—
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Therefore the weak convergence of T', and the definition of G;Y™ (v},) imply that

lim b1y (Th,ve) = / D(v):T.
h—0 Q

Similarly,
lim bap (Vi,pr) = — / pdiv(v).
h—0 Q

Also
lim Jh(uh, Vh) =0.
h—0

As the right-hand side tends to fQ f - v, it remains to examine dp, (up; up, vp). Recall that
1
dn(aniuncvi) = 30 [ - Fywd i = Soantancwn vi) = 30 [ (unde nfwnle - v
E ;i Je
EcT, ecly
Thanks to the antisymmetry of dj, we have

dh(uh; uh,vh) = — Z / [(uh . V)Vh] -up + %bzh(uh, up 'Vh) + Z {uh}e . ne[vh]e . {uh}e. (561)
EeT, ' F ecTi 7 ¢

For the first term, the strong convergence of uy in L*(Q)? and the strong convergence of the broken gradient
Vivy in L2(Q)?*4 imply that

—;E)Egh/ﬁ[<uh-v>vh1-uh — [(@-vv-a= [ [@vl.

since 1 € V. For the second term, take any piecewise constant approximation v, of v. Then
bon (Up, Wy - Vi) = bap(p, up - (Vi — Vi) + ban(un, up - Vi).

The boundedness of uy in V3, and the convergence to zero of v, — v, in L>(Q)% imply that the first term
tends to zero. For the second term, we deduce from the definition of G{1¥(uy,) that

bgh(uh, uy "_’h) = ‘/QG%iv(uh)(uh . ‘_’h)' (5.62)

As div(@) = 0, G$V(uy,) tends to zero weakly in L2((2). Then the strong convergence of uy, in L2(Q2)4 and
that of v;, in L>(Q)? show that this second term tends to zero. It remains to examine the last term of
(5.61). Here we use the fact that, for any v € W2>(Q)4,

th — V”Loo(e) < Ch§|v|w2,oo(ﬂ).
This, with the boundedness of uy in V}, gives that this last term tends to zero. Thus, we conclude that
lim dp(up;up, vy) = /[(ﬁ V) v Vv e W) n Hi ()%
- Q

The conclusion of these limits and a density argument is that the triple (T', @, p) satisfies the first equation
of ({4.1)

/[(ﬁ V)a]-v+ | T:D(v) - / pdiv(v) = [ £-v Vve H}()™ (5.63)
Q Q Q Q

Step 2. The argument for recovering the constitutive relation T' = G(11) is close to that for the conforming
case, up to some changes. On the one hand, we observe that

%ig}) (b1n(Th,up) + Jp(up,up)) = /Qf'fl

34



and, since Jy(up,up) is positive and bounded, this implies that

lim blh(Th; uh) < / f-a.
h—0 Q

On the other hand, we infer from (5.63) that

T:Du)= [ f-u

Q Q
Hence
}lLl—% bin(Th,up) < /QD(l_l) . T. (5.64)
Next, we set
I = g(w)

and define Th = ghﬁpg(ﬁ), ie.,
Oé/ Th : Sy +"Y/ ,U(|Th|)Th 1S, = blh(Sh,ﬁ) = / D(fl) : Sy VSh € My,
Q Q Q

where the second equality holds thanks to the fact that @ belongs to Hg(Q2)?. The fact that div(n) = 0

implies that the trace of Td is zero and justifies the above superscript. Therefore
~ ~d L ~d | ~d
a/(Th -T):8S, —I—”y/ (w(|Th)Th — (T NT) : S =0 VS) € M,
Q Q
and, as in the conforming case, we conclude that
. ~ ~d
Lim [T =T [l 220 = 0. (5.65)
Finally, the difference between the equations satisfied by T';, and T yields
a/ (Th — Th) : Sh +7/ (/J,(|Th|)Th - /L(|Th|)Th) : Sh = blh(Shuuh) - / D(l_l) : Sh VSh S Mh.
Q Q Q
By testing this equation with Sj, = T, — T}, and using the monotonicity property (2.14), we deduce that
ol Ty — ThH%Q(Q) <bip(Thyap) — blh(ThaU-h) — / D) : (T — Th) (5.66)
Q

However, by (5.54),

bun (T, un) = / G (wy) : T,
Q

and it follows from Proposition 4 and (5.65)) that
lim by (Th,up) = | D@@): T°
h—0 Q

Then, by passing to the limit in (5.66]), we obtain in view of (0.64]) the inequality

- - ~d — ~d
a lim [|Th — Thl720 S/D(ﬁ):T—/D(ﬁ):T —/D(ﬁ):(T—T ) =0,
h—0 Q O Q

whence ~
;lll—% ITh — Thllz2) =0,

and uniqueness of the limit yields
T =T = g(u).
This proves that (T, 1) satisfies the second equation of (4.I)). O
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5.2 The tetrahedral case

Here we study briefly two examples of finite element discretisations on tetrahedral meshes, the triangular case
being simpler. Many of the details are skipped because they follow closely those in the previous subsection.
The family of meshes 7, is assumed to be regular as in (£.24]). Let us start with the same spaces V},
Qr, and M}, defined on T, by (5.1), (5.2), and (5.3), respectively, and the same bilinear forms by, (Sh, Vi),
dp(up; v, wp), and bap(vh,qr) defined by (5.4), (5.5), and (E.6), respectively. Then the scheme is again
given by (5.12)) and, under assumption (4.24)), all proofs from the previous subsections are valid in this case,
except possibly the proof of the inf-sup condition. In fact, Theorem M holds with a much simpler proof.
Indeed, take any tetrahedron E. Recalling that the case of interest is £ = 1, a polynomial of P; is uniquely
determined in E by its values at the centre points b, of its four faces e. Then, instead of (5.36), we can use
the sufficient condition

Ch e E' |/ Rh |E VEEE, VeE@E, (567)

and this defines uniquely the correction cj,. Furthermore, thanks to (4.24), the stability of this correction
follows from the fact that E is the image of the unit tetrahedron F by an invertible affine mapping whose
matrix satisfies the same properties as the matrix B used above. Thus the conclusion of Theorem [ is valid
in this case.

As a second example, it would be tempting to use the Crouzeix—Raviart element of degree one on
tetrahedra; see [15]. This would be possible if the analysis did not invoke Korn’s inequality (with respect to
the broken symmetric gradient), because it is not satisfied by the Crouzeix—Raviart element; cf [18]. Thus,
the simplest way to bypass this difficulty is to introduce the jump penalty term Jy(up, vy,) defined in (5.8).
Let us describe this discretisation. Again, we suppose that (4.24) holds. The discrete spaces @, and M}, are
the same, with k£ = 1, as in (5.2) and (&.3)), respectively. However, instead of V},, we now use the space VhCR
whose elements are also piecewise polynomials of degree one in each element, but in contrast with (5.1)), they
are continuous at the centre points of all interior faces e € '}, and are set to zero at the centre points of
all boundary faces e € FZ. Thanks to this pointwise continuity and boundary condition, the scheme now
involves the following bilinear/trilinear forms, compare with (5.4, (5.5), (5.6):

D(v): 8 ~ b (Sh,vi) == /Dvh Sh, (5.68)
Q EcTh
ng(uh,vh,wh Z / up - V Vh *Wp — Z / uy - V Wh *Vp (569)
Ec€T, EcTy,
b5 (Vhy qn) : Z / qn div(vp). (5.70)
EeTh

With these new forms, analogously to (6.12), the finite element approximation of the problem reads as
follows: find a triple (T, up, pn) € My x V;CF x Qy, such that

ng(uh; uhavh) + blchR(Th,Vh) + bghR(Vh,ph) + Jh(uh,vh) = f-vy, Vv € VhCR,
Q
. . q, _}CR (5.71)
afl Th:Sh+~ | (| Th))Th : Sh =01 (Sh,upn) VS, € My,
Q Q
b5 (up, qn) =0 Van € Qn-

Note that b (Sh,vh) coincides with by, (Sh,vy) and bgh (Vh, qn) coincides with bop (v, qn) because the
additional face terms vanish for elements of the space Vh . This is not necessarily the case with dCR nd
dp, but ng is obviously antisymmetric and is simpler. Although the norm of the broken gradient is a norm
on V¢E the mapping vj, = || D(v4)]|5 is not a norm on V,°F. According to [6, [7], we have instead (5.14)
and (B.15). That is why we use again the norm ||vy ||y, defined in (5.9)) and keep the term Jp,(up, vp) in the
first line of (B.71). Note however that the parameters . need not be tuned by Proposition [3 since there
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are no surface terms in blchR(Th, v},); thus it suffices for instance to take o, = 1 for each face e. Moreover,
the analysis used for the general discontinuous elements substantially simplifies here. First, as there are no
surface terms in the bilinear forms, the bounds are simpler. Next, the operator II; satisfying the statement
of Lemma [6] is constructed directly by setting, for v in H}(Q)4,

10, (v)(be) | p = %/v VE €T, Ve € OF, (5.72)

see [15]. Clearly, as v € H} ()%, (5.72) defines a piecewise polynomial function of degree one in V,.¢%.
Finally, convergence of the scheme is derived without the discrete differential operators G;’™ and G%‘V.
Indeed, property (B.17) can be extended as is asserted in the proposition.

Proposition 5. Let the family Ty, satisfy (@24). If vy, is a sequence in V,CT such that
[vallv, <C
with a constant C independent of h, then there exists a function v € HE(Q)? satisfying (5.117) and
}113% Dy, (vi) = D(¥) weakly in L*(Q)%*9, (5.73)

where Dy, stands for the broken symmetric gradient.

The proof, contained in [15], relies on the fact that the integral average of the jump [vp]. vanishes on
any face e and hence, for any tensor F' in H'(2)4*4,

/ane vale = /E(F — O, - v VC € RV

Thus, there is no need for G3"™; the same is true for G§V. This permits to pass directly to the limit in

G.11).

6 Numerical illustrations

We introduce two decoupled iterative algorithms. The first one is based on a Lions-Mercier decoupling
strategy while the second one is a fixed point algorithm. All the algorithms are implemented using the
deall.# library [1]. For simplicity, we focus on conforming finite element approximations for which an a
priori error estimate has been derived in Subsection [4.1.2. Performing numerical experiments in the case of
the nonconforming approximation scheme will be the subject of future work.

The general setup is the following:

e Dirichlet boundary conditions are imposed on the entire domain boundary (not necessarily homoge-
neous);

e A sequence of uniformly refined meshes with square elements of diameter h = v/2/2", n = 2,...,6
(level of refinement) are considered for the mesh refinement analysis;

e The finite element spaces My, Vi, and @}, consist, respectively, of discontinuous piecewise polynomials
of degree 2, continuous piecewise polynomials of degree 2, and continuous piecewise polynomials of
degree 1 (see Subsection [4.2.2)).

Following [5], we replace the constitutive relation
oT" 4 4| T*)T" — D(u) = 0
by
aT? +yu(IT*)T? — D(u) = g
to design an exact solution. Then, given T?, u and p, we compute the corresponding right-hand sides g and
f (forcing term), where we recall that

f=(u-V)u-— é div(D(u)) + Vp + g div(u(|T)T?).

Finally, we choose u(s) = which corresponds to (L10) with 8 =1 and n = —1/2.

1
V1+s2
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6.1 Lions—Mercier decoupled iterative algorithm

We present here an iterative algorithm to compute approximately the solution to problem (B.5)), which is
based on the formulation B.4): find (T}, upn,pr) € Mp, X V3, X @y, such that

d(uh;uh,vh) =+ é‘/ﬂD(uh) : D(Vh) — ‘/Qph diV(Vh) = /Qf -V + g‘/Q/J’OThl)Th : D(Vh),

al Ty :S, +'7/M(|Th|)Th : S, = /D(uh) : Sy, (6.1)
Q Q Q

/qh div(uh) =0
Q

for all (Sp,vh,qn) € My x Vi, X Qp, where d : V x V x V — R is defined in (A.7). Note that problem (6.1))
is equivalent to problem (4.9) analysed in Section [l

To compute the solution to problem (6.1I), we propose a decoupled algorithm based on a Lions—Mercier
splitting algorithm [25] (alternating-direction method of the Peaceman—Rachford type [31]) applied to the
unknown T'j,. Following the discussion in [5, Section 7], the algorithm reads, for a pseudo-time step 7 > 0:

Initialisation: find (Tgo)7 uglo),pglo)) € My, x Vi, x Qp such that

1
du!”;ul® v,) + - QD(ug))) :D(vp) — /nglo) div(vy) = Qf “Vh VVh € Vh,
ol T9:.8,= [ DL?): S, VS, eM, (6.2)
ki | D(w,”) : , :
N () N
/qhdlv(uh )=0 Van € Q-
Q

Then, for Kk =0,1,..., perform the following two steps:

e (k+3)
Step 1: Find T, € Mj, such that

1

;/(Tﬁj”%) —TM)y . s,ﬂw/ w(I T DT g, :/D(u;’“) : Sh—a/ T .S, VS, e M,
Q Q Q Q

Step 2: Find (T w1 p*Fy e afy < Vi, x Qy such that
1
d(w s )+ = / D(u{*™): D(vy) - / Py div(vi)
Q Q
1 1
= [ 2 [T DT D)
0 aJo
1 L L 1
—/ () Dy g, a/ T . 5, = /D(u;’”l)) L S) — y/u(|T§f+5’|)T§f+5) . S,
TJQ Q 9) 9}
/ gn div(uf ™) =0
Q

for all (Sh,vh,qn) € Mp X Vi, X Qp.

(6.3)

The solution to (6.2)) is obtained by first determining ugo) and pgo) as the solution to a standard steady-

state Navier—Stokes equation (first and third equations in (6.2))) and then by setting T%O) = éD(uElO)).
Similarly, the solution to problem (6.3) can be obtained by first solving the first and third equations for
uglkﬂ) and pgkﬂ) and then solving the second equation for T;lkﬂ). A standard argument shows that the
above algorithm generates uniformly bounded sequences. Thus they converge up to subsequences. However,
the identification of a unique limit for the entire sequence is currently unclear.

Regarding the implementation, we make the following comments:
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e Stopping criterion: For the main loop (Lions—Mercier algorithm), the stopping criterion is

k+1 k k+1 k k+1 k
1T = TP 20y + IV — a2y + 95T = 12
1T 20y + IVaE ™ 2y + 18 N2

@ <1075, (6.4)

o Initialisation: We solve the Navier—Stokes system associated to problem ([6.2]) using Newton’s method
(the iterates are indexed by m) until the following stopping criterion is met:
+1 +1
IV (™ — ™) o + o™ = o™ e

(©2) -6

<107°.
m-+1 m-+1 —
V™ 2 + 1P 20

As an initial guess, we take the solution of the associated Stokes system without the convective term.

The solution to each saddle-point system of the form

A BT Uy [(F
B 0 P/ \ G
is obtained using a Schur complement formulation
BA7'BTP = BAT'F - G, AU =F - BTP.

To solve for P, we use the conjugate gradient algorithm in the case of the Stokes problem and GM-
RES for the (linearised) Navier—Stokes problems. In both cases, the pressure mass matrix is used as
preconditioner and the tolerance for the iterative algorithm is set to 107%|BA™'F — G|,. A direct
method is advocated for every occurrence of A=! and also to obtain T,

1
e Step 1 (monotone part): T;lk+2) is the zero of the functional

F(T}) =T+ myu(|Th))Th — D) — (1 — ar)TP.

Recall that discontinuous piecewise polynomial approximations are used for the stress and so T, is
determined locally on each element E € T}, as the solution to

/F(Th)ishzo VShEQQ.
E

We again employ Newton’s method starting with T;IO) = T;Ik) | g and use the stopping criterion

m B E
IF@) ) < 10 —V'ml'

N

so that the global residual is less than 1076, Note that in this case, it might happen that no iteration
1
is needed (e.g. when v = 0), in which case Tglk+2) |E = Tglk) |E

e Step 2: This step is similar to the initialisation step except that we take (ugk), pﬁlk)) as our initial guess

for Newton’s method for solving the finite element approximation of the Navier—Stokes system.

6.1.1 Case 1: smooth solution

We consider the case Q = (0,1)? and

cos(2mx)—cos(27my) _ . 9 9
T — ( ———r 0 ) R ( cos(mx) sin(7y) ) o= _ cos(2mx) + cos( 7ry)'

0 cos(27'ry);cos(27rx) sin(mc) cos(wy) 4
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Note that T¢ is the deviatoric part of T' defined by

cos(2mx)
T = < 2 Cos((Q)ﬂ'y) ) )
0  coimy)

and in particular it has vanishing trace. We observe that u is divergence-free. Moreover, the pressure satisfies
p= —%tr(T) and has zero mean. We report in Table [I] the error for each component of the solution for the
case a = 1 and v = 0, while Table 2] contains the results for o = v = 1. Note that we use the H! semi-norm
for the velocity and not the (equivalent) L?(£2)2*2 norm of the symmetric gradient. We observe in Table 2

(n] h [T =Tull2) | IV —up)llrz@ | lp—pallrzg | iter |
2 | 0.354 6.04199x10~2 7.51266x10~2 3.02263x 1072 1
310177 1.44750%x 102 1.82293x 102 6.18331x1073 1
4 1 0.088 3.58096x10~3 4.52460x 103 1.46371x10~3 1
5| 0.044 8.92901x10~4 1.12913x1073 3.60874x10~4 1
6 | 0.022 2.23079x10~4 2.82155x10~4 8.99041x107° 1

Table 1: Case 1, a=1,7=0,6 =105, 7 = 0.01.

ln] b [T = Tulla | IV —wi)llz2) | llp — palleegg) | iter |
210354 | 3.57579x102 8.21275x10~2 3.01953x10~2 | 183
310177 | 7.78829%x1073 1.86706x 1072 6.18695x1073 | 182
4 1 0.088 2.00882x10~3 4.55378 %103 1.50017x1073 | 182
51 0.044 8.86597x10~4 1.13687x10~3 4.91418x10~* | 182
6 | 0.022 7.66438x10~4 3.05389x10~4 3.45733x10~4 | 182

that all three errors are O(h?). The deterioration of the convergence rate we observe for T and p in Table
[2 is due to the stopping criterion. Indeed, if we use 1076 instead of 10~® in the stopping criterion for

Table 2: Case 1, a=v=1,8 =10"°, 7 = 0.01.

the main loop, then for h = 0.044 (n = 5) we need 250 iterations and we get

[T =Tl p2) = 4.66898 x 1074,

compare with the fourth row of Table [2.

We give in Tables Bl £ and [5 the results obtained when a larger pseudo-time step is used. We see that

lu—upllr2(0) = 1.13118 x 10~ and  ||p—pa|lr2() = 3.62581 x 10~

ln] b [T = Tula | IV = wi)llz2) | llp — palleegg) | iter |
2 10.354 | 3.57161x10~2 8.21200x 1072 3.02043x10~2 | 47
310177 | 7.74372x1073 1.86697x 102 6.18194x1073 | 47
4 10.088 | 1.86276x1073 4.55240x 1073 1.46465x1073 | 47
510044 | 4.77556x10~% 1.13167x103 3.65463x10~4 | 47
6| 0.022 | 1.72916x10* 2.85469%x10~4 1.06995x10~% | 47

the larger the pseudo-time step, the fewer the number of iterations. Moreover, for all cases 7 = 0.05, 7 = 0.1
and 7 = 0.5, there is no deterioration of the convergence rate in contrast to what we observed in Table 2

Table 3: Case 1, a=v=1,8 =10"°, 7 = 0.05.

(due to the stopping criterion).
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(n] h [T = Tulle) | IV —up)llre@ | lp—pallre | iter |
210354 | 3.57060x10~2 8.21133x1072 3.02054x10~2 | 26
3| 0.177 7.74150x1073 1.86693x102 6.18213x1073 | 26
4 | 0.088 1.85887x1073 4.55234%1073 1.46384x1073 | 26
5 | 0.044 4.63124x10~4 1.13153x1073 3.61829x10~% | 26
6 | 0.022 1.27963x10* 2.84928x10~4 0.37426x107° | 26
Table 4: Case 1, a =v=1,8 =107%, 7 =0.1.
[n ] b [T = Thllze [ IV — w2 | llp—pallrze | iter |
2 | 0.354 3.57028x10~2 8.21057x10~2 3.02063x102 | 10
3| 0.177 7.73342x1073 1.86606x 102 6.18238x1073 7
4 1 0.088 1.85742x1073 4.55172x1073 1.46368x 1073 7
5| 0.044 4.59753x10~4 1.13121x1073 3.60876x10~4 7
6 | 0.022 1.15437x10* 2.83829x10~4 8.99203x10~° 7

6.1.2 Case 2:

We consider now the L-shaped domain ) =

the results for the case a =~y

Table 5: Case 1, a=v=1,§=10"%, 7 =

non-smooth velocity

(_17 1)2 \ [0’ 1)2

=

which is divergence-free. The results when o = 1 and v = 0 are given in Table [l while Tables[7 and [8 contain
=1 with 7 = 0.01 and 7 = 0.5, respectively.

y(z® +y?)
—a(2? +y?)

0.5.

; we take T and p as above, but here

1
3
1 ’
3

ln] h [T = Tulla | IV —wi)llz2) | llp — palleegg) | iter |
210354 | 3.65187x10~2 3.80529x 1072 5.22497x1072 1
31 0.177 | 5.61550x1073 6.85310x1073 1.07102x 1072 1
4 | 0.088 1.32332x1073 1.86233x1073 2.53671x1073 1
5 | 0.044 3.95496x10~4 5.79343x10~4 6.25652x1074 1
6 | 0.022 1.24435x104 1.83765x104 1.55951x 104 1

6.2 A fixed-point algorithm

Instead of the Lions—Mercier type algorithm introduced in Subsection[6.I], we explore the following fixed-point

strategy.

Initialisation: (Tgo)7 u;lo) , p;lo))

Then for k =0,1,...,

=0.

do the following two steps.

Table 6: Case 2, a =1,v=0,8=10"°, 7 =

0.5.

Step 1: Find (u{F™ pit+ 1)) € Vi, x Qy, such that

d(ugﬁl);ugﬁl),vh) D(u, (]H_l) /p +1)d1V (vn) f-v,+ %/MUTSC)D 7" . : D(vy,),
Q Q Q Q

/qh div(u k+1) =0
Q
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(n] h [T = Tulle) | IV —up)llre@ | lp—pallre | iter |
210354 [ 3.51269%x10~2 6.79039x 102 5.22609x10~2 | 198
310.177 | 4.65311x1073 9.59150x 1073 1.07129%x102 | 198
4 10.088 | 1.10623x1073 2.04375%x 1073 2.55916x10~3 | 198
51 0.044 | 7.88026x10~4 6.03974x 1074 7.14457%x10~* | 198
6 | 0.022 | 7.63053x10~* 2.28218x10~* 3.79151x10~* | 198

Table 7: Case 2, a =y =1, =107°, 7 = 0.01.

ln] b [T = Tullae | IV —wi)llzee) | llp — pallrege) | iter |
210354 [ 3.50999x 102 6.78690x 102 5.22585x102 | 11
310177 | 4.56878x1073 9.56288x 1073 1.07075%x1072 | 8
41 0.088 | 8.00090x10~* 2.03639x10~3 2.53571x1073 | 7
51 0.044 | 2.08125%x10~4 5.91247x10~* 6.25280x10~* | 7
6 | 0.022 | 6.85220x107° 1.92531x104 1.55842x1074 | 7

for all (upn,qn) € Vi X Q.

Table 8: Case 2, a=v=1,8 =10"°, 7 =0.5.

Step 2: Find T;ZH_I) € Mj, such that

@ Tgﬁl) :Sp 4y

Q

It is easy to show that this algorithm produces uniformly bounded sequences.

/”(|T§f+1)|)T§f+l) .8, = | D). S, VS, e M,
Q Q

The solvers used for these two steps are similar to those described in Subsection[6.1l In particular, we take
(uglk), pglk)) as initial guess for Newton’s method for the finite element approximation of the Navier—Stokes
system, except when k£ = 0, in which case we use the solution of the associated Stokes problem.

The results obtained using the stopping criterion (6.4) are given in Table [0l There are similar to those

obtained in Table [5.

(n] h [T =Tull2) | IV —up)llrz@ | e —pallrzg) | iter |
2 | 0.354 3.57082x10~2 8.21052x10~2 3.02063x10~2 ] 10
3| 0177 7.73745%1073 1.86629x 102 6.18241x10~3 8
4 | 0.088 1.85777x1073 4.55234x10~3 1.46369x 103 8
51 0.044 4.60268x 104 1.13344x1073 3.60885x10~% 8
6 | 0.022 1.17442x10~4 2.92590x 104 8.99455%x10~° 8

Table 9: Case 1, a =y =1, =107°2.

Concerning the computational cost when similar results are obtained, i.e., when 7 = 0.5 for the Lions—
Mercier type algorithm, we note that the latter requires the solution of one more equation per iteration,

TglkJrl)

namely the linear equation for in Step 2.
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