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Abstract

Many methods for the computation of selected eigenpairs of generalized eigenprob-
lems for matrix pairs use a shift-and-invert technique. When applied to large-scale
problems, this requires the solution of large linear systems of equations. This pa-
per proposes an application of an Arnoldi method described in [H. Voss, An Arnoldi
method for nonlinear eigenvalue problems, BIT Numer. Math., 44 (2004), pp. 387–
401] to the computation of a few extreme eigenpairs of a matrix pair. An advantage
of this approach, when compared to methods that use the shift-and-invert technique,
is that no large systems of equations have to be solved. We compare this approach to
using a technique for simultaneously reducing a pair of large matrices to a pair of small
matrices by a generalized Arnoldi process described in [R.-C. Li and Q. Ye, A Krylov
subspace method for quadratic matrix polynomials with application to constrained least
squares problems, SIAM J. Matrix Anal. Appl., 25 (2003), pp. 405–428] and [L. Hoff-
nung, R.-C. Li, and Q. Ye, Krylov type subspace methods for matrix polynomials,
Linear Algebra Appl., 415 (2006), pp. 52–81]. The latter technique does not require
the solution of large linear systems of equations either. Computed examples show the
proposed method to yield approximations of the desired eigenpairs of higher accuracy
when using about the same amount of computer storage space.

Keywords: generalized Krylov subspace method, generalized eigenvalue problem,
large-scale problem
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1. Introduction

This paper discusses an application of the Arnoldi method for the solution of non-
linear eigenvalue problems described by Voss [22] to the computation a few extreme
eigenvalues and associated eigenvectors of large-scale generalized eigenproblems of
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the form
Ax = λBx, A,B ∈ Cn×n, x ∈ Cn, λ ∈ C, (1.1)

where at least one of the matrices A or B are non-Hermitian. The need to determine
a few eigenvalues and associated eigenvectors of large generalized eigenproblems of
this kind arises in various applications including in structural engineering, where A
is referred to as the stiffness matrix and B as the mass matrix, and in linear stability
analysis of fluid flow. In the latter application the matrix A typically is nonsymmetric.

When the matrix B is Hermitian positive definite with a structure that allows its
Cholesky factorization to be calculated for a reasonable cost, the problem (1.1) can be
transformed to a standard eigenvalue problem; see, e.g., Baglama et al. [3] for com-
puted illustrations for real matrices A and B. The most popular methods for computing
a few selected eigenvalue-eigenvector pairs of (1.1) are based on the shift-and-invert
technique, in which the generalized eigenproblem (1.1) is replaced by the standard
eigenvalue problem

(A−σB)−1Bx = µx, (1.2)

where the shift σ ∈ C is chosen to be close to the desired eigenvalues of the general-
ized eigenproblem (1.1), but not equal to an eigenvalue. The eigenvectors of (1.2) are
eigenvectors of (1.1), and eigenvalues λ of (1.1) can be determined from eigenvalues
µ of (1.2). The shift-and-invert technique requires the solution of one or several linear
systems of equations with matrices of the form A−σB.

The shift-and-invert technique (1.2) was first described by Ericsson and Ruhe [4]
for the situation when both the matrices A and B are Hermitian, and has been general-
ized in various ways since, in particular to allow non-Hermitian matrices A and B, and
to allow a Cayley transformation; see, e.g., Jia and Zhang [8], Saad [19, Chapter 9], and
Sorensen [21]; Grimes et al. [6] require the matrix A to be symmetric and the matrix
B to be symmetric positive semidefinite. The Jacobi-Davidson method described by
Sleijpen et al. [20] is attractive when a suitable preconditioner is available; we do not
require this in the present paper. Further discussions of methods for the computation of
a few selected eigenpairs in the situation when both the matrices A and B are Hermitian
are provided by Golub and Ye [5], Lampe and Voss [12], Pandur [15], Quillen and Ye
[16], and Saad [19, Chapter 9].

We are concerned with the situation when the solution of one or several linear
systems of equations with matrices of the form A−σB, required when applying the
transformation (1.2), is not possible or not attractive due to the large size or lack of
suitable structure of the matrices A or B. There are not many methods available for
determining a few eigenpairs of generalized eigenproblems (1.1) with large general
square matrices A and B that do not require the solution of linear systems of equations
with a large matrix. The solution of these systems may be quite time consuming if the
matrices A and B do not have a structure that can be exploited, such as being diagonally
dominant and banded. We are interested in methods that avoid the solution of large
linear systems of equations. Note that the MATLAB function eigs, when applied to
determine a few eigenpairs of the generalized eigenvalue problem (1.1), uses a shift-
and-invert technique and therefore requires the solution of linear systems of equations
with large matrices that are determined by A and B.
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Hoffnung, Li, and Ye [7, 13] present a generalization of the Arnoldi method that
simultaneously reduces a pair of large matrices to a pair of small matrices of gener-
alized upper Hessenberg form. They apply this method to the solution of large-scale
quadratic eigenvalue problems. We will describe an application to the reduction of the
matrix pair {A,B} to a pair of small matrices and use the latter to determine Ritz vec-
tors of the matrix pair {A,B} as approximations of eigenvectors of (1.1). Also, we will
generalize some residual convergence bounds to this case.

It is the aim of the present paper to compare the generalized Arnoldi process by
Hoffnung, Li, and Ye [7, 13] to the Arnoldi method proposed by Voss [22] for non-
linear eigenproblems when applied to the solution of generalized eigenvalue problems.
The latter method constructs a solution subspace that is determined by residual vectors
associated with available eigenpair approximations of (1.1). Neither approach requires
the solution of large linear systems of equations.

This paper is organized as follows. Section 2 describes a restarted Arnoldi method
inspired by the Arnoldi method proposed by Voss [22] to the computation of a few
selected eigenpairs of (1.1). The application of the generalized Arnoldi method by
Hoffnung, Li, and Ye [7, 13] is discussed in Section 3, and computed examples that
compare these methods are presented in Section 4. Concluding remarks can be found
in Section 5.

Throughout this paper ‖·‖ denotes the Euclidean vector norm or the spectral matrix
norm.

2. A restarted generalized Arnoldi-type (RGAT) method for the generalized eigen-
problem

We describe a restarted Arnoldi method for the computation of a few, say 1≤ l� n,
of the eigenvalues of largest magnitude and associated eigenvectors of the generalized
eigenproblem (1.1). The method also can be applied to compute the l eigenvalues of
smallest magnitude and associated eigenvector. The latter application is commented on
at end of this section. The method consists of two parts: reducing an available solution
subspace, and enlarging an available solution subspace. We will discuss these parts in
order.

2.1. Reducing the solution subspace
Let l ≤ p� n and let V2p ⊂ Cn denote a subspace of dimension 2p. The columns

of the matrix V2p ∈ Cn×2p form an orthonormal basis for this subspace. When we start
the computations, the columns of V2p may, for instance, be generated by first deter-
mining an n×2p matrix with normally distributed random entries with mean zero, and
then orthonormalizing the columns of this matrix. We seek to find approximate gener-
alized eigenvectors in the subspace V2p. The Galerkin equations for the approximate
eigenvectors are given by

V ∗2pAV2pY =V ∗2pBV2pY Λ, (2.1)

where the superscript ∗ denotes transposition and complex conjugation, the columns of
the matrix Y2p = [y1,y2, . . . ,y2p]∈C2p×2p are eigenvectors and the nontrivial entries of

Λ2p = diag[λ1,λ2, . . . ,λ2p] ∈ C2p×2p (2.2)
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are eigenvalues of the matrix pair {V ∗2pAV2p,V ∗2pBV2p}. The small size of the problem
(2.1) allows the application of the QZ algorithm to the computation of the eigenvalues
λi and associated unit eigenvectors yi. We assume the eigenvalues to be ordered so that

|λ1| ≥ |λ2| ≥ . . .≥ |λ2p|.

The generalized eigenproblem (1.1) might not have n linearly independent eigen-
vectors and have infinite eigenvalues. Similarly, the generalized eigenproblem (2.1)
might not have 2p linearly independent eigenvectors and may have infinite eigenval-
ues; see, e.g., [19, Chapter 9]. Here we will for simplicity assume that the eigenprob-
lems (1.1) and (2.1) only have bounded eigenvalues, that the 2p eigenvectors of (2.1)
are linearly independent, and that |λp| > |λp+1|. These restrictions can be removed
at the expense of obtaining a more complicated algorithm for computing the desired
eigenpairs. Then

xi =V2pyi, i = 1,2, . . . , p, (2.3)

are linearly independent Ritz vectors for the generalized eigenproblem (1.1) associated
with the p Ritz values λi, i = 1,2, . . . , p, of largest magnitude. We will keep the sub-
space spanned by these Ritz vectors and discard the subspace spanned by the remaining
Ritz vectors. This is the reduction part of the algorithm. It secures that the algorithm
never requires storage of more than 2p Ritz vectors simultaneously. Orthogonalize and
normalize the vectors y1,y2, . . . ,yp, and let the vectors so determined form the columns
of the matrix Ỹ ∈ C2p×p. Then the columns of the matrix

Ṽp =V2pỸ ∈ Cn×p (2.4)

form an orthonormal basis for the retained solution subspace. This concludes the re-
duction phase of the algorithm.

2.2. Enlarging the solution subspace

Let x1,x2, . . . ,xp denote the Ritz vectors associated with the p Ritz values λ1,λ2, . . . ,λp
of largest magnitude, cf. (2.3). Thus, these λi are the first p diagonal entries of the ma-
trix (2.2). Compute the residual vectors

ri = Axi−λiBxi, i = 1,2, . . . , p, (2.5)

and orthogonalize them, e.g., by the modified Gram-Schmidt process to obtain the
orthonormal vectors q1,q2, . . . ,qp. The evaluations (2.5) can be carried out simultane-
ously with the aid of level 3 BLAS to reduce computation time.

We note that the residual vector ri may overwrite the Ritz vector xi for i= 1,2, . . . , p
to reduce the amount of computer storage required. In exact arithmetic, the vec-
tors ri are orthogonal to the range of the matrix (2.4). To enforce orthogonality in
the presence of round-off errors, we explicitly orthogonalize the vectors qi against
range(Ṽp), and enlarge the retained solution subspace by including these vectors. Thus,
let Qp = [q1,q2, . . . ,qp] ∈ Cn×p, compute

Q̂p := (I−ṼpṼ ∗p )Qp, (2.6)
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and normalize each column of Q̂p to be of unit Euclidean norm. This yields the matrix
Q̂p = [q̂1, q̂2, . . . , q̂p] ∈ Cn×p. Then define

V̂2p = [Ṽp, Q̂p] ∈ Cn×2p. (2.7)

The matrix V̂2p in (2.7) allows us to determines a new projection of the generalized
eigenproblem (1.1),

V̂ ∗2pAV̂2pŶ = V̂ ∗2pBV̂2pŶ Λ̂, (2.8)

which is analogous to (2.1). Thus, Ŷ ∈ C2p×2p and

Λ̂ = diag[λ̂1, λ̂2, . . . , λ̂2p] ∈ C2p×2p.

Let the eigenvalues λ̂1, λ̂2, . . . , λ̂2p be ordered in decreasing magnitude, and let {ŷi}2p
i=1

denote the associated eigenvectors of (2.8). We keep the p largest eigenvalues of (2.8),
which are Ritz values of (1.1), and the associated Ritz vectors x̂i = V̂2pŷi, i = 1,2, . . . , p.
These Ritz pairs furnish new approximations of the p eigenpairs of (1.1) with eigen-
values of largest magnitude. The computations are terminated when

max
1≤ j≤l

|λ j− λ̂ j|
|λ̂ j|

≤ δ (2.9)

for a user-specified tolerance δ > 0, in which case {λ̂i, x̂i}l
i=1 are accepted as the de-

sired eigenpairs of (1.1). In case (2.9) does not hold, we set λi = λ̂i and xi = x̂i for
i = 1,2, . . . , p, retain the solution subspace span{x1,x2, . . . ,xp}, and carry out another
expansion of this space using residual vectors (2.5) as described above. The computa-
tions are described by Algorithm 1. Some computations, such as those of step b, can
be implemented efficiently by using level 3 BLAS.

In the special case when the matrix B in Algorithm 1 is the identity, the algorithm
yields approximations of eigenpairs associated with the eigenvalues of largest magni-
tude of the matrix A. This special case of Algorithm 1 has been applied explicitly or
implicitly by Lampe et al. [9, 10, 11].

When approximations of the eigenpairs of (1.1) with the eigenvalues of smallest
magnitude are desired, we order the eigenvalues {λ̂i}2p

i=1 of (2.8) according to increas-
ing magnitude. The Ritz pairs {λ̂i,V̂2pŷi}p

i=1 of (1.1) then furnish approximations of
the p eigenpairs associated with eigenvalues of smallest magnitude. The stopping crite-
rion (2.9) typically has to be modified by removing the denominators λ̂ j. This method
works the best when eigenvalues of smallest magnitude are the smallest eigenvalues.
We proceed analogously when the eigenpairs associated with eigenvalues of largest
or smallest real parts are desired. Efficient computation of eigenvalues far from the
boundary of the convex hull of the spectrum of A may require the use of a precondi-
tioner.

We remark that analogues of Algorithm 1 for the solution of quadratic and palin-
dromic eigenvalue problems easily can devised. We refer to [1, 19] for discussions of
this kind of eigenvalue problems.
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Algorithm 1 A restarted generalized Arnoldi-type (RGAT) for the generalized eigen-
problems (2.1).

Input: Matrices A,B ∈ Cn×n, p > 0, matrix V2p ∈ Cn×2p such that V ∗2pV2p = I, tol-
erance δ > 0, number of desired eigenpairs l.
Initialize: error:= 2δ .

a. Compute the eigenpairs of the generalized eigenproblem V ∗2pAV2pY =
V ∗2pBV2pY Λ with Λ = diag[λ1,λ2, . . . ,λ2p] with the eigenvalues ordered according
to |λ1| ≥ |λ2| ≥ . . .≥ |λ2p| and Y = [y1,y2, . . . ,y2p] ∈ C2p×2p.

b. For j = 1,2, . . . , p do
r j = (A−λ jB)V2py j

End For
c. Let the columns of Qp ∈ Cn×p form an orthonormal basis for

range{r1,r2, . . . ,rp}. (Can be computed by QR factorization.)
d. Let the columns of Ỹ ∈ C2p×p form an orthonormal basis for

range{y1,y2, . . . ,yp}.
e. Ṽp :=V2pỸ ( Reducing the solution subspace)
f. Reorthogonalize Q̂p := (I−ṼpṼ ∗p )Qp and normalize the the columns of Q̂p.
j. Enlarge search space V̂2p := [Ṽp, Q̂p]
k. Compute the eigenpairs of the new generalized eigenproblem V̂ ∗2pAV̂2pŶ =

V̂ ∗2pBV̂2pŶ Λ̂ with Λ̂ = diag[λ̂1, λ̂2, . . . , λ̂2p] and the eigenvalues ordered according to

|λ̂1| ≥ |λ̂2| ≥ · · · ≥ |λ̂2p| and Ŷ = [ŷ1, ŷ2, . . . , ŷ2p] ∈ C2p×2p.

l. Compute error:= max
1≤ j≤l

|λ j−λ̂ j |
|λ̂ j |

. If error≤ δ then exit, else goto b.
Output: Approximations of the l eigenvalues of largest magnitude and approxima-
tions of associated eigenvectors.

.
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3. Simultaneous reduction of the matrices A and B

This section outlines an approach described by Hoffnung, Li, and Ye [7, 13] for the
simultaneous reduction of a pair of matrices A,B ∈ Cn×n to a pair of small matrices.
This reduction method also has been applied to the solution of linear discrete ill-posed
problems by Tikhonov regularization in general form [17]. A generalization that allows
the simultaneous reduction of matrix k-tuplets (with k > 2) is described in [18].

We review the generalized Arnoldi process for two square matrices A,B ∈ Cn×n.
This process is based on the observation that for an arbitrary unit vector v1 ∈Cn, gener-
ically, there is a unitary matrix V such that

V ∗AV = HA ≡ [hA;i, j]
n
i, j=1, V ∗BV = HB ≡ [hB;i, j]

n
i, j=1 (3.1)

with
hA;i, j = 0 for i≥ 2 j+1, hB;i, j = 0 for i≥ 2 j+2. (3.2)

Thus, HA and HB are generalized Hessenberg matrices. The relations (3.1) and (3.2)
are the foundation of Algorithm 2; see [7, 13] for details.

The scalar N in Algorithm 2 tracks the number of vectors vi generated so far during
the computations. Let αk and βk denote the values of N at the end of steps 2.d and 2.f,
respectively, when j = k. It can be seen that k ≤ αk ≤ βk ≤ αk + 1. Thus, the first βk
columns of the the matrix V and the leading αk×k and βk×k principal submatrices of
the matrices HA and HB, respectively, are generated. Generically, Algorithm 2 yields
upon completion of k iterations the generalized Arnoldi decompositions

AV(:,1:k) = V(:,1:αk)HA(1:αk,1:k), (3.3)
BV(:,1:k) = V(:,1:βk)HB(1:βk,1:k); (3.4)

see [7, 13]. Here and throughout, we use MATLAB-like notation X(i: j,k:`) to denote
the submatrix of X , consisting of the intersections of rows i to j and columns k to `;
when i : j is replaced by :, it means all rows, similarly for columns. We note that while
HA(1:αk,1:k) and HB(1:βk,1:k) are lower banded matrices, their lower bandwidths grow
linearly with k. The computations are terminated at Line 2.a in the (rare) event that the
recursions for Algorithm 2 break down. In this case, we obtain the first N columns of
V with αN = βN = N. This is a benign breakdown as we obtain the decompositions

AV(:,1:N) = V(:,1:N)HA(1:N,1:N),

BV(:,1:N) = V(:,1:N)HB(1:N,1:N),

with the column space of V(:,1:N) being an invariant subspace of both the matrices A and
B.

An examination of Algorithm 2 shows that the set {v1,v2, . . . ,v`} is generated from
the sequence of vectors obtained by multiplying v1 by A and B in a periodic fashion,

Group 0: v1,
Group 1: Av1,Bv1,
Group 2: A2v1,BAv1,ABv1,B2v1,
Group 3: A3v1,BA2v1,ABAv1,B2Av1,A2Bv1,BABv1,AB2v1,B3v1,

...
...

(3.5)
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Algorithm 2 Generalized Arnoldi-type (GAT) process for matrix pairs {A,B}
Input: Matrices A,B ∈ Cn×n, v1, with ||v1|| = 1. Number of desired eigenpairs l,
number of steps k ≥ l.
1. N = 1;
2. For j = 1,2,. . . ,k do

a. If j > N break
b. v̂ = Av j
c. For i = 1,2, . . . ,N do
ha;i j = v∗i v̂; v̂ = v̂− viha;i j
End For
ha;N+1, j = ||v̂||
d. If ha;N+1, j > 0,
N = N +1,vN = v̂/ha;N j
End If
v̂ = Bv j
e. For i = 1,2, . . . ,N do
hb;i j = v∗i v̂; v̂ = v̂− vihb;i j
End For
hb;N+1, j = ||v̂||,
f. If hb;N+1, j>0
N = N +1,vN = v̂/hb;N j
End If

3. End For
4. Compute the l eigenvalues of the largest magnitude and associated eigenvectors
{λi,yi} of the generalized eigenproblem HA(1:k,1:k)y = λHB(1:k,1:k)y, where ‖yi‖= 1,
HA(1:k,1:k) = [ha;i j]

k
i, j=1 and HB(1:k,1:k) = [hb;i j]

k
i, j=1.

Output: Ritz value and Ritz vector pairs {λi,xi}l
i=1, where xi = V(:,1:k)yi and

V(:,1:k) = [v1,v2, . . . ,vk].
.
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ordered from top to bottom and from left to right. α j (and β j as well) can only increase
by 2 at each step.

For the Ritz value/Ritz vector pairs obtained, we have the following residual bounds
generalizing similar results for the Arnoldi or the generalized Arnoldi algorithms.

Theorem 1. Let λi and xi be the Ritz value and Ritz vector xi obtained by k steps of
the Generalized Arnoldi-type process (Algorithm 2). Let p be the smallest integer such
that max{αp,βp} ≥ k. Then, we have

‖(A−λiB)xi‖ ≤ (‖HA(k+1:αk,p:k)‖+ |λi|‖HB(k+1:βk,p:k)‖)‖yi(p:k)‖
≤ (‖A‖+ |λi|‖B‖)‖yi(p:k)‖.

Proof: It follows from (3.4) that

(A−λiB)xi = (AV(:,1:k)−λiBV(:,1:k))yi

= (V(:,1:αk)HA(1:αk,1:k)−λiV(:,1:βk)HB(1:βk,1:k))yi

= (V(:,1:k)HA(1:k,1:k)−λiV(:,1:k)HB(1:k,1:k))yi

+(V(:,k+1:αk)HA(k+1:αk,1:k)−λiV(:,k+1:βk)HB(k+1:βk,1:k))yi

= (V(:,k+1:αk)HA(k+1:αk,1:k)−λiV(:,k+1:βk)HB(k+1:βk,1:k))yi.

Since ha;i j = 0 for i > α j and αp−1 ≤ k, we have HA(k+1:αk,1:p−1) = 0. Similarly,
HB(k+1:αk,1:p−1) = 0. Taking the norm, we obtain

‖(A−λiB)xi‖ ≤ ‖(V(:,k+1:αk)HA(k+1:αk,1:k)−λiV(:,k+1:βk)HB(k+1:βk,1:k))yi‖
≤ ‖HA(k+1:αk,1:k)yi‖+ |λi|‖HB(k+1:βk,1:k)yi‖
= ‖HA(k+1:αk,p:k)yi(p:k)‖+ |λi|‖HB(k+1:βk,p:k)yi(p:k)‖
≤ (‖HA(k+1:αk,p:k)‖+ |λi|‖HB(k+1:βk,p:k)‖)‖yi(p:k)‖
≤ (‖A‖+ |λi|‖B‖)‖yi(p:k)‖,

where we have used that ‖yi‖= 1 and

‖HA(k+1:αk,p:k)‖ ≤ ‖HA(1:αk,1:k)‖= ‖V ∗(:,1:αk)
AV(:,1:k)‖ ≤ ‖A‖,

and similarly ‖HB(k+1:βk,p:k)‖ ≤ ‖B‖. 2

The bound shows that we may expect a small residual in two ways. If ‖HA(k+1:αk,p:k)‖
and ‖HB(k+1:βk,p:k)‖ are small, then the residual is small. In this case, we have a nearly
invariant subspace and all Ritz values are accurate approximations of eigenvalues. On
the other hand, when the last k− p+ 1 components of yi are small, the residual also
is small. In this case, the Ritz values provide accurate approximations of eigenvalues,
without obtaining an invariant subspace.

4. Numerical examples

This section presents a few computed examples that illustrate the performance of
Algorithms 1 and 2. The former implements the RGAT (restarted generalized Arnoldi-
type) method and the latter the GAT (generalized Arnoldi-type) method. We allow both
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algorithms about the same storage space during the computations. This is meaningful
when the matrices A and B are large and the available computer storage is limited. The
RGAT method requires storage space for the matrices V2p and AV2p; hence the total
storage requirements is about 4p n-vectors in addition to storage required for func-
tions for the evaluation of matrix-vector products with the matrices A and B. The GAT
method requires storage of about 2k n-vectors in addition to storage required the evalu-
ation of matrix-vector products with A and B. Here k is the number of iterations carried
out with Algorithm 2. We let k = 2p. Then Algorithms 1 and 2 demand about the same
storage space. The initial vector for both algorithms is chosen to have normally dis-
tributed entries with mean zero and variance one. The matrices used in our experiments
are from Matrix Market [14].

All numerical calculations were carried out in MATLAB R2019a on a MacBook
Pro computer with a 2.8 GHz Quad-Core Intel Core i7 processor and 16 GB of RAM.
The “exact” eigenvalues and eigenvectors in our experiments are computed with the
MATLAB function eig and sorted appropriately.

Example 1
Let A,B∈R512×512 be the nonsymmetric matrices denoted by DWA512 and DWB512

in [14] and referred to as “Square Dielectric Waveguide”. The MATLAB function eig
yields accurate approximations of the 5 eigenvalues of largest magnitude:

λ1 =−8.2510, λ2 =−7.4413, λ3 =−6.7296, λ4 =−6.5730, λ5 =−5.8698.

We consider these eigenvalues exact.
Set δ = 10−6 and p = 5 in the RGAT method to compute l = 5 eigenpairs with

eigenvalues of largest magnitude. The computed eigenvalues are shown in Table 1.
The eigenvalues determined by the RGAT method have tiny imaginary parts, which
can be ignored.

Table 1: Example 1: Eigenvalues of largest magnitude for Example 1 computed by the RGAT and GAT
methods. i denotes the imaginary unit.

Eigenvalues
λRGAT λGAT

1 −8.2510+1.0802 ·10−18i −7.0519
2 −7.4413+3.6125 ·10−15i −3.9702
3 −6.7296−1.9641 ·10−13i −3.2267
4 −6.5730−2.5972 ·10−14i −3.1255
5 −5.8695−1.9169 ·10−10i −2.7573

Figure 1 depicts the exact eigenvalues and the computed approximate eigenvalues
determined by the RGAT and GAT methods. We can notice that the eigenvalues com-
puted by the RGAT method are very accurate, while the eigenvalues computed by GAT
are not.

Table 2 displays the relative error in the eigenvalue approximations computed by
the RGAT and GAT methods. We denote these errors by ERGAT and EGAT , respectively.
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Figure 1: Example 1.

The table shows the RGAT method to yield more accurate approximations than the
GAT method. The accuracy of the eigenvalues of largest magnitude is the highest. We
will return to this observation below.

Table 2: Example 1: Relative error in the computed approximate eigenvalues determined by the RGAT and
GAT methods.

ERGAT EGAT

1.4424 ·10−14 1.4532 ·10−1

2.6665 ·10−10 4.6647 ·10−1

5.2484 ·10−9 5.2052 ·10−1

2.9322 ·10−9 5.2449 ·10−1

5.7368 ·10−5 5.3025 ·10−1

Table 3 shows the relative errors in the approximate eigenvectors computed by the
RGAT and GAT methods. We denote these errors by EVRGAT and EVGAT .

While the storage requirement of the RGAT and GAT methods is about the same,
the computational effort is not. When δ = 10−6, the RGAT method requires 2280
matrix-vector product evaluations, and the number of iteration is 114. If instead δ =
10−4, then the numbers of matrix-vector product evaluations required by RGAT is 1240
and the number of iteration is 62. The number of matrix-vector product evaluations of
the GAT method is only 20. We conclude that the RGAT method is competitive when
the matrices are large and computer storage is a limited.

Table 4 displays how the number of iterations changes with p. Just like above,
we set δ = 10−6 and are interested in determining the l = 5 eigenvalues of largest
magnitude. The table shows the number of iterations required to satisfy the stopping

11



Table 3: Example 1: Relative error in the eigenvectors computed by the RGAT and GAT methods.

EVRGAT EVGAT

8.1953 ·10−11 8.7019 ·10−1

3.0936 ·10−8 1.3226 ·100

1.0689 ·10−5 1.4173 ·100

1.8211 ·10−5 1.4132 ·100

2.7825 ·10−2 1.3457 ·100

criterion of Algorithm 1 to decrease as p increases. Thus, when l eigenvalues of largest
magnitude are desired, and there is enough computer storage available to allow p > l,
the number of iterations typically will decrease by increasing p. The computational
effort per iteration grows with p. The choice of p that results in the shortest execution
time depends on properties of the matrix pair {A,B}, including the size of the matrices,
the number of desired eigenvalues l, implementation details of the Algorithm 1, as well
as on the properties of the computer used.

Table 4: Example 1: Number of iterations as a function of with p when we seek to determine the l = 5 largest
eigenvalues.

p Number of iterations
5 114
7 56

10 34

Example 2
Let A,B ∈R782×782 be the nonsymmetric matrices BFW782A and BFW782B from

[14]. They are referred to as “Bounded Finline Dielectric Waveguide”. The MATLAB
function eig determines the five eigenvalues of largest magnitude

λ1 =−2.7557 ·106, λ2 =−2.7383 ·106, λ3 =−2.6701 ·106,

λ4 =−2.5707 ·106, λ5 =−2.4464 ·106.

We consider these eigenvalues exact. We are interested in computing approximations
of these eigenvalues and associated eigenvectors by the RGAT and GAT methods. The
former method is applied with δ = 10−6.

Figure 2 displays the exact and computed eigenvalues by the RGAT and GAT meth-
ods. The eigenvalues computed by the RGAT method are seen to be very close to the
exact eigenvalues.

Table 6 displays the relative errors in the eigenvalues computed by the RGAT and
GAT methods, which we designate by ERGAT and EGAT , respectively, and Table 7 shows
the relative error in eigenvectors computed by the RGAT and GAT methods.
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Table 5: Example 2: Approximations of eigenvalues of largest magnitude computed by the RGAT and GAT
methods.

Eigenvalues
λRGAT λGAT

1 −2.7557 ·106−1.5176 ·10−10i −2.8261 ·104

2 −2.7383 ·106−5.3305 ·10−11i −3.7397 ·104

3 −2.6701 ·106−4.2551 ·10−10i −6.8041 ·104

4 −2.5707 ·106 +1.8653 ·10−10i −8.9053 ·104

5 −2.4468 ·106 +9.9294 ·10−10i −1.1114 ·105

Table 6: Example 2: Relative error in the approximate eigenvalues computed by the RGAT and GAT meth-
ods.

ERGAT EGAT

2.3709 ·10−6 9.8974 ·10−1

1.4843 ·10−6 9.8634 ·10−1

3.8773 ·10−6 9.7452 ·10−1

2.7669 ·10−6 9.6536 ·10−1

1.3801 ·10−4 9.5457 ·10−1

Table 7: Example 2: Relative error in the eigenvectors computed by the RGAT and GAT methods.

EVRGAT EVGAT

2.7784 ·10−4 1.4087 ·100

1.2557 ·10−4 1.4208 ·100

3.6269 ·10−4 1.3647 ·100

7.8851 ·10−3 1.3953 ·100

3.8769 ·10−2 1.4079 ·100
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Figure 2: Example 2.

The number of matrix-vector product evaluations required by RGAT is 3860 when
δ = 10−6 and the number of iterations is 193. Increasing δ reduces the number of iter-
ations. For instance, when δ = 10−4, the number of matrix-vector product evaluations
by the RGAT method is reduced to 2060 and the number of iterations to 103.

Table 8 shows the number of iterations of the RGAT method decreases as p in-
creases, and the parameter δ = 10−6 and the number of desired eigenvalues l = 5 are
kept fixed.

Table 8: Example 2: The number of iterations as a function of p.

p Number of iterations
5 193
7 153

10 121

5. Conclusion

We have developed a generalized Arnoldi method for the calculation of a few eigen-
pairs of a generalized eigenvalue problem. The method requires a fairly small amount
of computer memory, and does not require the solution of large linear systems of equa-
tions. However, many iterations may be needed. The number of iterations depends on
the required accuracy, on the amount of storage used, and of course on the matrix pair
{A,B}.
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