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Abstract

Batch normalization (BN) is a popular and ubiquitous method in deep learning that has
been shown to decrease training time and improve generalization performance of neural
networks. Despite its success, BN is not theoretically well understood. It is not suitable
for use with very small mini-batch sizes or online learning. In this paper, we propose
a new method called Batch Normalization Preconditioning (BNP). Instead of applying
normalization explicitly through a batch normalization layer as is done in BN, BNP applies
normalization by conditioning the parameter gradients directly during training. This is
designed to improve the Hessian matrix of the loss function and hence convergence during
training. One benefit is that BNP is not constrained on the mini-batch size and works
in the online learning setting. Furthermore, its connection to BN provides theoretical
insights on how BN improves training and how BN is applied to special architectures such
as convolutional neural networks. For a theoretical foundation, we also present a novel
Hessian condition number based convergence theory for a locally convex but not strong-
convex loss, which is applicable to networks with a scale-invariant property.

Keywords:  Deep neural networks, Convolutional neural networks, Preconditioning,
Batch Normalization

1. Introduction

Batch normalization (BN) is one of the most widely used techniques to improve neural
network training. It was originally designed in Toffe and Szegedy (2015) to address internal
covariate shift. It has been found to increase network robustness with respect to parameter
and learning rate initialization, to decrease training times, and to improve network regu-
larization. Over the years, BN has become a standard technique in deep learning but the
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theoretical understanding of BN is still limited. There have been many papers that analyze
various properties of BN but some important issues remain unaddressed.

In this paper, we develop a method called Batch Normalization Preconditioning (BNP).
Instead of using mini-batch statistics to normalize hidden variables as in BN, BNP uses these
statistics to transform the trainable parameters through preconditioning, which improves
the conditioning of the Hessian of the loss function and hence accelerates convergence. This
is implicitly done by applying a transformation on the gradients during training. Precon-
ditioning is a general technique in numerical analysis (Saad, 2003) that uses a parameter
transformation to accelerate convergence of iterative methods. Here, we show that poten-
tially large differences in variances of hidden variables over a mini-batch adversely affect
the conditioning of the Hessian. We then derive a suitable parameter transformation that
is equivalent to normalizing the hidden variables.

Both BN and BNP use mini-batch statistics to accelerate convergence but the key differ-
ence is that BNP does not change the network architecture, but instead uses the mini-batch
statistics in an equivalent transformation of parameters to accelerate convergence. In partic-
ular, BNP may use statistics computed from a larger dataset rather than the mini-batches.
In contrast, BN has the mini-batch statistics embedded in the architecture. This has the
advantage of allowing gradients to pass through these statistics during training but this is
also a theoretical disadvantage because the training network is dependent on the mini-batch
inputs. In particular, the inference network (with a single input) is different from the train-
ing network (with mini-batch inputs). This may pose a challenge in implementation with
small mini-batches as well as in analysis, even though BN largely works well in practice.
We outline our main contributions below:

e We develop a novel Hessian condition number based convergence theory for a lo-
cally convex but not strong-convex loss, which is applicable to networks with a scale-
invariant property (Neyshabur et al. (2015b); Meng et al. (2019)).

e Under certain conditions, BNP is equivalent to BN. Because of this equivalency, the
theoretical basis of BNP provides an explanation of why BN works.

e While BNP has a performance comparable to BN in general, it outperforms BN in
the situation of very small mini-batch sizes or online learning where BN is known to
have difficulties.

e BN has been adapted to special architectures like convolutional neural networks
(CNNs) (Ioffe and Szegedy, 2015) and recurrent neural networks (RNNs) (Laurent
et al., 2016; Cooijmans et al., 2016) but the computation of the required mini-batch
statistics is more nuanced. For example, in CNNs the mean and variance across the
mini-batch and spatial dimensions are used without clear justification. Derivation
of BNP for CNNs naturally leads to using these statistics and provides a theoretical
understanding of how BN should be applied to CNNs.

Throughout the paper, || - || denotes the 2-norm. If A is a square and invertible matrix,
k(A) = ||Al|||A~Y|| denotes the condition number of A. For a singular or rectangular matrix
A, we define the condition number as x(A) = Ze2x | where o is the smallest nonzero
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singular value of A and opax the largest singular value of A. All vectors refer to column
vectors. A diagonal matrix with diagonal entries given by the vector v is denoted by diag(v),
and e = [1,1,--- ,I]T denotes the vector of ones with a suitable dimension. All functions
and operations of vectors are applied elementwise.

In Section 2, we present BN and various related works. We introduce preconditioned
gradient descent in Section 3.1 followed by a Hessian based convergence theory for convex
but not strongly-convex losses in Section 3.2. We derive the BNP method in Section 3.3.
We discuss the connection between BN and BNP in Section 3.4 and derive BNP for CNNs
in Section 4. Finally, we provide experimental results in Section 5. Proofs of most results
are given in the appendix.

2. Batch Normalization and Related Work

Consider a fully connected multi-layer neural network in which the ¢-th hidden layer is
defined by

hO = g(WwORED 40y, (1)

where h(®) is the network input z, ¢ is an elementwise nonlinear function, and h(¥) € R™
is the £-th hidden variable with W and b(®) being the associated weight and bias. We

refer to such a network as a wvanilla network. During training, let {x1,x2,...,2x} be a
mini-batch consisting of N examples and H = [hgg_l),h(f_l), .. ,h%_l)}T the matrix of

associated hidden variables of layer £ — 1. BN replaces the ¢-th hidden layer by

WD — g
OH

h =g (W(Z)Bﬂn(h“_l)) + bm) ; Bgy (h“_l)) =7 +8 (2)

where o and pg are the standard deviation and mean vectors of {hge_l)} (i.e. the rows of
H) and ~, 8 are the respective trainable re-scaling and re-centering parameter vectors. The

(“=1) and then re-scales

BN transformation operator B, (-) first normalizes the activation h
and re-centers it with v and 3; see Algorithm 1 for details. In practice, the denominator
in (2) is the square root of the variance vector plus a small € > 0 to avoid division by zero.
Note that BN can be implemented as h(9) = g (Bgﬁ(W(Z)h(é*l))), which will be referred to

as pre-activation BN. In this paper we will focus on (2), which is called post-activation BN.

Algorithm 1 Batch Normalization Bg - (h)

Input: h; € R™ and H = [hy, h,..., hy]T € RVxne,
1. pg % Zf\il h; € R™ (Mini-batch mean).
2. 0} — + Zf\i 1(hi — pg)? € R™ (Mini-batch variance. The square is elementwise).

1
\/0’%_1-}—6
Output: Bg(h, A) < diag(y)h + B (Re-scaling and re-shifting).

3. h < diag ( ) (h — pi) (Centering and scaling).

During training, the BN network (2) changes with different mini-batches since o and
wpr are based on the mini-batch input. During inference, one input is fed into the network
and oy and pug are not well-defined. Instead, the average of the mini-batch statistics
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o and pg computed during training, denoted as o and p, are used (Ioffe and Szegedy,
2015). Alternatively, o0 and p can be computed using moving averages computed as o <
po+ (1 —p)og and p < ppu+ (1 — p)py for some 0 < p < 1.

To reconcile the training and inference networks, batch renormalization (loffe, 2017)
applies an additional affine transform in Bg (-) as

3 pe=1) — pU=1) _
Rﬁ,w<h(€ 1)>:70'u+5:7<0H“HS+d + 8 (3)

where s = oy /o and d = (ug — p)/o. The first formula in (3) is used during inference, but
the second one is used during training where s, d are considered fixed but oy and py are
considered parameters with gradients passing through them.

There have been numerous works that analyze different aspects of BN. The work by
Arora et al. (2018) analyzes scale-invariant properties to demonstrate BN’s robustness with
respect to learning rates. Cho and Lee (2017) explores the same property in a Riemannian
manifold optimization. The empirical study performed by Bjorck et al. (2018) indicates
how BN allows for larger learning rates which can increase implicit regularization through
random matrix theory. In Cai et al. (2019) and Kohler et al. (2018), the ordinary least
squares problem is examined and convergence properties are proved. Kohler et al. (2018)
also discusses a two-layer model. Ma and Klabjan (2019) analyzes some special two-layer
models and introduces a method that updates the parameters in BN by a diminishing mov-
ing average. Santurkar et al. (2019) proves bounds to show that BN improves Lipschitzness
of the loss function and boundedness of the Hessian. Lian and Liu (2018) analyzes BN per-
formance on smaller mini-batch sizes and also suggests that batch normalization performs
well by improving the condition number of the Hessian. Yang et al. (2019) uses a mean field
theory to analyze gradient growth as the depth of a BN network increases, and Galloway
et al. (2019) shows empirically that a BN network is less robust to small adversarial per-
turbations. van Laarhoven (2017) discusses the relation between BN and Lo regularization
and Luo et al. (2018) gives a probabilistic analysis of BN’s regularization effects. Addi-
tionally, Daneshmand et al. (2020) provides theoretical results to show that a very deep
linear vanilla networks leads to rank collapse, where the rank of activation matrices drops
to 1, and BN avoids the rank collapse and benefits the training of the network. Compared
with the existing works, our results apply to general neural networks and our theory has
practical implications on how to apply BN to CNNs or on small mini-batch sizes.

There are several related works preceding BN. Natural gradient descent (Amari, 1998)
is gradient descent in a Riemannian space that can be regarded as preconditioning for the
Fisher matrix. More practical algorithms with various approximations of the Fisher matrix
have been studied (see Raiko et al., 2012; Grosse and Salakhudinov, 2015; Martens and
Grosse, 2015, and references contained therein). In Desjardins et al. (2015), a BN-like
transformation is carried out to whiten each hidden variable to improve the conditioning
of the Fisher matrix. Using an approximate Hessian/preconditioner has been explored
in Becker and Cun (1989). Li (2018) discusses preconditioning for both the Fisher and
the Hessian matrix and suggests several possible preconditioners for them. Chen et al.
(2018) and Zhang et al. (2017) use some block approximations of the Hessian, and Osher
et al. (2018) uses a discrete Laplace matrix. Although BNP uses the same framework of
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preconditioning, the preconditioner is explicitly constructed using batch statistics and we
demonstrate how it improves the conditioning of the Hessian.

There are other normalization methods such as LayerNorm (Ba et al., 2016; Xu et al.,
2019), GroupNorm (Wu and He, 2018), instance normalization (Ulyanov et al., 2016), weight
normalization (Salimans and Kingma, 2016), and SGD path regularization (Neyshabur
et al., 2015a). They are concerned with normalizing a group of hidden activations, which
are totally independent of our approach as well as BN’s. Indeed, they can be combined
with BN as shown in Summers and Dinneen (2020) as well as our BNP method.

3. Batch Normalization Preconditioning (BNP)

In this section we develop our main preconditioning method for fully connected networks
and present its relation to BN.

3.1 Preconditioned Gradient Descent

Given the parameter vector  of a neural network and a loss function £ = £(0), the gradient
descent method updates an approximate minimizer 0, as:

9k+1 — ‘9k — OéVﬁ(@k), (4)

where « is the learning rate. Here and throughout, we assume L is twice continuously
differentiable, i.e. V2£(f) exists and is continuous. Let 6* be a local minimizer of £ (or
VL(6*) = 0 and the Hessian matrix V2£(6*) is symmetric positive semi-definite) and let
Amin and Apay be the minimum and maximum eigenvalues of V2L£(0*). Assume Ay, > 0.
Then for any € > 0, there is a small neighborhood around 6* such that, for any initial
approximation #j in that neighborhood, we have

10k1 = 07| < (r + )10k — 67, ()

where r = max{|1l — aA\min|, |1 — @®Amax|}; see Polyak (1964) and (Saad, 2003, Example
4.1). In order for r < 1, we need & < 2/Amax = 2/[|V2L(0*)||. Moreover, minimizing r with

respect to « yields a = m with optimal convergence rate:
k—1
r=—:, 6
k+1 (6)

where )
k=K (VEL(OF)) = =
)\min
is the condition number of V2£(6*) in 2-norm. Thus the optimal rate of convergence is
determined by the condition number of the Hessian matrix.
To improve convergence, we consider a change of variable § = Pz for the loss function
L = L(0), which we call a preconditioning transformation. Writing £ = L(Pz), the gradient
descent in z is

241 = 2k — aV,L(Pzp) = 2, — aPTVyL (Ok) , (7)
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where ), = Pz,. Let z* = P~10*. The corresponding convergence bound becomes
lzkas = 21 < (4 ) ll2x — 2°)
with r as determined by (6) and the Hessian of £ with respect to z:
V2L (Pz*) = PTVAL (6) P.

If P is such that PTV3L (6*) P has a better condition number than V2L (6*), r is reduced
and the convergence accelerated. Multiplying (7) by P, we obtain the equivalent update
scheme in 0, = Pzy:

Ors1 = 0p — aPPTN L (6)) . (8)

We call PPT a preconditioner. Note that (8) is an implicit implementation of the iteration
(7) and simply involves modifying the gradient in the original gradient descent (4).

3.2 Hessian Based Convergence Theory for Neural Networks

The Hessian based convergence theory given above assumes strong local convexity at a local
minimum (i.e. Apin > 0). This may not hold for a neural network (1). For example, if
we use the ReLU nonlinearity in (1), the network output is invariant under simultaneous
scaling of the jth row of W1 by any a > 0 and the jth column of W® by 1/a. This
positively scale-invariant property has been discussed in Neyshabur et al. (2015b) and Meng
et al. (2019) for example and is known to lead to a singular Hessian. Here, we develop a
generalization of the strong convexity based theory (5) to this situation.

For a fixed network parameter 6y, we can write all its invariant scalings for all possible
rows and columns in the network as y(t) where 0 < ¢t € R¥ for some k is a vector of scaling
and 0y (tg) = 0y for some tg. We call § = 0y(t) a positively scale-invariant manifold at 6.
Then, the network output is constant for 6 on a positively scale-invariant manifold in the
parameter space. This implies that the loss function L£(6y(t)) = + Zfil L (f(xi,60(t)),y:)
is constant with respect to ¢, where f(x;,6p(t)) is the output of the network with the
parameter 0y(t) and input ;.

If 6* is a local minimizer, let 6*(¢) be the positively scale-invariant manifold at 8*. Then
0*(t) is a local minimizer for all t > 0. So VL(6*(¢)) = 0 for all ¢ > 0 and thus, by taking
derivative in ¢, V2L(0*(t))D:0*(t) = 0, where D;0*(t) = [aggt)]i’j denotes the Jacobian
matrix of §*(t) with respect to ¢t. Thus, the Hessian V2L£(6*(t)) is singular with the null
space containing at least the column space C(t) := Col (D:0*(t)).

With Apin = 0, the condition number based convergence theory (5) does not apply.
However, the theory can be generalized by considering the error 8 — 67, where 8; is the
local minimizer closest to 6y, i.e. 0; = 0*(t;) where t;, = argmin,. ¢[|0 — 6*(¢)||. By taking
derivative, we have (0 — 05)T D;0*(t) = 0, i.e. 0 — 05 is orthogonal to the tangent space,
or O, — 05 € C(t;)*. With this, we can prove (see Appendix)

1051 = Okl < 10rs1 — 0K < (T — aV2L(63)) (0r — 00)]| + O (1(6x — 00)11%) -

and thus a bound similar to (5) with Amin replaced by A% . . the smallest eigenvalue of

V2L(0;) on C(t)*. Assuming C(ty) is exactly the null space of VZL(6;), i.e. the singularity
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of the Hessian is entirely due to the positive scale-invariant property, we have A\’ . > 0 being
the smallest nonzero eigenvalue. We can then analyze convergence in terms of A}, . We
present a complete result in the following theorem with a proof given in the Appendix.

Theorem 1 Consider a loss function L with continuous third order derivatives and with
a positively scale-invariant property. If 0 = 6*(t) is a positively scale-invariant manifold at
local minimizer 0%, then the null space of the Hessian V2L(0*(t)) contains at least the column
space Col (Dy0*(t)). Furthermore, for the gradient descent iteration Oy = 0 — aVL(0y),
let 05 be the local minimizer closest to Oy, i.e. 0; = 0*(t) where ty, = argmingq||0r —0*(t)|
and assume that the null space of V2L (0*(t)) is equal to Col (Dy8*(t)). Then, for any e > 0,
if our initial approzimation 0y is such that |0 — 65| is sufficiently small, then we have, for
all k>0,

10k 11 = Ol < (r + )6k — O3],

where r = max{|1 — aX!, |,||1 — aApmaz||} and X!, and Ay are the smallest nonzero

eigenvalue and the largest eigenvalue of VQE(G,’;), respectively.

As before, the optimal r is given by (6) with a condition number for the singular Hessian
defined by k* = % This eliminates the theoretical difficulties of the Hessian singularity
caused by the scale-invariant property.

We note that there are convergence results in less restrictive settings, for instance on L-
Lipschitz or S-smoothness functions; see Nemirovski et al. (2009) and Bubeck (2015). They
are applicable to convex but not strong-convex functions but they only imply convergence
of order O(1/k). Without a linear convergence rate, it is not clear whether they can be
used for convergence acceleration.

3.3 Preconditioning for Fully Connected Networks

We develop a preconditioning method for neural networks by considering gradient descent
for parameters in one layer. In the theorem below, we derive the Hessian of the loss function
with respect to a single weight vector and single bias entry. General formulas on gradients
and the Hessian have been derived in Naumov (2017). Our contribution here is to present the
Hessian in a simple expression that demonstrates its relation to the mini-batch activations.

Consider a neural network as defined in (1); that is () = ¢ (W(f)h(g_l) + b(g)) e R™.

We denote hy) =g <a§€)> as the ith entry of h(®) where age) = wz@Th(Z_l) + bz(»e) € R. Here

wge)T € R™™-1 and bgz) are the respective ith row and entry of W® and b©, and ny_; is

the dimension of h(*=1) . Let

ol = [bge),w,fe)T} c Rlx(nuﬁrl)’ h— [h(ﬁl—l):| e R(né—1+1)><1’ and az(f) — o', (9)

Proposition 2 Consider a loss function L defined from the output of a fully connected
multi-layer neural network for a single network input x. Consider the weight and bias
Z(Z),bge) at the f-layer and write L = L (agz)) =L (@Th) as a function of
()

i

parameters w

the parameter w through a;’ as in (9). When training over a mini-batch of N inputs, let
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_ _ _ ~ 1
{hgg 1), hge 1), e h% 1)} be the associated K1) and let hj = [h(g_n € Rve—1+1x1 " [t
J

I A,
L= L(w) ::NZL(w hj>

J=1

be the mean loss over the mini-batch. Then, its Hessian with respect to w is

V2L(0) = H'SH (10)
where H = le, H],
hggil)T 1 I (@T}\h)
H= : and S = — , (11)
f—'l)T N T
S L (@ThN)

with all off-diagonal elements of S equal to 0.

Proposition 2 shows how the Hessian of the loss function relates to the neural network
mini-batch activations. Since k(V%L) < k(H)2k(S) (see Proposition 11 in Appendix), our
goal is to improve the Hessian conditioning through that of H. Although the matrix S
could also cause ill-conditioning, there is no good remedy. Thus we focus in this work on
using the activation information to improve the condition number of H.

One common cause of ill-conditioning of a matrix is due to different scaling in its columns
or rows. Here, if the features (i.e. the entries) in hU=1 have different orders of magnitude,
then the columns of H have different orders of magnitude and H will typically be ill-
conditioned. Fortunately, this can be remedied by column scaling. The conditioning of a
matrix may also be improved by making columns (or rows) orthogonal as is in an orthogonal
matrix. Employing these ideas to improve conditioning of a , we propose the following
preconditioning transformation:

—1
. . o T N 0
@ = Pz, with P:=UD, U:= [0 T ] D:= [0 diag(oH)] : (12)
where
(t-1) 1 & (6—1) 2
W —HTe— Zh , and ‘71211 ::NZ(hj — WH) (13)
j=1

are the (vector) mean and variance of {h i } respectively. Then, with this preconditioning,
the corresponding Hessian matrix in z is PTV%EP = PTHTSHP and

1T

—1)7T
1 (Y b)) 1 =
HP = |: : D=|: :
_1\T T
N ) | up

OH
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Namely, the U matrix centers {hg-g_l)} and then the scaling matrix D normalizes the vari-
ance. We summarize this as the following theorem.

Theorem 3 For the loss function L = L(w) defined in Proposition 2, if we use the precon-
ditioning transformation w = Pz in (12), then the preconditioned Hessian matriz is

vie = PTVviep = GTSG.

where
L ogf
G=|: :|:=HP (14)
e
g (e=1) L (e-1) , . .
and g; = (hj — pg)/om is h; normalized to have zero mean and unit variance.

In other words, the effect of preconditioning is that the corresponding Hessian matrix

is generated by the normalized feature vectors g;. Our next theorem shows that this nor-
(£-1)

malization of hj improves the conditioning of V%ﬁ in two ways. First, note that

HU = le, H—eup] and (H —epj;)Te=0.

So multiplying H by U makes the first column orthogonal to the rest. This will be shown
to improve the condition number. Second, oy is the vector of the 2-norms of the columns
of H — eug scaled by v/N. Thus, multiplying H — eu}} by D scales all columns of H — eug
to have the same norm of v/N. This also improves the condition number in general by a
theorem of Van der Sluis (1969) (given in Appendix A as Lemma Al; see also (Higham,
2002, Theorem 7.5)).We summarize in the following theorem.

Theorem 4 Let H = le, H] be the extended hidden variable matriz, G the normalized hid-
den variable matrixz, U the centering tmnsformatz’oAn matrixz, and D the variance normalizing
matriz defined by (10), (12), and (14). Assume H has full column rank. We have

k(HU) < k(H).

This inequality is strict if g # 0 and is not orthogonal to Tyax, where Tymax i an eigenvector

corresponding to the largest eigenvalue of the sample covariance matrix N£1 (H—e,u:’];)T(H—

eug) (i.e. principal component). Moreover,

k(G) = k(HUD) < /ng_1 +1  min  x(HUDy).
Do s diagonal

We remark that, if ug = 0 (i.e. the data is already centered), then U = I and hence no
improvement in conditioning is made by HU. The second bound can be strengthened with
the \/ny_1 + I factor removed, if U THTHU has a so-called Property A (i.e. there exists a
permutation matrix P such that P(UTHTHU)PT is a 2 x 2 block matrix with the (1,1)
and (2,2) blocks being diagonal); see (Higham, 2002, p.126). In that case, the scaling by
D yields optimal condition number, i.e. kK(G) = minp, K(HUDy). However, Property A is
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not likely to hold in practice; so this result only serves to illustrate that the scaling by D
yields a nearly optimal condition number with /ny—; + 1 being a pessimistic bound.

In general, if the entries of oy (or the diagonals of D) have different orders of magnitude,
then the columns of HU are badly scaled and is typically ill-conditioned. This can be seen
from

K(HU) < k(HUD)k(D™") = k(HUD)K(D) < k(D)/ne—1 + 1 min k(HUDy).

Other than the factor \/ny_1 + I, each of the inequalities above is tight. So, ﬁ(ﬁ) > m(ﬁU)
can be as large as k(D)minp, k(HUDy). In that situation, we have that
K(G) < V/nyg—1 + ITminp, k(HUDy) may be as small as \/mn(ﬁ)/m(D). Thus, the
preconditioned Hessian GTSG may improve the condition number of HTSH by as much as
k(D)2

Over one training iteration, the improved conditioning as shown by Theorem 4 implies
reduced r and hence improved reduction of the error (5) for that iteration. With mini-batch
training, the loss function and the associated Hessian matrix change at each iteration, and
so does the preconditioning matrix. Thus, our preconditioning transformation attempts
to adapt to this change of the Hessian and mitigates its effects. Globally, with the loss
changing at each step, it is difficult to quantify the degree of improvement in conditioning
for all steps and how convergence improves over many steps as even the local minimizer
changes. So our results only demonstrate the potential beneficial effects of preconditioning
at each iteration.

Since we use one learning rate for all the layer parameters, the convergence theory in
Section 3.1 shows that we need the learning rate to satisfy o < 2/||V32L(0*)]| for the Hessians
of all layers. Then, a large norm of the Hessian for one particular layer will require a smaller
learning rate overall. It is thus desirable to scale all Hessian blocks to have similar norms.
With the BNP transformation, the transformed Hessian is given by G whose norm can be
estimated using a result from random matrix theory as follows.

First, we write G = HUD = [e, G] € RN*(e-1t1) where G = (H — e )diag (o)t
Recall that N is the mini-batch size. Since e is orthogonal to H — eu’k; and hence to G, we
have |G| = max{|le|, |G||} = max{v/N, ||G||}. Furthermore, as a result of normalization,
the entries of the matrix G = [g;;] € RN ™1 satisfy >.i;9ij = 0 and nele D gfj =1
We can therefore model the entries of G = [g;;] as random variables with zero mean and unit
variance. In addition, the entries can be considered approximately independent. Specifically,
if the input x to the network has independent components and the weights and biases of
the network are all independent, then the components of A=) are also independent and
so are their normalizations. Hence, for an iid mini-batch inputs, the entries of G are also
independent. Note that the weights and biases are typically initialized to be iid although,
after training, this is no longer the case. If the independence holds, then, using a theorem in
random matrix theory (Seginer, 2000, Corollary 2.2) (see also Lemma A2 in Appendix), we
have that the expected value of |G| is bounded by some constant C' times max{,/nz_1, V'N}.
Then the same holds for |G|| < C max{,/m¢_1, VN}. Since N is common for all layers, if we
scale G by 1/q where ¢> = max{ny_1/N, 1}, then (1/¢)G is bounded by v/N, independent
of ny_1, the dimension of a hidden layer. Hence, the Hessian blocks for different layers are
expected to have comparable norms. This is summarized by the following proposition.

10
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Proposition 5 Let ny_1 > 3 and assume the entries of the normalized hidden wvariable
matriz, G € RN*™-1 gre iid random variables with zero mean and unit variance. Then the
expectation of the norm of (1/q)CArY = (1/q) [e, G] is bounded by C\/N for some constant C
independent of ng_1, where ¢*> = max{n,_1/N,1}.

We call the preconditioning by (1/q)P a batch normalization preconditioning (BNP). For
the fth layer, it takes the mini-batch activation H = [hgeil),hgfl), .. ,h%il)}T and the
gradients al?vﬁ(,g) € R>ne-1, % € R™" computed as usual and then modifies the gradient
(see (8)) by the preconditioning transformation in the gradient descent iteration as follows:

pO" pO" 1 _ . 7 1 —uT 1 0
lw(Z)T < w®”r _Q?PP » P = [O I ] [0 diag(é)] (15)

We summarize the process as Algorithm 2.

oL
50

ow T

Algorithm 2 One Step of BNP Training on W® 5 of the th Dense Layer

Given: ¢ = 1072, e5 = 107% and p = 0.99; learning rate «;

initialization: u = 0,0 = 1;

Input: Mini-batch output of previous layer H = [hgg_l), hgg_l), A h%_l)]T C R™-1 and
the parameter gradients: G, + % € Rrexne-1 Gy a?ﬂ) e RIxmne
1. Compute mini-batch mean/variance: ;LH,O'%I;

2. Compute running average statistics: p « ppu+ (1 — p)um, 0% « po? + (1 — p)o¥;
3. Set 6% = 0% + ¢; max{o?} + €2 and ¢* = max{ng_1 /N, 1};

4. Update Gu: Gu(i, ) < 5[Gu(i,j) — n(i)Ge(0)]/5°(5);

5. Update Gi: Go(i) ¢ BGu(i) — 53, Gulis )

Output: Preconditioned gradients: G,, Gp.

In Algorithm 2, max{c?} denotes the maximum entry of the vector o2 € R™-1 and 52
is 02 with a small number added to prevent division by a number smaller than e;max{o?}
or €3. The p and o in (15) may be the mini-batch statistics uy and op or some averages
of them. We find mean and variance estimated using the running averages as in Step 2
works better in practice. In the case of mini-batch size 1, the mean is py = hgg_l) but the
variance oy is not meaningful. In that case, a natural generalization is to use the running
mean p to estimate the variance 0% = (h§£—1) — )2, Steps 4 and 5 implement the gradient
transformation in (15), where the multiplications by P and PT simplify to involve matrix
additions and vector multiplications only.

Algorithm 2 has very modest computational overhead. The complexity to compute
the preconditioned gradient (Step 4) is 6ny_1mp + 2ny. Other computational costs of the
algorithm consists of 4ny_1 N for the mini-batch mean and variance at Step 1, and 8ny_1
for ;4 and & at Step 2 and Step 3. The total complexity for preconditioning is summarized
as follows.

Proposition 6 The number of floating point operations used in one step of BNP Training
as outlined in Algorithm 2 is dng_1N + 6ng_1ng + 2ny + 8ny_q.

11
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In comparison, BN also computes the mini-batch statistics oy and g and their moving
averages, which amounts to 4ngy_1 N + Tng_q if BN is applied to R~ Additionally, BN
requires 4ny_1 N operations in the normalization step in the forward propagation including
re-centering and re-scaling. For the back propagation through the BN layer, BN requires
24ny_1 N —3ny_1 operations, including the cost of passing gradients through oz and pr. The
total cost of BN is 32ny_1 N +4ny_1. Comparing with BNP’s ny_1 (4N + 6ny) + 2ns + 8ny_1
operations and ignoring first order terms, BN is more efficient if 28N < 6n, but more
expensive otherwise. For a typical neural network implementation, we expect 28N > 6ny
and so BNP has lower complexity.

Finally, we note that the boundedness of the Hessian or flatness of the loss has been
shown to have some relations to generalization (see Thomas et al. (2019), and Keskar et al.
(2016) to name a few). However Dinh et al. (2017) suggests flatness alone is not the main
cause of improved generalization, as flatness itself is not invariant under reparametrization
of the network. Our preconditioning uses an implicit transformation that improves the
condition number of the Hessian for the transformed parameters. This only affects the
gradients used in training; neither the network parameters nor the hidden activation are
explicitly transformed. Namely, the loss function stays the same. Whether the modified
training algorithm could find a better minimizer is not clear.

3.4 Relation to BN

We discuss in this section the relation between BNP and BN. We first observe that a
post-activation BN layer defined in (2) with Bg () is equivalent to one normalized with
Bo (-) (that is no re-scaling and re-centering) with transformed weight and bias param-

eters. Namely, h¥) = ¢ (W(E)Bgﬁ(h(g_l)) —|—b(€)) =g (/VVBOJ (h(g_l)) —1—3), where W =

W(g)diag('y) and b = w®a + @, So, Bs (-) is simply an over-parametrized version of
Bo,1 (-). Indeed, any change in the parameters {W(é), AONG] ~} can theoretically be obtained
from a corresponding change in {W,/b\}, although their training iterations through gradient
descent will be different without any clear advantage or disadvantage for either. From a
theoretical standpoint, we may consider By 1 (-) only. Note that the discussion above applies
to post-activation BN only. For pre-activation BN, Frankle et al. (2021) recently shows that
a trainable beta and gamma can improve a pre-activation ResNet accuracy by 0.5-2%.

The BN transform By (-) can be combined with the affine transform W By ; (h(=1) +
b® to obtain a vanilla network with transformed parameters {W,g} Although the two
networks are theoretically equivalent, the training of the two networks are different. The
training of the BN network is through gradient descent in the original parameter {W (), p(®)},
while we can train on {W,/I;} of the combined vanilla network. We show in the next theorem
that training the BN network on {W© b))} is equivalent to training on {W,g} of the
underlying combined vanilla network with the BNP transformation of parameter.

During training of BN, the mini-batch statistics oy and py are considered functions of
the previous layer parameters and gradient computations pass through these functions (Ioffe
and Szegedy, 2015). In understanding the transformation aspect of BN, we assume in the
following theorem o and pp are independent of the previous layer trainable parameters;
that is gradients do not pass through them.

12
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Proposition 7 A post-activation BN network defined in (2) with By (-) is equivalent to
a vanilla network (1) with parameter {W,/E} where W = W® dz'ag( ) and b = b —

1
o
WO diag (’;—g) Furthermore, one step of gradient descent training of BN with By (-) in

{W“), b(g)} without passing the gradient through g, op is equivalent to one step of BNP
training of the vanilla network (1) with parameter W7 b,

Over one step of training, it follows from this equivalency and the theory of BNP that
the BN transformation improves the conditioning of the Hessian and hence accelerates
convergence, as compared with direct training on the underlying vanilla network. However,
further training steps of BN are not equivalent to BNP since the BN network changes (even
without any parameter update) when the mini-batch changes, whereas the same underlying
network is used in BNP. Namely, for a new training step, a new mini-batch is introduced,
which changes the architecture of the BN layers. The corresponding underlying vanilla

network has a new W = W diag (i) and b = b — WO diag (ﬁ—g) In this iteration,
BN would be equivalent to BNP applied to the changed underlying network with new W
and b as the parameters.

We note that the equivalency result illustrates one local effect of BN and provides
understanding of how the BN transformation may improve convergence. A complete version
of BN with trainable 5, and passing gradients through the mini-batch statistics through
wir, o has additional benefits that can not be accounted for by the Hessian based theory.
On the other hand, it also limits BN to using mini-batch statistics in its training network,
and prevents BN from using averages statistics that is beneficial when using a small mini-
batch size.

3.5 Relation to LayerNorm and GroupNorm

Layer normalization (LN) and Group normalization (GN) are alternatives to BN that differ
in the method of normalization. LN (Ba et al., 2016) normalizes all of the summed inputs
to the neurons in a layer (Ba et al., 2016) rather than in a batch, and can be used in fully
connected layers. GN can be used in convolution layers and groups the channels of a layer
by a given groupsize and normalizes within each group by the mean and variance (Wu and
He, 2018). Note GN becomes LN if we set the number of groups equal to 1 in convolution
layers.

LN and GN use one input at a time and do not rely on mini-batch inputs. So, they are
not affected by small mini-batch size. Furthermore, LN and GN do not require different
training and inference networks. They have the same weight and scale invariant properties
as BN (Summers and Dinneen, 2020). However, their normalizations do not concern sta-
tistical distributions associated with mini-batches and can not address the ill-conditioning
of the Hessian caused by mini-batch training, as BN and BNP do. Because of this, it may
be advantageous to combine LN/GN with BN/BNP. For example, Summers and Dinneen
(2020) advocates combining GN and BN with small mini-batch sizes. In our experiments
with ResNets, we also find using BNP on a GN network is beneficial.

13
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4. BNP for Convolutional Neural Network (CNN)

In this section, we develop our preconditioning method for CNNs. Mathematically, we
need to derive the Hessian of the loss with respect to one weight and bias, from which a
preconditioner P can be constructed as before. Consider a linear convolutional layer of
a CNN that has a 3-dimensional tensor h € R™™**¢ as input and a 3-dimensional tensor
a € R™%¢ a5 output. Here we consider same convolution with zero padding that results
in the same spatial dimension for output and input, but all discussions can be generalized
to other ways of padding easily. Let w € RF*kXcX¢’ 16 5 4-dimensional tensor kernel (k is
odd) and b = [b;] € RY a bias vector that define the convolutional layer.
Then, for a fixed output channel d, we have

a(-,d) =Y Conv(h(-,i),w(,i,d))+ by,
i=1
where

k
Conv(nt )t = 30 1 (1= 50 p =S 4 q) ulpa)

2
p,g=1

with any h,w set to 0 if the indices are outside of their bounds (i.e. zero padding). After
a convolution layer, a nonlinear activation is typically applied to a, and often a pooling
layer as well, to produce the hidden variable of the next layer (see Goodfellow et al., 2016,
Chapter 9 for details). These layers do not involve any trainable parameters.

We first present a linear function relating the layer output a to the input h as well as w
and b. For a tensor t, we denote by vec(t) the vector reshaping of the tensor by indexing
from the first dimension onward. For example, the first two elements of vec(t(-,-,-)) are
t(1,1,1) and £(2,1,1).

Given h(-,-,p) and w(-,-,p,d), we can express the result of the 2-d convolution as a
matrix vector product. To illustrate, first, consider for example that we have h(-,-,p) =
[hap) € RS and w(-,-,p,d) = [wyp] € R3*3 (omitting dependence on p in [hgep) and [wp)
notation below). Then, we can write vec(Conv(h(-,-,p),w(-,-,p,d))) as

hi1  ha hia  hoo
hir ho1 hsi | hi2 he hs3o -
hor h31 hgr | hoo hzz hgo wn
h31  ha h3a  hgo w2l
hi1 h2 hia  hao hiz  has w31
hir hoi hsi | hig hoy hsa | haig hoz hss | w12
hotr hs1 ha1 | hoa hsz has | hos hsz  has w22
h31  ha h3a  hgo h3s  hys w32
hi2  hay hiz  has w;i
hi2 hga hsa | hiz hoz  hss was
hoa  h3a haa | hoz  h3z  has - B
| 732 hag h3s  has |
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Figure 1: The blue shaded regions are 4 x 3 submatrices in the 6 x 5 zero padded feature
matrix traced out by a single element of the kernel during convolution. Illustrated
here are the cases wy1 and wso: the entries in the submatrix make up column 1
or column 6 of H which correspond to wi; or wss, respectively.

Here, each column of this matrix corresponds to a kernel entry wgp and consists of the
elements of h(-,-,p) that are multiplied by that wgy; in the convolution. They are the
elements of a submatrix of the padded h(-, -, p); see Figure 1 for an illustration.

In general, for fixed p and d, we can write the 2-d convolution of h(-, -, p) and w(-, -, p, d)
as a matrix vector product

vec(Conv(h(-,-,p),w(-,-,p,d))) = Hp - vec(w(-,-,p,d)), (16)

where H, € RU)*(F ) and its ((i — 1)r +u, (j — 1)k + v) entry is the entry of the padded
feature map, h(-, -, p) that is multiplied by w(j, v, p, d) to obtain a(u, i, d) in the convolution,
where 1 <u<r 1<i<s,and 1 <v,j <k. As in the example above, this matrix can be
written as a s X k block matrix of size r x k, where the (¢,u) block (1 <t <s,1<u<k)
of Hy is

h(t', v/, p) h(t' +1,4/,p) ... h(t' + (k—1),4,p)
h(t' +1,u',p)  h(t'+2,4,p) ... h(t' + &, ', p)
(Hp)tu = . . . ,
h(t'+ (r—1),u,p) h(t'+ru',p) ... h(t'+(r+k—2),4,p)

where t' =1— %, u =u— % +(t—1), and h(a, b, p) = 0 for any index outside its bound.
In particular, the (j — 1)k + v-th column of H,, consists of the entries h(u,,p) in the r x s
submatrix of the padded feature map where the submatrix is given by « and ¢ in the ranges

Al - Su<r—t (-l and A1+ (1) <i<s— (- 1),
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Equation (16) allows us to relate the layer output to the input as

vec(a Zvec (Conv(h(-,-,p),w(-,-,p,d))) + bge

C

= ZHP -vec(w(-, -, p,d)) + bge

p=1
=[e H Hy ... H | -w,
where
vec (w(-, -, 1,d))
o = [ (Z ] €R¥H and wy = : € R, (17)
vec (w(-, -, ¢,d))
Note that we use wy to denote the vector reshaping of the tensor w(-, -, -, d) for a fixed d and,

for simplicity, we drop the dependence on d in the notation of @ as d is fixed for all related
discussions. When training over a mini-batch of N inputs, we have one a for each input.
Combining the equations for all NV inputs in the mini-batch gives the linear relationship as
summarized in the following lemma.

Lemma 8 Given a mini-batch of N inputs, let {h(l), e ,h(N)} be the associated input
tensors at layer £, and {a(l), e ,a(N)} the output tensors. For a fized output channel d, we
have @ = H - W, where W is defined as in (17) to be the vectorized bias and weight elements,

gD gD
) Nl I T CIY
H=1le,H], H= . . , a = : , (18)
; ; vec (a™M) (-, -, d
Hl(N) g™ ( ( ))

and H;(,i) € R™** is as defined in (16) from h(®).

In the lemma, note that @ € RV™ and H € RV k¢ With this linear relationship we
derive the corresponding Hessian of the loss function.

Proposition 9 Consider a CNN loss function L defined for a single input tensor and write
L = L(a(-,-,d)) as a function of the convolution kernel w(-,-,-,d) through

a(-,-,d)= Z Conv(h (+,-,¢),w(-,-,¢,d)) + by.

c=1

When tmz’nmg over a mini—batch with N inputs, let the associated hidden variables h of layer
€ be {h @), N} and let the associated output of layer £ be {a®),a®) ... a(N)}. Let
= ZN L(a( ( ,d)) be the mean loss over the mini-batch. Then

V2L =HTSH,
where H is as defined in (18), S = 1almg{azL( (1)) az—L(U((lQ)),"' ﬂ(UC(LN))}7 Vg =

ov? » Ov2 Qv
vec(a(-, -, d)), and v = vee (a(j)(-, - d)).

16



BNP rOR NEURAL NETWORK TRAINING

This Hessian matrix has a similar form as in the fully connected network (10). We
can apply preconditioning transformation (12) to improve the conditioning of H and hence
of V%[, in the same way. As in the fully connected network, we use the preconditioner

P =UD, where
T -1
U— 1 —py D= 1 . 0 ’
0 diag(om)

0 I
1 Nrs Nrs
- T
HH NTSH €= Nr ZHZ’ o = N Z ’

wr and op are defined from H as

and HZT is the ith row of ‘H. With this P, HP has the same property as HP for the fully
connected network. By applying Theorem 4 to ﬁP, the conditioning of H is improved with
the preconditioning by P

Thus, the BNP transformation for a convolutional layer has the same form and the
same property as in the fully connected network, except that the py and op are the
means and variances over the columns of H. Noting that each column of H contains the
elements of the feature maps that are multiplied by the corresponding kernel entry during
the convolution for all inputs in a mini-batch, thus the means and variances are really
the means and variances over the N submatrices of feature maps defined by the kernel
convolution for the mini-batch. See Figure 1 for a depiction. Mathematically, we can
express the (p — 1)k? + (a — 1)k + t entry of vector mean gy and vector variance oy
corresponding to w(t, a, p,d), indexed by (t,a,p), as

N r—&-t—— 1s+a— ——1

pr(t,a,p) NTSZ Z Z h® (u, v, p) (19)

v=a

and
N r+t7%71 s+a7%71
oh(ta.p) = >y > (W9 (u,v,p) - p(t,a,p)) (20)
i=1 u*t—kg1 v:a—k2;1

forl<t,a<kand1<p<ec.

The entries in pg and O’%_I vary slightly from entry to entry, being the means and vari-
ances of different submatrices of the zero-padded feature maps used, which mostly overlap
with the feature map. If r, s are large, they are all approximately equal to the mean and
variance of the feature map h(-,-,p) over the mini-batch for each fixed input channel p,

N r s
p(p) = ﬁzzzh“)(u,v,p) (21)

i=1 u=1v=1

written as

and

a(p) Nm ZZZ (w,v,p) — 1), (22)

i=1 u=1v=1
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___________________________________________________

Figure 2: The 9 x 9 blue submatrix of the zero padded feature map consists of the elements
traced out by wq; (Left) or ws2 (Right) in the 3 x 3 kernel convolution. The mean
pg and variance oy are taken over these blue submatrices, while ¢ and o are
taken over the 9x 9 feature map, outlined in bold. The error in our approximation
is given by the difference in elements, in shaded red above; those elements of the
feature map excluded from the submatrix. There is a difference of at most %
rows and columns on the border of the feature map. Thus for r, s > k, this error
is small.

where p and o are vectors with u(p) and o(p) as entries. Using this approximation signifi-
cantly saves computations, which is adopted in our implementation of BNP. Indeed, this is
how BN normalizes the activation of a convolution layer in CNNs.

The error in approximating g (i, j, p) and og (i, 7, p) for all 4, j by pu(p) and o(p) is given
by the difference between the feature maps and the submatrices of the padded feature maps.
They have the same dimension and differ at most in % columns and rows on the border of
the feature map, replacing these border entries with the zeros of the padded feature map;
see Figure 2 for an illustration. The error can be bounded as in the following proposition,
which shows that, if the feature map size, r, s, is much bigger than the kernel size k, the
error is small.

Proposition 10 Under the notation defined in Proposition 9, the error |u(t,a,p) — u(p)|
of approzimating u(t,a,p), the mean calculated for the BNP transformation, as defined in
(19), by u(p), as in (21), the mean over the entire feature map, is bounded by

6= (5 5~ ) maxlhO o)

2r  2s 4rs Ui

As in Section 3.3, we further consider scaling each Hessian block to have comparable
norms by estimating the norm of H. A direct application of Proposition 5 to HP would
indicate a norm bounded by max{v/k2¢, v/ Nrs}, where k?c is the number of its columns and
Nrs is the number of its rows. But one difficulty is that H contains many shared entries,
so the entries of HP can no longer be modeled as independent random variables. We note
that H in (18) has N block rows where each block entry Hzgl) has rs rows, but its columns
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are rearrangements of mostly the same entries. Namely, the entire matrix ngi) contains
only rs independent entries. Thus, it may be effectively considered a matrix of independent
entries with /rs rows. Then HP may be regarded as having effectively N/rs rows. We
therefore suggest to use max{vk2c, V' N(rs)*/4} as a norm estimate. Thus, we scale 7P
by g, i.e. use (1/q)P as a preconditioner, where ¢> = max{k?c/N,/rs}. Our experiments
with several variations of CNNs shows that this heuristic based estimate works well.

The detailed BNP preconditioning transformation for the £th convolution layer with the
wight tensor w and bias vector b (with their dependence on ¢ dropped in the notation for
simplicity) is carried out in the vector reshaped from the tensor. Let W = [wl, e wcl_,] IS
RF ce-1%¢ he the matrix representation of w where the first three dimensions are reshaped
into a vector, i.e. wg = vec(w(:,-,-,d)) (see (17)). Let u € R%“-1 and o € R%-1 be defined
in (21) and (22), e.g. p = [u(1), ..., M(Cg_l)]T € R%-1. Then pg and oy are approximated
by p®e:= [pl)el, ..., M(Cg_l)eT]T € RFe-1 and o @ e := [o(1)eT, ..., O'(Cg_l)GT]T €
Rk%f*l, and e = [1,1,---,1]T € RF* Then, the preconditioned gradient descent is the
following update in W and b:

1 0

|V | —asPPT || P= . (23
[W 17 I S 0 I 0 diag (5L (23)

This vector form of the gradient descent update can be stated in the original tensor w
with the matrix multiplications by P and PT simplified. We present it in Algorithm 3.

Algorithm 3 One Step of BNP Training of a Convolution Layer with weight w and bias b

Given: €; = 1072, e, = 107* and p = 0.99; learning rate o;

initialization: = 0,0 = 1;

Input: Mini-batch output of previous layer H = [hggil), hggil), ce h%il)]T C Ree—1%rxs
and the parameter gradients: Gy, g—vﬁ € RExkxee1xer, G o %—f € Rixe

1. Compute mini-batch mean/variance: fi,62 € R%-1 according to (21) and (22);

2. Compute running statistics: p < pu + (1 — p)i, 02 < po? + (1 — p)6?;

3. Set 6% = 0% + €; max{o?} + €3 and ¢ = max{c,_1k%/N, \/rs};

4. Update Gw: Gw(i,j,p,d) < 55 (Gw(i,j,p,d) — u(p)Gy(d)) /5 (p)*;

5. Update Gb: Gb(d) «— q%Gb(d) - Zi,j,p :u(p)GW(Zajvpa d)a
Output: updated gradients: G, Gp

Finally, we remark that our derivation of preconditioning H leads to the normalization
by mean and variance over the mini-batch and the two spatial dimensions. This not only
provides a justification to the conventional approach in applying BN to CNNs but also
validates our theory. Note that a straightforward application of BN to CNNs may suggest
normalizing each pixel by the pixel mean and variance over a mini-batch only. Under our
theory, it is the Hessian matrix of Proposition 9 that determines what mean and variance
should be used in normalization. In particular, the means and variances of the columns of
ﬁ, the extended hidden variable matrix, naturally lead to the corresponding definitions.

Another interesting implication of our theory concerns online learning with mini-batch
size N = 1. Unlike BN, BNP is not constrained on the mini-batch size. For the fully
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connected network, however, Hin (11) has 1 row only and hence a condition number of 1,
which can not be reduced. So, although BNP may still be beneficial due to Hessian block
norm balancing, the effect is not expected to be as significant as with larger N. However,
for CNNs, # has dimension Nrs x (k%c+1) and even when N = 1 the preconditioning can
still offer improvements by Theorem 4.

5. Experiments

In this section, we compare BNP with several baseline methods on several architectures
for image classification tasks. We also present some exploratory experiments to study
computational timing comparison as well as improved condition numbers.

First, we present experiments comparing BNP with BN (and Batch Renorm when a small
mini-batch size is used) and vanilla networks. Where suitable, we also compare with Layer-
Norm (LN) and GroupNorm (GN) as well as a version of BN with 4 things/improvements
(Summers and Dinneen, 2020). We test them in three architectures for image classification:
fully connected networks, CNNs, and ResNets. All models use ReLU nonlinearities and the
cross-entropy loss. Each model is tuned with respect to the learning rate. Default hyper-
parameters for BN and optimizers as implemented in Tensorflow or PyTorch are used, as
appropriate. For BNP, the default values e = 1072, e = 1074, and p = 0.99 are also used.
Other detailed experimental settings are given in Appendix C.

Data sets: We use MNIST, CIFAR10, CIFAR100, and ImageNet data sets. The
MNIST data set (LeCun et al., 2013) consists of 70,000 black and white images of hand-
written digits ranging from 0 to 9. Each image is 28 by 28 pixels. There are 60,000 training
images and 10,000 testing images. The CIFARI10 and CIFAR100 data sets (Krizhevsky
et al., 2009) consist of 60,000 color images of 32 by 32 pixels with 50,000 training images
and 10,000 testing images. The CIFAR10 and CIFAR100 data sets consist of 10 and 100
classes respectively. The ImageNet datatset (Russakovsky et al., 2015) consists of 1,431,167
color images with 1,281,167 training images, 50,000 validation images, and 100,000 test-
ing images. Each image has 256 by 256 pixels and the ImageNet dataset consists of 1,000
classes.

Fully Connected Neural Network. We follow Ioffe and Szegedy (2015) and consider
a fully connected network consisting of three hidden layers of size 100 each and an output
layer of size 10. We test it on the MNIST and CIFAR10 data sets. For each experiment,
we flatten each image into one large vector as input. For the BN networks, normalization is
applied post-activation. For this experiment, we also compare against an additional baseline
of LayerNorm (LN), which is not affected by small batch size. Each model is trained using
SGD.

We first test on MNIST and CIFAR10 with mini-batch size 60, and the results, averaged
over 5 runs with the mean and the range, are plotted in Figure 3. BN and BNP have com-
parable performance in the MNIST experiments, with BN slightly faster at the beginning
and BNP outperforming after that. They slightly outperform LN and all improve over the
vanila network. For the CIFAR10 experiment, we see that BNP and BN are also compar-
ible, with BNP converging slightly faster at the beginning but mildly overfitting after the
10th epoch, while BN achieving slightly better final accuracy without any overfitting. In
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Figure 3: Fully connected network with mini-batch size 60: Training loss (dashed lines) and
test accuracy (solid lines) for the vanilla network, BN, LN, and BNP on MNIST
(Left) and CIFAR10 (Right). The lines graph the means while the shaded regions
graph the ranges of 5 tests.

both cases, BNP and BN outperform the vanilla and LN networks. In general, BN does
well in large mini-batch sizes and is less likely to overfit.

We also consider small mini-batch sizes and present the averaged results with mini-batch
sizes 6 and 1 for CIFAR10 in Figure 4. With mini-batch size 6, BNP outperforms BN and
the vanilla network. This demonstrates how small mini-batch sizes can negatively affect BN.
We also compare with Batch Renorm and LN in this test. Batch Renorm and LN perform
better than BN and are more comparable to BNP, where BNP converges slightly faster but
Batch Renorm achieves the same final accuracy. For mini-batch size 1, BN and BN Renorm
do not train and are not included in the plot. BNP, LN and the vanilla network all train
with mini-batch size 1. BNP and LN converges significantly faster than the vanilla network.
They overfit very slightly to have final test accuracy trending just below the vanilla network.

Convolutional Neural Networks. We consider a 5-layer CNN as used in TensorFlow
(2019). This network consists of 3 convolution layers, each with a 3 x 3 kernel, of filter size
32-64-32, followed by two dense layers. For this experiment, we also include the version
of BN with 4 things/improvements (Summers and Dinneen, 2020). These improvements
are as follows: for small batch size, BN is combined with GN, while for larger batch-sizes
BN is combined with Ghost Normalization; additionally a weight decay regularization on
BN’s v, 6 terms and a method to incorporate example statistics during inference are applied
(Summers and Dinneen, 2020). In particular, the combination with GN makes it applicable
to mini-batch size 1.

We use SGD with the exception of the vanilla and the BN with 4 Things networks where
Adam performs better and was used. Figure 5 presents the results with 5 tests for CIFAR10
with mini-batch sizes 128 and 2. For mini-batch size 128, we find that BN, BN with 4 Things,
and BNP all have comparable performance with BNP converging slightly slower and BN
with 4 Things slightly faster than BN at the beginning. They all outperform the vanilla
network. For mini-batch size 2, BNP significantly outperforms BN, Batch Renorm, and BN

21



LANGE, HELFRICH, AND YE

0ss Fully Connected Network Batch Size 6: CIFAR10 Fully Connected Network/CNN Batch Size 1: CIFAR10 .
i — Vanilla FC Acc —
35 0.70 4 == Vanilla FC Loss
— Vanilla CNN Acc //\/_;\/\, 7
~~ Vanilla CNN Loss
0.50 0.65 4 —— LNFCAcc
3.0 —= LNFCLoss Le
—— BN w/ 4 Things CNN Acc
— == Vanilla Train Loss 0.60 ] =7 BN w/4Tnings CNN Loss
—— Vanila Test Accuracy | - — BNP FCAcc Ls
3 0.45 — == BN Train Loss 25 [y —= BNP FC Loss
g —— BN Test Accuracy @ I —— BNP CNN Acc ~___4-\_.___\_/\/\ b}
2 ——— BNP Train Loss s 3 0.55 7 == BNP CNN Loss 3
£ ——— BNP Test Accuracy 205 g r4c
= BN Renorm Train Loss “ e = e
o 0.40 BN Renorm Test Accuracy = 2 050 =
— == LN Train Loss
S —— LN Test Accuracy s
0.45
0.35
1o 0.40
0.30 T T T 0.5 0.35

Figure 4: Fully connected (FC) network/CNN with small mini-batch sizes (6 and 1): Train-
ing loss (dashed lines) and test accuracy (solid lines). Left: fully connected net-
work with mini-batch size 6 for vanilla network, BN, BN Renorm, LN, and BNP;
Right: fully connected (FC) network and 5-layer CNN with mini-batch size 1
for vanilla network, LN or BN w/ 4 Things, and BNP. BN and BN Renorm do
not train and their results are not plotted. The lines graph the means while the
shaded regions graph the ranges of 5 tests.

with 4 Things. BN underperforms all other methods. However, we note that BN and Batch
Renorm work well for batch sizes as small as 4 and 3 respectively. Compared with the fully
connected network, BN appears to be effective in CNNs for much smaller mini-batch size.

We also test on mini-batch size 1 with 5 test results given in Figure 4 (Right). As
expected, BN and BN Renorm do not train and their results are not included in the figure.
BNP trains faster and reaches slightly higher accuracy than the vanilla network, while BN
with 4 Things significantly underperforms with mini-batch size 1.

Our results demonstrate that BNP works well in the setting of small mini-batch sizes
or the online setting. In this situation, it can significantly outperform BN for both fully
connected networks and CNNs. It also produces comparable results when larger mini-batch
sizes are used.

Residual Networks. We consider 110-layer Residual Networks (ResNet-110) (He et al.,
2016a,b), and an 18-layer Residual Network (ResNet-18). The ResNet-110 has 54 residual
blocks, containing two 3x 3 convolution layers each block and was used for CIFAR 10/CIFAR
100 (He et al., 2016a,b). We experiment with both the original ResNet-110 (He et al., 2016a)
and its preactivation version (He et al., 2016b). The ResNet-18 has 8 residual blocks, with
two 3 x 3 convolution layers each block and was used for ImageNet (He et al., 2016a). We
follow the settings of (He et al., 2016a,b) by using the data augmentation as in He et al.
(2016a), the momentum optimizer, learning rate decay, learning rate warmup, and weight
decay; see Appendix C for details. In particular, we use learning rate decay at epoch 80/120
(CIFAR10), epoch 150/220 (CIFAR100), and epoch 30/60/90 (ImageNet).

One remarkable property of BN when applied to ResNet is its significant increase in test
accuracy at learning rate decay. Like most other methods, BNP directly applied to ResNet
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Figure 5: 5-layer CNN for mini-batch size 128 (Left) and mini-batch size 2 (Right): Training
loss (dashed lines) and test accuracy (solid lines) for vanilla network, BN, BN w/
4 Things, and BNP. For batch-size 2, BN Renorm is also included. The lines
graph the means while the shaded regions graph the ranges of 5 tests.

can not take advantage of the learning rate decay nearly to the same degree as BN, even
though BNP converges faster before the learning rate decay; see Figure 6. We suspect this
is due to the lack of scale-invariant property in BNP that is present in BN. Since GN also
possess the scale-invariant property, we may combine BNP with GN; see Section 3.5. So, for
the ResNet experiment, we apply BNP to ResNet with GN, denoted by BNP+GN, which
is found to benefit much more significantly from learning rate decay. For comparison, we
also include ResNet with GN in this experiment.

We test ResNet-110 on CIFAR10 and present the results of 5 runs in Figure 6 (Left).
The test accuracy for BNP+GN converges faster than BN prior to the first learning rate
decay at the 80th epoch and is comparable to BN after the decay. Both BNP+GN and BN
outperform GN significantly.

We then test preactivation ResNet-110 on CIFAR100 and present the results of 5 runs
in Figure 6 (Right). The test accuracy for BNP+GN also converges faster than BN prior
to the first learning rate decay at the 150th epoch but is slightly lower than BN after the
decay. Both BNP+GN and BN outperform GN significantly.

We lastly test ResNet-18 on ImageNet and present the results in Figure 7. The test
accuracy for BNP+GN again converges faster than BN prior to the first learning rate decay
at the 30th epoch but is slightly lower than BN after the second decay at the 60th. Again,
BNP+GN and BN outperform GN significantly.

We observe that, for all three ResNets, BNP with the help of GN achieves faster con-
vergence before learning rate decay, while producing comparable final accuracy at the end.
With GN’s performance lagging, these results can be attributed to BNP and demonstrates
the convergence acceleration property of BNP.
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Figure 6: ResNet-110 for CIFAR10 (Left) and Preactivation ResNet-110 for CIFAR100

(Right): Training loss (dashed lines) and test accuracy (solid lines) for BN, GN,
BNP alone, and BNP+GN. Both with mini-batch size 128. The lines graph the
means while the shaded regions graph the ranges of 5 tests.
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Figure 7: ResNet-18 for ImageNet: Training loss (dashed lines) and test accuracy (solid
lines) for BN, GN, and BNP+GN. All have mini-batch size 256.

5.1 Exploratory Experiments

We present experiments that support our theory that BNP lowers the condition number of
the Hessian of the loss function in relation to the condition number of matrix D used in the
preconditioning transformation as detailed in Section 3. We also present a computational
timing comparison between BN and BNP.
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Figure 8: We compare the test accuracy (solid lines) and training loss (dashed lines) of a
vanilla network with BNP (Left). With this same network we graph and compare
the condition number of the Hessian and the preconditioned Hessian by BNP
(Center) as well as the condition number of matrix D, used in the preconditioning
transformation (Right).

Condition Number Analysis: We consider a fully connected network consisting
of two hidden layers of size 100 and an output layer of size 10. We use the CIFAR10
data set with mini-batch size 60. With this network we compute the condition number
of the Hessian with respect to a single weight vector and bias entry at each iteration. In
particular, we consider the first weight vector and bias entry in the output layer, that
is wl = [bgl),w:())l)] e R0l and compute the condition number of the Hessian of the
loss function with respect to w. Results for this condition number and the one for the
preconditioned Hessian are given in Figure 8 (Center). The preconditioning significantly
reduces the condition number of the Hessian. For this same layer, we compute the condition
number of matrix D. Note that, when D is ill-conditioned, that is when the variances of the
activations differ in magnitude, we expect the preconditioning transformation to improve
the condition number of the Hessian by approximately x(D)2. For this small network,
Figure 8 (Right) shows the condition number of D to be in the range 10> — 10°. As a
result, the BNP transformation reduces the condition number by roughly x(D)2. We also
graph test accuracy and training loss of our Vanilla network versus BNP which confirms
accelerated convergence by BNP. These results support our theory.

Computation Time Analysis: We include experiments on the performance time of
BN versus BNP over each training epoch. We use the same fully connected network as
described in the condition number experiments. These performance time experiments are
computed on NVIDIA Tesla V100-SXM2-32GB. We compute the time over each epoch of
training and report the cumulative training time over 20 epochs as seen in Figure 9. We also
report the average time to complete one epoch of training with the respective mini-batch
sizes in Table 1. We find that for smaller mini-batch size BN is faster than BNP and for
larger mini-batch size BNP has a tiny improvement over BN. Overall, the difference is small
and the two methods are quite comparable in computational efficiency.
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Figure 9: Time analysis comparison of BN with BNP. We compare mini-batch sizes of 16,
256, and 512 shown respectively above.

Average Computed Time Over One Epoch

mini-batch size 16 | mini-batch size 256 | mini-batch size 512
BN 16.08 10.81 10.67
BNP 16.69 10.70 10.57

Table 1: Above we report the average time (in seconds) to complete one training epoch in
our small fully connected network given mini-batch sizes 16, 256, and 512.

6. Conclusion

We have introduced the BNP algorithm that increases the convergence rate of training.
This is done by an implicit change of variables through preconditioned gradient descent.
The BNP algorithm is explicitly derived and theoretically supported. It is shown to be
equivalent to BN over one training iteration if the back-propagation does not pass through
the mini-batch statistics. Its flexibility in using approximate batch statistics allows it to
work with small mini-batch sizes. To summarize the contributions of this work, our theory
provides an insight on why BN works and how it should be applied to CNNs, and our
algorithm provides a practical alternative to BN when a very small mini-batch size is used.
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Appendix A. Proof of Theorems

In this appendix, we present the proofs of theorems not proven in the discussions of the
main text. In particular, Theorem 3, Proposition 6, and Lemma 8 are omitted for this
reason. For all remaining proofs, we restate the original theorems for completeness.

Theorem 1 Consider a loss function L with continuous third order derivatives and with
a positively scale-invariant property. If 6 = 0*(t) is a positively scale-invariant manifold at
local minimizer 0%, then the null space of the Hessian V2L(0*(t)) contains at least the column
space Col (D:0*(t)). Furthermore, for the gradient descent iteration 011 = 0 — aVL(0)),
let 0} be the local minimizer closest to Oy, i.e. 0 = 0*(t) where tj, = argmingq||6r — 6*(t)||
and assume that the null space of V2L(0*(t)) is equal to Col (Dy8*(t)). Then, for any e > 0,
if our initial approzimation 6y is such that |6 — 65| is sufficiently small, then we have, for
all k >0,
1011 = Ol < (r + )16k — O],

where r = max{|1l — aX . |,||1 — a\maz||} and X!, and Az are the smallest nonzero
eigenvalue and the largest eigenvalue of V2L(0}), respectively.
Proof The proof of the first part is contained in §3.2. Here we prove the second part.

Since 6} = 0*(t1,) is the local minimizer closest to 0, i.e. ||0p—6*(t)| = miny ||6—6*(t)],
taking derivation in ¢ results in (6 — 0*(tx))? D10*(tx) = 0. Then (5 — 0;) is perpendicular
to the null space of the Hessian. Furthermore, ||0x11 — 05 || < |[0k11 — OF]]-

Using 0r+1 = 0 — aVL(0y), we have

Ok+1 = O iall < 11041 — Ol
= |6k — aVL(0k) — 6|
= |0x — O, — a(VL(Or) — VL(OL))I| (24)
Since £ has continuous third order derivatives, we have VL(0)) = VL(6;) + V2L(0})(0r —
05) + ey, where ey, is the remainder with ||egx|| < C||0), — 0}||* for some C. Substituting into
Equation (24), we get
101 — Ot | < 116k — 6 — @V2L(6;) (0 — 67)]| + allex]]
= |(I = VL) (0 — 00| + ol ex]] (25)
< 1—a\]| - |10k — 0 O — 0| *
< max |1 = aif - |0 = O] + aC[0x = O]1%,
where A1, ..., A, are eigenvalues of V2£(65) and we have used that 6 — 6} is perpendicular
to the null space in the last inequality. Notice

{\ni}g\l — a)i| = max{|l — e\ .|, |1 — @Amax|} =7

We have
1041 = Oxall < 7+ 116k = Okl + aCl|0k — 011> = (r + aC||6) — Ok]]) - |10k — 6%I.  (26)
Clearly, r < 1. For any € > 0 with r +€ <1, let § = J%. Then, if ||0; — ;|| < J, we have
1051 = 0541 |1 < (7 + @C3) - 16k — OF]| < |16 — OF]] < 4.
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Thus, if ||6y — 65|| < J, by an induction argument, we have || — 6;|| < ¢ for all k. Hence,
10k 11 = Ol < (r + )]0 — O ]-

Proposition 2. Consider a loss function L defined from the output of a fully connected
multi-layer neural network for a single network input x. Consider the weight and bias

parameters w® 89 at the L-layer and write L = L (al(-e)) =L (@Tﬁ) as a function of

1 77

the parameter w through aZ@) as in (9). When training over a mini-batch of N inputs, let

{hggil), hggil) ...,h%il)} be the associated h“=Y and let ﬁj = € RetD)X1 " Lot

)

1
(¢-1)
h;

1 Y -
L=rL(@)=+> L (@Thj)
j=1

be the mean loss over the mini-batch. Then, its Hessian with respect to w is
ViL(0) = H'SH

where T
-1
A i

H=le, H,H = : and S = %dz’ag (L” (@Tﬁj)) .
s

with all off-diagonal elements of S equal to 0.
Proof First, we have VgL (@Tﬁ) =I (@Tﬁ> h. Then, taking the gradient of £ with

respect to w,

ﬁ (@) i o)

Furthermore, VL (@Tﬁ) =L (ﬁTﬁ> hhT. Applying this to (27), we obtain the desired
Hessian

N
1 JESNUEN
=3 r (@7h;) hih]

\Y
j=1
—H"SH
where we note that HT = [hl, hg, ,EN]. [ |

Before proving Theorem 4, we first present a result of Van der Sluis (1969) as a lemma.
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Lemma A1l. (Van der Sluis, 1969) Let A € R"™ " have full column rank and let
D = diag{||a1||7t, -+, [|an]| "1}, where a; is the i-th column of A. We have

k(AD) < \/n min k(ADy).

Do s diagonal

Theorem 4. Let H = le, H] be the extended hidden variable matriz, G the normal-
ized hidden variable matriz, U the centering transformation matriz, and D the variance
normalizing matriz defined by (10), (12), and (14). Assume H has full column rank. We

have R R
k(HU) < k(H).

This inequality is strict if g # 0 and is not orthogonal to Tyax, where Tymax 1S an eigenvector
corresponding to the largest eigenvalue of the sample covariance matrix lel (H—e,ug)T(H—

epk;) (i.e. principal component). Moreover,

#(G) = K(HUD) < \/ng_1 + 1 min k(HUDy).

Do is diagonal

Proof We show

H(f’jU) N )\max(UTﬁTﬁU) < M — K(ﬁ)
Amin(UTHTHU) Amin(HTH) ’

by proving Amaee(UTHTHU) < Apaz(HTH) and Apin(UTHTHU) > Apin(HT H), where
Amin(A) and Apqez(A) denote, respectively, the minimum and maximum eigenvalues of a
matrix A. We use the Courant-Fisher minimax characterization of eigenvalues, i.e.

TrT T 17
PN 2 UH*HUz
/\max(UTHTHU) = maXZ;AOT

and

TrT T 17
P ) 227U H"HUz
)\mzn(UTHTHU) - Inlnzﬂ)T

Write
s N 0
UTHTHU = [

0 (HT - pge)(H - enl)

as a 2 x 2 block matrix, with H € R¥*™ Write z = [t, 27]7, where t € R and # € R™ and
we simplify to obtain

JUTHTHUz = [t o) UTHTHU m

= 2N + 2T (H? — pge?)(H — ek

=?N+z"H Hx — ITHTGMEJJ — 2T pupe’ Ha + xT/,LHeTe,uTI;x

= 2N + 2" H " Hz — N(a pupy)?

= N(t* — (" pup)?) + 2" H  Ha, (28)
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where we have used H'e = Nuy and e’e = N. Similarly, we have
THTH:— [t T BTH H

=t’N+te’Hr + 2T H et + 2 TH  Hx

= 2N + 2tNal py + 2" H  Hz

= N>+ 2taTpy) + 2T H Ha (29)
=Nt+2Tug)? = N@Tpuy)? + 2T HT He.

We now prove Az (U THTHU ) < /\maw(ITI T ) with a strict inequality if ,u};a:max +
0. The maximum eigenvalue of UT HTHU is either N or the maximum eigenvalue of
(HT — ppel)(H — epk;). In the first case, using equation (29), we have

Amaz(UTHTHU) = N
N(1+ 2pfrpm) + ppH Hpn
L+ g
2 T T T
< max N(t*+ 2tz ug) + ' H Hx
[t,27]0 2+l
== )\max<ﬁTﬁ)a

(30)

where the inequality (30) is strict if pg # 0. In the second case, using (28) with ¢ = 0, we
have

xglax(HT - NHeT)(H - €Mg)xmax

xglaxmmax
_N(xglaxﬂH) + xﬁaxHTmeaX
] axTmax
N(‘Trj;lax:uH)z - N($£1ax:uH)2 + xﬁaxHTmeaX
Tl s Tmax
N(t+2Tpug)? — N@Tug)? +2TH He
T [t,aT]£0 2+ 2Tz

Amaz(UTHTHU) =

IN

(31)

where the inequality (31) is strict if 2L, gy #0.
Next we show /\mm(UTHTHU) > )\mm(H H) First, using (29), we have

PN Nt — (zTpup)?) +2TH Hx
Amin(UTHTHU) = mi
min(U ) [t,Ig;IlTl}I;éo 2+ 2Tz
N2 — (2T )2 T T
B win (t* — (¢ pg)?) + 2" H Hx (32)
120, 2Tug <0, [t,aT]£0 t2 + 2Tz

where (32) holds since the function is not dependent on the sign of t or 7 ;. Let t, 2 be such
that ¢ > 0 and :cT,uH < 0. We discuss two cases. First consider the case 0 > mTuH > —2t.
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This implies |t + 27 puy| < t, and

Nt? — N(zTpy)? +2"H ' Hx < Nt+2Tpg)? — N@Tug)?> +2"TH He
2+ 2Tz - 2+ 2Tz .

Now, consider the case z7 pug < —2t < 0. Let s = —t — 2’ . Then s > ¢ > 0 and s > t%.
This implies

Nt* = N(aTpg)? +2"HTHz  N(s+2"pg)? — N(@'pp)? + 2" H He

t2 + 2Tz t2 4+ 2Tz
o N(s+ 2l pg)? — N(@Tpy)? +2"H Ha
- s?2+alx '
In either case,
Nt? = N(@Tpp)? +2TH Ha o i Nl 2T pg)? — N(@Tpp)? +2"H  Ha
min
t2 + 2Tz T [s,2T]£0 s2+alx
= Amin(HT H).

Hence, it follows from this and (32) that Ay (U THTHU ) > /\mm(ﬁl T ). This gives us
the desired result that x(HU) < x(H).

For the second bound, we note that each column of HUD has norm v/N so each column
of HU(D/v/N) has norm 1. By Lemma A1,

K(HUD/VN)) < /i1 +1  min  k(HUDy).

Do is diagonal

Since k(HU(D/V/N)) = k(HUD), the bound is proved. [ |

Next, we show Proposition 5. We need to use Corollary 2.2 of Seginer (2000), which is
stated here.

Lemma A2. (Seginer, 2000) There exists a constant C' such that, for any m,n, k <
2logmax{m,n}, and any G = [gi;] € R™*™ where g;; are #d zero mean random variables,
the following inequality holds:

k k ik m
B[I614] < ¢* (& | s o] + 2 | s 1011] )

where g; is the ith row of A and h;j is the jth column of A.

Proposition 5. Let ny_1 > 3 and assume the entries of the normalized hidden variable
matriz G € RNX™—1 gre jid random variables with zero mean and unit variance. Then the
expectation of the norm of (1/9)G = (1/q)[e, G] is bounded by C\/N for some constant C
independent of ny_1, where ¢ = max{n,_1/N,1}.

Proof Applying Lemma A2 with £k = 2 to G here, we have E [||gz\|2] = ny_1 and
E [HhJHQ] =Nforl<i< Nand1l < j < ng_q. Since all g; for 1 < i < N have the
identical distribution, F [maxi<j<n [|gi[|?] = ne—1. Similarly, E [maxi<j<m [|h;[?] = N.
Therefore,

E [HGHQ] < C? (N +ny_1) <202 max{N,n,_1}.
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Thus

(1/a)E [IGI] = (1/q) max{VN, E[|G|]} < (1/9)V2C; max{VN, yiz1} = V2C1VN.
The theorem follows with C' = v/2C}. [ |

Proposition 7. A post-activation BN network defined in (2) with By () is equivalent
to a wvanilla network (1) with h = {/W,B} where W = WO diag (é) and b = b —
W diag <%) Furthermore, one step of training of BN with By (-) without passing the

gradient through pg, o is equivalent to one step of BNP training of (1) with /I/I?T,E.
Proof Examining (2) with § =0 and v = 1, we have

h® —g (Ww) Bo.t (hw—l)) n b(@)) (33)
—y (W(@diag <1> (D — ) + b(f))
OH
=g (Wh“*l) +3> : (34)

This proves the first part. Note that training of the BN network is done through gradient
descent in W b of (33). Furthermore, For U, D and P defined in (12), using BT =

pO" _ diag (ﬁ%) W(Z)T; we have
yOT o bO)”
wr| = uD wor T P wo”

which is the BNP preconditioning transform (12) applied to each column of the matrix
IET

=U

i
WT

—|- Thus, one step of BNP gradient descent in = {W,g} of (1) is equivalent to one

)

step of gradient descent in W®, b which is a gradient descent step for the BN network

(33). [ |
Proposition 9 Consider a CNN loss function L for a single input tensor and write L =
L(a(-,-,d)) as a function of the convolution kernel w(-,-, -, d) where

c
d)= Z C’onv(h(l) (s ), w(s, - e,d)) + b
c=1

When tmining over a mim—batch with N inputs, let the associated hidden variables h of layer
E be {h @) N)Y and let the associated output of layer ¢ be {at) a® .. a(N)}. Let
=7 ZN L(a(J ( ,d)) be the mean loss over the mini-batch. Then

ViL =HTSH,
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where

[ 22L () 1

2 \Va
ov?

2 2
ZL)

1
=N !

N
| S w)

vg := vec(a(-,-,d)) and v = vec (a(j)(-, - d)).
Proof For ease of notation, we rewrite the function L = L(a(-,-,d)) as L = L(v,). First,
for a single element UEL]) := vec(al)(-,-,d)) in the mini-batch, we have

OL (. OL . 0w
S0y — (4) a
05\ ) = g, W) 57

Further, considering £ with respect to w,

—, which gives

N T )
o\ 0L . Y
Further, V5L ( > 02 (vg)) 50

N D\ T 2 ()
2 o l 3va 8 L () 8’0(1
Vil =+ Z; 55| Bz (V)

: ow
j= @
[ ol ]
o5
Ovg
[(%gl)T v T oM 1g| o0
o 9w BT ;
BvéN)
L o5
B (aa ’ g 0a
-~ \ow ow
= H'SH,

o
where b =H.

|
Proposition 10 Under the notation defined in Proposition 9, the error |u(t,a,p) — u(p)]

of approzimating u(t,q,p), the mean calculated for the BNP transformation, as defined in
(19), by u(p), as in (21), the mean over the entire feature map, is bounded by

1 1 k-1 .
_ _ (i)
(k—1) <2T + 5, ) max [h" (u, v, p)|.

4rs U,,1
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Proof Using the mean computed over the entire mini-batch as in (21) and the BNP mean
as in (19), we get an exact error of

k-1

N 7‘+t—T 1s+a———1 N r s
|u(t, a,p) — u(p)| Nm > > Z W (u,0,p) =N " B (u, v, p)
=1 = k 1 y=a— i=1 u=1v=1

(35)
where h is 0 for any indices outside of its bounds, as h is zero padded. Note this subtraction
of a subtensor of h of size r x s x p from padded h of size (r + %) x (s+ k—gl) X p gives a

t kfl columns and b rows of the feature map. Thus an upper bound

difference of at mos
for this error is given by summing over the —(7" + s)N elements in the k L boundary
columns and rows of each feature map, and subtracting all elements double counted, of

which there are N(£51)2. Since [ (u,v,p)| < maxy; |h? (u,v,p)|, we bound (35) by

k-1 — (17 . 1 1 k-1
E-Drte) =7 w10, 0] = (6= 1) (5 + 50 = )

R .
2rs 0.0 2s Ars ) wox (A (s v, p)]

u,v,1
|

We finally present a bound on the condition number of the product HTSH as used
in Section 3.3. Note that in general, K(AB) < k(A)x(B) does not hold for rectangular
matrices.

Proposition 11 Let S be an m x m symmetric positive definite matriz and Hanmxn
matriz. We have k(HTSH) < k(H)?k(S).

Proof We have k(HTSH) = (—S,\) since HTSH is symmetric positive semi-
Anin(HTSH)

definite, where )\maz(H SH) and \*. (HTSH) are the largest and the smallest nonzero

man

eigenvalue of H HTSH respectively. We only need to consider the case )\max(ﬁ TSH ) > 0.
Using the Courant-Fisher minimax theorem gives

SR THTSH
)\max(HTSH) = max_ xTix
x Lnull(H) r-x
cTHTSHz 2T HT Ha

= max_ ——— 7
xLnull(H) «THTHz - x

(«"HT)S(He)  «"H"Ha
= = max
o Lnull(H) (.CI?THT) (Hx) x#0 xzTx

< Amaz(S) Amaz (HTH),

<
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where we also impose x # 0 in all the maximizing sets above and the minimizing sets below.
Similarly, we have

TT Qi
~ . z* H* SHx
min(H'SH) = min  ————
xlnull(HT SH) r-xr
. 2THTSHx 2THTHz
= ml/\n N ~ < T
clnull(ATSH) T HTHy 2

(zTHT)S(Hzx) _ THTHa
I Sp— ~— min —
zlnull(HTSH) (I‘THT)(HCC) o null(HT SH) aly

(THT)S(Hz) . «THTHx
—_— = min 7.

> min S22 i
Hz#0 (xTHT)(Hzx) zloul(d) T

min

X

Thus we have

Appendix B. Additional Experiments

We show additional results for BN4+GN for the Residual Networks. This serves as compar-
ison against BN alone with results from a single run shown in Figures 10 and 11. Note that
the best parameters for BN+GN for each of these networks occur when the channels per
group equals the smallest filter size of the network and thus BN+GN acts like BN alone for
the first 36 layers in the 110-layer network and the first 5 layers for ResNet-18.

Appendix C. Experimental Settings

In this section, we list the detailed setting used in our experiments. Experiments were run
using PyTorch 3 and Tensorflow versions 1.13.1 and 2.4.1. In particular, all fully connected
networks and the 5-layer CNN use Tensorflow 1.13.1, with LN and BN with 4 Things run
in Tensorflow 2.4.1. All ResNets and the exploratory experiments use PyTorch 3.

Fully Connected Networks: For all fully connected networks, each model is trained
using stochastic gradient descent, and the best learning rates for each network can be found
in Table 2. For all fully connected networks weights are initialized using Glorot Uniform
(Glorot and Bengio, 2010) with the biases initialized as zero.
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Figure 10: We present BN+GN for comparison against BN alone on both 110 layer net-
works.
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Figure 11: We present BN4+GN for comparison against BN alone on ResNet-18.

CNNs: All experiments with the 5-layer CNN use the stochastic gradient descent
optimizer, except for the vanilla network with mini-batch size 128 and the BN 4 things,
where the Adam optimizer performs better and is used. Note that Adam was used in the
implementation of the network in TensorFlow (2019), but SGD is comparable to Adam
in all other cases. All models use the weight initializer Glorot Uniform and the zero bias
initializer unless otherwise mentioned. All default hyperparameters are used for BNP and
all learning rates are found in Table 3.

ResNets: For the ResNet-110 experiments on CIFAR datasets, we follow the settings
of (He et al., 2016a,b). For all models, we use the data augmentation as in He et al. (2016a)
and use the momentum optimizer with momentum set to 0.9. We implement all parameter
settings suggested in He et al. (2016a) for BN, with the exception that Preactivation ResNet-
110 for CIFAR-100 follows the learning rate decay suggested in Han et al. (2016). These
include weight regularization of 1E — 4 and a learning rate warmup with initial learning
rate 0.01 increasing to 0.1 after 400 iterations. For networks with GN, we follow Wu and
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Vanilla BN BNP BN Renorm LN
mini-batch size 60 MNIST 1071 [ 5x1071 | 5x 107t N/A 1071
mini-batch size 60 CIFARI0 | 1072 [5x 107t | 107F N/A 5x 1077
mini-batch size 6 CIFAR10 | 5x 1073 [5x 1072 [5x 1072 ] 5x1072 |5x 1072
mini-batch size 1 CIFAR10 | 5 x 107% | N/A 1071 N/A 1072

Table 2: Best learning rates for fully connected networks.

Vanilla | BN | BNP | BNP+GN | GN | BN w/ 4 Things | BN Renorm
5-layer CNN batch size 128 CIFAR10 | 107! | 107! | 107! N/A N/A 5x 1073 N/A
5-layer CNN batch size 2 CIFAR10 1072 [ 1073 ] 1072 N/A N/A 10~* 1072
5-layer CNN batch size 1 CIFAR10 102 | N/A| 107! N/A N/A 1073 N/A
ResNet-110 CIFAR10 N/A | 1071 | 107! 1071 1071 N/A N/A
ResNet-110 Preactivation CIFAR100 | N/A | 1071 | 1072 1071 1071 N/A N/A
ResNet-18 ImageNet N/A [ 1071 | N/A 1071 1071 N/A N/A

Table 3: Best learning rates for CNN’s.

He (2018) and replace all BN layers with GN. We use group size 4. For BNP+GN with
CIFARI10, we use weight regularization of 1.5F — 4, the He-Normal weight initialization
scaled by 0.1, and group size 4 in GN. For BNP+GN with CIFAR100, we use weight
regularization of 2F — 4, the He-Normal weight initialization scaled by 0.4, and group size
4. GN and BNP+GN use a linear warmup schedule, with initial learning rate 0.01 increasing
to 0.1 over 1 or 2 epochs, tuned for each network.

For the ResNet-18 experiment with ImageNet, we follow the settings of Krizhevsky et al.
(2012). All images are cropped to 224 x 224 pixel size from each image or its horizontal
flip Krizhevsky et al. (2012). All models use momentum optimizer with 0.9, weight regu-
larization 1F — 4, except BNP+GN uses 8.5F — 4, a mini-batch size of 256 and train on 1
GPU. All models use an initial learning rate of 0.1 which is divided by 10 at 30, 60, and 90
epochs. Both GN and BNP+GN use groupsize 32.

The best learning rates for all models are listed in Table 3.
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