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ABSTRACT: Conformational control of π-conjugated molecules using
intramolecular noncovalent bonds represents a promising strategy to tailor
the solid-state molecular packing and electronic properties of these materials.
Here, we report the design and synthesis of two model compounds featuring
intramolecular hydrogen bonds formed between a center diazaisoindigo unit
(the acceptor) and flanking indole units (the donor). Computational and
experimental investigations show that these hydrogen bonds enthalpically
stabilize the coplanar molecular conformation by >10 kcal/mol. The
formation of these hydrogen bonds is also slightly favorable in terms of
entropy, ensuring the high-temperature stability of the planar conformation.
Thermal annealing of thin films of these compounds imparts high crystallinity
and orientation in the solid state, while the non-hydrogen bond control only
gave an amorphous solid. Field-effect transistor devices fabricated from these
thin films exhibit hole mobilities up to 0.270 cm2 V−1 s−1, in contrast to the
lack of measurable charge carrier mobility for the non-hydrogen bond control. This work demonstrates an efficient synthetic
strategy to incorporate robust intramolecular hydrogen bonds into conjugated π-systems and elucidates the mechanism on
how such hydrogen bonds promote the desired molecular conformation, solid-state packing, and electronic performances of
conjugated organic materials.

The molecular conformation of conjugated π-systems
plays a pivotal role in governing a wide range of their
properties, including solubility, solid-state character-

istics, as well as optical and electronic functions. Generally,
coplanar π-conjugated molecules are expected to possess more-
extended coherent conjugation,1 giving rise to faster intra-
molecular charge transport2 and lower band gaps.3 A rigid
coplanar conformation also favors low reorganizational energy
of charge transport and close intermolecular packing in the
solid state,4 which are anticipated to result in strong
intermolecular electronic coupling and long exciton diffusion
lengths.5 Coplanar conformations of extended π-systems are
often accomplished by covalently fusing aromatic rings in a
bottom-up manner.2,6−8 However, extensive employment of
this strategy has been limited due to challenges with precise
synthesis and solution processability.9

In contrast to covalent fusing, the use of dynamic
noncovalent bonds can also confine the backbone conforma-
tion of conjugated molecules,10,11 while potentially mitigating
the aforementioned issues in synthesis and solubility. Various
types of noncovalent interactions have been investigated for
this purpose. For example, the installation of intrachain
heteroatom interactions (e.g., S−O, S−S, S−N, S−F, S−Cl,
and P−O interactions)12−19 often leads to higher perform-
ances in solid-state charge transport and photovoltaics of
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conjugated systems. However, these interactions are typically
very weak (usually <1.0 kcal/mol) so that the locked coplanar
conformation can easily be disrupted by thermal energy.
Stronger intramolecular hydrogen bonds (H-bonds) have also
been used to lock the conformation of π-conjugated molecular
systems. For the typical C−H···F,20,21 C−H···O,22,23 N−H···
O,24,25 and N−H···N26 interactions, the H-bond-induced
stabilizations of coplanar conformations are in the range of
7−14 kcal/mol. Many literature examples exhibited intriguing
properties induced by the coplanar conformation, such as
anisotropic molecular aggregation,24 solvent resistance,25 and
increased charge carrier mobility.21,22,26,27 Despite the
potential of the H-bond approach, efficient synthetic strategies
to incorporate robust intramolecular H-bonds into conjugated
π-systems are still relatively limited. Moreover, the thermody-
namic nature of intramolecular H-bonds in these π-systems
and the mechanism on how they impact the solid-state
properties are still unclear. Herein, we report a new strategy to
incorporate intramolecular H-bonds into conjugated π-systems
by utilizing diazaisoindigo acceptors; and demonstrate the
crucial role of noncovalent conformational control on
enhanced coplanar molecular conformation, solid-state pack-

ing, and charge-transport abilities of semiconducting organic
materials.
Compounds N,N′-bis(2-octyldodecyl)-6,6′-di(1H-indol-7-

yl)-7,7′-diazaisoindigo (o-AID) and N,N′-bis(2-octyldodec-
yl)-6,6′-di(1H-indol-7-yl)-5,5′-diazaisoindigo (p-AID) were
designed as the models for this work. In these molecules, we
employed a design28 of H-bond “donor−acceptor-donor”
systems, with indole as the flanking H-bond donor units and
nitrogen-containing diazaisoindigo units as the H-bond
acceptor in the center.29,30 The central moieties in o-AID
and p-AID (7,7′-diazaisoindigo31 and 5,5′-diazaisoindigo,32
respectively) were selected because of (i) their promising
optoelectronic properties and (ii) their ability to form strain-
free, favorable six-membered ring H-bonds33,34 with indole.
We also designed a non-H-bonded control compound N,N′-
bis(2-octyldodecyl)-6,6′-di(1H-indol-7-yl)-isoindigo (ID-C),
which had a very similar constitution, compared to o-AID
and p-AID, except for its non-nitrogen-containing center unit.
ID-C did not possess a H-bond accepting unit, so it lacked any
intramolecular conformational locking effect. On all of these
molecules, branched alkyl chains were installed on the N-

Scheme 1. Synthetic Route of (a) Diazaisoindigo Starting Materials and (b) the Final Products ID-C, o-AID, and p-AID
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positions of the diazaisoindigo or isoindigo units to promote
solubility and solution processability.
The key synthetic steps to ID-C, o-AID, and p-AID are

shown in Scheme 1. The non-nitrogen isoindigo core 3a
(Scheme 1b) was synthesized according to the previously
reported method.35 For the synthesis of diazaisoindigo
intermediates 3b and 3c, modified synthetic procedures were
developed based on conditions that have been reported in the
literature,36 with significantly improved efficiencies (Scheme
1a). First, azaindole-derived starting materials 1 and 4 were
synthesized in 10-g scales (see the SI). To synthesize the 7,7′-
diazaisoindigo intermediate 3b, compound 1 was oxidized into
6-bromo-7-azaisatin (2) by pyridinium chlorochromate with
excess AlCl3 in 62% yield. Interestingly, a small amount of 3b
was already formed in this step in 27% yield, as a result of acid-
promoted condensation between 1 and 2. Subsequently, in a
separate batch, 2 and 1 were paired up to undergo
condensation in the presence of P(NMe2)3 to afford 3b. A
significantly improved 53% yield in this step was achieved,
compared to the literature reported 23% yield,31 by slowly
adding a solution of 2 into P(NMe2)3. The increased yield was
attributed to the need of 2 equivalents of P(NMe2)3 with high
local concentration to drive 2 through a Kukhtin-Ramirez
facilitated carbene in order to form an ylide. Subsequently,
additional equivalents of 2 underwent a Wittig reaction with

the ylide to form 3b (see Scheme S1 in the Supporting
Information).37,38 As a result, the total yield of 3b from 1 was
doubled from the literature reports of ∼30%31,32 to 60% here.
Similarly, the 5,5′-diazaisoindigo core 3c was synthesized by
modifying a reported method.32 First, both intermediates 5
and 6 were synthesized from dibromo-functionalized starting
material 4 in parallel by treating 4 with zinc or silver nitrate,
respectively (details given in the SI). Purified sample 5 was
then immediately condensed with 6 in an acidic condition to
afford 3c in 90% yield. The yield was optimized by proceeding
directly after the purification of 5 and 6 and degassing the
reaction mixture to prevent the compounds from undergoing
decomposition. Our modified synthesis of both 3b and 3c
provided a more cost-effective approach to these diazaisoindi-
go-derived intermediates. Finally, Suzuki coupling between 3a,
3b, or 3c and boronic ester-functionalized indole 7 afforded
the desired products ID-C, o-AID, and p-AID in yields of
83%−98%, respectively (Scheme 1b).
In order to investigate the electronic structures and energy

levels of ID-C, o-AID, and p-AID, ultraviolet−visible light
(UV-vis) absorption spectra (see Figure 1a, as well as Figures
S11 and S12 in the Supporting Information) and cyclic
voltammetry (CV) measurements were performed (Figure S14
in the Supporting Information). The observed optical
bandgaps and electrochemical bandgaps were in good

Figure 1. Optoelectronic properties and rotational energies of ID-C, o-AID, and p-AID: (a) density functional theory (DFT)-calculated
frontier molecular orbital distributions of the three compounds, labeled by the corresponding energy levels obtained from CV experiments
and from DFT calculation (in parentheses). (b) UV-vis spectroscopy of thin films (drop-casted on quartz glass) of ID-C, o-AID, and p-AID.
(c) DFT optimized conformations of the three compounds with isoindigo planes (red) and indole planes (blue) indicated to illustrate
dihedral angles. (d) ΔH(φ) and (e) P(φ) for the three compounds, as functions of the dihedral angle φ. Frontier molecular orbital energy
levels and rotational energies were calculated at B3LYP/6-311G(d,p) and B3LYP/6-31G(d) levels of theory, respectively.
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agreement (see Figures 1a and 1b). According to the reduction
potentials, the lowest occupied molecular orbital (LUMO)
level of o-AID and p-AID (−3.75 eV and −3.68 eV) were
significantly lower than that of ID-C (−3.46 eV). However, the
oxidation potentials were not as significantly impacted and all
showed highest occupied molecular orbital (HOMO) levels in
the range from −5.55 eV to −5.44 eV for typical p-type organic
semiconductors.39,40 According to these values, o-AID and p-
AID were expected to give a p-type semiconducting behavior
while the n-type property was anticipated to be unstable,
because the LUMO was not low enough.41 The overall
bandgaps of o-AID and p-AID were also smaller, compared to
that of ID-C. Indeed, their UV-vis absorption spectra (Figure
1b) were red-shifted accordingly,32,42 to give Eg

opt = 1.74 eV,
and 1.91 eV for o-AID, and p-AID, respectively, compared to
2.02 eV for ID-C. The decreased optical and electronic
bandgaps of o-AID, and p-AID were likely originated from H-
bond-promoted coplanarity and the introduction of nitrogen
heteroatoms. Furthermore, the solid-state absorption spectra of
o-AID and p-AID demonstrated clear vibrational peaks in
contrast to the smooth bands of ID-C, indicating their higher
backbone rigidity induced by the conformational locking
intramolecular H-bonds.
Thermogravimetric analysis (TGA) was performed for ID-

C, o-AID, and p-AID to investigate their thermal stabilities
(Figure S15a in the Supporting Information). While ID-C
showed thermal decomposition (Td) with 5% weight loss at a
temperatures of 226 °C, o-AID and p-AID demonstrated
higher thermal stabilities of 257 °C and 316 °C, respectively.
The relatively low Td of ID-C was attributed to the thermal
instability of indole,32,42,43 while the higher decomposition
temperatures of o-AID and p-AID implied a stabilization effect
on the labile indole units after the formation of H-bonds. Their
thermal properties were investigated by differential scanning
calorimetry (DSC) measurements (Figures S15b-d in the
Supporting Information). While ID-C did not exhibit any
characteristic peaks, o-AID and p-AID demonstrated clear
melting temperatures (Tm) of 182 °C and 111 °C, respectively,
and crystallization temperatures (Tc) of 163 °C and 65 °C,
respectively.
Density functional theory (DFT) calculations were

employed to evaluate the strength of the intramolecular H-
bonds and their effects on molecular coplanarity of o-AID and
p-AID. Geometry optimizations [at the B3LYP/6-311G(d,p)
level of theory]36,44,45 demonstrated that both molecules
exhibited coplanar ground-state conformations (see Figure 1c,
as well as Figure S16 in the Supporting Information), while the
control compound ID-C exhibited a 44° dihedral angle
between the indole and isoindigo planes in its most stable
conformation. The H-bond H···N distances for o-AID and p-
AID were 2.11 Å and 2.07 Å, respectively, which are
significantly shorter than the sum of van der Waals radii of
N and H (2.75 Å).46 In addition, the six-membered ring
orientation allowed a ∠N−H···N angle of 120° that was
favorable for the formation of H-bonds.47,48 This observation
in combination with the exceptionally downfield-shifted N−H
proton signals of over 11 ppm (see Figures S5 and S9 in the
Supporting Information) indicate the presence of strong H-
bonding interactions.49,50

To further quantify the conformational energy diagram of
each compound and evaluate the strength of H-bonding,
geometry-restricted DFT calculations were conducted at
B3LYP/6-31G(d). In this study, the (diaza)isoindigo cores

of ID-C, o-AID, p-AID were restricted, while the dihedral
angle (φ) values between the isoindigo plane and the indole
plane were varied from 0° to 180° in 15° intervals. The
enthalpic energy profile ΔH(φ) was obtained at each dihedral
angle (Figure 1d). For ID-C, φ = 0° was defined at the
coplanar conformation closer to its ground-state orientation.
For o-AID and p-AID, φ = 0° was defined at their H-bonded
coplanar conformations (Figure 1c). As anticipated, the
rotational barriers for o-AID (8.00 kcal/mol) and p-AID
(10.60 kcal/mol) were significantly higher than that of the
non-H-bonded ID-C control (4.98 kcal/mol from 45°) ,
because of the unfavorable transition state during torsional
motion, in which the intramolecular H-bonds must be broken.
The increased stabilization energy for p-AID compared to o-
AID also implied the stronger basicity of the para-nitrogen H-
bond acceptor in p-AID. Probability functions P(φ) (Figure
1d) were calculated for each molecule, based on the
Boltzmann distribution of each conformation from the
aforementioned data, to give the planarity index ⟨cos2φ⟩ as
an empirical parameter according to eq 1.51

P

P
cos

( ) cos d

( ) d
2 0

2 2

0

2

∫

∫
φ

φ φ φ

φ φ
⟨ ⟩ =

π

π
(1)

The planarity index ⟨cos2 φ⟩ [which ranges between 0
(perpendicular) and 1 (coplanar)] represented an effective
quantification method for planarization. A higher planarity
index was seen on p-AID (0.964), compared to o-AID (0.927),
although both molecules were considered to have a planar
ground-state conformation, quantifying the more rigid nature
and strong intramolecular H-bonds in p-AID. These values
were much higher than ⟨cos2φ⟩ = 0.474 for ID-C, as expected
from its nonplanar ground state.
Entropic changes of the H-bonds in o-AID and p-AID were

not expected to contribute significantly, as evidenced by the
relatively small yet favorable calculated entropy of formation
(ΔS) values of +9.12 cal mol−1 K−1 and +2.02 cal mol−1 K−1,
respectively. These positive ΔS values suggested that the
intramolecular H-bonds would not dissociate at high temper-
atures driven by entropy. To further confirm the existence and
validate the intramolecular nature of these H-bonds, thereby
estimating their thermodynamic robustness, variable-temper-
ature UV-vis experiments of o-AID and p-AID in toluene were
recorded in a range from 0 °C to 110 °C. Indeed, no change
was observed on these spectra, even at 110 °C (see Figure S13
in the Supporting Information). Similarly, high-temperature 1H
NMR in toluene-d8 performed at 100 °C demonstrated no
significant changes compared to that at room temperature
(Figure S10 in the Supporting Information). The lack of
response observed in both the UV-vis spectra and 1H NMR
spectra in these variable conditions ruled out the possibility of
intermolecular nature of these H-bonds (either with the
solvent or between molecules), validating that they are
intramolecular, in correlation with the DFT calculations.
Furthermore, the temperature-insensitivity of the H-bonds
observed in o-AID and p-AID was similar to those of
independently reported examples of small molecules and
proteins.52,53 Such high-temperature robustness is critical to
the thermal stability of these compounds and corresponding
materials and allows for high-temperature treatments, such as
solid-state thermal annealing, of these samples without
disrupting the molecular conformation.
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Electrostatic potential maps calculated from the DFT
optimizations were used to provide insight into potential
intermolecular interactions in the solid state. p-AID demon-
strated an enhanced quadrupole moment in comparison to o-
AID (Figure S17 in the Supporting Information), attributed to
the polarizing positions of the heteroatoms of p-AID. In
contrast, the effects of the pyridinic nitrogen atoms of o-AID
are mitigated by their close proximity to the solubilizing chains.
The electron-rich π-faces of p-AID were expected to lead to
stronger solid-state C−H···π interactions, which were expected
to promote edge-to-face stacking instead of π−π stacking.54

In order to investigate the intermolecular interactions and
crystallinity with regard to solid-state charge transport
properties, grazing incidence wide-angle X-ray scattering
(GIWAXS) was conducted on spin-casted thin films of ID-
C, o-AID, and p-AID, with or without thermal annealing
(Figure 2). While single-crystal growth was unsuccessful, likely
due to the bulky octyldodecyl chains necessary for solubility,
GIWAXS was employed to represent the molecular packing in
thin-film applications. Without thermal annealing, the spin-
casted p-AID thin film showed clear isotropic diffraction
patterns, while ID-C and o-AID were significantly less
crystalline. Nevertheless, all these thin films exhibited poor
orientation in the as-cast state. Based on the DSC results, these
samples were then thermally treated at 100 °C for ID-C and p-
AID and 170 °C for o-AID. After this thermal annealing,
multiple distinct diffraction peaks were observed on the
GIWAXS results of o-AID and p-AID, demonstrating high
order and orientation in these samples, while ID-C retained its
amorphous character. For o-AID (Figure 2b), the diffraction

pattern suggested edge-on packing (Figure S18 in the
Supporting Information) with two types of π−π distances of
3.51 and 3.85 Å. Similarly, for p-AID (Figure 2c, as well as
Figure S19 in the Supporting Information), the distinct π−π
distance peaks at ∼3.95 Å indicated tilting of the molecular
backbones to 131°/49° and 121°/59°, corresponding to π−π
packing oriented along the (220) and (210) planes,
respectively. This diagonal packing was in good correlation
with the DFT calculated electrostatic potential maps, in which
p-AID demonstrated a higher propensity to form edge-to-face
packing, compared to o-AID.54 In addition, these diagonal
peaks are consistent with other well-known small molecules,
such as DNTT55 and tetrabenzoporphyrin,56 that exhibit offset
packing, with respect to the substrate, which potentially leads
to higher charge-transfer mobilities due to diminished grain-
boundary effects in thin films.57−59 The significant differences
observed here on o-AID and p-AID vs ID-C can be attributed
to the thermally robust and coplanar conformation of o-AID
and p-AID, which are promoted by intramolecular H-bonds.
Because the H-bonds were not disrupted at higher temper-
atures, the rigid structures could be maintained to facilitate
strong intermolecular interactions and firm molecular con-
formations for the formation of highly crystalline thin films
with thermal annealing. In contrast, the noncrystalline property
of ID-C is likely a result of the low barrier molecular torsional
motion, which leads to conformational disorder and weak
intermolecular interactions that hinder ordered molecular
packing in the solid state.
To probe the correlation of intramolecular H-bonds and

thin-film crystallinity to charge transport properties, ID-C, o-

Figure 2. GIWAXS diffraction patterns for as-cast and thermally annealed thin films of (a) ID-C, (b) o-AID, and (c) p-AID.
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AID, and p-AID were tested in the setting of organic thin-film
transistors with bottom-gate/top-contact architectures. These
organic materials were spin-coated onto bare or n-octadecyltri-
chlorosilane (OTS)-treated SiO2/Si substrates using Au source
and drain electrodes, as detailed in the Supporting Information
(SI). As-cast films of ID-C, o-AID, and p-AID showed no
current modulation with the application of gate voltage,
suggesting that the lack of ordered and oriented molecular
packing (as indicated by GIWAXS data) is detrimental for the
charge transport. Upon thermal annealing, as anticipated, the
more crystalline and oriented thin films of o-AID and p-AID
exhibited significantly enhanced p-type transistor performances
(Figure 3). It is noteworthy that o-AID and p-AID exhibited
optimized performances on different substrates, likely due to
the difference in their packing modes. On the more
hydrophobic OTS-modified SiO2/Si substrate, o-AID ex-
hibited significantly increased grain boundaries with its
bricklike stacking and could not form a uniform film on
OTS-modified substrates. In contrast, the edge-to-face packing
mode of p-AID rendered it less likely to have grain boundaries
and maintained good thin film forming ability on OTS-
modified substrates. After optimizing o-AID on bare SiO2/Si
and p-AID on OTS-modified SiO2/Si, their maximum hole
mobilities reached 5.37 × 10−4 cm2 V−1 s−1 and 0.270 cm2 V−1

s−1, respectively, while corresponding average hole mobilities
were 4.25 × 10−4 cm2 V−1 s−1 and 0.187 cm2 V−1 s−1 over 12
devices each. The charge transport mobilities of p-AID are
higher than most of that of other small molecular isoindigo-
derived π-systems,60,61 and are comparable to the charge-
transport mobilities of extended fused-ring isoindigo62,63 and
hemi-isoindigo derivatives.64−66 The increased mobility of p-
AID was in accordance with the favorable diagonal π−π
packing observed by GIWAXS. In sharp contrast, the control
experiment with ID-C did not exhibit any significant field-
effect transport (Figure S20 in the Supporting Information),
even after thermal annealing, because of its lack of order in the
absence of the intramolecular H-bonds.

We investigated mechanistically the impact of intramolecular
H-bonds on the molecular conformation, solid-state packing,
and thin-film charge transport of conjugated organic
compounds. Conformation-locking intramolecular H-bonds
were incorporated into diazaisoindigo-derived molecules.
Facile syntheses of the key starting materials 5,5′-diazaisoindi-
go and 7,7′-diazaisindigo were achieved after optimizing the
condensation reactions. Combined computational and exper-
imental investigations suggested that the stabilization energy of
the H-bonds promoted a high-temperature-tolerating, rigid
conformation of o-AID and p-AID, in contrast to the
disordered non-H-bonded control ID-C. The rigid conforma-
tion and influence of molecular design on the molecular
quadrupole moment resulted in significantly enhanced
orientation of solid-state molecular packing, which was clearly
correlated to the semiconducting transistor performances of
the thin films. Overall, this work demonstrates the effective
strategy of using intramolecular H-bonds to tailor the
molecular conformation, solid-state packing, and electronic
properties of conjugated organic compounds.
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