Isolation in Rust: What is Missing?

Anton Burtsev
University of California, Irvine
Irvine, California, USA

Tianjiao Huang
University of California, Irvine
Irvine, California, USA

Dan Appel
University of California, Irvine
Irvine, California, USA

Zhaofeng Li
University of California, Irvine
Irvine, California, USA

David Detweiler
University of California, Irvine
Irvine, California, USA

Vikram Narayanan
University of California, Irvine
Irvine, California, USA

Gerd Zellweger
VMware Research
Palo Alto, California, USA

Abstract

Rust is the first practical programming language that has
the potential to provide fine-grained isolation of untrusted
computations at the language level. A combination of zero-
overhead safety, i.e., safety without a managed runtime and
garbage collection, and a unique ownership discipline enable
isolation in systems with tight performance budgets, e.g.,
databases, network processing frameworks, browsers, and
even operating system kernels.

Unfortunately, Rust was not designed with isolation in
mind. Today, implementing isolation in Rust is possible but
requires complex, ad hoc, and arguably error-prone mech-
anisms to enforce it outside of the language. We examine
several recent systems that implement isolation in Rust but
struggle with the shortcomings of the language. As a result of
our analysis we identify a collection of mechanisms that can
enable isolation as a first class citizen in the Rust ecosystem
and suggest directions for implementing them.

1 Introduction

Isolation of subsystems was identified as a critical mech-
anism for improving reliability and security of operating
systems at least as early as in the first Multics report in
1977 [9]. Over the years, providing efficient isolation has
become an important topic for many other large software
systems: browser plugins [55, 68], user-defined database
functions [17, 57], network functions [5, 33, 36, 45, 53, 56],
device drivers [25, 27, 58], storage systems [15], kernel mod-
ules [13, 24, 26, 29-32], and more.

Cs

This work is licensed under a Creative Commons Attribution International 4.0 License.

PLOS ’21, October 25, 2021, Virtual Event, Germany
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8707-1/21/10.
https://doi.org/10.1145/3477113.3487272

76

Nevertheless, despite decades of research, fine-grained
isolation remained impractical. Today, the main mechanisms
that are used to enforce isolation boundaries—hardware iso-
lation primitives, software fault isolation (SFI), and language
safety—impose prohibitive overheads in systems that are
designed to keep up with the speed of modern I/O interfaces.
Commodity hardware isolation primitives (e.g., page-tables)
introduce an overhead of several hundred cycles when per-
forming a function call invocation across an isolation bound-
ary [1]. Such overhead is not acceptable for isolation of sys-
tems that spend only a few hundred cycles per request, e.g.,
modern network [18, 21] and disk [37] device drivers. Simi-
larly, SFI [2, 16, 23, 44, 55, 68], which can enforce segment-
like boundaries around the isolated code, results in 2x higher
CPU utilization, even with legacy 1 Gbps network interfaces.
The main cause for the high CPU utilization are added ac-
cess checks for regions of memory exchanged across the
isolation boundaries [44]. Finally, despite many performance
advances in garbage collection and just-in-time compilation,
the overheads of safe languages remain high for systems de-
signed to operate at line rate: a recent study that implements
a DPDK-style device driver in ten different languages shows
that even the fastest managed languages, Go and C#, are
36-42% slower than C with realistic packet batch sizes [22].

The development of Rust, a systems programming lan-
guage that offers memory and type safety without garbage
collection [38], allows us to revisit the possibility of prac-
tical, low-overhead isolation. Rust enforces safety through
a restricted ownership model, allowing only one unique
reference to each live object in memory. The compiler can
statically track the lifetime of each object and deallocate it
without a garbage collector. The runtime overhead of the
language is limited to bounds checking, which is in most
cases concealed by modern out-of-order CPUs that predict
and execute the correct path around the check [22].

Several unique properties of Rust lower the overhead of
communication across isolation boundaries and it has been
shown how they can be used to provide strong isolation
guarantees, e.g., fault isolation [48]. Firstly, like any safe lan-
guage, Rust can enforce isolation with only the overhead of

PLOS 21, October 25, 2021, Virtual Event, Germany

a function call. In a safe language an invocation between
isolated subsystems can continue on the same stack (safety
ensures isolation of objects on the stack) and does not require
saving and restoring general and extended registers (calling
conventions save and restore registers between the caller
and callee, and exception handling, i.e., unwind, mechanisms
allow recovery from a fault in an untrusted subsystem). This
significantly lowers the cost of a cross-subsystem invoca-
tion compared to hardware and SFI-based solutions in which
saving and restoring of general and extended registers and
switching the stack requires 111-406 cycles [42]. Second,
Rust ownership discipline enables zero-copy communication
across isolated subsystems by enforcing single ownership of
objects passed in cross-subsystem invocations [7, 48, 51].
Hardware or language-based isolation and SFI systems re-
quire a copy of all objects passed across isolation boundaries
to enforce that the caller can no longer access objects passed
to the callee. Finally, the Rust ownership discipline provides
a foundation for isolation of object spaces [35], which is key
for fault isolation and clean termination of isolated subsys-
tems [35, 48].

Unfortunately, Rust was not designed with support for iso-
lation in mind. Like any safe language, Rust provides mecha-
nisms to control access to the state of the program at module
and class boundaries by specifying fields of individual objects
as public or private. Isolated parts of the program have ac-
cess to the state transitively reachable through public global
variables and explicitly passed arguments. Control over ref-
erences and communication channels allows isolating the
state of the program on function and module boundaries,
enforcing confidentiality and integrity, and, more generally,
constructing a broad range of least-privilege systems through
a collection of object-capability patterns [46].

Yet, language safety alone is not sufficient for develop-
ment of systems that isolate untrusted third-party applica-
tions, e.g., dynamically loaded browser plugins, network
functions [51], user-defined database functions [39], ker-
nel extensions [48], etc. Out of the box, Rust provides no
mechanisms for isolation of faults, i.e., the ability to cleanly
terminate a misbehaving computation in a way that leaves
the system in a clean state from which recovery is possi-
ble [35, 48]. Clean termination of subsystems is challenging
in the face of semantically-rich interfaces that encourage fre-
quent zero-copy exchange of references between subsystems
and sharing of state—a crash of a single isolated component
leaves the entire system in a corrupted state [66].

Several systems explore the possibility to implement iso-
lation in Rust [7, 12, 34, 39, 48, 51], but all of them struggle
with the shortcomings of the language and its ecosystem.
Isolation in Rust is possible, but requires custom mecha-
nisms to support isolation of heaps [48], execution unwind-
ing [12, 48], dynamic loading of extensions [39, 48], and
enforcing system-specific safety and security invariants on
subsystem boundaries [48].

A. Burtsev, D. Appel, D. Detweiler, T. Huang, Z.

77

Li, V. Narayanan, and G. Zellweger

b.fn(:);

—_—— - — - ~ e — - - - — e ———— -

_____ Unwind

Error path

Ownership transfer
Figure 1. Fault isolation and recovery in RedLeaf.

In this paper, we analyze recent systems that explore
software-based isolation in Rust [7, 12, 34, 39, 48, 51] with
the goal to identify a minimal set of abstractions and mecha-
nisms that are needed for enabling isolation as a first-class
primitive in the Rust language and its ecosystem. Our anal-
ysis shows that some of the missing parts require changes
to the Rust programming language, better support from the
Rust library ecosystem, and others will likely be long-term
research efforts. While isolation was not the main design
goal for Rust, we argue that a unique combination of design
decisions makes Rust an unparalleled platform for providing
it. By identifying the missing abstractions, our work takes
a step towards enabling isolation as an essential building
block for designing secure and reliable systems.

2 Background: Isolation in a Safe System

The idea of using language safety for isolation has its roots in
the early language-based operating systems [8, 11, 14, 20, 28,
43, 54, 59]. The first systems implemented an “open” architec-
ture [40], (i.e., a single-user, single-language, single-address
space OS) that blurred the boundary between the operating
system and the application itself and in general relied on lan-
guage safety to protect against accidental errors but did not
provide isolation of subsystems. SPIN [10] utilized Modula-3
pointers as capabilities to enforce isolation of kernel exten-
sions. Since pointers were exchanged across isolation bound-
aries, it failed to provide fault isolation—an extension that
crashed would leave the system in an inconsistent state. J-
Kernel [66] and KaffeOS [6] made the observation that clean
termination of untrusted subsystems requires isolation of
heaps or object spaces across isolated subsystems. J-Kernel
mediated heap access with revocable capabilities, while Kaf-
feOS dynamically monitored every pointer assignment with
a “write” barrier.

Singularity was the first system to develop a model that
provided support for fault isolation and clean termination of
isolated code [35]. To achieve fault isolation, Singularity pro-
hibited sharing of state across isolated subsystems. Instead,

Isolation in Rust: What is Missing?

isolated subsystems utilized private heaps for regular objects
and a special “exchange heap” for communication between
domains. Singularity developed novel static analysis and ver-
ification techniques to enforce single ownership semantics on
the exchange heap. At any time, only one isolated subsystem
was permitted to have a reference to an object on the shared
heap. Unlike previous systems, in Singularity a crashing sub-
system was not able to leave the rest of the system in an
inconsistent state. Private heaps were not visible to other
subsystems, and the single ownership enforced isolation of
state on the shared heap.

A primer on isolation in Rust Several recent systems ex-
plore the ability to implement isolation in Rust [7, 12, 39, 41,
48]. To illustrate key aspects of implementing isolation in
Rust, we consider an isolation model developed in a recent
operating system, RedLeaf [48]. In RedLeaf third-party ap-
plications are implemented in language-isolated domains,
which are dynamically loaded and terminated, similar to
processes in a conventional operating system.

To provide clean fault isolation semantics and subsystem
termination, RedLeaf adapts the idea that isolated subsys-
tems should not share state on the heap (Figure 1). RedLeaf
introduces a special heap construction that separates private
(per-domain) and shared exchange heaps. Objects on the pri-
vate domain heap are regular Rust data structures with the
restriction that they cannot have pointers into other private
heaps and a guarantee that they cannot be shared across
domains via cross-domain invocations.

To enable cross-domain communication, RedLeaf imple-
ments a global exchange heap for objects that can be sent
across domains. All objects that can be exchanged across
domains are allocated on the exchange heap. RedLeaf in-
troduces an abstraction of a remote reference, or rref<7>, that
is similar to the default Rust Box<t> mechanism for allocat-
ing objects on the heap. A system-wide registry records all
objects allocated on the shared heap. On cross-domain in-
vocations, objects on the exchange heap are either moved
between domains or borrowed immutably.

The combination of private and shared heaps eliminates
all shared state across domains. When a domain crashes,
the private domain heap is reclaimed as raw memory by
the kernel. This is safe since no other object in the system
outside of the private heap is allowed to have references
into the private domain heap. Such organization allows for
reclamation of heap without garbage collection which is
critical as Rust provides no support for GC. To deallocate
objects on the shared heap, RedLeaf walks through the heap
registry and deallocates all objects currently owned by the
crashing domain. Subsequent invocations of the domain’s
interfaces return errors, but remain safe and do not trigger
panics (RedLeaf mediates all cross-domain interfaces with a
layer of trusted, proxy code that blocks future invocations
even if the domain is unloaded). Objects allocated by the

78

PLOS ’21, October 25, 2021, Virtual Event, Germany

auto trait MyHeap {}

// Reject pointers and references
impl<T> !MyHeap for *mut T {}
impl<T> !MyHeap for #*const T {}
impl<T> !MyHeap for &T {3}
impl<T> !MyHeap for &mut T {3}

O 00O\ UT s WD =

// Allocator, trait bound used to restrict value types
impl<T: MyHeap> MyBox<T> {

pub fn new(x: T) -> Self { ... }
12 3

Listing 1. Heap isolation invariants with negative traits

domain on the shared heap that moved to other domains
before the crash remain alive.

Discussion Along with several other systems that recently
explored language-based isolation in Rust [7, 12, 34, 39, 51],
we find that RedLeaf struggles with the shortcomings of Rust.
For example, lacking support to cleanly express the neces-
sary invariants for isolation of heaps in the Rust type system,
RedLeaf relies on a complex interface definition language
(IDL) that enforces heap isolation invariants outside of Rust.
We observe a similar limitation in Splinter, which instead
of a zero-copy exchange of objects across isolated subsys-
tems, reverted to a deep copy of objects on cross-subsystem
invocations required to maintain isolation invariants [39].
Similarly, due to the limitations of the Rust type system
Corundum abandons isolation of function pointers and clo-
sures [34]—they can leak between heaps and potentially
trigger an unsafe behavior. RedLeaf [48] and Theseus [12]
struggle with the lack of support for extendable thread un-
winding in no_std environments. RedLeaf implements costly
continuations to unwind execution across domain bound-
aries [48]. Theseus implements a custom-built unwind li-
brary from scratch. Lacking support from the build environ-
ment, RedLeaf [48], Splinter [39], and Theseus [12] rely on
an ad hoc trusted build environment to enforce safety of
dynamically loaded Rust extensions.

3 Isolation: The Missing Primitives

Rust is uniquely equipped to provide support for practical,
low-overhead isolation due to a combination of zero-cost
safety and its ownership discipline. In this section, we pro-
vide a detailed analysis of Rust’s ecosystem with the goal to
identify the key mechanisms required to support the devel-
opment of systems that implement fine-grained isolation of
computations.

3.1 Heap Isolation

Fault isolation and clean termination of isolated subsystems
is dependent on the ability to enforce isolation of heaps,
i.e., the ability to isolate objects that are accessed by indi-
vidual subsystems on the heap so each subsystem could be
cleanly terminated [35]. Specifically, isolation of heaps re-
quires support from the type system to restrict cross-heap

PLOS ’21, October 25, 2021, Virtual Event, Germany

pointer references [34, 48]. Unfortunately, the Rust type sys-
tem provides only partial support to enforce heap isolation
invariants.

A natural approach to enforce heap isolation in Rust is to
restrict all objects that can be allocated on a specific heap
to have pointers only into the same heap. Rust provides a
way to encode such a restriction through trait bounds on
the type of objects that are allocated on the heap, as shown
in Listing 1. Here myBox<T: MyHeap>::new() allocates an object of
type 7 that is restricted to satisfy the myHeap bound. The Myteap
trait is designed to control which pointers are allowed on
the heap.

To specify which types satisfy the trait bound and auto-
mate derivation of trait bounds for composite types, Rust
provides two mechanisms: negative and auto traits. First, to
avoid enumerating all possible types that implement the re-
quired trait, Rust allows one to specify the types that do not
implement the trait with the mechanism of negative traits
(lines 4-7). For example, we specify that mutable and im-
mutable pointers and references do not implement the myteap
trait (any declared non-pointer types automatically satisfy
the trait since we do not negate them). Second, Rust pro-
vides a way to automatically check that a composite type,
e.g., struct, tuple, array, etc., implements the trait if all sub-
types, e.g., fields of a struct, implement the trait with the
mechanisms of auto traits (line 1).

Unfortunately, the semantics of negative trait implemen-
tations is not sufficiently expressive to restrict types that are
pointers to functions and closures. Specifically, it is impossi-
ble to reject function pointers as they do not have any trait
in common and Rust does not provide syntax to express trait
bounds on functions with arbitrary number of arguments.

In Rust, all function pointers implement the rn type. How-
ever, the precise instance of the function pointer type de-
pends on its argument types. It is possible to use generic
traits to implement a marker (or its negation, in this case), for
an n-ary function pointer (with arguments and return types),
but there is no mechanism to capture function pointers with
arbitrary arity. Instead, it’s necessary to write a negative impl
for every arity:

impl<R> !MyHeap for fn() -> R {}

impl<A, R> !MyHeap for fn(A) -> R {}

impl<A, B, R> !MyHeap for fn(A, B) -> R {}
Similarly it is impossible to restrict pointers to closures (we
skip the discussion for brevity).

One possible solution would be to add a non-generic trait
(e.g., FptrTrait), that is implemented by all function pointers.
This would allow restricting function pointers as:

impl<T: FptrTrait> !MyHeap for T {}

In the past, a feature request was made in the Rust project
issue tracker to add such a trait to the language motivated
by the need to constrain implementations for any function
pointer. However, the issue was eventually closed as unre-
solved due to lack of interest [61]. We argue that it makes

79

A. Burtsev, D. Appel, D. Detweiler, T. Huang, Z. Li, V. Narayanan, and G. Zellweger

sense to revisit the feature request in light of its importance
for heap isolation. Alternatively, a more general solution
would be:

Language: Support trait bounds on functions and
closures with any number of arguments.

3.2 Inter-Process Communication

Support for code generation Isolation of untrusted code
relies on the ability to enforce specific policies on cross-
domain invocations. For example, cRust [7] and RedLeaf [48]
validate that the callee is still alive and the invocation is
safe, as well as move the ownership of all objects passed
as arguments from caller to callee. In general, mediation
of cross-subsystem invocations requires a layer of trusted
code to enforce specific checks on each interaction. Manual
development of such code is possible only if the interfaces be-
tween subsystems are fixed [7, 51]. Even with fixed interfaces
the manual development is challenging as language-based
systems embrace semantically rich interfaces, e.g., exchange
hierarchical data structures, vectors, pointers to interfaces,
etc. Automation is needed to generate a layer of code that
wraps each interface exposed between subsystems.

Rust provides support for procedural macros [62] that gen-
erate code at compile time and interact with the Rust syn-
tax tree. Unfortunately, the syntax tree itself is insufficient
for generation of code that requires reasoning about types.
For example, lacking support for enforcing heap isolation,
RedLeaf checks that arguments and return values of cross-
domain functions satisfy specific isolation invariants which
requires resolving the full path of each type and its definition.
In the past, adding type information to procedural macros
was discussed by the Rust community [63]. The agreement
was that having type information is beneficial. However, this
complicates the internals of the Rust compiler by polluting
it with macro knowledge. An alternative solution could be
to implement a compiler plugin system that would allow
development of Rust compiler extensions [64].

Language: Expose type information in procedural
mMacros.

RTTI for shared types As Rust does not provide support
for garbage collection, certain resources of an isolated sub-
system, e.g., objects owned by the subsystem on the shared
exchange heap, have to be cleaned manually by the execu-
tion environment. This requires invocation of a destructor
method (drop) for each object that needs to be cleaned up.
Hence a minimal run-time-type information (RTTI) system
is needed to invoke the proper destructor for each object
type that can be allocated on the exchange heap. Rust sup-
ports RTTI by providing a unique identifier for each type.
This identifier is computed at compile time as a hash of a
type’s AST and the context (i.e., its crate). Unfortunately,
this implementation of RTTI does not guarantee collision

Isolation in Rust: What is Missing?

freedom—an attacker can generate a type with a colliding
identifier to trigger an unsafe deallocation of an object.

At the moment it is possible to construct such RTTI infor-
mation as either an enumerated type that lists all possible
types that can be allocated on the shared exchange heap or
by implementing a trait that returns a unique type identi-
fier [48]. Both techniques, however, require code-generation.
As discussed above, Rust procedural macros provide a conve-
nient code generation interface, however, they lack support
for type information which is required for generation of
unique identifiers, i.e., macros need to identify aliases to the
same type. Therefore, a better solution is to:

Language: Support a collision-free, unique type iden-
tifier.

Thread unwinding A panic inside an isolated subsystem
requires unwinding of execution of all threads running inside
of the subsystem to their entry points. In general, several
implementations of unwinding are feasible.

First, it is possible to save the state of all general registers
on each cross-subsystem invocation and later unwind the
thread of execution to the entry point [48]. Unfortunately,
saving and restoring registers is expensive, e.g., about 35-
71 cycles for each invocation [42]. This number increases
adding another 216-242 cycles if the saved state includes
extended registers, i.e., x87 floating point, SSE, AVX registers,
etc. [42].

Alternatively, unwinding is possible with native language
support for catching exceptions. The benefit of exception
handling is that state of all registers can be restored by iter-
ating over the stack frames that contain the saved value for
each register. This eliminates the need for explicit register
saving and restoring on each invocation and instead incurs
the costs of unwinding only if the thread panics.

Rust 1.9.0 introduced support for catching panics, mod-
eled after the Itanium C++ ABI. During the unwind process,
a common personality routine is invoked repeatedly with
information regarding the exception being thrown and the
current frame of the stack that should be processed. To re-
store registers, the unwinder relies on the debugging infor-
mation embedded into the binary. A commonly used format
on Unix systems is DWAREF, in which instructions for restor-
ing registers are present for each stack frame that may be
unwound.

Several problems complicate the use of Rust’s unwind im-
plementation. First, at the moment Rust provides an unwind
implementation that relies on the standard library, which
cannot be used in baremetal environments. Second, this im-
plementation does not provide any interfaces that would
allow system developers to extend it with unwinding of
custom frames, e.g., hardware exception frames, low-level
assembly and FFI functions, etc. For example, Theseus does
not make use of the native unwind facilities in Rust, but

80

PLOS ’21, October 25, 2021, Virtual Event, Germany

rather implements its own unwinder from scratch to allow
for more flexibility [12]. We therefore, argue that Rust should:

[Library: Support extendable, no_std unwind library. }

3.3 Safety

Safe loading of unsafe code Similar to how commodity
systems create user-processes, a full-featured isolation solu-
tion asks for dynamic loading of untrusted third-party Rust
code. This allows full flexibility of application development—
isolated applications are developed as standalone Rust bi-
naries, and then loaded at runtime. Rust itself provides no
support for dynamic extensions. TockOS [41], Netbricks [51]
and CRust [7] statically link all the code and produce a single
binary.

While dynamic loading of Rust binaries is simple, language-
based systems rely on language safety to enforce isolation.
Therefore, dynamic code loading requires mechanisms that
allow a program to establish that safety guarantees hold for
the loaded code. An ideal solution would entail adding sup-
port for a proof carrying code (PCC) [49] or a typed assembly
language (TAL) [47] which allow verifying safety of a given
binary at load time by a small verifier. Despite significant
progress demonstrated by Verve [67], which uses TAL to
prove system-wide safety, developing TAL for Rust would re-
main a challenging research problem. In contrast to managed
languages, it requires reasoning about object lifetimes. One
approach might be to build this functionality into MIR, an in-
termediate representation for Rust code during compilation
that still preserves type and lifetime information.

Lacking support for TAL or PCC, existing Rust systems
that provide support for dynamic loading (Splinter [39], The-
sesus [12], and Redleaf [48]) rely on a trusted compilation
environment. The trusted compilation environment enforces
safety by ensuring that types have the same meaning across
all loadable components of the system. Specifically, the build
environment enforces that all subsystems are compiled with
the same versions of types that are visible across subsystems,
with the same compiler version and flags, etc. [48]. The build
environment measures the state of all components involved
in compilation, i.e., all program binaries and their arguments,
all code and libraries, etc. Additionally, the build system en-
sures that isolated subsystems are restricted to only safe
Rust, and restrict usage of Rust crates to a white-listed set of
libraries and possibly a subset of types from the core Rust
libraries. Existing trusted build environments [12, 39, 48] are
ad hoc, incomplete, and error prone. We, therefore, need to:

Research: Support typed assembly language for Rust.
Ecosystem: Support trusted build environments.

Stack safety Rust protects against stack overflows with
a dedicated guard page at the end of each stack [60]. To

PLOS ’21, October 25, 2021, Virtual Event, Germany

prevent stack clashing attacks [3], Rust implements stack
probing [60]: a small code sequence is generated by the com-
piler on every stack allocation to ensure that all pages of
the new allocation (including the guard page) are accessed.
Unfortunately, this implementation requires support for a
memory management unit that can write-protect a region
of memory to trigger an exception once the guard page is
reached. This requirement prevents language-based systems
from executing in environments that do not have MMU sup-
port (e.g., trusted execution environments like Intel SGX,
system management mode (SMM), and many embedded sys-
tems). Ideally, the Rust language should provide support to
customize the probing function that can either check for the
remaining stack space, or allocate a new stack.

In the past, Rust provided support for segmented stacks,
a mechanism that allowed growing the stack by allocating
stack regions also known as stacklets [52]. The compiler gen-
erated function prologues to check for the available stack
space and allocate more space on-demand. The support for
segmented stack was deprecated due to possible performance
problems [4, 65]: Segmented stacks could become a “hot spot”
if allocated and freed in a loop [65]. We argue that it makes
sense to bring back support for software-managed stacks in
order to enable language-based isolation in execution envi-
ronments that do not provide support for write protection.

Runtime: Provide software-only stack guard with
extensible probing interface.

Safe serialization As isolation relies on the safety of the
language, isolated subsystems are restricted to a safe subset
of Rust [7, 12, 39, 41, 48, 51]. While in most cases safe Rust
imposes no performance penalty on the isolated code, some
corner cases force safe Rust to execute 8-24% slower com-
pared to unsafe code [48]. Specifically, we identify the ability
to serialize and deserialize data structures as a significant
source of overhead in safe Rust. Serialization is frequent in
network and disk workloads when requests and metadata
are serialized from raw I/O bytes. For maximum deserializa-
tion performance, ideally most bytes in the raw I/O request
could be directly cast to a Rust struct. Casting byte buffers to
structs is generally unsafe in Rust, since there is no guarantee
that either Rust’s type alignment requirements nor any type
invariants are upheld after the cast (e.g., a string should only
contain valid UTF-8 characters). However, in cases where we
deal with “plain-old” data (structures containing only basic
types) such casts would be safe.

To understand the impact of serialization, we measure
the overhead for serializing/deserializing the set response
header in the key-value workload used in RedLeaf, a data
structure with a size of 89 bytes consisting of 7 distinct fields
(Table 1). On RedLeaf, which uses extend_from_slice(), serial-
ization takes about 33 cycles and deserialization takes 91
cycles (all results are taken on a 2.20 GHz Skylake CPU). The

81

A. Burtsev, D. Appel, D. Detweiler, T. Huang, Z. Li, V. Narayanan, and G. Zellweger

Library safe | slice borrow Cycles
ser | deser
RedLeaf [48] y n 33 91
nue [50] y n 6 0
serde/cbor [19] | vy y 803 | 1678

Table 1. Comparison of different serialization techniques in Rust
for plain-old-data structures.

overhead is significant for a request processing path that
takes 200-300 cycles. In Rust it is possible to use procedural
macros [62] to check if a struct is a plain-old data object
and then generate casts to and from byte arrays. nue im-
plements this approach: serialization is a cast with a single
copy, which is about 5x faster than the seven invocations
of extend_from_slice() in RedLeaf. Deserialization is also just
a cast (0 cycles). Unfortunately, nue does not support bor-
rowing of arrays and strings, so having such elements in a
packet would lead to an additional memory allocation during
deserialization. Another serialization library, serde, allows
borrowing of slices and strings without copying them out
of the underlying packet buffer, but fails to provide an effi-
cient implementation. An ideal solution would combine the
features offered in nue and serde.

Library: Develop zero-copy serialization of “plain-
old” data structures.

4 Conclusions

Isolation is an essential building block for a number of sys-
tem abstractions that range from fine-grained access control
and fault isolation to transactional recovery and persistence.
Historically, fine-grained isolation remained prohibitively ex-
pensive due to the overhead of crossing isolation boundaries
and enforcing isolation of objects on the heap. Arguably,
safe languages, and specifically, zero-cost safe languages
like Rust enable fine-grained isolation at the speeds that
are practical for software with extremely tight performance
budgets: operating system kernels, web browsers, database
and storage systems, etc. By examining recent systems that
leverage Rust for isolation, our work identifies weak points
in the Rust programming language and its ecosystem that, in
our opinion, hinder development and adoption of isolation
mechanisms. We hope that our analysis will help shape the
research needed to enable isolation as an “out-of-the-box”
primitive in the Rust ecosystem.

Acknowledgments

We would like to thank HotOS’21, APSys’21, and PLOS’21 re-
viewers for various insights helping us to improve this work.
This research is supported in part by the National Science
Foundation under Grant Numbers 1837127 and 1840197, and
VMWare.

Isolation in Rust: What is Missing?

References

(1]
(2]

(3]

(5]

—
=)
—

(10]

(11]

(13]

(14]

(15]

[16]

(17]
(18]

(19]

seL4 Performance. https://sel4.systems/About/Performance/.
WebAssembly Specification. https://webassembly.github.io/
spec/core/.

Qualys Security Advisory. The Stack Clash. https://www.qualys.
com/2017/06/19/stack-clash/stack-clash. txt, June 2017. Ac-
cessed: 2021-02-03.

Brian Anderson. [rust-dev] Abandoning segmented stacks in
Rust. https://mail.mozilla.org/pipermail/rust-dev/2013-
November/006314.html. Accessed: 2021-02-03.

James W. Anderson, Ryan Braud, Rishi Kapoor, George Porter, and
Amin Vahdat. XOMB: Extensible open middleboxes with commodity
servers. In Proceedings of the Eighth ACM/IEEE Symposium on Archi-
tectures for Networking and Communications Systems, ANCS’12, pages
49-60, New York, NY, USA, 2012.

Godmar Back and Wilson C Hsieh. The KaffeOS Java Runtime System.
ACM Transactions on Programming Languages and Systems (TOPLAS),
27(4):583-630, 2005.

Abhiram Balasubramanian, Marek S. Baranowski, Anton Burtsev, Au-
rojit Panda, Zvonimir Rakamari¢, and Leonid Ryzhyk. System Pro-
gramming in Rust: Beyond Safety. In Proceedings of the 16th Workshop
on Hot Topics in Operating Systems (HotOS’17), pages 156-161, 2017.
Fred Barnes, Christian Jacobsen, and Brian Vinter. RMoX: A Raw-
Metal occam Experiment. In Communicating Process Architectures 2003,
volume 61 of Concurrent Systems Engineering Series, pages 182-196,
September 2003.

D Elliott Bell and Leonard J La Padula. Secure computer system: Unified
exposition and multics interpretation. Technical report, MITRE CORP
BEDFORD MA, 1976.

B. N. Bershad, S. Savage, P. Pardyak, E. G. Sirer, M. E. Fiuczynski,
D. Becker, C. Chambers, and S. Eggers. Extensibility Safety and Perfor-
mance in the SPIN Operating System. In Proceedings of the 15th ACM
Symposium on Operating Systems Principles (SOSP’95), pages 267-283,
1995.

Andrew P. Black, Norman C. Hutchinson, Eric Jul, and Henry M. Levy.
The Development of the Emerald Programming Language. In Proceed-
ings of the 3rd ACM SIGPLAN Conference on History of Programming
Languages (HOPL III), pages 11-1-11-51, 2007.

Kevin Boos, Namitha Liyanage, Ramla Ijaz, and Lin Zhong. Theseus:
an experiment in operating system structure and state management.
In 14th USENIX Symposium on Operating Systems Design and Imple-
mentation (OSDI’20), pages 1-19, 2020.

Bromium. Bromium micro-virtualization, 2010. http: //www.bromium.
com/misc/BromiumMicrovirtualization.pdf.

Hank Bromley and Richard Lamson. LISP Lore: A Guide to Programming
the Lisp Machine. Springer Science & Business Media, 2012.

Anton Burtsev, Kiran Srinivasan, Prashanth Radhakrishnan, Lak-
shmi N Bairavasundaram, Kaladhar Voruganti, and Garth R Good-
son. Fido: Fast inter-virtual-machine communication for enterprise
appliances. In Proceedings of the 2009 conference on USENIX Annual
technical conference, pages 25-25, 2009.

Miguel Castro, Manuel Costa, Jean-Philippe Martin, Marcus Peinado,
Periklis Akritidis, Austin Donnelly, Paul Barham, and Richard Black.
Fast byte-granularity software fault isolation. In Proceedings of
the ACM SIGOPS 22nd Symposium on Operating Systems Principles,
SOSP’09, pages 45-58. ACM, 2009.

Albert Chang and Mark F. Mergen. 801 Storage: Architecture and
Programming. ACM Trans. Comput. Syst., 6(1):28—-50, February 1988.
Intel Corporation. DPDK: Data Plane Development Kit. http://dpdk.
org/.

Serde developers. Serde: a framework for serializing and deserializing
Rust data structures efficiently and generically. https://crates.io/
crates/serde, 2021. Accessed: 2021-02-03.

82

[20]

[21]

[22]

[23]

[24]
[25]

[26]

[27]

[28]
[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

PLOS ’21, October 25, 2021, Virtual Event, Germany

Sean M Dorward, Rob Pike, David Leo Presotto, Dennis M Ritchie,
Howard W Trickey, and Philip Winterbottom. The Inferno operating
system. Bell Labs Technical Journal, 2(1):5-18, 1997.

Paul Emmerich, Simon Ellmann, Fabian Bonk, Alex Egger, Esau Garcia
Sanchez-Torija, Thomas Giinzel, Sebastian Di Luzio, Alexandru Obada,
Maximilian Stadlmeier, Sebastian Voit, et al. The Case for Writing Net-
work Drivers in High-Level Programming Languages. In Proceedings
of the 2019 ACM/IEEE Symposium on Architectures for Networking and
Communications Systems (ANCS), pages 1-13. IEEE, 2019.

Paul Emmerich, Simon Ellmann, Fabian Bonk, Alex Egger, Esau Garcia
Sanchez-Torija, Thomas Giinzel, Sebastian Di Luzio, Alexandru Obada,
Maximilian Stadlmeier, Sebastian Voit, et al. The Case for Writing Net-
work Drivers in High-Level Programming Languages. In Proceedings
of the 2019 ACM/IEEE Symposium on Architectures for Networking and
Communications Systems (ANCS), pages 1-13. IEEE, 2019.

Ulfar Erlingsson, Martin Abadi, Michael Vrable, Mihai Budiu, and
George C. Necula. XFI: Software guards for system address spaces.
In Proceedings of the 7th Symposium on Operating Systems Design and
Implementation, OSDI'06, pages 75-88, 2006.

Feske, N. and Helmuth, C. Design of the Bastei OS architecture. 2007.
Vinod Ganapathy, Matthew] Renzelmann, Arini Balakrishnan,
Michael M Swift, and Somesh Jha. The design and implementation
of microdrivers. In ACM SIGARCH Computer Architecture News, vol-
ume 36, pages 168-178. ACM, 2008.

Tal Garfinkel, Ben Pfaff, Jim Chow, Mendel Rosenblum, and Dan Boneh.
Terra: a virtual machine-based platform for trusted computing. In
Proceedings of the nineteenth ACM Symposium on Operating Systems
Principles (SOSP’03), pages 193-206, 2003.

Alain Gefflaut, Trent Jaeger, Yoonho Park, Jochen Liedtke, Kevin]
Elphinstone, Volkmar Uhlig, Jonathon E Tidswell, Luke Deller, and
Lars Reuther. The SawMill multiserver approach. In Proceedings of the
9th ACM SIGOPS European Workshop: Beyond the PC: New Challenges
for the Operating System, pages 109-114. ACM, 2000.

Adele Goldberg and David Robson. Smalltalk-80: The Language and its
Implementation. Addison-Wesley Longman Publishing Co., Inc., 1983.
Hardy, N. KeyKOS architecture. ACM SIGOPS Operating Systems
Review, 19(4):8-25, 1985.

Heiser, G. and Elphinstone, K. and Kuz, I. and Klein, G. and Petters,
S.M. Towards trustworthy computing systems: taking microkernels
to the next level. ACM SIGOPS Operating Systems Review, 41(4):3-11,
2007.

Jorrit N Herder, Herbert Bos, Ben Gras, Philip Homburg, and Andrew S
Tanenbaum. Minix 3: A highly reliable, self-repairing operating system.
ACM SIGOPS Operating Systems Review, 40(3):80-89, 2006.

Hohmuth, M. and Peter, M. and Hértig, H. and Shapiro, J.S. Reducing
TCB size by using untrusted components: small kernels versus virtual-
machine monitors. In Proceedings of the 11th ACM SIGOPS European
Workshop, page 22. ACM, 2004.

Michio Honda, Felipe Huici, Giuseppe Lettieri, and Luigi Rizzo.
MSwitch: A Highly-Scalable, Modular Software Switch. In Proceedings
of the 1st ACM SIGCOMM Symposium on Software Defined Networking
Research, SOSR’15, New York, NY, USA, 2015.

Morteza Hoseinzadeh and Steven Swanson. Corundum: Statically-
enforced persistent memory safety. In Proceedings of the 26th interna-
tional conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS’21), 2021.

Galen C. Hunt and James R. Larus. Singularity: Rethinking the software
stack. SIGOPS Oper. Syst. Rev., 41(2):37-49, April 2007.

Jinho Hwang, K. K. Ramakrishnan, and Timothy Wood. NetVM: High
Performance and Flexible Networking Using Virtualization on Com-
modity Platforms. In 11th USENIX Symposium on Networked Systems
Design and Implementation (NSDI'14), pages 445-458, Seattle, WA,
April 2014.

PLOS ’21, October 25, 2021, Virtual Event, Germany

(37]
(38]

(39]

[40

[t

[41

—

[42

—

[43

[t

(4]

(45]

[46]

(47]

(48]

[49]

(50]

(52]

(53]

(54]

Intel Corporation. Storage Performance Development Kit (SPDK).
https://spdk.io.

Steve Klabnik and Carol Nichols. The Rust Programming Language.
No Starch Press, 2019.

Chinmay Kulkarni, Sara Moore, Mazhar Naqvi, Tian Zhang, Robert
Ricci, and Ryan Stutsman. Splinter: Bare-metal extensions for multi-
tenant low-latency storage. In 13th USENIX Symposium on Operating
Systems Design and Implementation (OSDI’18), pages 627-643, Carlsbad,
CA, October 2018.

Butler W. Lampson and Robert F. Sproull. An Open Operating System
for a Single-User Machine. In Proceedings of the 7th ACM Symposium
on Operating Systems Principles (SOSP’79), pages 98-105. 1979.

Amit Levy, Bradford Campbell, Branden Ghena, Daniel B. Giffin, Pat
Pannuto, Prabal Dutta, and Philip Levis. Multiprogramming a 64kB
Computer Safely and Efficiently. In Proceedings of the 26th Symposium
on Operating Systems Principles (SOSP’17), pages 234-251, 2017.
Zhaofeng Li, Tianjiao Huang, Vikram Narayanan, and Anton Burtsev.
Understanding the overheads of hardware and language-based ipc
mechanisms. In Proceedings of the 11th Workshop on Programming
Languages and Operating Systems (PLOS’21), 2021.

Peter W Madany, Susan Keohan, Douglas Kramer, and Tom Saulpaugh.
JavaOS: A Standalone Java Environment. White Paper, Sun Microsys-
tems, Mountain View, CA, 1996.

Yandong Mao, Haogang Chen, Dong Zhou, Xi Wang, Nickolai Zel-
dovich, and M. Frans Kaashoek. Software Fault Isolation with API
Integrity and Multi-Principal Modules. In Proceedings of the 23rd ACM
Symposium on Operating Systems Principles (SOSP’11), pages 115-128,
2011.

Joao Martins, Mohamed Ahmed, Costin Raiciu, Vladimir Olteanu,
Michio Honda, Roberto Bifulco, and Felipe Huici. Clickos and the
art of network function virtualization. In 11th USENIX Symposium
on Networked Systems Design and Implementation (NSDI'14), pages
459-473, Seattle, WA, April 2014.

Mark Samuel Miller. Robust Composition: Towards a Unified Approach
to Access Control and Concurrency Control. PhD thesis, Johns Hopkins
University, May 2006.

Greg Morrisett, David Walker, Karl Crary, and Neal Glew. From sys-
tem f to typed assembly language. ACM Trans. Program. Lang. Syst.,
21(3):527-568, May 1999.

Vikram Narayanan, Tianjiao Huang, David Detweiler, Dan Appel,
Zhaofeng Li, Gerd Zellweger, and Anton Burtsev. Redleaf: Isolation and
communication in a safe operating system. In 14th USENIX Symposium
on Operating Systems Design and Implementation (OSDI’20), pages 21—
39, November 2020.

George C. Necula. Proof-carrying code. In Proceedings of the 24th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL’97, pages 106-119, New York, NY, USA, 1997.

nue developers. nue: A collection of tools for working with binary
data and POD structs in Rust. https://crates.io/crates/nue, 2021.
Accessed: 2021-02-03.

Aurojit Panda, Sangjin Han, Keon Jang, Melvin Walls, Sylvia Rat-
nasamy, and Scott Shenker. NetBricks: Taking the V out of NFV. In
12th USENIX Symposium on Operating Systems Design and Implemen-
tation (OSDI’16), pages 203-216, Savannah, GA, November 2016.
LLVM Project. Segmented Stacks in LLVM 4AT LLVM 12 documenta-
tion. https://11vm.org/docs/SegmentedStacks.html. Accessed:
2021-02-03.

Kaushik Kumar Ram, Alan L. Cox, Mehul Chadha, and Scott Rixner.
Hyper-Switch: A Scalable Software Virtual Switching Architecture.
In 2013 USENIX Annual Technical Conference (USENIX ATC’13), pages
13-24, San Jose, CA, June 2013.

David D Redell, Yogen K Dalal, Thomas R Horsley, Hugh C Lauer,
William C Lynch, Paul R McJones, Hal G Murray, and Stephen C Purcell.
Pilot: An Operating System for a Personal Computer. Communications

83

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

A. Burtsev, D. Appel, D. Detweiler, T. Huang, Z. Li, V. Narayanan, and G. Zellweger

of the ACM, 23(2):81-92, 1980.

David Sehr, Robert Muth, Cliff L. Biffle, Victor Khimenko, Egor Pasko,
Bennet Yee, Karl Schimpf, and Brad Chen. Adapting Software Fault
Isolation to Contemporary CPU Architectures. In 19th USENIX Security
Symposium, pages 1-11, 2010.

Vyas Sekar, Norbert Egi, Sylvia Ratnasamy, Michael K. Reiter, and
Guangyu Shi. Design and Implementation of a Consolidated Middlebox
Architecture. In 9th USENIX Symposium on Networked Systems Design
and Implementation (NSDI'12), pages 323-336, San Jose, CA, April 2012.
Mark Sullivan and Michael Stonebraker. Using Write Protected Data
Structures To Improve Software Fault Tolerance in Highly Available
Database Management Systems. In Proceedings of the 17th International
Conference on Very Large Data Bases, VLDB 91, pages 171-180, San
Francisco, CA, USA, 1991. Morgan Kaufmann Publishers Inc.
Michael M Swift, Steven Martin, Henry M Levy, and Susan J Eggers.
Nooks: An Architecture for Reliable Device Drivers. In Proceedings of
the 10th workshop on ACM SIGOPS European Workshop, pages 102-107,
2002.

Daniel C Swinehart, Polle T Zellweger, Richard J Beach, and Robert B
Hagmann. A Structural View of the Cedar Programming Environment.
ACM Transactions on Programming Languages and Systems (TOPLAS),
8(4):419-490, 1986.

Rust Language Team. API documentation for the Rust ‘probestack’
mod in crate ‘compiler_builtins’. https://docs.rs/compiler_
builtins/@.1.39/compiler_builtins/probestack/index.html.
Accessed: 2021-02-03.

Rust Language Team. A ‘functionpointer® trait to represent all
‘fn‘ types. https://github.com/rust-lang/lang-team/issues/
23. Accessed: 2021-02-03.

Rust Language Team. The Rust Reference: Procedural Macros. https:
//doc.rust-lang.org/reference/procedural-macros.html. Ac-
cessed: 2021-02-03.

Rust Language Team. The Rust RFC Book: 1566-proc-macros. https:
//rust-lang.github.io/rfcs/1566-proc-macros.html. Ac-
cessed: 2021-02-03.

Rust Language Team. Tracking issue for plugin stabilization (‘plugin’,
‘plugin_registrar® features). https://github.com/rust-lang/rust/
issues/29597. Accessed: 2021-02-03.

The Go Programming Language team. Go 1.3 Release Notes. https:
//golang.org/doc/go1.3. Accessed: 2021-02-03.

Thorsten von Eicken, Chi-Chao Chang, Grzegorz Czajkowski, Chris
Hawblitzel, Deyu Hu, and Dan Spoonhower. J-Kernel: A Capability-
Based Operating System for Java. In Secure Internet Programming:
Security Issues for Mobile and Distributed Objects, pages 369-393. 1999.
Jean Yang and Chris Hawblitzel. Safe to the last instruction: Automated
verification of a type-safe operating system. In Proceedings of the
31st ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI'10, pages 99-110, New York, NY, USA, 2010.
Bennet Yee, David Sehr, Greg Dardyk, Brad Chen, Robert Muth, Tavis
Ormandy, Shiki Okasaka, Neha Narula, and Nicholas Fullagar. Native
Client: A Sandbox for Portable, Untrusted x86 Native Code. In IEEE
Symposium on Security and Privacy (Oakland’09), IEEE, 3 Park Avenue,
17th Floor, New York, NY 10016, 2009.

	Abstract
	1 Introduction
	2 Background: Isolation in a Safe System
	3 Isolation: The Missing Primitives
	3.1 Heap Isolation
	3.2 Inter-Process Communication
	3.3 Safety

	4 Conclusions
	Acknowledgments
	References

