
16

Efficient Parallel 3D Computation of the Compressible Euler

Equations with an Invariant-domain Preserving

Second-order Finite-element Scheme

MATTHIAS MAIER, Department of Mathematics, Texas A&M University, USA

MARTIN KRONBICHLER, Institute for Computational Mechanics, Technical University

of Munich, Germany

We discuss the efficient implementation of a high-performance second-order collocation-type finite-element
scheme for solving the compressible Euler equations of gas dynamics on unstructured meshes. The solver is
based on the convex-limiting technique introduced byGuermond et al. (SIAM J. Sci. Comput. 40, A3211–A3239,
2018). As such, it is invariant-domain preserving; i.e., the solver maintains important physical invariants and is
guaranteed to be stable without the use of ad hoc tuning parameters. This stability comes at the expense of a
significantly more involved algorithmic structure that renders conventional high-performance discretizations
challenging.We develop an algorithmic design that allows SIMD vectorization of the compute kernel, identify
the main ingredients for a good node-level performance, and report excellent weak and strong scaling of a
hybrid thread/MPI parallelization.

CCS Concepts: • Applied computing→ Physics; • Mathematics of computing→ Solvers; Mathemat-

ical software performance;

Additional Key Words and Phrases: Compressible euler, conservation law, convex limiting, invariant-domain

preserving, finite element method, hybrid parallelization, heterogeneous architecture, SIMD

ACM Reference format:

Matthias Maier and Martin Kronbichler. 2021. Efficient Parallel 3D Computation of the Compressible Euler
Equations with an Invariant-domain Preserving Second-order Finite-element Scheme. ACM Trans. Parallel

Comput. 8, 3, Article 16 (September 2021), 30 pages.
https://doi.org/10.1145/3470637

M. K. was supported by the Bayerisches Kompetenznetzwerk für Technisch-Wissenschaftliches Hoch- und Höchstleis-
tungsrechnen (KONWIHR). M. M. acknowledges partial support by the NSF under Grant No. DMS-1912847. The authors
gratefully acknowledge the Gauss Centre for Supercomputing e.V. (www.gauss-centre.eu) for funding this project by
providing computing time on the GCS Supercomputer SuperMUC at Leibniz Supercomputing Centre (LRZ, www.lrz.de)
through Project ID pr83te. This material is based upon work supported by a “Computational R&D in Support of Stockpile
Stewardship” grant from Lawrence Livermore National Laboratory, the Air Force Office of Scientific Research, USAF, under
Contract No. FA9550-15-1-0257.
Authors’ addresses: M. Maier, Department of Mathematics, Texas A&M University, 3368 Blocker Building, College Station,
TX 77843, USA; email: maier@math.tamu.edu;M. Kronbichler, Institute for ComputationalMechanics, Technical University
of Munich, Boltzmannstrasse 15, 85748, Garching, Germany; email: kronbichler@lnm.mw.tum.de.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2021 Association for Computing Machinery.
2329-4949/2021/09-ART16 $15.00
https://doi.org/10.1145/3470637

ACM Transactions on Parallel Computing, Vol. 8, No. 3, Article 16. Publication date: September 2021.

16:2 M. Maier and M. Kronbichler

1 INTRODUCTION

The appropriate discretization and simulation of the compressible Euler equations of gas dynamics
is an ongoing and intensely discussed debate [5, 14, 29, 42]. This is in contrast to, for example, the
incompressible Navier-Stokes equations for which a much more complete mathematical solution
theory is available that establishes a common framework to assess the quality and approximation
property of fluid solvers at least for the pre-turbulent regime [34]. The lack of an accepted solution
theory for the Euler equations allows for considerable freedom in the notion of what constitutes a
good computational approximation (see, for example, References [29, 42]) and thus in the choice
of discretization scheme. Consequently, discretization schemes that allow for a high arithmetic
intensity and good parallel scaling have received a high level of attention during the past decade.
An important example are high-order discontinuous Galerkin (DG) discretizations [27, 38, 41]
with some form of flux reconstruction and appropriate flux/slope limiters [9]. However, in the
transonic and supersonic regime found in certain shock-hydrodynamics applications, the use of
variational schemes might become questionable due to the lack of pointwise stability properties—
at least, without the perpetual hunt for the right shock capturing technique [5].
In this publication, we want to entertain a different approach. Instead of starting with a

high-order discretization and then constructing ad hoc limiting techniques for solving certain
benchmark problems, we instead start with the mathematical description of a second-order
collocation-type finite-element scheme that is based on the convex-limiting technique pioneered
by Guermond et al. [14, 18–20]. The methodology is invariant-domain preserving [20]. This means
that in addition to the usual notion of hyperbolic conservation (regarding density, momentum, and
total energy), a number of important physical invariance principles are maintained strongly: posi-
tivity of the density and internal energy and a local minimum principle on the specific entropy (see
Section 3.9). Themethod is guaranteed to be stablewithout the use of any ad hoc tuning parameters.
This stability comes at the expense of a significantly more involved algorithmic structure. Taking
themathematical properties of the convex-limited collocation-type continuous Galerkin scheme as
a given, the contribution of the present work is the identification of data structures and algorithms
that make it run fast on modern hardware, and characterize the proposed computing kernels in an
academic setting. In detail, our contributions with the current work can be summarized as follows:

• We describe the algorithmic structure of a second-order collocation-type finite-element
scheme for solving the compressible Euler equations of gas dynamics. Our solver is based
on a slight modification of Reference [14] suitable for SIMD vectorization to render it highly
process and thread parallelizable. A high degree of instruction-level vectorization can be
achieved for a nonlinear convex-limiting scheme that involves a large number of root-finding
problemswith transcendental functions as building blocks. Our approach is based on explicit
vectorization using the C++ template mechanism and operator overloading as a high-level
user interface [3, 26], as well as on algorithmic design that avoids branching on data.
• We comment on optimization strategies to achieve excellent scaling characteristics and ab-
solute performance, such as, avoiding index translations, cache-optimized traversal of data
structures, using point-to-point MPI communication, and efficient local caching. To this end,
we introduce a SIMD-optimized sparsity pattern that uses a hybrid storage format blending
a packed row (ELL) format for highly structures SIMD parallel regions with a more flexible
compressed sparse row (CSR) storage format for non-vectorized index regions.
• We report excellent weak and strong scaling of our implementation for both 2D and 3D prob-
lems, and demonstrate that our solver is able to tackle realistic 3D applications by computing
a flow problem in 3D with about 1.8B grid points (totalling to about 8B spatial degrees of
freedom).

ACM Transactions on Parallel Computing, Vol. 8, No. 3, Article 16. Publication date: September 2021.

Efficient Parallel Second-order Euler Solver 16:3

Fig. 1. 2D Mach 3 compressible Euler flow around a disc; 38M unstructured Q1 nodes, Schlieren-like plot at
t = 3.5.

• The main performance limitations of the solver are assessed, considering the mathematical
model as fixed down to roundoff precision. Our analysis identifies which mathematical
steps could be modified to further improve performance in the future. This analysis
gives a guideline for performance optimization of a broader class of algorithms based
on unstructured-grid stencil-based update formulas with complex data dependencies and
heavy transcendental arithmetic. In addition, the analysis allows for predictions regarding
the expected performance envelope on hardware with different characteristics than the
present CPU-based architectures.
• A reference implementation of the solver is made available1 that is based on the deal.II
finite element library [2, 3] and is freely available for the scientific community under an
open source license.

The remainder of the article is organized as follows. In Section 2, we review the compressible
Euler equations and introduce important physical quantities. In Section 3 the solver is discussed
in a concise, abstract (mathematical) manner. In particular, the invariant-domain property of the
solver is discussed in Section 3.3 and the convex-limiting paradigm is introduced in Section 3.4.
We summarize key design decisions of our implementation in Section 4 and report benchmark
results and explore algorithmic alternatives in Section 5. We conclude in Section 6 with a detailed
discussion of possible further improvements that require some mathematical reformulation.

2 THE EULER EQUATIONS OF GAS DYNAMICS

Let Ω be an open polyhedral domain in Rd , d = 1, 2, 3. We consider the compressible Euler equa-
tions in conservative form,

∂tu + ∇ · f (u) = 0, (1)

equipped with suitable initial conditions u (x , 0) = u0. Here, the independent variables are (x , t) ∈
Ω × R+ and the vector u := (ρ,m,E)T ∈ Rd+2 describes the (dependent) conserved quantities, the
density ρ, the momentumm, and the total energy E. The flux f (u) ∈ R(d+2)×d is given by

f (u) :=
(

m , v ⊗m + pId , v (E + p)
)T
, (2)

1https://doi.org/10.5281/zenodo.3924365.

ACM Transactions on Parallel Computing, Vol. 8, No. 3, Article 16. Publication date: September 2021.

16:4 M. Maier and M. Kronbichler

where Id is the d × d identity matrix, and p is the pressure that will be defined below. Starting
from the vector u of conserved quantities, we define a number of derived physical quantities. The
velocity of the fluid particles is denoted v := ρ−1m and e := ρ−1E − 1

2v
2 denotes the specific

internal energy. We call the quantity ε := ρe = E − 1
2ρv

2 internal energy. Here, we have used the
notationv2 := ‖v ‖2, where ‖ · ‖ is the Euclidean norm.
The pressure p is defined by an equation of state derived from a specific entropy s (ρ, e) [19, 22].

For the sake of simplicity we limit the discussion in this article to a polytropic ideal gas by setting

s (ρ, e) − s0 = log
(

e
1

γ −1 ρ−1
)

,

where γ is the ratio of specific heats that we set to γ = 7�5. This implies that

p := −ρ2 ds
dρ

(ds

de

)−1
= (γ − 1) ε .

We also introduce the speed of sound c =
√

γ p

ρ
, as well as a scaled specific entropy that will be

used in the context of convex limiting,

ϕ (u) := exp((γ − 1) s (ρ, e (u))) = ε ρ−γ . (3)

As a last preparatory step, we introduce a Harten-type entropy [22, Equation (2.10a)],

η(u) := (ρ2e)
1

γ +1 = (ρε)
1

γ +1 . (4)

3 SECOND-ORDER INVARIANT-DOMAIN PRESERVING EULER SCHEME

Before proceeding to the algorithmic details of our solver, we summarize themethod in this section
in a concise, mathematical manner. Our solver is based on the convex-limiting technique pioneered
by Guermond et al. [14]. We refer the reader to References [14, 18–20] for a detailed derivation
and analysis of the respective building blocks.We summarize and slightly adapt the algorithm here
with the aim of developing a scalable hybrid-parallelized solver that can utilize modern hardware.
In the following, we introduce the underlying finite-element discretization, low- and high-order
update step, as well as necessary building blocks for the final time stepping (Section 3.5).

3.1 Finite-element Discretization

Let Th be a partition of Ω into a shape-regular quadrilateral or hexahedral mesh. We denote by{
φhi

}N
i

the Lagrange basis of Q1 (Th), the space of piecewise linear, bilinear, or trilinear finite el-
ements on Ω (d = 1, 2, 3). In the following, we will make use of two fundamental properties of
the Lagrange basis, the nonnegativity of the lumped mass matrix and a partition of unity property,
respectively,

∫

Ω

φhi dx > 0 for 1 ≤ i ≤ N ,
N
∑

i=1

φhi (x) = 1 for x ∈ Ω.

Following the notation in Reference [14], we introduce a number of scalar and vector-valuedmatrix
elements:

ACM Transactions on Parallel Computing, Vol. 8, No. 3, Article 16. Publication date: September 2021.

Efficient Parallel Second-order Euler Solver 16:5

mi j ≔

∫

Ω

φhi (x)φ
h
j (x)dx , mi ≔

∫

Ω

φhi (x)dx ,

ci j ≔

∫

Ω

φhi (x)∇φhj (x)dx , ni j ≔
ci j

‖ci j ‖
,

βi j ≔

∫

Ω

∇φhi (x) · ∇φhj (x)dx , bi j ≔ δi j −
mi j

mj
,



(5)

where δi j denotes Kronecker’s delta. The matrices introduced in Equation (5) only depend on the
mesh and the particular choice of the finite element basis. For a given index i , we introduce a
stencil of nonzero matrix entries:

I (i) ≔
{
1 ≤ j ≤ N ��� supp (φhi) ∩ supp (φhj) � ∅

}
.

3.2 Efficient Precomputation

The solver algorithm discussed in the following consists of nonlinear updates that are organized
as loops over the stencil:

for i = 1, . . . , N do

for j ∈ I (i) do
(Nonlinear) computation involving quantities with indices i and j

This is a stencil-centric operation in contrast to the usual cell-centric loops typically encountered in
finite element assembly [3]. To achieve good performance, the first decision is whether thematrices
defined in Equation (5) should be recomputed “on the fly” in terms of a matrix-free approach, or
whether it is more efficient to precompute and store some matrices. For low-order discretizations,
matrix-free schemes based on fast integration with sum factorization cannot amortize the work at
quadrature points to a sufficient number of degrees of freedom (dofs) on a cell, thus incurring
a substantial arithmetic overhead compared to matrix-based schemes [12, 26, 27]. The overhead
is around 500 floating point operations per nonzero entry for tri-linear polynomials in 3D using
similar arguments as for the operator action in Reference [26, Figure 1]. These computations are
necessary, because some of the nonlinear update steps specified below explicitly require the full
value of the (i, j)th entry of the respective matrix. We point out that even hierarchical, stencil-
based matrix-free methods (such as Reference [7]) will need to incorporate additional steps to
treat nonlinearities or deformed meshes (we refer to Reference [6] for a possible approach). As
will be shown below, many steps are below the threshold of saturating memory bandwidth in a
matrix-based implementation for contemporary hardware. Furthermore, a reformulation of our
algorithms in terms of a cell-based loop, viz.

for T ∈ Th do

for i with supp
(

φhi

)

∩T � ∅ do
for j with supp

(

φhj

)

∩T � ∅ do
. . .

would necessitate additional communication from degrees of freedom from different cells, which
is better done before the time loop. Based on these considerations, the limiting resource identi-
fication underlying the roofline performance model [40] suggests that the on-the-fly matrix-free
computation would not relax the performance-limiting factor. Even though arithmetic intensity
would be further increased, the application metric of the throughput in terms of points updated
per secondwould decrease. Consequently, themost performance-beneficial setup is a stencil-based
loop structure with pre-computed matrices.

ACM Transactions on Parallel Computing, Vol. 8, No. 3, Article 16. Publication date: September 2021.

16:6 M. Maier and M. Kronbichler

Starting from these considerations, we avoid all assembly operations during the time loop and
precompute the three matricesmi j , ci j , βi j . Note that each matrix contains unique information in
terms of the shape functions. Furthermore, the frequent use of the diagonal matrixmiδi j , on the
one hand, and the low memory consumption, on the other hand, motivates us to also store this
matrix. Given one layer of overlap in the mesh to the neighboring MPI ranks, the computation of
those four matrices is completely local to each MPI rank. Conversely, the matrices ni j and bi j are
derived on the fly from ci j andmi j : Matrix ni j is used in close proximity to ci j , thus leading to a
single division and three multiplications of data present already in registers, which is cheaper than
transferring three doubles through the memory hierarchy. The motivation for bi j is more subtle:
The code below uses both bi j and bji for the update; whereasmi j is symmetric, the matrix bi j is not.
In the presence of caches, see the analysis below, it is hence cheaper to only load the symmetric
entrymi j and the entries 1/mi and 1/mj derived from the diagonal mass matrix. In addition, we
propose to precompute the inverse of the lumped mass matrix, (1/mi δi j), to avoid divisions. We
refer to the detailed discussion in Section 5.

3.3 Intermediate Low-order Update

Given a snapshot (U n
i)1≤i≤N of admissible states at time tn (this is to say that ρ (U n

i) > 0 and
ε (U n

i) > 0) with an associated finite-element function un
h
=

∑N
i=1U

n
i φ

h
i , our goal is to compute a

new snapshot (U n+1
i)1≤i≤N consistent with the Euler Equations (1) such that the states maintain

the following crucial thermodynamical constraints

• admissibility: positivity of density, ρ (U n+1
i) > 0, and positivity of internal energy,

ε (U n+1
i) > 0,

• local minimum principle on specific entropy: s (U n+1
i) ≥ minj ∈I (i) s (U n

j).

The first algorithmic ingredient to achieve a high-order update obeying above constraints is the
computation of an intermediate low-order updateU L,n+1

i with a first-order graph viscosity method
[19]. The method is based on a guaranteed maximumwavespeed estimate coming from an approx-
imate Riemann solver [18]. We construct an explicit update of the state un

h
=

∑N
i=1U

n
i φ

h
i at time

tn for some new time tn+1 = tn + τn as follows:

U
L,n+1
i = U

n
i +

τn

mi

∑

j ∈I (i)

(

− f (U n
j) · ci j + d

L,n
i j

(

U
n
j −U n

i

)

)

. (6)

Here, dL,ni j is a graph viscosity given by

dL,ni j ≔ max
(

λ̃max (ni j ,U
n
i ,U

n
j) |ci j | , λ̃max (nji ,U

n
j ,U

n
i) |c ji |

)

for i � j, dL,nii = −
∑

i�j ∈I (i)
dL,ni j ,

(7)

where λ̃max (ni j ,U
n
i ,U

n
j) is a suitable upper bound on the maximum wave speed in an associated

one dimensional Riemann problem [18, 19]. The exact definition of λ̃max (ni j ,U
n
i ,U

n
j) and descrip-

tion of the approximate Riemann solver that is used in the computation is postponed to Section 3.7.
The time-step size is set to

τn = ccfl min
1≤i≤N

	

mi

−2dL,nii

�� , (8)

ACM Transactions on Parallel Computing, Vol. 8, No. 3, Article 16. Publication date: September 2021.

Efficient Parallel Second-order Euler Solver 16:7

with a chosen constant 0 < ccfl ≤ 1. In preparation for the high-order update with convex limiting,
we rewrite the low-order update Equation (6) as follows:

U
L,n+1
i = U

L,n
i +

2τn
mi

∑

j ∈I (i)
dL,ni j U

n

i j , U
n

i j ≔
1

2

(

U
n
i +U

n
j

)

− 1

2dL,ni j

(

f (U n
j) − f (U n

i)
)

· ci j ,

(9)

where we have used the identities
∑

j ∈I (i) ci j = 0, and
∑

j ∈I (i) d
L,n
i j = 0.

3.4 Intermediate High-order Update

We now introduce a formally high-order update that is entropy consistent and close to being
invariant-domain preserving [14]. The update is similar to the low-order update Equation (6), the
only difference being that the graph viscosity dLi j of the low-order update is replaced by a suitable

dHij ≤ dLi j and the consistent mass matrixmi j is used instead of the lumped mass matrixmi ,
∑

j ∈I (i)
mi j

(

Ũ
H,n+1
j −U n

j

)

= τn

∑

j ∈I (i)

(

− f (U n
j) · ci j + d

H,n
i j

(

U
n
j −U n

i

)

)

, (10)

and where we set

dH,n
i j ≔ dL,ni j

αni + α
n
j

2
for i � j, dH,n

ii = −
∑

i�j ∈I (i)
dH,n
i j . (11)

Here, αni denotes an indicator given by a normalized entropy viscosity ratio. The precise definition

and computation of αni is discussed in Section 3.8. Solving for Ũ
H,n+1
j given by Equation (10) in-

volves inverting the full mass matrix. This is undesirable due to the high computational cost it
incurs. Even with a competitive preconditioner, solving Equation (10) can be as expensive as the
entire rest of the full (explicit) update step. We avoid this issue and obtain a very efficient scheme
by approximating the inverse of the matrix with a Neumann series. This introduces a second-order
consistency error, which is, however, close to the underlying discretization error and much smaller
than the error caused by the lumped mass matrix. We start by rewriting Equation (10) as follows:
∑

j ∈I (i)

mi j

mj

mj

τn

(

Ũ
H,n+1
j −U n

j

)

= R
n
i , with R

n
i ≔

∑

j ∈I (i)

(

− f (U n
j) · ci j + d

H,n
i j

(

U
n
j −U n

i

)

)

.

(12)

By expanding the inverse of the matrixmi j/mj into a Neumann series up to first order,
(

mi j

mj

)−1
=

(

δi j −
(

δi j −
mi j

mj

))−1
≈ δi j +

(

δi j −
mi j

mj

)

= δi j + bi j ,

we obtain
mi

τn

(

U
H,n+1
i −U n

i

)

= R
n
i +

∑

j ∈I (i)

(

bi jR
n
j − bjiRni

)

.

Here, we have used the fact that
∑

j ∈I (i) bji = 0 to add the second term in the sum on the right
hand side. By taking the difference of this equation with Equation (6) that defines the low-order
update we obtain

U
H,n+1
i −U L,n+1

i =

∑

j ∈I (i)
λ Pni j , where P

n
i j ≔

τn

mi λ

{
bi jR

n
j − bjiRni +

(

dH,n
i j − d

L,n
i j

) (

U
n
j −U n

i

)}
.

(13)

ACM Transactions on Parallel Computing, Vol. 8, No. 3, Article 16. Publication date: September 2021.

16:8 M. Maier and M. Kronbichler

In the above definition of P
n
i j , we have introduced an additional scaling parameter, λ ≔

1/(card (I (i)) − 1), that plays a crucial role in the convex limiting [14] discussed in Section 3.9.

3.5 Full Update Step

The actual update is now defined as follows. Given U
n

i j , the low-order update U
L,n+1
i , and P

n
i j as

defined in Equations (9) and (13), the new stateU n+1
i is constructed bymeans of an iterative process

[14]: First, start by setting

U i ← U
L,n+1
i , P i j ← P

n
i j .

Then, limiter bounds are computed and an update is performed:

li j = min
(

limiter
(

U
n

i j ; U i , P i j

)

, limiter
(

U
n

i j ; U j , P i j

)

)

,

U i ← U i +

∑

j ∈I (i)
λ li j P i j , P i j ← (1 − li j)P i j .


(14)

The discussion of the limiter function is deferred to Section 3.9. For reasons of stability, at least two
passes of update step Equation (14) are performed before accepting the current value by setting
U

n+1
i ≔ U i . For the convenience of the reader the full update procedure is summarized as pseudo

code in Algorithm 1.

3.6 Strong Stability Preserving Runge-Ku�a Scheme

The update process described so far is second order in space but only first order in time. To
obtain a scheme that is also high-order in time, we combine the update process with a third-order

strong stability preserving (SSP) Runge-Kutta scheme [35]. More precisely, let τn , U
n+1, (1)
i

denote the computed time-step size and the computed update of iterative process (14). We then

repeat the update step described above to compute a second intermediate state U n+1, (2)
i and the

actual updateU n+1
i by replacing the original stateU n

i byU n+1, (1)
i , andU n+1, (2)

i (while keeping the
time-step size τn fixed) and by scaling the result,

τn , U
n+1, (1)
i ← euler_step

(

U
n
i

)

,

U
n+1, (2)
i ← 3

4
U

n
i +

1

4
euler_step

(

τn , U
n+1, (1)
i

)

,

U
n+1
i ← 1

3
U

n
i +

2

3
euler_step

(

τn , U
n+1, (2)
i

)

.


(15)

3.7 Approximate Riemann Solver

For constructing the graph viscosity

dL,ni j = max
(

λ̃max (ni j ,U
n
i ,U

n
j) |ci j | , λ̃max (nji ,U

n
j ,U

n
i) |c ji |

)

,

sharp upper bounds on the maximal wave speed λ̃max (ni j ,U
n
i ,U

n
j) of the associated 1D Riemann

problem can be computed with fast, approximate Riemann solvers [18]. For our purpose, however,
the low-order articifical viscosity dL,ni j is allowed to be overestimated to a certain extent without
degrading the performance of the second-order scheme. We thus only use an inexpensive guar-
anteed upper bound on the maximum wave speed by means of a two-rarefaction approximation
[18] (and that would ordinarily used as a starting point for a quadratic Newton iteration [18]). This

ACM Transactions on Parallel Computing, Vol. 8, No. 3, Article 16. Publication date: September 2021.

Efficient Parallel Second-order Euler Solver 16:9

ALGORITHM 1: High-order forward Euler step. The indicator and limiter are discussed in Sections 3.8

and 3.9. The λ̃max values are computed with an approximate Riemann solver discussed in Section 3.7.

euler_step

// Step 0: precompute entropies (see Section 5)

// Step 1: compute off-diagonal d
L,n
i j and αi:

for i = 1, . . . , N do

indicator.reset(U n
i)

for j ∈ I (i), j > i do

d
L,n
i j ← max

(

λ̃max (ni j ,U
n
i ,U

n
j) |ci j | , λ̃max (nji ,U

n
j ,U

n
i) |c ji |

)

indicator.accumulate(U n
j , ci j, βi j)

αi ← indicator.result()

// Step 2: fill lower-diagonal part and compute d
L,n
ii and τn:

τn ← +∞
for i = 1, . . . , N do

for j ∈ I (i), j < i do

d
L,n
i j ← d

L,n
ji

d
L,n
ii ← −∑j ∈I (i), j�i d

L,n
i j ; τn ← min

(

τn , −ccfl mi

2dL,nii

)

// Step 3: low-order update, compute Ri and accumulate limiter bounds

for i = 1, . . . , N do

for j ∈ I (i) do
d
H,n
i j ← d

L,n
i j

αni +α
n
j

2 ; R
n
i ← R

n
i − fj · ci j + dH,n

i j

(

U
n
j −U

n
i

)

U
n
i j ← 1

2

(

U
n
i +U

n
j

)

− 1
2dL,ni j

(

fj − fi

)

· ci j

U
n+1
i ← 2 τn

mi
d
L,n
i j U

n
i j

limiter.accumulate_bounds(U i, U j, U
n
i j)

boundsi ← limiter.bounds()

// Step 4: compute P i j and li j:

for i = 1, . . . , N do

for j ∈ I (i) do
P i j ← τn

λmi

(

(

d
H,n
i j − dL,ni j

) (

U
n
j −U

n
i

)

+ bi jR j − bjiRi
)

li j ← limiter.compute(U n+1
i ,P i j , boundsi)

for pass = 1, . . . , number of limiter passes do

// Step 5, 6, . . . : high-order update and recompute li j:

for i = 1, . . . , N do

for j ∈ I (i) do
U
n+1
i ← U

n+1
i + λmin(li j , lji)Pni j

if not last round then

for j ∈ I (i) do
P i j ←

(

1 −min(li j , lji)
)

P i j

li j ← limiter.compute(U n+1
i ,P i j , boundsi)

ACM Transactions on Parallel Computing, Vol. 8, No. 3, Article 16. Publication date: September 2021.

16:10 M. Maier and M. Kronbichler

choice has the added benefit that the approximate Riemann solver can also be efficiently SIMD par-
allelized as will be discussed in Sections 4 and 5. For a given stateU and direction ni j , a projected
1D state is defined as follows:

ρ̃ ≔ ρ, m̃ ≔ ni j ·m, Ẽ ≔ E − 1

2 ρ

m − m̃ni j

2l 2 .
We now introduce two quantities of characteristic propagation speeds that depend on a pressure
p∗ and either theU n

i orU n
j state [18],

λ1− (U
n
i ,p
∗) ≔ ũni − c̃ni

√
√

1 +
γ + 1

2γ

[
p∗ − p̃ni

p̃ni

]
pos

, λ3
+
(U n

j ,p
∗) ≔ ũnj + c̃nj

√
√

√

1 +
γ + 1

2γ


p∗ − p̃nj

p̃nj

pos,
where we have used the symbol [x]pos =

|x |+x
2 , and where the derived quantities c̃ and p̃ are

computed from the corresponding projected 1D states. A two-rarefaction pressure p̃∗ (U n
i ,U

n
j) is

given by

p̃∗
(

U
n
i ,U

n
j

)

= p̃j

	����

c̃i + c̃ j − γ−1

2

(

ũj − ũi
)

c̃i

(

p̃i
p̃j

)− γ −12γ
+ c̃ j

������

2γ
γ −1

,

and a monotone increasing and concave down function [18] is constructed as follows:

ψ (p) ≔ f (U n
i ,p) + f (U n

j ,p) + ũj − ũi , f (U ,p) ≔



√
2 (p − p̃)

√

ρ̃
[
(γ + 1) p + (γ − 1) p̃

] , if p ≥ p̃,

[
(p/p̃)

γ −1
2γ − 1

] 2 c̃

γ − 1 , otherwise.

By using these ingredients, the wave speed estimate is constructed as follows:

λ̃max = max
([
λ1−
(

U
n
i ,p
∗)]

neg
,
[
λ3
+

(

U
n
j ,p
∗)]

pos

)

,

and where

p∗ ≔

p̃∗
(

U
n
i ,U

n
j

)

ifψ (pmax) < 0,

min
(

pmax, p̃
∗ (
U

n
i ,U

n
j

))

otherwise,

with the definitions pmin = min(p̃i , p̃j) and pmax = max(p̃i , p̃j).

3.8 Entropy Viscosity Commutator

The indicator used for constructing the high-order solver is an entropy-viscosity commutator as
described in References [14, 16]. We choose the Harten entropy η as described in Section 2. Let η′

denote its derivative with respect to the state variables:

η′(U) =
(ρ ε)−γ /(γ+1)

γ + 1
	�

E

−m
ρ

��� .
With the help of the two quantities

ani ≔
∑

j ∈I (i)

	�

η
(

U
n
j

)

ρnj
−
η
(

U
n
i

)

ρni

��� m
n
j · ci j , b

n
i ≔

∑

j ∈I (i)

(

f

(

U
n
j

)

− f
(

U
n
i

)

)

· ci j ,

ACM Transactions on Parallel Computing, Vol. 8, No. 3, Article 16. Publication date: September 2021.

Efficient Parallel Second-order Euler Solver 16:11

the normalized entropy viscosity ratio αni for the stateU n
i is now constructed as follows:

αni =
Nn
i

Dn
i

, Nn
i ≔

�����ani − η′(U n
i) · b

n
i +

η(U n
i)

ρni

(

b
n
i

)

1

����� ,Dn
i ≔

���ani ��� +
d+1
∑

k=1

�����
(

η′(U n
i)
)

k
− δ1k

η(U n
i)

ρni

�����
���(bni)k ��� ,

where (.)k denotes the kth component of a vector and δi j is Kronecker’s delta.

3.9 Convex Limiting on Specific Entropy

The starting point of our discussion of the limiting process is Equation (13), viz.,

U
H,n+1
i = U

L,n+1
i +

∑

j ∈I (i)
λPni j .

We recall that U L,n+1
i is the intermediate low-order update that ensures that all thermodynami-

cal constraints are maintained (see Section 3.3). Unfortunately, the high-order update U H,n+1
i is

invariant-domain violating and cannot be used immediately. We thus limit the high-order update
by introducing li j ∈ [0, 1],

Ũ i = U
L,n+1
i +

∑

j ∈I (i)
λli jP

n
i j , (16)

such that li j = lji (to ensure conservation) and such that Ũ i maintain all stated thermodynamical
constraints. Equation (16) allows to break down the search for the factors (li j) into successive
one-dimensional root finding problems that can be solved very efficiently:

max ! l̃i j ∈ [0, 1] s. t. U i + li jP i j maintains thermodynamical constraints.

A key observation is the fact that the l̃i j found in that way have the property that the combined
update Equation (16) obeys the thermodynamical constraints as well [14]. The downside of this
approach, however, is the fact that the factors are not necessarily optimal. This can be improved
by repeating the limiting step a second time (as outlined in Section 3.5).

For a given index i , we first define local bounds for the density and specific entropy (the com-
putation of these correspond to the limiter.accumulate_bounds call in Algorithm 1):



ρmin ≔ min
j ∈I (i)

ρ (U
n

i j),

ρmax ≔ max
j ∈I (i)

ρ (U
n

i j),

ϕmin ≔ min
j ∈I (i)

ϕ (U j).

Remark 3.1. These bounds can be relaxed to obtain optimal second-order convergence rates for
smooth manufactured solutions, see to Reference [14, Section 4.7]. The relaxation procedure is
implemented in our accompanying source code. For the sake of simplicity, however, we refrain
from discussing the relaxation procedure.

Given above bounds and an update direction P i j one can now determine a candidate l̃i j by com-
puting

l̃i j = max
l ∈ [0,1]

{

ρmin ≤ ρ (U i + l̃i jP i j) ≤ ρmax, ϕmin ≤ ϕ (U i + l̃i jP i j)
}

.

Algorithmically this is accomplished as follows: We first determine an interval [tL, tR] by setting
tL = 0 and choosing tR ≤ 1 ensuring the bounds on the density [14]. We then perform a quadratic

ACM Transactions on Parallel Computing, Vol. 8, No. 3, Article 16. Publication date: September 2021.

16:12 M. Maier and M. Kronbichler

ALGORITHM 2: The convex-limiting procedure. The unusual control flow in the algorithm ensures a

straight-forward SIMD vectorization; see Section 4.2.

limiter.compute (U i, P i j, bounds)

// Ensure positivity of the density ρ:

tL ← 0

tR ←


1 if ρ (U i + tRP i j) ≤ ρmax,���ρmax − ρ (U i)
������ρ (P i j)

��� else.

tR ←


tR if ρ (U i + tRP i j) ≥ ρmin,���ρmin − ρ (U i)
������ρ (P i j)

��� else.

// Perform quadratic Newton update:

for step = 1, . . . , max number of Newton steps do

ΨR ← Ψ(U i + tRPi j)

// If ΨR ≥ 0, then tR is already a good state, close interval:

tL ←
{

tR if ΨR ≥ 0,

tL else.

if ΨR ≥ 0 then
// tR is already a good state, exit for loop

break

ΨL ← Ψ(U i + tLPi j)

if ΨL ≤ TOL then

// within a preset tolerance tL is a root of Ψ, exit for loop

break

dΨL ← dΨ
dt (U i + tP i j)

���t=tR
dΨR ← dΨ

dt (U i + tP i j)
���t=tL

[tL , tR] ← quadratic_newton_step(tL, tR, ΨL, ΨR, dΨL, dΨR).

// Accept tL as limiter bound:

l̃i j ← tL

Newton iteration [18] solving for the root of a three-convex function [18]

Ψ(U) = ργ+1 (U)
(

ϕ (U) − ϕmin

)

.

We note that by definition of Ψ the condition Ψ(U) ≥ 0 ensures that the local minimum prin-
ciple on the specific entropy is fulfilled. In addition, Ψ(U) ≥ 0 also guarantees positivity of the
internal energy by virtue of Equation (3). Initially, we have Ψ(U i + tLP i j) ≥ 0; i.e., the factor tL
is an admissible limiter value. However, tR might be inadmissible; i.e., Ψ(U i + tRP i j) < 0. The
quadratic Newton step updates the bounds tL and tR simulatenously maintaining the property
Ψ(U i + tLP i j) ≥ 0 ≥ Ψ(U i + tRP i j). The limiter step is oulined in detail in Algorithm 2.

4 IMPLEMENTATION

In this section, we discuss the central implementation details of the algorithm introduced in Sec-
tion 3. Particular emphasis is on the local index handling and SIMD-optimized data structures.

ACM Transactions on Parallel Computing, Vol. 8, No. 3, Article 16. Publication date: September 2021.

Efficient Parallel Second-order Euler Solver 16:13

Fig. 2. Hybrid process and thread parallelism: The index range N is divided into contiguous ranges dis-
tributed over all MPI ranks, that in turn spawn threads subdividing the index range further.

ALGORITHM 3: Quadratic Newton step with divided differences. The input function Ψ has to be three-

convex; i.e., the third derivative of Ψ must be nonzero with a fixed positive or negative sign. (An actual

implementation of the quadratic Newton scheme should take numerical round-off errors into account,

which requires additional safeguards not discussed here.)

quadratic_newton_step (tL, tR, ΨL, ΨR, dΨL, dΨR, sign)

scaling ← 1 / (tR − tL + eps)
d11 ← dΨL ; d12 ← (ΨR − ΨL) · scaling ; d22 ← dΨR
d112 ← (d12 − d11) · scaling ; d122 ← (d22 − d12) · scaling

ΛL ←
(

dΨL
)2 − 4ΨL d112 ; ΛR ←

(

dΨR
)2 − 4ΨR d122

tL ← tL − 2ΨL
dΨL + sign

√
ΛL

; tR ← tR − 2ΨR
dΨR + sign

√
ΛR

return [tL , tR]

4.1 Distributed and Shared Memory Parallelism

All building blocks of Algorithm 1 are loops over the stencil:
for i = 1, . . . , N do

for j ∈ I (i) do
Computation involving index i and j.

Since the computed updates to different indices i are independent, the parallelization with MPI
and threads is straight-forward: First, partition the set N of indices among the participating MPI
ranks. Then, the local index ranges can be traversed in parallel by a number of workers; see
Figure 2. Introducing shared-memory thread parallelism into the algorithm requires only min-
imal modifications, mainly introducing thread-local temporary memory and parallel for loops.
We have based our implementation on OpenMP [32], because it is readily supported by current
C++ compilers.
In contrast, for distributed-memory parallelism, we have to communicate information contained

in vector entries associated to the columns I (i) between participating MPI ranks. We will com-
ment on the precise handling of such export and import indices in Section 4.3. For the time being,
we observe that Algorithm 1 is organized such that an individual step computes a quantity (for
example Ri in step 3) that in turn is needed in a subsequent step when looping over the stencil
(for example, R j for j ∈ I (i) is used in step 4). Hence, all the values R j need to be ready before
proceeding with the next step, including those values computed by another MPI rank, which must
be exchanged by a suitable export step. Due to the arithmetic intensity in these steps as explored
in Section 5 below, we consider global loops for each of the steps. Wavefront diamond blocking

ACM Transactions on Parallel Computing, Vol. 8, No. 3, Article 16. Publication date: September 2021.

16:14 M. Maier and M. Kronbichler

Fig. 3. MPI synchronization and barriers for Algorithm 1 for the typical case of two limiter passes. During
the execution of the forward Euler step (Algorithm 1) the αi , Ri andU i vectors and the li j matrix have to be
synchronized over MPI ranks: This incurs some MPI communication and forces an individual MPI rank to
wait until all necessary data is received. The computation of the maximal admissible step size, τmax, requires
an MPI Allreduce operation and thus incurs an MPI barrier a�er step 2 during which all MPI ranks have to
wait for each other such that τmax can be computed.

away from the MPI processor boundary would be possible to increase data locality between the
steps for the case of lower arithmetic loads [30, 31, 39].

Figure 3 gives an overview of all necessary MPI synchronization for the Euler update. The syn-
chronization of the vectors αi , Ri and U i and the matrix li j over MPI ranks incurs point-to-point
communication and forces an individual MPI rank to wait until all necessary data has arrived. In
addition, the computation of the maximal admissible step size, τmax, requires an MPI Allreduce op-
eration and thus incurs an MPI barrier after step 2 during which all MPI ranks have to wait. While
the MPI barrier for computing τmax is unavoidable, it is possible to mitigate the synchronization
overhead to a certain degree by scheduling the synchronization of vectors and matrices as soon
as possible. We refer to Section 4.5 for a detailed discussion how this can be achieved is in our
approach. Benchmark results for weak and strong scaling are given in Section 5.

Remark 4.1. An additional measure to reduce the number of MPI synchronizations is to increase
the overlap of shared cells between neighboring MPI ranks. This would allow to remove most of
the synchronization steps outlined in Figure 3 with the exception of the (essential) MPI barrier
after step 2 that is necessary to determine τmax. We do not pursue this optimization in the present
work, because it increases the amount of computations, the limiting resource away from the strong
scaling limit. Our benchmarks in Section 5 show that the MPI synchronization overhead is small,
such that the choice does not pose a real limitation.

4.2 Instruction-level SIMD Vectorization

To exploit the SIMD capabilities offered by modern CPUs reliably and to an appreciable degree
also for more complex algorithms and data dependencies one is usually forced to “vectorize by
hand” [27] instead of relying on the auto-vectorization capabilities of optimizing compilers. This
can be achieved in a portable manner by exploiting the C++ class mechanism and operator over-
loading. We refer the reader to References [2, 3, 26] for details on the implementation of deal.II’s
VectorizedArray class template that provides such a facility.2

The first design decision that we have to make when expressing Algorithm 1 in vectorized form
is to decide which part of the computation can be meaningfully fused together. Here, we have
multiple options. We could, for example, decide to introduce parallel SIMD instructions within the
innermost loop, or to parallelize over the loop index j, viz.,

2The VectorizedArray class is conceptually very similar to the std::simd class that is currently considered for inclusion
into the upcoming C++23 standard; see Reference [23].

ACM Transactions on Parallel Computing, Vol. 8, No. 3, Article 16. Publication date: September 2021.

Efficient Parallel Second-order Euler Solver 16:15

for i = 1, . . . , N do

for j ∈ I (i) do
// SIMD instructions parallelizing:

Computation involving index i and j.

for i = 1, . . . , N do

// SIMD instructions fusing the for

loop:

for (j, j + 1, . . . , j + k) ∈ I (i) do
Comp. involving index i and (j, j + 1, . . . , j +
k).

However, these two approaches have the significant drawback that they would require carefully
handwritten assembly to achieve good utilization of vector registers. The difficulties are caused by
complex data dependencies and because the number of indices in I (i) or the number of equations
d + 2 might not be divisible by the width k of the SIMD registers. We opt for a different strategy
by applying SIMD to the outer loop over i:

// SIMD instructions fusing the for loop:

for (i, i + 1, . . . , i + k) ∈ [1,N] do
for (j1, j2, . . . , jk) ∈ I (i) × I (i + 1) × · · · × I (i + k) do

Computation involving indices (i, i + 1, . . . , i + k) and (j1, j2, . . . , jk).

The main advantage of this scheme is that the operations on several points in the stencil are
more uniform, leading to a good utilization of vector units. The idea to apply vectorization at
an outer loop with additional similarity is conceptually similar to vectorization across elements
popular of matrix-free methods [26, 27, 36]. This approach has the minor drawback to require
the set I (i) to be of equal size for all indices that are processed at the same time, and that the
limiter involving the quadratic Newton iteration has to be adapted to process multiple states at
the same time. We point out that this can be achieved with relatively minor modifications to the
(mathematical) algorithms presented in Section 3. For example, Algorithm 2 contains a number of
ternary operations of the form

if (condition), select A, otherwise select B,

which can be efficiently implemented with SIMD masking techniques [23].3 Branching on data in
the algorithm only occurs with the break statements in the for loop in Algorithm 2. These have to
be modified to check whether the condition is simultaneously fulfilled for all states of the SIMD
vector. This implies that some of the states, which the limiter works on in parallel, might undergo
an additional Newton iteration in the algorithm despite convergence.
Another point to consider is the fact that parallelizing over the outer loop comes at the cost of

increased pressure on caches, which will be discussed in more detail in Section 5.

4.3 Local Indexing of Degrees of Freedom and a SIMD Optimized Sparsity Pa�ern

A common strategy for handling a global numbering of degrees of freedom is to assign a con-
tiguous interval of locally owned dofs to an individual MPI rank in a 1:1 fashion, and a typically
larger set of locally relevant dofs described by the access pattern of the owned rows, {j ∈ I (i) :
i is a locally owned dof} [3]. The latter index set includes the foreign dofs, also called ghost dofs,
necessary to update the locally owned range on the respective MPI rank.
This global numbering is then transformed into a numbering of dofs local to each MPI rank. It

starts at 0 so that the index can be directly used as an offset into the the underlying storage in
memory. In the following, we adopt the convention that the local numbering range is composed of

3Convenience functions implementing ternary operations on SIMD vectorized data are readily available in deal.II via
function wrappers such as compare_and_apply_mask<SIMDComparison::less_than>(a, b, c, d), which is equivalent
to (a<b) ? c : d. These ternary operations are expected to eventually become “first-class citizens” in a future C++23 stan-
dard with the introduction of std::simd and corresponding operator?: overloads.

ACM Transactions on Parallel Computing, Vol. 8, No. 3, Article 16. Publication date: September 2021.

16:16 M. Maier and M. Kronbichler

Fig. 4. Local index handling: On each MPI rank, we enumerate all locally relevant dofs with a local index
[0,N lr) subject to the following contraints: N i is a multiple of k , the width of the SIMD registers and the
interval [0,N i) only contains dofs with standard connectivity (#(I (i)) = 3, 9, or 27). A subsequent renum-
bering ensures that [0,Ne) contains all exported degrees of freedom of the internal range. Ranges with dofs
that have to be exported or imported during MPI synchronization are marked in blue and red, respectively.

two disjunct intervals: [0,N lo) contains all locally owned dofs and [N lo,N lr) contains all locally
relevant dofs that are not locally owned.
The SIMD parallelization approach outlined in the previous section requires a uniform stencil

size, i.e., #(I (i)) = const., over the region of indices that will be vectorized.We ensure this property
by applying a local renumbering of the locally-owned index range [0,N lo) as follows. We sort
the interval into a range [0,Ni) of internal degrees of freedom with standard connectivity that
we characterize by #(I (i)) = 3, 9, or 27, depending on dimension. Correspondingly, the interval
[Ni ,N lo) contains dofs that have a different stencil size. We round N i down to the next integral
multiple of k , the width of the SIMD registers, and schedule the loop with full SIMD width. As
a final step the interval [0,N i) is further rearranged so that [0,Ne) contains all exported dofs
within the internal number range, that is, all internal dofs that are also part of a foreign MPI
rank’s locally relevant index range and thus have to be exchanged during MPI synchronization. A
graphical summary is given in Figure 4.

Remark 4.2. It would be possible to also vectorize the remainder loop [Ni ,N lo), for example by
using an elaborate masking strategy, or a fill with dummy values to account for differing stencil
sizes. The latter comes with the additional challenge that a suitable neutral element for all opera-
tions involved in the nonlinear stencil update would be needed. Thus, we opt for the more prag-
matic solution of not vectorizing the remainder. We justify this approach with two observations.
First, the number of affected degrees of freedom is asymptotically small, typically less than 3% of
all degrees of freedom for moderately sized problems (see Section 5). Second, treating boundary
dofs separately allows for some further optimization in Algorithm 1. For example, the symmetriza-
tion of the wavespeed estimate coming from the Riemann solver in step 1 can be skipped entirely
[14].

Based on our vectorization approach, we propose an optimized sparsity pattern that ensures a
linear traversal through the storage region of all matrices in memory, as illustrated in Figure 5.
The sparsity pattern handles vector-valued matrix entries as needed for the ci j matrix: The SIMD-
vectorized index range [0,N i) is stored in sliced-ELL format [25] as an “array of struct of array” as
follows: at the innermost “array” level, we group the same entry from k consecutive rows together;
next come the different components in case we have a multi-component matrix, i.e., the “struct”
level groups the components next to the inner array of row data; finally, the outer array arranges
the different components in an ELL storage format. The non-vectorized region is stored in a CSR
storage format on the outer layer grouping the same struct level (that organizes the components
of a multi-component matrix toegether).
The proposed storage scheme is a variant of the SELL-C-σ sparsity pattern proposed by Kreutzer

et al. [25]. This format is well-suited for both contemporary CPU and GPU architectures with
appropriate values for the parameterC of the inner length of slices, see also the recent analysis of
Anzt et al. [1]. As indicated above, the slice length proposed in this work corresponds to the widest

ACM Transactions on Parallel Computing, Vol. 8, No. 3, Article 16. Publication date: September 2021.

Efficient Parallel Second-order Euler Solver 16:17

Fig. 5. A SIMD optimized sparsity pa�ern visualized for (the hypothetical case of) a standard connectivity
of #(I (i)) = 5 and a width k = 4 of the SIMD registers. The SIMD vectorized index range [0,N i) is stored
in sliced ELL format as an “array of struct of array” as follows: at the innermost “array” level, we group the
same entry from k consecutive rows together; next come the different components, in case we have a multi-
component matrix, i.e., the “struct” level groups the components next to the inner array of row data; finally,
Finally, the outer array arranges the different components in an ELL storage format. The non-vectorized
region is stored in a CSR storage format (i.e., SELL-1) on the outer layer grouping the same struct level (that
organizes the components of a multi-component matrix together).

SIMD register in doubles, e.g., 8 for AVX-512. This ensures that vector loads can be performed for
all matrix entries. The classification of the rows corresponds to a large window σ for the row
lengths in the CELL-C-σ format spanning all locally owned degrees of freedom. Thus, the fill in
the sliced ELL region is always optimal. However, we switch to slice length C = 1 in the irregular
rows for the present contribution, given their small share on the overall rows and the reasonable
performance of scalar operations on general-purpose CPU architectures considered here.

4.4 Storage of State Vectors

On each node of the computational domain, the state vectorsU n
i as well as the temporary vector

Ri contain d + 2 components. The two storage options are (i) a struct-of-array, keeping d + 2
separate vectors for each component, or (ii) an array-of-struct, a single vector that puts the d + 2
components of a single node adjacent in memory. We propose the array-of-struct storage option
for the following reasons:

• The data exchange routines of conventional MPI-parallel vectors straight-forwardly com-
bine the data from all components into the same point-to-point messages, without manually
collecting the data before sending. This slightly reduces latency in the strong scaling limit,
see also the discussion in Fischer et al. [12].
• The vectorized data access due to contiguous indices i in the struct-of-array variant would
only help the access to row data in the outer i loops, whereas the more frequent column
access in the inner j loops would still appear as indirect gather access unless the mesh is
completely structured. Thus, the array-of-struct format leads to more contiguous access for

ACM Transactions on Parallel Computing, Vol. 8, No. 3, Article 16. Publication date: September 2021.

16:18 M. Maier and M. Kronbichler

ALGORITHM 4: MPI communication hiding in thread-parallel context. A thread-local boolean

this_thread_ready is used to avoid unnecessary thread-synchronization and ensures that the if condi-

tion in the second parallel for loop is only entered exactly once on every thread. The default memory

model of std::atomic then ensures that the condition n_threads_ready == n_threads is true on

exactly one thread.

std::atomic<unsigned int> n_threads_ready ← 0

thread parallel region

parallel for i ∈ [N i , N lo) do

// Compute serial part.

bool this_thread_ready ← false

parallel for i ∈ [0, N i) do

if [unlikely] (this_thread_ready == false) and (i ≥ Ne) then

this_thread_ready ← true

if ++n_threads_ready == n_threads then

// Initialize MPI synchronization.

// compute SIMD vectorized part.

// Wait for MPI synchronization to finish.

unstructured meshes. This reduces pressure on the translation-lookaside buffer (TLB) and
increases hardware prefetching efficiency considerably.
• The necessary transpose operations from the stored array-of-struct to the SIMD struct-of-
array format of multiple row data can be done with two shuffle-type instructions per entry
for chunks of four double-precision values.

Benchmarks of the code with the two variants revealed that the chosen struct-of-array storage
makes the evaluation considerably faster. For example for the access toU n

j in step 1 of Algorithm 1
computed with 28.6M Q1 mesh points followed over 1302 Euler step evaluations on 80 cores, the
run time is reduced from 599 to 391, all other parts equal.

4.5 MPI Communication Hiding

A single explicit Euler update (Algorithm 1) requires a number of MPI synchronization events be-
tween individual steps of the algorithm that cannot continue until all foreign data of the locally
relevant index range is exchanged; see Figure 3. To minimize latency incurred by the MPI synchro-
nization, we use a common MPI communication hiding [8] technique: The non-SIMD vectorized
part [Ni ,N lo) and the vectorized subregion [0,Ne) are computed first, which allows to start an
asynchronous MPI synchronization process early. The computation can then continue with com-
puting the large vectorized index region [Ne ,N i) while the MPI implementation exchanges mes-
sages. We use a simple thread synchronization technique centered around a std::atomic for the
actual implementation in context of our hybrid thread-process parallelization, see Algorithm 4.

4.6 Vectorized Power Function

The nonlinear update step shown in Algorithm 1 makes heavy use of transcendental pow() opera-
tionswhen computing the entropy-viscosity commutator described in Section 3.8 and in the limiter
described in Section 3.9. Such transcendental operations are computationally expensive [13]. As de-
tailed in Section 5.1 below, an update step consists of about 4–8 pow() invocations per non-zero en-

ACM Transactions on Parallel Computing, Vol. 8, No. 3, Article 16. Publication date: September 2021.

Efficient Parallel Second-order Euler Solver 16:19

try in the stencil (nnz). It is thus of paramount importance to use an optimized and vectorized pow()
implementation. In our benchmark code, we choose the C++ Vector Class Library4 by Fog [13].

To assess the computational properties, we ran a microbenchmark that repeatedly calls
pow(x,1.4) over a vector of 20,480 random numbers between 1 and 2. The reciprocal through-
put per entry for the naive (non-vectorized) implementation using the standard library im-
plementation std::pow5 is 73 ns at a clock frequency of 2.8 GHz. The vectorized version
of the Vector Class Library achieves a reciprocal throughput of 8.1 ns at a clock frequency
of 2.0 GHz (the maximum frequency for AVX-512 heavy code when loading all cores of an
Intel Cascade Lake machine according to Table 1) or 65 ns (130 clock cycles) per call. The recorded
reciprocal throughput is relatively close to more heavily optimized code for multiple pow() invo-
cations with the Intel Math Kernel Library (mkl)6 of about 4.4, 4.3, and 2.1 ns (for “high accuracy,”
“low accuracy,” and “enhanced performance” variants). We suspect that the performance for the
mkl library is higher due to significantly better pipelining of instructions for consecutive pow()
operations. To realize this throughput in Algorithm 1, a substantial rewrite of the algorithm (such
that pow() operations of multiple columns are executed in succession) would be necessary, a task
we leave for future research and modifications discussed in the outlook in Section 6.

5 BENCHMARKS AND RESULTS

All computations are performed for a 3D benchmark configuration [14], similar to the 2D
configuration shown in Figure 1, that consists of a supersonic (air) flow at Mach 3 in a rectangular
parallelepiped of size [0, 4] × [−1, 1] × [−1, 1] past a cylinder with radius 0.25 is centered along
(0.6, 0, z), z ∈ [−1, 1]. The computational domain is meshed with an unstructured hexahedral
coarse mesh and trilinearQ1 elements consisting of 208 grid points, or nodal degrees of freedom
(Qdofs). A higher resolution is obtained by subdividing every hexahedron into 8 children an
appropriate number of times, using a cylindrical manifold to attach newly generated nodes along
the cylinder to the curved surface. Figure 6 shows a temporal snapshot at time t = 5.0 of a typical
computation with 1.8B Qdofs.
The hardware used for the experiments in this section is described in Table 1. Both machines are

deployed in the form of compute nodes with dual-socket configurations (two CPUs per compute
node) with a high-speed network interconnect (Infiniband/Omnipath). The Intel Cascade Lake
system has a machine balance of 14.2 Flop/Byte computed from the peak arithemtic throughput
and the STREAM triad bandwidth7 compared to 17.2 Flop/Byte on the Intel Skylake system.8

5.1 Roofline Performance Prediction and Kernel Selection

The mathematical description of Algorithm 1 allows some freedom in rearranging computations
between individual loops. To find the algorithm variant with the best performance, we need to
identify the limiting computational resource. A stencil code such as the one presented in Algo-
rithm 1 of sufficient local size, i.e., with more than a few thousand Qdofs per MPI rank, is operated
in the throughput regime with respect to communication between the compute nodes. The two
primary bottlenecks are thus data access, which is governed by the bandwidth from main mem-
ory or caches, and the in-core execution, which can be represented by the roofline performance
model [40].

4https://github.com/vectorclass.
5https://gcc.gnu.org/onlinedocs/libstdc++/.
6https://software.intel.com/content/www/us/en/develop/tools/math-kernel-library.html.
7https://www.cs.virginia.edu/stream/ref.html.
8Note that for the Intel Cascade Lake system, the gap between the theoretical memory bandwidth and the actuallymeasured
STREAM bandwidth is higher due to the particular hardware configuration (single-rank vs dual-rank memory modules).

ACM Transactions on Parallel Computing, Vol. 8, No. 3, Article 16. Publication date: September 2021.

16:20 M. Maier and M. Kronbichler

Fig. 6. Temporal snapshot of a longer computation of a 3D Mach 3 compressible Euler flow around a disc
discretized with 1.8 B Qdofs at t = 5.0. The two vertical outer cutplanes show a Schlieren plot, i.e., the
magnitude of the gradient of the density is shown on an exponential scale from white (low) to black (high).
All other cutplanes show the magnitude of the vorticity on a white (low)–yellow (medium)–red (high) scale.
The computation was done with an earlier, not fully optimized version of the solver and ran on 30720 MPI
ranks with an average time-step size of 6.0e-05. The code achieved an average throughput of 969 QDofs per
second (0.04M grid points per second per CPU) with a second-order SSP Runge-Ku�a time integrator, in
contrast to the third-order variant suggested in this article (see Section 3.6).

Table 1. Hardware used for the Computational Experiments and Benchmarks

Intel Cascade Lake Intel Skylake

Model name Xeon Gold 6230 Xeon Platinum 8174
Cores/compute node 2 × 20 2 × 24
SIMD width 512 bit (AVX-512) 512 bit (AVX-512)
Turbo mode enabled disabled
Clock frequency scalar 2.8 GHz 2.3 GHz
Clock frequency AVX-512 2.0 GHz 2.3 GHz
L2 + L3 cache/core 1 MiB + 1.375 MiB 1 MiB + 1.375 MiB
Arithmetic peak with AVX-512/compute node 2,560 GFlop/s 3,532 GFlop/s
Peak memory bandwidth/compute node 282 GB/s 256 GB/s
STREAM triad bandwidth from RAM/compute node 180 GB/s 205 GB/s

The STREAM triad bandwidth is measured with streaming stores; i.e., it reports the actually transferred data between the
cores and the memory.

5.1.1 Data Access. In Table 2, we list the expected memory access of the stages in the final
optimized version of the algorithm. All numbers are given as reads and writes per per non-zero
entry in the stencil (nnz). The predicted access is reported separately for read transfer (labeled
“r” in the table), writes (labeled “w” in the table), and the read-for-ownership transfer [21], labeled
“rfo” in the table. The read-for-ownership transfer adds additional read transfer for data that is
only written. We use non-temporal (streaming) stores for the matrices di j of step 1, Pi j in step 4
and li j in steps 4 and 5 to avoid the read-for-ownership transfer, but regular stores for the vector
dataU n+1 and Rn+1. The performance prediction is based on the following assumptions:

ACM Transactions on Parallel Computing, Vol. 8, No. 3, Article 16. Publication date: September 2021.

Efficient Parallel Second-order Euler Solver 16:21

Table 2. Expected Memory Transfer and Measured Performance on a Simulation with 29M Nodes Over
434 Time Steps (1302 RK Stage Evaluations), Run on 80 Intel Cascade Lake Cores (2 Compute Nodes)

measurement with likwid prediction

time bandwidth read/write r/w barrier read/write
[s] [GB/s] [double/nnz] [double/nnz] [double/nnz]

step 0: entropies 9.65 239 0.22r + 0.07w 0.29r + 0.09w 0.19r + 0.07w + 0.07rfo
step 1: offdiagonal dLi j , αi 391.4 132 5.83r + 0.74w 5.46r + 0.65w 4.72r + 0.56w + 0.04rfo

step 2: diagonal dLii , τn 62.0 304 1.95r + 0.46w 2.44r + 0.56w 1.74r + 0.48w
step 3: low-order update 277.0 222 7.24r + 0.53w 7.21r + 0.51w 5.87r + 0.48w + 0.48rfo
step 4: P i j , li j 317.8 248 4.43r + 6.03w 4.31r + 6.04w 3.24r + 6.00w
step 5: h.-o. update, next li j 268.7 260 8.06r + 1.20w 8.21r + 1.21w 6.80r + 1.19w
step 6: final high-order update 132.5 394 6.71r + 0.21w 7.98r + 0.21w 6.69r + 0.19w

Memory bandwidth for STREAM triad is 360 GB/s.

• all big data structures need to be fetched from RAM memory in their entirety for every
evaluation step; this includes the matricesmi j , βi j , ci j and the underlying sparsity pattern as
well as the global vectorsU n , Rn ,U n+1, and the vector for the lumped mass matrix;9

• access to column data ofU n
j and R

n
j , the inverse mass matrix and α j exhibits perfect caching;

• access to the transposed matrix entries dji and lji in steps 2, 5, and 6, respectively, exhibits
perfect caching with perfect spatial locality.

The last two assumptions regarding data locality of column access are similar to the layer con-
ditions found in high-performance implementations of finite difference stencils [21]. For example,
for the 2D five-point stencil the layer criterion relates the spatial distance of an entry (i, j) to the
grid neighbors (i +1, j), (i −1, j), (i, j +1), (i, j −1) to the cache size. To only load one data item per
update, e.g., the (i, j+1) entry during a lexicographic grid traversal, the cachemust be large enough
to store two full rows of entries (2nx items, where nx is the number of grid points in x-direction).
For larger mesh sizes the loop must be tiled. The main difference to the present (finite-element)
algorithms is the fact that they are written for unstructured meshes with indirect addressing of
column data. Thus, a corresponding 3D layer condition for a structured grid requiring that 2nxny
items fit into cache has to be modified. A simple imitation of lexicographic numbering for unstruc-
tured meshes is obtained by a Cuthill-McKee ordering of the unknowns [10]. We can assume that
the Cuthill-McKee reordering maintains a bandwidth of approximately n2/3local unknowns per row,
where nlocal is the number of DoFs per MPI rank. A modified line criterion could thus be the re-
quirement to hold 2n2/3local entries in cache. This implies for the example presented in Table 2 with
an average local size of nlocal = 358,208 dofs that about 10,200 entries have to be kept in cache.
A state vector U n holds five variables per entry. With 8 bytes per double this equates to 400 kiB.
Given that the architecture in use provides around 2.4 MiB of L2 and L3 cache combined, we can
expect that the modified line criterion is mostly fulfilled in step 1 of the algorithm. However, in
step 4, both vectorsU n and Rn amounting to 800 kiB according to the modified layer criterion are
required to be maintained in cache, in addition to streaming through the matrices dL,ni j andmi j at
the same time. Realistically, step 4 will involve some additional transfer from main memory due
to cache eviction.
Table 2 includes measurements of the memory read and write access to the RAM memory, mea-

sured from hardware performance counters recorded with the LIKWID tool [37], version 5.0.1,

9This assumption is justified, because the loops are not overlapped and the size is big enough to exceed caches by at least
a factor of 10.

ACM Transactions on Parallel Computing, Vol. 8, No. 3, Article 16. Publication date: September 2021.

16:22 M. Maier and M. Kronbichler

Table 3. Main Arithmetic Components and Measured Performance on a Simulation with 29M Nodes Over
434 Time Steps (1302 RK Stage Evaluations), Run on 80 Intel Cascade Lake Cores (2 Compute Nodes)

time measurement with likwid prediction

[s] [GFlop/s] [Flop/nnz] [Flop/B] IPC [pow()/nnz] [div/nnz]

step 0: entropies 9.65 848 8 2.6 1.32 0.07 0.04
step 1: offdiagonal dLi j , αi 391.4 681 262 5.5 0.95 1.08 8.88

step 2: diagonal dLii , τn 62.0 17 1 0.04 1.65 0 0.04
step 3: low-order update 277.0 892 248 4.0 1.28 1 3.15
step 4: P i j , li j 317.8 571 183 2.2 1.16 1–2 (Newton) 2–8
step 5: h.-o. update, next li j 268.7 568 155 2.0 0.97 1–2 (Newton) 2–8
step 6: final high-order update 132.5 91 12 0.18 0.17 0 0

Arithmetic peak is 5,120 GFlop/s.

using an MPI-only experiment. The numbers reported in the table are calculated from the abso-
lute transfer measured with LIKWID, divided by the number of time steps and stages per time step
and by the number of nonzero entries in the sparse matrix. The result is further divided by 8, the
number of bytes per double, to make the numbers easily comparable to the transfer in terms of
Algorithm 1. The table includes two sets of measurements of markers around the algorithmic part.
The first part measures the sections as they appear in the code. However, the numbers are inac-
curate given a load imbalance of 5–15%, because the memory transfer is only recorded while the
first core of a 20-core CPU resides in the relevant section. If some of the other 19 cores take more
time to complete the section (given the implicit barrier via the MPI point-to-point communication
at a later stage), then the memory transfer appears too low. This effect can be seen by the reads
recorded for step 6 of the algorithm, which should involve a similar transfer as step 5 according
to the theoretical predictions, but is measured to transfer 1.35 doubles less. To obtain more accu-
rate data, we performed a second experiment, labeled “barrier” in Table 2, where MPI barriers are
placed around the LIKWID_MARKER_{START/STOP} markers to ensure that only the transfer of the
respective section is measured.
The write transfer, which is of streaming character, is predicted very well. However, the actual

read transfer is by 15%, 40%, 14%, 33%, 21%, and 19% higher than the best-case prediction for steps
1–6, respectively. The loss of prediction accuracy follows the reasoning above. For steps 1 and 3,
the excess transfer is contained, because only a single vector U n and the entropies, a total of six
doubles per step, is accessed indirectly and one can expect caches to mostly fit this access, with
some minor deviations due to the somewhat unstructured access in the Cuthill–McKee numbering
and missing spatial locality. For step 4, the access to bothU n and Rn leads to a larger deviation. In
steps 2, 5, 6, the excess transfer is due to the transpose access into a sparse matrix, where both the
limited size of the caches as well as the transfer of full cache lines rather than single doubles are
relevant.

5.1.2 In-core Execution. The measured memory throughput in Table 2 demonstrates that only
step 6 is at the limit of the memory bandwidth of the architecture, whereas all other steps are
primarily limited by the execution inside the core. To assess the arithmetic work done by the
various stages, Table 3 reports the main characteristics of the floating point performance of the
same computation. As discussed in Section 4.6, the nonlinear update steps are heavy on pow(),
division and square-root operations. Therefore, the arithmetic peak performance of 4 Cascade
Lake CPUs with 80 cores in total, 5,120 GFlop/s, is not attainable.
Exemplarily, for step 0 of the algorithm, inspection of the assembly code for the AVX-512 target

shows that a single loop iteration consists of 334 instructions. According to the LLVM machine

ACM Transactions on Parallel Computing, Vol. 8, No. 3, Article 16. Publication date: September 2021.

Efficient Parallel Second-order Euler Solver 16:23

code analyzer (LLVM-MCA),10 these are predicted to run with a reciprocal throughput of 248 cy-
cles or an instruction-per-cycle (IPC) rate of 1.35. According to the analysis, the main bottleneck
is the latency of operations inside the computation of the power function due to data dependencies.
More precisely, the polynomial evaluation and division operations in the Padé approximation used
in the vectorized pow() implementation [13], as well as the extraction of exponents, have long de-
pendency chains. Since the number of available physical registers and scheduler windows have
limited size to keep around 100-200 instructions in flight,11 little overlap of work from one outer
loop iteration (indexed with i) with the next one is possible. Among the 334 instructions, there are
69 fused multiply-add operations, 22 additions/substractions, 31 multiplications, and 3 divisions.
Given the LLVM-MCA prediction of execution in 248 cycles, this corresponds to a throughput of
0.78 arithmetic operations per cycle, or a utilizatoin of 19.6% of the arithmetic peak performance.
The measured performance of 848 GFlop/s corresponds to 17% of the arithmetic peak performance
or 85% of the predicted arithmetic throughput. This numbermatcheswith the ratio of themeasured
IPC of 1.32 compared to the predicted IPC of 1.35, showing that the arithmetic operations have been
counted correctly. According to the roofline model, the memory bandwidth is not a limiting factor
for step 0.
Using similar arguments, it can be shown that steps 1, 3, 4, and 5 of Algorithm 1 are limited by

the in-core execution on the Cascade Lake processor. Steps 1, 4, and 5 are more strongly effected by
long dependency chains that cannot be overlapped sufficiently with independent work. This is ev-
idenced by an IPC prediction of 1.27 for the vectorized pow() function obtained from LLVM-MCA.
Step 3 shows a higher performance that is due to a better instruction-level parallelism obtained
for the evaluation of f (U n

j) and multiplication with ci j . Step 2 appears odd (see Table 3) due to a
high IPC number but neither high GFlop/s or memory performance. This is because this function
is not vectorized. The alternative of computing all of di j in vectorized form via step 1 instead of
the symmetrization would be slower due to the heavy computations in the power function.

5.1.3 Hyperthreading. To further assess the performance bottleneck due to latencies in the
pipelined execution, we run an additional experiment on 96 Intel Skylake cores comparing en-
abled and disabled hypertheading; see Table 4. If we run the code with two-way hyperthreading,
scheduling 96 MPI jobs on each compute node, or 192 jobs in total, then performance is increased
for the latency-limited steps of the algorithm. For example, the run time of step 1 decreases from
295 to 210 s, with the arithmetic throughput reaching 18% of the arithmetic peak. Similarly, steps 0
and 5 run considerably faster. However, step 6 that was already limited by the memory bandwidth
with hyperthreading disabled, is slightly slower due to additional memory transfer and increased
cache pressure (mainly due to access to transposed entries lji) of the additional thread running on
the same core. The performance with hyperthreading on the algorithmic step 4 and, to a lesser
extent, step 3, is reduced. These steps are affected by additional data streams due to indirect ad-
dressing into the column entries ofU n

j and Rnj , which puts a higher strain on address translation
and prefetching.
When comparing the absolute run time of the whole solver (without output) for 434 time steps

of a three-stage Runge–Kutta integrator, we record 1,292 s for Skylake without hyperthreading,
1,164 s with hyperthreading, and 1,608 s on the slower Intel Cascade Lake system without hyper-
threading. The higher performance of the Intel Skylake system is in agreement with the hardware
specification; cf. Table 1. As is expected for an architecture with a higher machine balance, many
of the components run closer to the memory bandwidth limit. With hyperthreading enabled, step

10https://llvm.org/docs/CommandGuide/llvm-mca.html.
11The physical register file for floating point numbers in the Skylake-X/Cascade Lake architecture has 168 slots, compared
to 32 architectural registers. Similar limits are imposed by the reorder buffer (224 entries) and the store buffer (56 entries).

ACM Transactions on Parallel Computing, Vol. 8, No. 3, Article 16. Publication date: September 2021.

16:24 M. Maier and M. Kronbichler

Table 4. Measured Run Times on a Simulation with 29M Nodes Over 434 Time Steps (1302 RK Stage
Evaluations), Run on 96 Intel Skylake cores (2 Compute Nodes) at 2.3 GHz with hyperthreading

off and on, Respectively

hyperthreading off hyperthreading on

time arithmetic bandwidth time arithmetic bandwidth
[s] [GFlop/s] [GB/s] [s] [GFlop/s] [GB/s]

step 0: entropies 7.49 1,094 308 5.68 1,440 404
step 1: offdiagonal dLi j , αi 295.4 902 177 210.3 1,268 257
step 2: diagonal dLii , τn 54.2 19 352 50.8 21 381
step 3: low-order update 211.9 1,168 290 212.2 1,166 307
step 4: P i j , li j 250.0 726 318 243.4 746 338
step 5: h.-o. update, next li j 225.0 678 317 189.9 803 381
step 6: final high-order update 131.3 92 398 135.3 89 401

Memory bandwidth for STREAM triad is 410 GB/s, arithmetic peak 7,066 GFlop/s.

0, 2, 5, and 6 are now almost entirely limited by the available memory bandwidth. This shows that
the optimizations presented in this work have paid off.

5.2 Exploration of Algorithmic Alternatives

To justify the chosen algorithmic layout, we explore a few alternative choices and analyze their
performance compared to the results presented in Section 5.1.

5.2.1 Merge Step 2 with Step 1. In Algorithm 1 the symmetry of dLi j was exploited by only

computing the upper triangular and diagonal portion of dLi j in step 1 and fixing up the lower
triangular part (along with computing the maximal time-step size) in a separate pass (step 2). The
memory access in step 2 is non-contiguous and therefore adds additional memory transfer beyond
the best-case prediction, as can be seen from Table 2. Given that there is no explicit barrier to
fill up the information, apart from the availability of the upper triangular part, this step can be
done within the loop of step 1. This promises higher performance, because step 1 is limited by the
arithmetic operations as described above, so the additional memory transfer can be expected to
be partly hidden. As the data in Table 5 shows, the combined time for steps 1 and 2 is larger than
with doing the transposition as part of the loop. Despite adding mostly memory access in a core-
bound algorithm, there is a small slowdown compared to step 1 executed alone. This is because
the lower diagonal part dLi j with i > j for vectorized rows can only be filled up once the complete
upper diagonal part of the matrix has been computed. Thus, the instruction-level parallelism given
an out-of-order execution window of a few hundreds instructions cannot be fully exploited while
waiting for data that is not already prefetched by the hardware. Even though this variant provides
slightly higher performance, we do not consider it as the primary algorithm, because the basic
variant proposed here only works for an MPI-only parallelization. For parallelization with threads,
the upper diagonal part to readdLji is not ready for all rows, and additional re-ordering or additional
computations would be necessary.
Table 5 includes a second variant of the merged steps 1 and 2 that computes all the entries in

dLi j without considering symmetry. While the data access is lowest in this case with loads that
are mostly streaming, the performance is significantly lower due to the increased number of
computations.

ACM Transactions on Parallel Computing, Vol. 8, No. 3, Article 16. Publication date: September 2021.

Efficient Parallel Second-order Euler Solver 16:25

Table 5. Performance Comparison of Two Variants that Merge Steps 1 and 2 of Algorithm 1

time arithmetic bandwidth memory read/write
[s] [GFlop/s] [GB/s] [doubles/nnz]

(a) Baseline: compute dLi j as in Algorithm 1 exploiting symmetry

step 1: offdiagonal dLi j , αi 391.4 681 132 5.83r + 0.74w
step 2: diagonal dLii , τn 62.0 17 304 1.95r + 0.46w

(b) Variant 1: read transpose values from dLji within compute loop

step 1+2: complete dLi j , αi , τn 415.7 644 164 7.57r + 1.09w

(c) Variant 2: compute full row of dLi j without using symmetry

step 1+2: complete dLi j , αi , τn 581.6 669 164 5.45r + 1.09w

(a) Baseline computation with Algorithm 1 as reported in Tables 2 and 3; (b) read transpose values from
dLji within compute loop; (c) compute full row of dLi j without exploiting symmetry. All tests were run for
1,302 Runge–Kutta stage evaluations on 29M grid points with 80 Cascade Lake cores.

Note that writing into dLi j can be done with streaming stores for the baseline algorithm as well

as variant 2, where the full dLi j matrix is computed, whereas regular stores with 1 double with read-
for-ownership transfer is needed for variant 1 to be able to hit parts of the transposed access in
cache.

5.2.2 Split Computation of Pi j Into Steps 3 and 4. The contribution (dH,n
i j − d

L,n
i j) (U n

j −U n
i) to

matrix Pi j is already available in step 3 of the algorithm, whereas the baseline algorithm recom-
putes this information in step 4. Given that both steps 3 and 4 are limited by the computations in
the core, an algorithmic alternative is to store this temporary result in the storage location of Pi j
in step 3 and re-load it for the computation of step 4. This incurs writes of five doubles in step
3 (which can be done with streaming stores) and reads of up to four doubles in step 4. However,
dL,ni j and U n

j do not need to be loaded again in step 4. This modification is reported as variant 3
in Table 6(b). The results clearly show the additional write data transfer in step 3 and the read
transfer in step 4. The computational time of both steps is significantly increased and the steps
are now mostly memory transfer limited. The measured throughput of around 300 GB/s is slightly
below the STREAM triad limit of the platform.
While this algorithmic variant is not profitable on the chosen hardware, it can be promising

for hardware with high bandwidth-memory interfaces, or when indirect addressing (for example,
access toU n

j) is more expensive.

5.2.3 Compute Symmetrization of Limiter Matrix. In steps 5 and 6, the update of Pni j requires
the operation min(li j , lji), with the latter accessing transpose entries in the matrix. To reduce the
memory transfer, we analyze a variant 4 of our baseline algorithm that adds the computation
of lji within step 4 of the algorithm. Given that the matrix P i j is skew-symmetric in the sense
λmiP i j = −λmjP ji , only an additional load toU n

j and boundsj is needed, in addition to the actual
computation in limiter.compute. Table 6(c) shows an implementation of this variant. While the
run time of step 5 and the associated memory access are slightly reduced, because the transposed
entries are not needed, we observe a noticable increase in execution time in step 4, because the
simultaneous computation of li j and lji in step 4 doubles the number of critical computations. As
discussed previously, latency effects inside the limiter are the dominant bottleneck, which explains
why the additional computations do not increase the arithmetic throughput. Overall, this option
is less attractive, because the time gained in step 5 is only minor, given that the gain is mostly due

ACM Transactions on Parallel Computing, Vol. 8, No. 3, Article 16. Publication date: September 2021.

16:26 M. Maier and M. Kronbichler

Table 6. Performance Comparison of Different Variants for Computing li j and Pi j

time arithmetic bandwidth memory read/write
[s] [GFlop/s] [GB/s] [doubles/nnz]

(a) Baseline: compute li j and Pi j as in Algorithm 1

step 3: low-order update 277.0 892 222 7.24r + 0.53w
step 4: Pi j , li j 317.8 571 248 4.43r + 6.03w
step 5: h.-o. update, next li j 268.7 568 260 8.06r + 1.20w
step 6: final high-order update 132.5 91 394 6.71r + 0.21w

(b) Variant 3: split Pi j into two parts

step 3: low-order update, first half of Pi j 325.2 779 312 7.33r + 5.52w
step 4: second half of Pi j , li j 358.4 468 292 7.75r + 6.00w

(c) Variant 4: compute both li j and lji

step 4: Pi j , min(li j , lji) 558.7 567 152 5.78r + 6.18w
step 5: h.-o. update, next li j 259.2 584 204 5.74r + 1.09w

(d) Variant 5: compute Pi j on the fly

step 4: li j 272.2 669 144 4.33r + 1.07w
step 5: h.-o. update, next li j 389.1 507 165 7.14r + 1.21w
step 6: final high-order update 210.9 271 239 6.30r + 0.23w

(a) Baseline Computation with Algorithm 1 as reported in Tables 2 and 3; (b) split computation of P i j into steps 3 and 4
to to reduce indirect addressing and computations; (c) compute both li j and lji rather than symmetrizing over the
memory access the computation of P i j into steps 3 and 4 to reduce indirect addressing and computations; (d) do not
store the matrix P i j and instead compute the entries on the fly from the respective ingredients in steps 5 and 6 of
Algorithm 1. All tests were run for 1,302 Runge–Kutta stage evaluations on 29M grid points with 80 Cascade Lake cores
and report measured data with LIKWID.

to a reduction in stalls when waiting for the indirectly accessed column data lji to arrive. A similar
modification could be considered for computing the next li j and lji in anticipation of step 6. This
has similar deficiencies as the alternative discussed above, and in addition needs to wait for the
updateU n+1

i to be finished for all columns I (j).

5.2.4 Computation of Entries of Pi j on the Fly. As a final algorithm variant 5, we consider to

skip the storage of P i j and instead evaluated it by the formula P i j =
τn
λmi

((dH,n
i j −d

L,n
i j) (U n

j −U n
i)+

bi jR j −bjiRi) whenever necessary. This significantly reduces the memory access as the matrix P i j
amounts to a read/write of five doubles per non-zero entry, compared to the two matrices dL,ni j

and mi j (for computing bi j) and the vectors U n
i , U

n
j as well as Rni , R

n
j . Table 6(d) compares this

variant with the baseline algorithm. While step 4 becomes 45 s faster by removing the expensive
write operation of P i j , the additional computations slow down steps 5 and 6 by 120 s and 78 s,
respectively. From the recorded memory transfer, it becomes clear that the gain in transfer is not
too high, which can be explained by the fact that besides the twomatricesdL,ni j andmi j also indirect
addressing to U n

j and R
n
j needs to be performed. As discussed previously, additional data that is

kept in flight increases pressure on the caches and also cache misses, eliminating part of the gain.

5.3 Strong Scaling

Since the solver only involves local communication to the neighbors via non-blocking MPI send
commands, plus one MPI_Allreduce for computing the time step size, it is straight-forward to
run the solver for simulations on large supercomputers. Figure 7 shows the result of a strong

ACM Transactions on Parallel Computing, Vol. 8, No. 3, Article 16. Publication date: September 2021.

Efficient Parallel Second-order Euler Solver 16:27

Fig. 7. Strong and weak scaling of solver on Intel Skylake for problem sizes between 29M and 15B points. The
data has been gathered by runs using between 434 and 1,732 time steps using a three-stage Runge–Ku�a
scheme. Based on these times, we then report the run time per time step.

scaling experiment on up to 1,024 compute nodes of Intel Skylake on the SuperMUC-NG machine
in Garching, Germany. The experiment is conducted with two-way hyperthreading enabled using
a separate MPI rank for each core and two threads per core. The largest computations are run on
49,152 MPI ranks with 98,304 threads in total. The times reported in this section are based on the
minimal time recorded for four runs of the complete time evolution to minimize disturbances from
other jobs running on the machine.
The results in Figure 7 show an almost perfect scaling to times of around 0.2 s per time step or

0.07 s per Runge–Kutta stage. The smallest size with 28M nodes continues to improve throughput
all the way to 49k cores with 0.018 s per time step. However, the parallel efficiency drops to 46%
already for 24k cores, using the run with 1.8B unknowns on the same core count as baseline. If
we define the strong scaling limit as the point where 80% of the saturated performance is obtained
[12], then the 29M grid point case scales to 3,072 cores (with 81% of parallel efficiency) and the
228M grid point case scales to 12k cores with 89% parallel efficiency. This excellent scalability
is the result of judicious algorithmic choices with the majority of communication only between
nearest neighbors in the mesh. In each Runge–Kutta stage, one MPI_Allreduce operation is also
necessary to control the time step size.
The lowest computational time per Runge–Kutta stage is around 5 × 10−3 s for the proposed

algorithm. We can compare this number with the time for one CG iteration of a matrix-free
solvers of 2 × 10−4 s on the same SuperMUC-NG system [4, Figure 8] for the benchmark de-
scribed in Reference [12] or 10−4 s for the nearest-neighbor communication of a matrix-vector
product [28]. The higher limit for scaling in our case can be explained by the significantly more
expensive stencil update, as each update involves seven nearest-neighbor communication steps
for the various intermediate quantities in the algorithm and one global reduction, which already
explains a factor of around ten in the time increase. Furthermore, the computation on 29M mesh
points on 49k cores corresponds to only 290 mesh points per thread, which in itself is a very
low value for any PDE-parallel code. Thus, the task granularity is very small at this point, which
makes small imbalances in the SIMD/non-SIMD portions more difficult to control. Also, latency
effects in the various algorithmic stages, including warm-up of the instruction caching, also play
a role at this level. We leave possible improvements along the strong scaling limit to future work
(see Remark 4.1).

ACM Transactions on Parallel Computing, Vol. 8, No. 3, Article 16. Publication date: September 2021.

16:28 M. Maier and M. Kronbichler

6 CONCLUSION AND OUTLOOK

In this article, we have discussed the efficient implementation of a second-order collocation-type
finite-element compressible Euler solver. To this end, we started with the mathematical descrip-

tion of the scheme that is guaranteed stable without the need of any tuning parameters. We then
reorganized and optimized the given algorithmic structure (Section 3) and discussed a scalable
high-performance implementation (Section 4). The main algorithmic building blocks are traversals
through CELL-based sparse matrices with indirect addressing into the solution vector and some
auxiliary quantities, as well as a relatively high density of division and transcendental power func-
tions. We demonstrated excellent arithmetic throughput and scaling (Section 5) and justified our
algorithmic choices against alternatives. We point out a number of possible optimizations that we
have not pursued and that we leave for further research and development:
• Further reduction of the number ofMPI synchronizations by increasing the overlap of shared
cells between neighboringMPI ranks. In our current implementation the overlap is one ghost
layer of cells [3]. An increased overlap would allow to remove most of the synchronization
steps outlined in Figure 3.
• More efficient coefficient computation of transcendental functions by using a better
pipelined custom vectorized pow() implementation as discussed in Section 4.6.
• The developed algorithmic structure and the use of a SELL-based sparse matrix format for
storage gives hope that the proposed algorithms will also perform reasonably on GPU sys-
tems or other HPC architectures. Performance-portable implementations, such as realiza-
tions with Kokkos [11] or Raja [24], for this kind of equation are still missing, but could
be guided by the performance envelopes and algorithmic behavior identified in the present
contribution.

By allowing to modify the mathematical structure, we expect an even larger gain in performance
of the algorithm:
• The 3D stencil for lowest-order Q1 elements has 27 entries. It is an open research question
whether it is possible to reduce the stencil size (for example by additional lumping) for part
of the for loops in Algorithm 1. In addition, the convex-limiting methodology [14] is not
restricted to a CG discretization and can be also applied to (high-order) DG discretizations
[33, 42]. Such flux-corrected DG schemes might promise a higher arithmetic throughput and
more regular data access.
• Much of the computational bottleneck stems from the heavy use of the transcendental pow()
function. An investigation of modified limiter approaches that still guarantee the invariant-
domain property but use a cheaper to evaluate three-convex function Ψ(U) (Section 3.9)
thus seems very tempting.
• A similar consideration can be made for the entropy-viscosity commutator (Section 3.8) and
the subsequent interaction with the limiter: It needs to be investigated whether the number
of transcendental functions in the indicator can be reduced by potentially including certain
entropies in the limiting process or by using monotonicity/convexity in some functional
relations to pull out power functions from the inner j loop to the outer i loop.

REFERENCES

[1] Hartwig Anzt, Terry Cojean, Chen Yen-Chen, Jack Dongarra, Goran Flegar, Pratik Nayak, Stanimire Tomov, Yuh-
siang M. Tsai, and Weichung Wang. 2020. Load-balancing sparse matrix vector product kernels on GPUs. ACM Trans.

Parallel Comput. 7, 1 (2020), 1–26. https://doi.org/10.1145/3380930
[2] Daniel Arndt, Wolfgang Bangerth, Thomas C. Clevenger, Denis Davydov, Marc Fehling, Daniel Garcia-Sanchez,

Graham Harper, Timo Heister, Luca Heltai, Martin Kronbichler, Ross M. Kynch, Matthias Maier, Jean-Paul Pel-
teret, Bruno Turcksin, and David Wells. 2019. The deal.II library, version 9.1. J. Numer. Math. 27, 4 (2019), 203–213.
https://doi.org/10.1515/jnma-2019-0064

ACM Transactions on Parallel Computing, Vol. 8, No. 3, Article 16. Publication date: September 2021.

Efficient Parallel Second-order Euler Solver 16:29

[3] Daniel Arndt, Wolfgang Bangerth, Denis Davydov, Timo Heister, Luca Heltai, Martin Kronbichler, Matthias Maier,
Jean-Paul Pelteret, Bruno Turcksin, and David Wells. 2021. The deal.II finite element library: Design, features, and
insights. Comput. Math. Appl. 81 (2021), 407–422. https://doi.org/10.1016/j.camwa.2020.02.022

[4] Daniel Arndt, Niklas Fehn, Guido Kanschat, Katharina Kormann, Martin Kronbichler, Peter Munch, Wolfgang A.Wall,
and Julius Witte. 2020. ExaDG—High-order discontinuous Galerkin for the exa-scale. In Proceedings of the Conferences
on Software for Exascale Computing (SPPEXA 2016–2019) (Lecture Notes in Computational Science and Engineering

136), Hans-Joachim Bungartz, Severin Reiz, Benjamin Uekermann, Philipp Neumann, and Wolfgang E. Nagel (Eds.).
Springer, Cham, 189–224. https://doi.org/10.1007/978-3-030-47956-5_8

[5] Andrew J. Barlow, Pierre-Henri Maire, William J. Rider, Robert N. Rieben, and Mikhail J. Shashkov. 2016. Arbitrary
Lagrangian-Eulerian methods for modeling high-speed compressible multimaterial flows. J. Comput. Phys. 322 (2016),
603–665. https://doi.org/10.1016/j.jcp.2016.07.001

[6] Simon Bauer, Daniel Drzisga, Marcus Mohr, Ulrich Rüde, Christian Waluga, and Barbara Wohlmuth. 2018. A stencil
scaling approach for accelerating matrix-free finite element implementations. SIAM J. Sci. Comput. 40, 6 (2018), C748–
C778. https://doi.org/10.1137/17m1148384

[7] Benjamin Bergen, Tobias Gradl, Frank Hülsemann, and Ulrich Rüde. 2006. A massively parallel multigrid method for
finite elements. Comput. Sci. Eng. 8, 6 (2006), 56–62. https://doi.org/10.1109/mcse.2006.102

[8] Ron Brightwell, Rolf Riesen, and Keith D. Underwood. 2005. Analyzing the impact of overlap, offload, and independent
progress for message passing interface applications. Int. J. High Perform. Comput. Appl. 19, 2 (2005), 103–117. https:
//doi.org/10.1177/1094342005054257

[9] Bernardo Cockburn and Chi-Wang Shu. 1989. TVB runge-kutta local projection discontinuous Galerkin finite element
method for conservation laws. II. general framework. Math. Comput. 52, 186 (1989), 411–435.

[10] Elizabeth Cuthill and James McKee. 1969. Reducing the bandwidth of sparse symmetric matrices. In Proceedings of the

24th National Conference of the ACM. ACM Press, New York, 157–172. https://doi.org/10.1145/800195.805928
[11] H. Carter Edwards, Christian R. Trott, and Daniel Sunderland. 2014. Kokkos: Enabling manycore performance porta-

bility through polymorphic memory access patterns. J. Parallel Distrib. Comput. 74, 12 (2014), 3202–3216. https:
//doi.org/10.1016/j.jpdc.2014.07.003

[12] Paul Fischer, Misun Min, Thilina Rathnayake, Som Dutta, Tzanio Kolev, Veselin Dobrev, Jean-Sylvain Camier, Martin
Kronbichler, Tim Warburton, Kasia Świrydowicz, and Jed Brown. 2020. Scalability of high-performance PDE solvers.
Int. J. High Perform. Comput. Appl. in press 34, 5 (2020), 562–586. https://doi.org/10.1177/1094342020915762

[13] Agner Fog. 2020. VCL—C++ Vector Class Library Manual. Technical Report. Retrieved from https://github.com/
vectorclass/version2/releases/download/v2.01.02/vcl_manual.pdf.

[14] Jean-Luc Guermond, Murtazo Nazarov, Bojan Popov, and Ignacio Tomas. 2018. Second-order invariant-domain pre-
serving approximation of the Euler equations using convex limiting. SIAM J. Sci. Comput. 40, 5 (2018), A3211–A3239.
https://doi.org/10.1137/17M1149961

[15] Jean-Luc Guermond, Murtazo Nazarov, Bojan Popov, and Yong Yang. 2014. A second-order maximum principle pre-
serving Lagrange finite element technique for nonlinear scalar conservation equations. SIAM J. Numer. Anal. 52, 4
(2014), 2163–2182. https://doi.org/10.1137/130950240

[16] Jean-Luc Guermond, Richard Pasquetti, and Bojan Popov. 2011. Entropy viscosity method for nonlinear conservation
laws. J. Comput. Phys. 230, 11 (2011), 4248–4267. https://doi.org/10.1016/j.jcp.2010.11.043

[17] Jean-Luc Guermond and Bojan Popov. 2014. Viscous regularization of the euler equations and entropy principles.
SIAM J. Appl. Math. 74, 2 (2014), 284–305. https://doi.org/10.1137/120903312

[18] Jean-Luc Guermond and Bojan Popov. 2016. Fast estimation from above of the maximum wave speed in the Riemann
problem for the Euler equations. J. Comput. Phys. 321 (2016), 908–926. https://doi.org/10.1016/j.jcp.2016.05.054

[19] Jean-Luc Guermond and Bojan Popov. 2016. Invariant domains and first-order continuous finite element approxima-
tion for hyperbolic systems. SIAM J. Numer. Anal. 54, 4 (2016), 2466–2489. https://doi.org/10.1137/16M1074291

[20] Jean-Luc Guermond and Bojan Popov. 2017. Invariant domains and second-order continuous finite element approx-
imation for scalar conservation equations. SIAM J. Numer. Anal. 55, 6 (2017), 3120–3146. https://doi.org/10.1137/
16M1106560

[21] Georg Hager and GerhardWellein. 2011. Introduction to High Performance Computing for Scientists and Engineers. CRC
Press, Boca Raton, FL.

[22] Amiram Harten. 1983. On the symmetric form of systems of conservation laws with entropy. J. Comput. Phys. 49, 1
(1983), 151–164. https://doi.org/10.1016/0021-9991(83)90118-3

[23] Jared Hoberock. 2019.Working Draft, C ++ Extensions for Parallelism Version 2. Technical Report.
[24] Richard D. Hornung and Jeffrey A. Keasler. 2014. The RAJA Portability Layer: Overview and Status. Technical Report

1169830. Lawrence Livermore National Laboratory, Livermore, CA. https://doi.org/10.2172/1169830
[25] Moritz Kreutzer, Georg Hager, GerhardWellein, Holger Fehske, and Alan R. Bishop. 2014. A unified sparse matrix data

format for efficient general sparse matrix-vector multiplication on modern processors with wide SIMD units. SIAM J.

Sci. Comput. 36, 5 (2014), C401–C423. https://doi.org/10.1137/130930352

ACM Transactions on Parallel Computing, Vol. 8, No. 3, Article 16. Publication date: September 2021.

16:30 M. Maier and M. Kronbichler

[26] Martin Kronbichler and Katharina Kormann. 2012. A generic interface for parallel cell-based finite element operator
application. Comput. Fluids 63 (2012), 135–147. https://doi.org/10.1016/j.compfluid.2012.04.012

[27] Martin Kronbichler and Katharina Kormann. 2019. Fast matrix-free evaluation of discontinuous Galerkin finite ele-
ment operators. ACM Trans. Math. Softw. 45, 3 (2019), 29:1–29:40. https://doi.org/10.1145/3325864

[28] Martin Kronbichler and Wolfgang A. Wall. 2018. A performance comparison of continuous and discontinuous
Galerkin methods with fast multigrid solvers. SIAM J. Sci. Comput. 40, 5 (2018), A3423–A3448. https://doi.org/10.1137/
16M110455X

[29] Dmitri Kuzmin andMatthiasMöller. 2005.Algebraic Flux Correction II. Compressible Euler Equations. Springer, 207–250.
https://doi.org/10.1007/3-540-27206-2_7

[30] Tareq M. Malas, Georg Hager, Hatem Ltaief, and David E. Keyes. 2018. Multidimensional intratile parallelization for
memory-starved stencil computations. ACM Trans. Parallel Comput. 4, 3 (2018), 12:1–12:32. https://doi.org/10.1145/
3155290

[31] Tareq M. Malas, Georg Hager, Hatem Ltaief, Holger Stengel, Gerhard Wellein, and David E. Keyes. 2015. Multicore-
optimized wavefront diamond blocking for optimizing stencil updates. SIAM J. Sci. Comput. 37, 4 (2015), C439–C464.
https://doi.org/10.1137/140991133

[32] OpenMP Architecture Review Board. 2015. OpenMP Application Program Interface Version 4.5. Technical Report. Re-
trieved from https://www.openmp.org/wp-content/uploads/openmp-4.5.pdf.

[33] Will Pazner. 2020. Sparse invariant-domain preserving discontinuous Galerkin methods with subcell convex limiting.
Retrieved from https://arxiv.org/abs/2004.08503.

[34] Michael Schäfer, Stefan Turek, Franz Durst, Egon Krause, and Rolf Rannacher. 1996. Benchmark computations of
laminar flow around a cylinder. In Flow Simulation with High-performance Computers II. Springer, 547–566.

[35] Chi-Wang Shu and Stanley Osher. 1988. Efficient implementation of essentially non-oscillatory shock-capturing
schemes. J. Comput. Phys. 77, 2 (1988), 439–471. https://doi.org/10.1016/0021-9991(88)90177-5

[36] Tianjiao Sun, Lawrence Mitchell, Kaushik Kulkarni, Andreas Klöckner, David A. Ham, and Paul H. J. Kelly. 2020. A
study of vectorization for matrix-free finite element methods. Int. J. High Perform. Comput. Appl. 34, 6 (2020), 629–644.
https://doi.org/10.1177/1094342020945005

[37] Jan Treibig, Georg Hager, and Gerhard Wellein. 2010. LIKWID: A lightweight performance-oriented tool suite for x86
multicore environments. In Proceedings of the 1st International Workshop on Parallel Software Tools and Tool Infrastruc-

tures (PSTI’10). IEEE, 207–216. https://doi.org/10.1109/ICPPW.2010.38
[38] Zhijian J.Wang, Krzysztof Fidkowski, Rémi Abgrall, Francesco Bassi, Doru Caraeni, AndrewCary, HermanDeconinck,

Ralf Hartmann, Koen Hillewaert, Hung T. Huynh, Norbert Kroll, Georg May, Per-Olof Persson, Bram van Leer, and
Miguel Visbal. 2013. High-order CFD methods: Current status and perspective. Int. J. Numer. Methods Fluids 72, 8
(2013), 811–845. https://doi.org/10.1002/fld.3767

[39] Gerhard Wellein, Georg Hager, Thomas Zeiser, Markus Wittmann, and Holger Fehske. 2009. Efficient temporal block-
ing for stencil computations by multicore-aware wavefront parallelization. In Proceedings of the 33rd Annual IEEE

International Computer Software and Applications Conference. IEEE, 579–586. https://doi.org/10.1109/compsac.2009.82
[40] Samuel Williams, Andrew Waterman, and David Patterson. 2009. Roofline: An insightful visual performance model

for multicore architectures. Commun. ACM 52, 4 (2009), 65–76. https://doi.org/10.1145/1498765.1498785
[41] Freddie D.Witherden, AntonyM. Farrington, and Peter E. Vincent. 2014. PyFR: An open source framework for solving

advection-diffusion–type problems on streaming architectures using the flux reconstruction approach. Comput. Phys.

Commun. 185, 11 (2014), 3028–3040. https://doi.org/10.1016/j.cpc.2014.07.011
[42] Steven T. Zalesak. 2005. The Design of Flux-Corrected Transport Algorithms for Structured Grids. Springer, 29–78. https:

//doi.org/10.1007/3-540-27206-2_2

Received June 2020; revised February 2021; accepted February 2021

ACM Transactions on Parallel Computing, Vol. 8, No. 3, Article 16. Publication date: September 2021.

