
iSample: Intelligent Client Sampling in Federated
Learning

HamidReza Imani, Jeff Anderson, and Tarek El-Ghazawi

Department of Electrical and Computer Engineering, The George Washington University, Washington, DC 20052

USA

hamidreza,jeffa,tarek@gwu.edu

Abstract—The pervasiveness of AI in society has made machine
learning (ML) an invaluable tool for mobile and internet-of-things
(IoT) devices. While the aggregate amount of data yielded by
those devices is sufficient for training an accurate model, the
data available to any one device is limited. Therefore, augmenting
the learning at any of the devices with the experience from
observations associated with the rest of the devices will be nec-
essary. This, however, can dramatically increase the bandwidth
requirements. Prior work has led to the development of Federated
Learning (FL), where instead of exchanging data, client devices
can only share weights to learn from one another. However, het-
erogeneity in device resource availability and network conditions
still impose limitations on training performance. In order to
improve performance while maintaining good levels of accuracy,
we introduce iSample. iSample, an intelligent sampling technique,
selects clients by jointly considering known network performance
and model quality parameters, allowing the minimization of
training time. We compare iSample with other federated learning
approaches and show that iSample improves the performance of
the global model, especially in the earlier stages of training, while
decreasing the training time for both CNN and VGG by 27%
and 39%, respectively.

Index Terms—federated learning, heterogeneous systems, re-
source constrained devices, edge computing, machine learning

I. INTRODUCTION

The ever increasing use of artificial intelligence (AI) has

made machine learning (ML) applications an important part

of our lives. ML applications typically require a large amount

of data to train models with sufficient accuracy. Despite the

large amounts of available data from edge devices and Internet

of Things (IoT) sensors as a whole, individual devices may

not have enough data at their disposal to successfully train a

model.
However, aggregating data from multiple devices can be

problematic and raise several challenges. The size of train-

ing data for natural language processing or computer vision

coupled with the large number of client-to-client transfers

makes client-based data sharing protocols unattractive from

a network performance perspective. Moreover, this approach

will decrease the scalability of the system due to the fact

that various types of devices participate in training with

different availability and operating times. In addition, sharing

the training data can raise privacy issues when the applications

are dealing with personal user information such as healthcare

data or emails.
To address the network and scalability issues, centralized

learning approaches such as [1] were proposed in which

Fig. 1: FL aggregates models trained on disparate data sets to

derive a unified model used for client update.

all local data is transferred to a central server for model

training. While this approach can decrease the network load, it

cannot minimize the load to levels acceptable by commonly-

used wireless protocols. Additionally, these approaches ignore

privacy issues surrounding data sharing among individual

devices.

To address the aforementioned issues, Federated Learning

(FL), which is a decentralized communication-efficient ML

paradigm, was proposed to preserve data privacy of the users

participating in the training. In FL based on [2], an initial

model is sent to the clients, and then in every iteration, a subset

of clients train their ML model using their private data, then

send their models to a central server, central server aggregates

the models and sends the averaged model back to the clients.

Finally, the clients replace their local model with the global

model. The algorithm iterates local to a device, thus ensuring

preservation of privacy. In addition, FL reduces the network

load considerably by sending machine learning models instead

of the training data. FL is commonly used in applications

involving mobile and edge devices and, as shown in figure

1, generally FL participants can be binned into two major

types: edge devices and organizations. Organizational clients,

which are used in cross-silo applications, typically have higher

computation and network resources and benefit from private

datasets or devices that produce data. In contrast, edge devices

have lower computation power and network throughput, and

also have a smaller amount of training data than organizational

clients.

While FL reduces network load, thus solving many

distributed-ML problems, it cannot remove the communica-

tion overhead as the majority of iteration time is spent for

transferring models. As common sizes of ML models fall

58

2022 IEEE 6th International Conference on Fog and Edge Computing (ICFEC)

978-1-6654-9524-0/22/$31.00 ©2022 IEEE
DOI 10.1109/ICFEC54809.2022.00015

20
22

 IE
EE

 6
th

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 F

og
 a

nd
 E

dg
e

C
om

pu
tin

g
(I

C
FE

C
) |

 9
78

-1
-6

65
4-

95
24

-0
/2

2/
$3

1.
00

 ©
20

22
 IE

EE
 |

D
O

I:
10

.1
10

9/
IC

FE
C

54
80

9.
20

22
.0

00
15

Authorized licensed use limited to: The George Washington University. Downloaded on December 21,2022 at 03:22:54 UTC from IEEE Xplore. Restrictions apply.

between 1 MB and 1 GB, reducing the time spent transferring

models is of utmost importance [3] [4] [5]. Due to the varying

resources available on clients [6], FL performance is bounded.

Specifically, clients with poor resources (i.e. stragglers) can

leave the server idle for long periods of time. Moreover, as

the number of participating clients in FL can be in the order

of millions, joining and leaving the client pool at any time

during the training can result in server’s network interface

overflow and long aggregation time. Therefore, this makes

the client sampling inevitable. In FL, Client Sampling tries

to find a subset of clients which are more important and

efficient for training the global model. After the sampling, ML

models of the selected clients will be brought to the server for

aggregation, further decreasing the network load. This also

can make the training faster by recognizing and removing

stragglers from the training process.

Most client sampling-based approaches try to solve the

sampling problem using application parameters (loss function,

norm of weight updates, etc.) [7] [8] [9] or system parameters

(computation performance, network performance, etc.) [10]

[11]. However, most of them are not able to jointly consider

the system parameters and the model quality since the client

selection is done prior to training. In addition, most of them do

not provide the updated global model (the aggregated model

that is generated in the central server) to the clients that are

not selected which may cause the server to miss a client with

critical information but poor resources. Moreover, in each

iteration, only the selected clients update their local models

with the global model, causing the majority of clients to work

with older models. This decreases the chance of a device’s

selection in future iterations, thus widening the gap between

its model and the updated model.

Here, we propose a client sampling protocol for FL which

takes into account several parameters for selection such as

accuracy and network throughput. The protocol allows every

client to participate in each iteration of training in order to

increase the accuracy of the global model and decrease the

overall training time. The main contributions of this paper are

listed as follows:

• We develop and implement a real-time FL protocol which

utilizes a grading system for selecting the efficient clients.

The protocol considers several system and application-

related metrics, so we identify the parameters that have

higher impacts on the final results and include them in the

model. To guarantee fairness in participation, the majority

of clients are surveyed by our ranking system after model

training.

• We study the importance of different selection metrics by

testing different configurations in the algorithm and show

their trends throughout the training process.

• We investigate the impact of identically distributed data

(IID) and non-IID training data on the proposed approach.

To evaluate our design, we implement and test our approach

and compare it to the standard FL [2] and client selection

scheme proposed in [10] which we refer to as FedCS. The

rest of the paper is organized as follows. Section II contains

background and related Work. Section III introduces the

Intelligent Client Sampling protocol. Section IV describes the

evaluation methodology, and section V and VI discuss results

and conclusion.

II. BACKGROUND AND RELATED WORK

The ever- increasing size of ML models and associated

training data has identified scalability problems with tradi-

tional ML approaches. As a result, decentralized and dis-

tributed ML models have gained popularity owing to their abil-

ity to decompose tasks and data. Distributed ML approaches,

such as [1], use a large amount of data to train deep ML

models with billions of parameters by utilizing computation

power of supercomputers. The server distributes data to mul-

tiple nodes, with each node individually training on the data

it receives. A final model is then derived by aggregating the

models trained on individual clients. In contrast, decentralized

approaches such as FL [2] and Federated Forests, proposed

in [12], benefit from heterogeneous edge and mobile devices

and ensure data privacy by keeping the data inside each

device and only transferring the ML models. Model transfer

supports preservation of privacy, thereby enabling multiple

organizations and edge devices to participate in training.

However, the size of ML models used in FL cause network

saturation to occur as the number of participating devices

scales up. In order to tackle the communication overheads

in FL, compression techniques are utilized to decrease the

size of data that is transferred. For example, [4] proposes

a compression scheme which uses a quantization technique

followed by encoding to make parallel stochastic gradient

descent more efficient. Although, this reduces the communi-

cation load, the algorithm requires more iterations resulting in

longer time to reach the desired accuracy. The works proposed

in [3] and [5], use ternary quantization and sparsification

methods in SGD to further compress the updates. Compared

to the compression technique proposed in [4], these protocols

compress the gradients in both upload download stages and

are robust to Non-IID data.

To further decrease the network load, the number of clients

participating can be reduced. Originally proposed in [2], FL

distributes the global model to a random sub-sample of clients

and only asks those clients to upload their ML models.

This original approach can be improved using efficient client

sampling based on different metrics with the goal of making

the training process faster. The client sampling protocol in-

troduced in [13] proposes a dynamic sampling scheme where

the number of sampled clients is different in each iteration

and shows that dynamic sampling can accelerate the earlier

stages of the training process by selecting a smaller fraction

compared to the later stages. Proposed by Ribero [7] and Chen

[8], optimal client sampling for communication efficiency

includes only clients that have weight updates exceeding a

threshold. The work proposed in [9] samples clients using

the quality of input images as a metric for selection. To

ensure the inclusivity of sampling, [11] minimizes average

model exchange time by considering client communication

status while guaranteeing long-term fairness. In [14], first, the

sampler calculates the Non-IID degree of data by observing

59

Authorized licensed use limited to: The George Washington University. Downloaded on December 21,2022 at 03:22:54 UTC from IEEE Xplore. Restrictions apply.

the defined weight divergence. The sampler then considers the

Non-IID degree as the selection parameter and selects lower

degrees more frequently.

Most of the FL applications are deployed in heterogeneous

mobile device environments where the amount of available

computation and network resources are varied based on the

client type [15]. Therefore, client samplers with network and

resource awareness must be developed. Nishio [10] proposes

a FL protocol which estimates the completion (model down-

loading, training and uploading) time of the clients based on

their resources and then distributes the global model only to

the top ones. Then after training, it only includes the clients

that were are able to finish before the deadline (some may still

miss the deadline due to the stochasticity in the training and

transfer time). However, this approach has limited inclusivity

and may miss critical information from the clients with poor

resources since it does not have any information about the

quality of trained models.

The other common heterogeneity that exists in FL environ-

ments and applications is the imbalance in the distribution of

data that results in non-uniform distribution of labels for a

client. This can be solved by sampling the training data. As a

continuation to Nishio’s [10] client sampling protocol, in [16],

authors propose a method which selects both ML models from

clients and training data from the users that are allowed to

share in order to make the algorithm efficient using Non-IID

data. The FL approach proposed by Wang [17] first recognizes

the amount of data heterogeneity for each client and then

designs a loss function used for training. This loss function

gives more importance to the weight updates of the labels

with less population in the training data thereby mitigating

the imbalance weight update effect caused by the training set.

III. INTELLIGENT CLIENT SAMPLING IN FEDERATED

LEARNING

A. Client Selection Metrics

Most of the client selection parameters can be grouped

into two major categories: system and application related.

System related parameters represent the computation power

and network status, while application parameters represent the

quality of the trained model. Here, the model can be any model

that tries to learn or to calculate an output in a federated

scheme such as an averaging application in which the number

of samples can show the dominance of a client. Latency to the

server, network throughput, channel error rate and processor

performance are possible systems parameters. However, the

following can be grouped as application parameters: number of

training data samples, distribution homogeneity, degree of non-

IID, loss, accuracy, quality of training data (used in [9]), norm

of gradients ([7] and [8]). As one of the goals of this work

is to evaluate the importance of different metrics of selection,

we will briefly go over the mentioned parameters and compare

them.

As iSample aims to involve all clients in the training

process, they are all provided with aggregated ML models

from the server and are allowed to train their models. However,

some clients may have poor computation resources and be late

Fig. 2: Performance comparison of different FL approaches

shows that sampling the clients by itself increases the accuracy.

to report the requested parameters to the server. In this case,

the client can skip the current iteration and join in the next

iterations’ parameter reportings. In this study, we limit client

selection parameters to only network-related parameters. This

eliminates computation-based stragglers, allowing us to focus

on network overhead.

From the network perspective, in iSample, two types of

data are transferred through the network: ML models which

are on the order of thousands to millions of parameters and

selection parameters which are on the order of ten. Due to the

size disparity, transfer time of an ML model heavily depends

on the client’s network throughput, while the transfer time

of selection parameters is approximately equal to network

latency.

When considering application-related selection parameters,

the most feasible ones are data quality, size and distribution,

all of which are available prior to training. For example, an

increase in the degree of non-IID data will cause the model

to have a lower accuracy during inference [14]. Although

these metrics are commonly used in prior works, they do

not show the performance of the model after training as

precise as accuracy. Specially in a classification application

where choosing based on loss does not always guarantee

better performance and also can cause model overfitting. The

accuracy in our application, which is an image classification

for CIFAR-10 [18], is measured using test data which is

homogeneous across all ten labels. However, in a non-IID

setting, accuracy can be misleading because it does not show

the model performance from each label individually and may

not include clients with small amount but critical training

data (for example, a rarely-encountered label). This issue is

neglected in this approach since the protocol updates the local

models of the majority of clients frequently but normalized

accuracy with respect to each label can be a better metric

compared to the general accuracy.

To evaluate the impact of parameters used in [7] and [8],

we performed a test to compare with client selection based on

weight updates with the original FL proposed in [2] and the

60

Authorized licensed use limited to: The George Washington University. Downloaded on December 21,2022 at 03:22:54 UTC from IEEE Xplore. Restrictions apply.

case all clients being involved in aggregation. The metric that

is used for selection can be expressed as equation 1 where

Δwi is the change in value for a weight after one iteration

of training. The test was done without considering network

effects to purely observe its effect on accuracy. The ML model

that was used is a convolutional neural network (CNN) with

122,570 trainable parameters (with the same configurations

described in section IV) and the training data for each client

was a random subsample of CIFAR-10 with 2000 samples and

in each iteration, 5 clients were selected out of 30.

‖ΔW‖ =
√√√√ K∑

i=1

Δw2
i , (1)

where K is the number of weights in the model.

Shown in Figure 2, comparing the case that all of the clients

are involved in the aggregation, both random and parameter-

based selection increase the performance of the ML model.

However, the accuracy of random selection and selection based

on weight updates are almost the same throughout the training

iterations. The other point to notice is that sampling by itself

has increased the accuracy which can undermine some of the

performance enhancements in client sampling.

For FL protocols, training performance is defined by the

quality of the trained model and the time that is consumed to

train the model. The quality of the global model is determined

by the quality of the selected models that are participating in

the aggregation. On the other hand, the time that is consumed

to do each iteration of FL is determined by the slowest client

(slow training and network communication) that participates

in the aggregation. As our protocol, shown in figure 3, surveys

the clients after the training phase, it is only affected by the

model upload time which is directly related to the client’s

throughput (higher throughput results in less transmission

time). Accordingly, both latency and network throughput are

included in the grading system but the importance of through-

put is significantly higher. Therefore, a grading system is

required that can jointly consider the quality of models and

their network condition.

grade = a.accuracy+ b.throughput+ c.‖ΔW‖−d.latency
(2)

Equation 2 sets a grade for every client in each iteration

of training in order to determine its efficiency for the overall

training process based on four parameters with different types.

Each parameter is normalized by the maximum amount that

was reported in each client to make it dimensionless and the

importance of each parameter is defined by its coefficient. The

optimal set of coefficients (also here referred as configuration)

for the equation can be different for each setup (type and size

of the ML model) and iteration through the training process.

B. iSample Protocol

Providing inclusivity and efficiency for training in FL, while

working in a heterogeneous environment shown in figure

1, requires a design of a protocol capable of supporting

various devices ranging from low performance edge devices to

organizations who benefit from highly-performant resources.

The goal of this protocol is to select the most efficient

clients based on the proposed grading system described in

equation 2. In addition, the protocol provides an opportunity

for all of the clients to be included in the aggregation phase

regardless of their network and computation resources. As

shown in Figure 3, in standard FL and FedCS, the model is

distributed to a group of clients. Most of the work proposed

to select efficient clients in FL evaluate the clients jointly

considering computation and network conditions and remove

the stragglers. However, looking from the server perspective

in synchronous FL, the quality of the model (e.g. accuracy and

loss) and the upload throughput of the client are important and

determine the final performance.

Algorithm 1 iSample Server

1: while Count < 0.8N in parallel do
2: Receive Parameters (accuracyn, throughputn,

‖ΔW‖n, latencyn)
3: Calculate gn using Equation (2) and store in G
4: Count← Count+ 1
5: end while
6: Sort G
7: Send Rq to the top fraction of G
8: while Received (0.8N) in parallel do
9: Receive(Mln)

10: end while
11: Mg ← Aggregate(Mln)
12: Send Mg to interacted clients

13: Count = 0
14: go to line 1

Algorithm 2 iSample Client

1: Initialize Ml

2: Train Ml for one iteration

3: Calculate Parameters (accuracyn, throughputn, ‖ΔW‖n
, latencyn)

4: while Parameters Sent do
5: Send(accuracyn, throughputn, ‖ΔW‖n , latencyn)
6: end while
7: Receive(Rq)
8: if Rq = 1 then
9: Send(Ml)

10: end if
11: Receive(Mg)

12: Ml ←Mg

13: go to line 2

The server proposed in our protocol assumes that N clients

are provided with the initial models and they can train with

their local data. Therefore as demonstrated in algorithm 1,

the server starts by receiving parameters from the clients and

proceeds to the next stage when it receives information from

the majority of them. In the next step, the server calculates

the grade(gn) of each client using equation 2 and ranks them.

The selected clients are requested (Rq) to upload their models

61

Authorized licensed use limited to: The George Washington University. Downloaded on December 21,2022 at 03:22:54 UTC from IEEE Xplore. Restrictions apply.

Fig. 3: Comparison of iSample protocol with Standard FL and FedCS

(Local Model: Ml) to the server for aggregation. Finally, the

aggregated model (Global Model: Mg) for the next iteration

of training, will be sent back to the clients that were able to

deliver the parameters.

The remaining clients that were not involved in the first

iteration wait at the send parameter stage shown in algorithm

2 line 5. As a result, they arrive first in the next iteration’s

parameter checking phase. This hides the inability of the

clients who are slower than others at the expense of slow

clients being surveyed less frequently. Additionally, the client

models are updated as the server sends the aggregated model

to all of the clients who participated in parameter checking.

Accordingly, compared to other approaches, synchronization

is maintained in the parameter receiving phase rather than

aggregation or client selection.

IV. EVALUATION METHODOLOGY

To evaluate our proposed protocol, we chose the Amazon

Web Services (AWS) platform to implement and test the per-

formance of our application. Server and clients are deployed

using ML specialized Amazon EC-2 instances. In order to

have a variety of clients, t2.small and t2.medium instance

types were used which are different in computation power, as

shown in table 1. The multi-threaded server was implemented

on a t2.xlarge instance type to be able to handle multiple

connections at the same time.

TABLE I: Computation and network resources of AWS EC2

T2 instance types [19]

Name vCPUs RAM (GiB) Network Performance
T2.small 1 2.0 Low to Moderate

T2.medium 2 4.0 Low to Moderate
T2.xlarge 4 16.0 Moderate

To emulate a real FL application scenario, where clients are

placed in different locations, EC-2 instances were launched

in four different regions: Oregon, Northern Virginia, London

and Frankfurt. The server was deployed in Ohio region which

gave us the following communication latencies from the other

four regions: 43 ms, 6 ms, 50 ms, 247 ms. Here, latency is

the time it takes a data packet to travel from a client to server

(the reported numbers are median of real measurements on the

cloud). In addition, to imitate the network behavior of edge

devices, the upload throughput of the EC-2 instances were

limited to the range of 512 kbit/s to 2 Mbit/s uniformly using

Linux Traffic Control Package [20].

The ML problem that was tested on the described system is

an image classification application using training on CIFAR-

10 [18]. The dataset has 50000 training images and 10000 test

images which is homogeneously distributed among 10 labels.

For an IID setting, training data for each client is a random

subsample of the original dataset containing 2000 images. To

evaluate the robustness of protocol in non-IID settings, 80

percent of the images are chosen from a single label and

the rest are random samples from the training data. In every

test, implementing Standard FL, FedCS or our protocol with

different configurations, the training data is fixed and assigned

to the dataset although random samples were chosen from the

original dataset. The test data for evaluating both global and

local models is the original test data with 10000 images.

The size of the transferred ML models directly affects the

upload and download time between clients and the server.

To show the impact of different coefficient configurations on

different ML model sizes, two ML were tested. The first model

is a CNN with 3 convolutional blocks, each including a 2D

3 × 3 convolution layer (each with 32, 32 and 64 channels)

activated by ReLU and followed by a maxpooling layer. The

model is concluded by a flatten and two dense layers at the

end to predict the correct label resulting in 122570 trainable

parameters which has the size of 0.46 MB. We refer to this

model as CNN. The second model, which is referred as VGG,

is a VGG [21] with three convolutional blocks containing two

62

Authorized licensed use limited to: The George Washington University. Downloaded on December 21,2022 at 03:22:54 UTC from IEEE Xplore. Restrictions apply.

Fig. 4: Comparison of one configuration of iSample with FedCS and Standard FL using different ML models for IID and

non-IID training data

back-to-back 2D 3 × 3 convolution layers (each with 32, 32,

64, 64, 128 and 128 channels). The tested VGG model has

1060130 trainable parameters which results in 4.04 MB size.

In each iteration of all of the tested approaches, ML models

are trained for one epoch and then aggregated. The optimizer

used for training was Adam with a learning rate of 0.001 .
The approach proposed by Nishio [10] was selected as a

baseline for comparison to our work in addition to the standard

FL and referred to as FedCS. In order to implement FedCS

[10], as shown in figure 3 , in the described environment, the

Tround parameter was needed which is the server deadline

to receive the ML models. However, the network condition

and the CPU performance in our setup is different than the

simulation environment used in [10] to test FedCS. To deal

with this discrepancy, the deadline was calculated as the time

needed for an average client to download, train and upload its

model.
All of the protocols iterated for 100 rounds. There were

80 clients in total and in each round of Standard FL and

iSample, 16 were selected, randomly and by the grading sys-

tem respectively. For FedCS, the global model was distributed

to half of the clients in each round and then sampled based

on the deadline, therefore the number of sampled clients was

different. Also, the case that all of the clients are involved in

the aggregation is tested and referred to as FL(ALL) in the

results section.

As the effect of weight update (shown in figure 2) was

not striking, to narrow the search space of coefficients, the

parameter was included in the grading system but its coef-

ficient was set to 0.1 (c = 0.1). Also, latency’s coefficient

was set to 0.01 (d = 0.01). Our experimental evaluation

tries to show how different coefficient selections affect the

final performances of trained models. In addition, to show

the effect of sampling without jointly considering accuracy

and throughput, four extreme configurations are chosen. The

configurations that only considers throughput (and almost

neglects the accuracy) are expected to always select the clients

with the best network resources even if they have significantly

lower accuracy. Therefore, they may have better accuracy at

the very early stages of training but will encounter a ceiling,

especially in non-IID settings, since it always selects the

same clients. On the other hand, the configurations that only

consider model quality can achieve better accuracy at the end

of training but will not be efficient because they prolong the

iteration time by waiting for an accurate but slow client.

V. RESULTS

The performance of different approaches for equal runtimes

are shown in Figure 4. To have a fair comparison, we used

the following coefficient comparison to promote fairness:

a = b = 0.75. In all of the tested scenarios, FL(ALL) had

63

Authorized licensed use limited to: The George Washington University. Downloaded on December 21,2022 at 03:22:54 UTC from IEEE Xplore. Restrictions apply.

Fig. 5: Performance comparison of different coefficient configurations (100 iterations)

Fig. 6: Selected clients for CNN, training with non-IID data at epoch 50 using iSample with different configurations

the lowest performance. This is due to the sampling effect

(discussed in section III.B) decreasing accuracy. Additionally,

the heterogeneity of clients (as in FL(ALL) reduces run-

time performance. The results show that iSample outperforms

Standard FL and FedCS especially in the earlier stages of

training. iSample achieves higher accuracy in a shorter time

because it considers the network condition of the clients and

can finish more iterations in an equal runtime. In addition,

iSample improves the accuracy by considering the clients’

ML model quality since it receives the parameters from the

clients after training. Moreover, as shown in figure 4, iSample,

as was Standard FL (due to the randomness in selection),

is robust to non-IID settings. FedCS was inferior as never

selects the clients with poor resources even if they have critical

information.

Comparing VGG to CNN, iSample still outperforms the

other baselines in the earlier stages of training. However, when

the models get saturated, iSample ends up having a higher

accuracy by a smaller margin. This can be explained using

figure 5, where the figure shows how different coefficient

configurations of iSample can change the performance of the

protocol. The best configuration for CNN is the red curve

which has the following values: a = b = 0.75. However for
VGG, in the early stages, the best configuration is the pink

curve (a = 0, b = 20) up until the saturation point (around

time 3000s) where the blue curve (a = 20, b = 0) starts to

take the lead (same as CNN). Size of the VGG network is

larger than CNN by 10 times therefore, it consumes most of

the training iteration time to transfer the VGG model. As a

result, for VGG, the importance of the throughput (pink curve)

is much higher than accuracy comparing to CNN. Moreover, it

can be observed from figure 5 that after the saturation point,

the importance shifts from throughput toward the accuracy

and the blue curve can improve the accuracy of the model

further. This gives us the idea that for the larger ML models,

the coefficient set can be changed dynamically through the

training process.

In addition, although iSample is tested in an environment

emulating mobile and edge devices for FL, the protocol can

be utilized to enhance the performance of distributed ML

applications as well. Distributed ML applications are trained

using clusters where nodes may have heterogeneity in network

resources due to the non-uniform memory access (NUMA)

effect. Therefore, iSample can make the client sampling in

clusters more efficient.

In figure 6, the distribution of clients by accuracy and

throughput for different configurations at the same iteration

can be observed. The figure shows the majority of clients out

of 80 that were able to deliver their parameters to the server,

indicating that a client with the highest accuracy will always be

64

Authorized licensed use limited to: The George Washington University. Downloaded on December 21,2022 at 03:22:54 UTC from IEEE Xplore. Restrictions apply.

selected. In addition, as there are two other parameters in the

grading system, a few of the clients are selected from the other

side of the lines. Another point to note here is that although

iSample increases the performance of global model, it is not as

energy efficient as other approaches that were discussed. This

is due to the fact that iSample requires the majority of the

clients to do the training. As figure 6 shows, in this iteration,

64 clients trained their models and only 16 were selected,

where as in the Standard FL, only 16 clients have trained

their models.

Finally, table 1 and 2 show the average and variance of the

iteration times for different tested approaches. The selected

configuration of iSample for comparison(a = b = 0.75), while
using CNN, improves the iteration time by 27% comparing to

Standard FL and by 18% comparing to FedCS. On the other

hand, for VGG, iSample reduces the iteration time by 39%

comparing to Standard FL and by 29% comparing to FedCS.

TABLE II: Mean and variance of iteration time using CNN

Mean, Variance IID Non-IID
iSample(a=1, b=0.5) 8.90, 0.150 8.85, 0.139
iSample(a=b=0.75) 8.64, 0.051 8.66, 0.087
iSample(a=0.5, b=1) 8.51, 0.016 8.49, 0.012

Standard FL 11.86, 0.037 11.88, 0.039
FL(ALL) 11.99, 0.001 11.98, 0.001
FedCS 10.58, 0.007 10.57, 0.012

TABLE III: Mean and variance of iteration time for VGG

Mean, Variance IID Non-IID
iSample(a=1, b=0.5) 45.06, 14.50 44.70, 8.634
iSample(a=b=0.75) 42.93, 3.094 42.88, 3.137
iSample(a=0.5, b=1) 42.27, 1.622 42.15, 1.142

Standard FL 71.23, 4.451 71.61, 2.767
FL(ALL) 73.25, 0.003 73.22, 0.003
FedCS 60.47, 0.533 60.36, 0.854

VI. CONCLUSION

Although FL reduces the communication load of decentral-

ized learning approaches, the heterogeneity in mobile and edge

devices environment can constrain the training performance.

Therefore, client selection techniques are proposed to select

the efficient clients for training. In most of the current ap-

proaches, the client selection is done prior to model training

which makes the server unable to consider the quality of

the trained models. Additionally, current solutions provide

the aggregated model only to a subsample of clients thus

undermining the inclusivity. We proposed a new FL client

selection protocol, iSample, with the goal of training time

minimization and performance enhancement to address the

aforementioned issues. The protocol utilizes a grading system

for recognizing efficient clients and allowing them to partici-

pate in aggregation. As iSample surveys the majority of clients

after model training, it is able to maintain inclusivity. It was

shown that iSample achieves robustness to non-IID settings by

considering model quality and updating the client models more

frequently than state of the art solutions. The protocol was

implemented and tested on the AWS platform and compared

with FedCS and Standard FL. The results show that iSample

has decreased the training time for both CNN and VGG

by 27% and 39% comparing to Standard FL. Future work

involves adding more parameters to the grading system and

employing reinforcement learning techniques to change the

protocol parameters dynamically during the training process.

ACKNOWLEDGMENT

This work is funded by the NSF IDIEA-DC program as

award number 2038682 under the NSF Office of Advanced

Cyberinfrastructure (OAC) organization.

REFERENCES

[1] J. Dean, G. S. Corrado, R. Monga, K. Chen, M. Devin, Q. V. Le, M. Z.
Mao, M. Ranzato, A. Senior, P. Tucker et al., “Large scale distributed
deep networks,” 2012.

[2] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” in Artificial intelligence and statistics. PMLR, 2017, pp. 1273–
1282.

[3] J. Xu, W. Du, Y. Jin, W. He, and R. Cheng, “Ternary compression
for communication-efficient federated learning,” IEEE Transactions on
Neural Networks and Learning Systems, 2020.

[4] D. Alistarh, D. Grubic, J. Li, R. Tomioka, and M. Vojnovic, “Qsgd:
Communication-efficient sgd via gradient quantization and encoding,”
2017.

[5] F. Sattler, S. Wiedemann, K.-R. Müller, and W. Samek, “Robust and
communication-efficient federated learning from non-iid data,” IEEE
transactions on neural networks and learning systems, vol. 31, no. 9,
pp. 3400–3413, 2019.

[6] A. Jahanshahi, R. Sharifi, M. Rezvani, and H. Zamani, “Inf4edge:
Automatic resource-aware generation of energy-efficient cnn inference
accelerator for edge embedded fpgas,” in 2021 12th International Green
and Sustainable Computing Conference (IGSC), 2021, pp. 1–8.

[7] M. Ribero and H. Vikalo, “Communication-efficient federated learning
via optimal client sampling,” arXiv preprint arXiv:2007.15197, 2020.

[8] W. Chen, S. Horvath, and P. Richtarik, “Optimal client sampling for
federated learning,” arXiv preprint arXiv:2010.13723, 2020.

[9] D. Ye, R. Yu, M. Pan, and Z. Han, “Federated learning in vehicular
edge computing: A selective model aggregation approach,” IEEE Access,
vol. 8, pp. 23 920–23 935, 2020.

[10] T. Nishio and R. Yonetani, “Client selection for federated learning
with heterogeneous resources in mobile edge,” in ICC 2019-2019 IEEE
International Conference on Communications (ICC). IEEE, 2019, pp.
1–7.

[11] T. Huang, W. Lin, W. Wu, L. He, K. Li, and A. Y. Zomaya, “An
efficiency-boosting client selection scheme for federated learning with
fairness guarantee,” IEEE Transactions on Parallel and Distributed
Systems, vol. 32, no. 7, pp. 1552–1564, 2020.

[12] Y. Liu, Y. Liu, Z. Liu, Y. Liang, C. Meng, J. Zhang, and Y. Zheng,
“Federated forest,” IEEE Transactions on Big Data, 2020.

[13] S. Ji, W. Jiang, A. Walid, and X. Li, “Dynamic sampling and selective
masking for communication-efficient federated learning,” arXiv preprint
arXiv:2003.09603, 2020.

[14] W. Zhang, X. Wang, P. Zhou, W. Wu, and X. Zhang, “Client selection for
federated learning with non-iid data in mobile edge computing,” IEEE
Access, vol. 9, pp. 24 462–24 474, 2021.

[15] S. Niknam, H. S. Dhillon, and J. H. Reed, “Federated learning for
wireless communications: Motivation, opportunities, and challenges,”
IEEE Communications Magazine, vol. 58, no. 6, pp. 46–51, 2020.

[16] N. Yoshida, T. Nishio, M. Morikura, K. Yamamoto, and R. Yonetani,
“Hybrid-fl: Cooperative learning mechanism using non-iid data in wire-
less networks,” arXiv preprint arXiv:1905.07210, 2019.

[17] L. Wang, S. Xu, X. Wang, and Q. Zhu, “Addressing class imbalance in
federated learning,” 2020.

[18] H. Li, H. Liu, X. Ji, G. Li, and L. Shi, “Cifar10-dvs: An event-stream
dataset for object classification,” Frontiers in Neuroscience, vol. 11, no.
309, May 2017.

[19] “Amazon EC2 T2 Instances,” https://aws.amazon.com/ec2/instance-
types/, Online; Accessed November 10, 2021.

[20] W. Almesberger, “Linux network traffic control – implementation
overview,” 1999.

[21] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” 2015.

65

Authorized licensed use limited to: The George Washington University. Downloaded on December 21,2022 at 03:22:54 UTC from IEEE Xplore. Restrictions apply.

