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Abstract—The ever-expanding scale of cloud datacenters necessitates automated resource provisioning to best meet the requirements

of low latency and high energy-efficiency. However, due to the dynamic system states and various user demands, efficient resource

allocation in cloud faces huge challenges.Most of the existing solutions for cloud resource allocation cannot effectively handle the dynamic

cloud environments because they depend on the prior knowledge of a cloud system,whichmay lead to excessive energy consumption and

degradedQuality-of-Service (QoS). To address this problem, we propose an adaptive and efficient cloud resource allocation scheme

based on Actor-Critic Deep Reinforcement Learning (DRL). First, the actor parameterizes the policy (allocating resources) and chooses

actions (scheduling jobs) based on the scores assessed by the critic (evaluating actions). Next, the resource allocation policy is updated by

using gradient ascent while the variance of policy gradient is reducedwith an advantage function, which improves the training efficiency of

the proposedmethod.We conduct extensive simulation experiments using real-world data fromGoogle cloud datacenters. The results

show that our method can obtain the superior QoS in terms of latency and job dismissing rate with enhanced energy-efficiency, compared

to two advanced DRL-based and five classic cloud resource allocationmethods.

Index Terms—Cloud computing, datacenters, resource allocation, energy-efficiency, deep reinforcement learning
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1 INTRODUCTION

CLOUD computing has rapidly developed as one of the
most prevailing computing paradigms [2]. In cloud

computing, resource allocation is regarded as a process of
allocating computing, storage, and networking resources to
meet the requirements of both users and cloud service pro-
viders (CSPs). Many problems in cloud resource allocation
have emerged with the ever-increasing scale and dynamics
of cloud datacenters, such as irrational resource provision-
ing and slow response to changes. These problems not only
degrade the Quality-of-Service (QoS) but also cause high
energy consumption and maintenance overheads [3]. There-
fore, it has been a high-priority objective to design an adap-
tive and efficient solution for resource allocation in cloud
datacenters. However, it is a highly challenging task due to
the dynamic system states and various user demands in
cloud computing [4], as described below.

� The complexity of cloud datacenters. There are a large
number of different types of servers in cloud data-
centers, which provide various computing and stor-
age resources including central processing units
(CPUs), memories, and storage units. Therefore, it is
challenging to manage and coordinate such hetero-
geneous resources efficiently in cloud computing [5].

� The diversity of demands from users. Jobs coming from
different users demand heterogeneous resources
(e.g., CPUs, memories, and storage units) and differ-
ent durations (e.g., minutes, hours, and days) [6].
Such diversity of user demands intensifies the diffi-
culty of resource allocation in cloud datacenters.

� The excessiveness of energy consumption. Large energy
consumption not only causes huge operation over-
heads but also results in extensive carbon emissions
[7]. In Google cloud datacenters, the average CPU
utilization of servers is only around 20% [8]. Such
energy waste occurs when irrational resource alloca-
tion schemes are used. However, it is hard to satisfy
diverse user demands while maintaining cloud data-
centers with high energy-efficiency.

� The dynamics of cloud systems. In cloud datacenters, sys-
tem states such as resource usage and requests are
changing frequently. Effective resource allocation is
expected to continuously meet the requirements of
user jobs under such dynamic cloud environments.
However, it is difficult to build an accurate model for
resource allocation in response to dynamic cloud envi-
ronments. Therefore, these dynamics have caused
huge challenges to adaptive resource allocation in
cloud datacenters [9].
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Many classic solutions for cloud resource allocation are
based on rules [10], heuristics [11], and control theory [12].
Although these solutions can solve the problem of cloud
resource allocation to some extent, they commonly use the
prior knowledge of cloud systems (e.g., state transitions,
demand changes, and energy consumptions) to develop
corresponding strategies of resource allocation. Thus, these
solutions might work well in a specific application scenario,
but they are unable to fully fit in the cloud environment
with dynamic system states and user demands. For exam-
ple, job scheduling can be easily executed by using rule-
based strategies for meeting instant user demands. How-
ever, they only consider the current job characteristics (e.g.,
resource demands and job durations) to obtain short-term
benefits. Therefore, they are unable to adaptively fulfill the
dynamic demands of user jobs with a long-term perspec-
tive, and it might result in excessive job latency and serious
resource wastes due to irrational resource allocation.
Besides, numerous iterations may be needed to find feasible
resource allocation plans with these solutions, which leads
to high computational complexity and resource overheads.
Therefore, they are unable to effectively address the compli-
cated problem of resource allocation in dynamic cloud
environments.

Reinforcement learning (RL) [13] has emerged as a prom-
ising approach for handling resource allocation problems
with high-adaptiveness and low-complexity. However, tra-
ditional RL-based methods suffer from the problem of high-
dimensional state space when dealing with complex cloud
environments [14]. To address this problem, deep reinforce-
ment learning (DRL) [15] was proposed to extract low-
dimensional representations from high-dimensional state
spaces using deep neural networks (DNNs) [16]. Although
there are some DRL-based methods focused on the problem
of cloud resource allocation [17], [18], [19], [20], most of
them use the value-based DRL (e.g., deep Q-networks
(DQN) [15] and double Q-learning (DQL) [21]), which may
lead to low training efficiency when dealing with a large
action space. This is because the value-based DRL learns a
deterministic policy by calculating the probability of each
action. However, in a cloud datacenter, jobs may arrive con-
stantly and thus the action space may be considerably large
to continuously meet the requirements of scheduling jobs.
Therefore, it could be hard for the value-based DRL to
approach the optimal policy with quick convergence. By
contrast, the policy-based DRL (e.g., policy gradient (PG)
[13]) learns a stochastic policy and can better deal with the
large action space in a cloud datacenter by directly output-
ting actions with the probability distribution, but it might
reduce the training efficiency caused by the high variance
generated when estimating the policy gradient.

As a synergy of value-based and policy-based DRL algo-
rithms, advantage actor-critic (A2C) [13] was designed to
address the above issues. In A2C, the actor chooses actions
based on the scores assessed by the critic, where the vari-
ance of policy gradient is reduced with an advantage func-
tion. However, the A2C adopts a single-thread training
manner and thus underutilizes computational resources.
Meanwhile, strong data correlation may occur when using
the A2C because similar training samples are generated
when there is only a single DRL agent interacting with the

environment, which would cause unsatisfactory training
results. To address these problems with A2C, an asyn-
chronous advantage actor-critic (A3C) algorithm with
low-variance and high-efficiency was proposed in [22].
The A3C uses multiple DRL agents to interact with the
environment simultaneously, making full use of computa-
tional resources and thus improving the learning speed.
Meanwhile, the data collected by different DRL agents are
independent of each other, and thus the A3C breaks the
data correlation.

In light of the A3C algorithm’s advantages, we develop
an A3C-based resource allocation scheme for cloud
datacenters with heterogeneous resources, diverse user
demands, large energy consumption, and dynamic envi-
ronments. The main contributions of this paper are sum-
marized as follows.

� A unified model of resource allocation is designed
for a cloud datacenter with dynamic system states
and heterogeneous user demands. In the proposed
model, the QoS (job latency and dismissing rate) and
energy-efficiency (average energy consumption of
jobs) are regarded as optimization goals. Further-
more, the state space, action space, and reward func-
tion for cloud resource allocation are defined and
formulated as a Markov decision process (MDP),
which are used in the proposed DRL-based cloud
resource allocation scheme.

� An actor-critic DRL (A3C) based resource allocation
method is proposed to efficiently approach the opti-
mal policy of job scheduling in a cloud datacenter.
Specifically, DNNs are utilized to handle the prob-
lem of high-dimensional state space in a cloud data-
center. Moreover, the training efficiency of the
proposed method is greatly improved with the asyn-
chronous update of policy parameters among multi-
ple DRL agents.

� The extensive simulation experiments using real-
world trace data from Google cloud datacenters are
conducted to validate the effectiveness of the pro-
posed method. The simulation results demonstrate
that the proposed method can achieve the better
QoS, higher energy-efficiency, and faster conver-
gence compared to five classic resource allocation
algorithms and two advanced DRL-based resource
allocation methods.

The rest of this paper is organized as follows. In Section 2,
the related work is introduced. Section 3 describes the sys-
tem model of resource allocation in a cloud datacenter. In
Section 4, the proposed A3C-based cloud resource alloca-
tion method is presented in detail. In Section 5, the pro-
posed method is evaluated by simulation experiments with
real-world datasets. Section 6 concludes this paper.

2 RELATED WORK

Resource allocation in cloud computing has attracted much
research attention, while many studies have contributed to
solving this important problem. In this section, we review
the related work from two aspects, including the classic and
DRL-based solutions for cloud resource allocation.
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2.1 Classic Approaches for Cloud Resource
Allocation

Resource allocation problem is omnipresent in cloud com-
puting and many methods have been proposed to enhance
resource utilization with rational resource provisioning and
effective cost control. For example, Zahid et al. [10] proposed
a ruled-based language for CSPs, in order to improve the
QoS compliance of high-performance computing (HPC)
clouds. Through using probabilistic thresholds, a system
model was designed in [23] for accomplishing the switching
between different operating levels of cloud services.
Johnson’s rule and genetic algorithm were combined in [24]
for solving the multiprocessor scheduling problem in cloud
datacenters. By using a rule-based control approach, a
power-aware job scheduler was designed in [25] for improv-
ing power-efficiency and meeting power constraints. Wang
et al. [25] also compared the pros and cons of baseline sched-
uling algorithms, such as the longest job first (LJF), shortest
job first (SJF), and round-robin (RR). Furthermore, Samal
and Mishra [26] analyzed the variants of RR algorithms for
load balancing in cloud computing. Based on the heuristics,
the problem of cloud resource reservation was solved in [11]
for meeting user demands while reducing resource costs.
Grandl et al. [27] designed Tetris, a cluster scheduler with
packing heuristics, in order to match task requirements with
resource availability and improve cluster efficiency. Avgeris
et al. [12] proposed a hierarchical resource allocation frame-
work with an admission control mechanism, and it can sup-
port mobile users to choose edge servers for executing their
tasks with less response time and computational costs. Hara-
tian et al. [28] designed an adaptive resource management
framework for meeting the QoS requirements, where the
decision-making of cloud resource allocation was executed
by a fuzzy controller in each iteration of control cycles.
Through utilizing the feedback-control theory, a Big-Data
MapReduce system was developed in [29] for reducing the
costs of cluster reconfigurations.

Overall, most of these work focused on rule-based strate-
gies, heuristics, and control theory for cloud resource alloca-
tion. The rule-based strategies or heuristics need to establish
different rules for fulfilling dynamic system states and user
demands in cloud datacenters. Thus, not only the application
scopes of them are limited but also high overheads of rule
settings are generated. Besides, the control-theory based sol-
utions require numerous feedback iterations, and thus they
usually lead to high computational complexity and unneces-
sary resource overheads. To address these important chal-
lenges, DRL has emerged as an adaptive and efficient
decision-making method for solving the complicated prob-
lem of cloud resource allocation.

2.2 DRL-Based Methods for Cloud Resource
Allocation

Deep reinforcement learning (DRL) combines reinforcement
learning (RL) and DNNs, and it emphasizes the decision-
making process of choosing actions according to different
system states in the dynamic environments, in order to max-
imize the long-term rewards. Two great milestones have
witnessed the vigorous development of DRL-based algo-
rithms. One is the application of deep Q-networks (DQN)
on the Atari 2600 platform [15]. The other is the Alpha Go

that defeated the Go world champion by integrating Monte
Carlo Tree Search (MCTS) with DNNs [30]. Moreover, DRL-
based methods have recently been applied to the problem of
resource allocation in cloud computing. For instance, Tong
et al. [17] combined the Q-learning algorithm with DNNs to
handle the scheduling problem of directed acyclic graph
(DAG) tasks in the cloud environment. The DQN algorithm
was adopted in [18] to allocate compute-intensive jobs, in
order to reduce the energy consumption of cloud datacen-
ters. By using the DQN algorithm, a hierarchical framework
was designed in [19] for adaptive resource allocation, aiming
to reduce power consumption in cloud datacenters. Also,
Zhang et al. [31] adopted the DQN algorithm, in order to
achieve adaptive provisioning and configuration for cloud
resources. Different from these work using value-based DRL
algorithms, Mao et al. [20] leveraged a policy-based DRL
algorithm (i.e., policy gradient (PG)) to handle the resource
allocation problem in cloud datacenters. Subject to resource
constraints in wireless systems, Eisen et al. [32] utilized a PG-
based method to find the near-optimality of resource alloca-
tion. Based on the PG algorithm, a QoS-aware scheduler was
developed in [33], aiming to improve the QoS when schedul-
ing DNN inference workloads in cloud computing. More-
over, a PG-based actor-critic approach for user scheduling
and resource allocationwas designed in [34], aiming tomaxi-
mize the energy-efficiency in heterogeneous networks.
Besides, an actor-critic basedDRLmethod for cloud resource
allocation was developed in our previous work [1] that only
considered the optimization of job latency but not energy-
efficiency. Moreover, the training efficiency of these actor-
critic based DRLmethods can still be improved because they
did not take advantage of asynchronous updatemechanism.

In general, most of these work depends on value-based
DRL methods for cloud resource allocation. It is difficult for
them to approach the accurate optimal policy when dealing
with a large action space. Although there exists a small
amount of research using policy-based DRL methods to
address this problem, the high variance is generated when
they estimate the policy gradient. Besides, the above DRL-
based methods reveal drawbacks in training efficiency, thus
numerous iterations are needed for optimizing the schedul-
ing policy. To address these essential problems, we propose
an A3C-based resource allocation method in cloud datacen-
ters. Different from the GA3C [35] that aims to enhance the
performance of the A3C algorithm by leveraging the GPU
computational power, our method focuses on the adapta-
tion and application of the A3C algorithm in cloud resource
allocation.

3 SYSTEM MODEL

A unified model of resource allocation is designed, aiming
to improve the QoS and energy-efficiency in dynamic envi-
ronments of cloud datacenters with various user demands
and ever-changing system states. For the clarity of presenta-
tion, we consider the scenario of a single cloud datacenter
with a set of servers, donated by V ¼ fv1; v2; . . . ; vmg, where
m indicates the number of servers. Each server provides
multiple types of resources (e.g., CPUs, memories, and stor-
age units), donated by Res ¼ fr1; r2; . . . ; rng, where n indi-
cates the number of resource types. As shown in Fig. 1, a
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DRL-based resource controller is embedded in the resource
allocation system (RAS). The RAS generates policies of job
scheduling based on the resource requests of different user
jobs and current state information of the cloud datacenter
(e.g., number of servers, resource usage, and energy con-
sumption). According to the policies delivered by the DRL-
based resource controller, the job scheduler assigns jobs from
the job sequence to servers. Specifically, the jobs are general-
ized as data processing jobs [36], such as the training jobs of
deep learning (DL) models for image processing and speech
recognition. For different jobs, they exhibit various resource
requests according to their purposes. Therefore, each job con-
sists of a specific job duration (e.g., minutes, hours, or days)
and the request for different types of resources (e.g., CPUs
and memories). During the process of resource allocation, the
information collector records the usage of different resources
and current energy consumption (measured by an energy
agent) in the clouddatacenter. Referring to the above informa-
tion, the DRL-based resource controller will generate policies
of job scheduling accordingly. The major notations involved
in the proposedmodel are listed in Table 1.

Considering that there are a set of all jobs that are
expected to be processed, denoted by Jtotal ¼ fj1; j2; . . . ; jpg,
where p indicates the total number of jobs, a set of jobs
that are waiting in the job sequence, denoted by Jseq ¼
fj1; j2; . . . ; jqg, where q indicates the number of jobs waiting
in the job sequence, and q � p. When a job from Jtotal arrives,
it will first enter Jseq. If the available resources are enough,
this job can be processed immediately. Otherwise, this job
will wait in the job sequence for scheduling. Following the
first-in-first-out (FIFO) policy, the jobs in Jseq will be
dropped when the job sequence is full. Therefore, the actual
completion time of a job is obtained by calculating the time
interval from entering the job sequence to the end of proc-

essing, denoted by Tj
finish � Tj

enter. Fig. 2 illustrates an exam-

ple of job scheduling. We assume that there is a server with
100 computing units of CPU resources. The jobs j1, j2, and

j3 request 50, 30, and 40 units of CPU resources, respec-
tively, which arrive at timesteps t1, t2, and t3, and are com-
pleted at timesteps t4, t5, and t6. In the proposed model, the
time instances (i.e., timesteps) are the arrival times and com-
pletion times of jobs at servers. Whenever a job arrives or is
completed, a state transition occurs. More specifically,
when j1 and j2 arrive, there are enough CPU resources to
process these two jobs immediately. Therefore, the actual
completion time of j1 and j2 (i.e., t4 � t1 and t5 � t2) are
equal to their expected job durations (i.e., d1 and d2). How-
ever, j3 can only be processed until j1 is completed because
the CPU resources are currently inadequate. Therefore, the
actual completion time of j3 (i.e., t6 � t3) is longer than its
expected job duration (i.e., d3).

The numerical discrepancy among different values of job
latency may lead to excessive computation time during gra-
dient descent, therefore, the normalization is used to
improve the training speed and convergence of the algo-
rithm. Therefore, Lnormal is defined as the normalized aver-
age job latency, which normalizes the job latency of all
successfully completed jobs and then takes their average.

Lnormal ¼
P

j2completed jobs T j
finish � Tj

enter

� �
=dj

� �
Number of completed jobs

; (1)

where Lnormal � 1 and dj is the duration of a job.

Fig. 1. Model of resource allocation in a cloud datacenter.

TABLE 1
Major Notations Used in the Proposed Model

Notation Definition

V Set of servers in a cloud datacenter
Res Types of resources in a cloud datacenter
Jtotal Set of all jobs that are expected to be processed
Jseq Set of jobs waiting in the job sequence

Tj
finish Timestep when a job is finished

Tj
enter

Timestep when a job enters the job sequence

Lnormal Normalized average job latency
dj Duration of a job
seqLen Length of job sequence
disRate Job dismissing rate
Etotal Total energy consumption of a cloud datacenter
k Fraction of energy consumption for an idle server
Pmax Maximum energy consumption of a server
Ures
t Resource usage of all servers by timestep t

Ejob Average energy consumption of completed jobs
st State of a cloud datacenter by timestep t
Ores

t Occupancy request of all arrived jobs by timestep t
Djob

t Durations of all arrived jobs by timestep t
at Action adopted by job scheduler at timestep t
Rt Total rewards at timestep t
RQoS

t Rewards of the QoS at timestep t
Renergy

t Rewards of the energy-efficiency at timestep t
T j;wait
t Waiting time of job j by timestep t

T j;work
t Execution time of job j by timestep t

T j;miss
t Time consumption when job j is dismissed by timestep t

Ej;exec
t Energy consumption of executing job j by timestep t

Fig. 2. An example of job scheduling.
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Moreover, a constraint is added on the length of the
job sequence Jseq, denoted by seqLen, which is used to
avoid the QoS degrading caused by the excessive number
of jobs that are staying in the waiting status. Therefore,
disRate is defined as the job dismissing rate, which cal-
culates the rate of dismissed jobs when the job sequence
is full.

disRate ¼ 1�Number of completed jobs

Total number of jobs
; (2)

where 0 � disRate � 1.
Besides, the energy consumption generated in cloud

datacenters commonly depends on their resource usage,
and thus it is a feasible way to reduce energy consumption
by enhancing this metric. This is because fewer servers tend
to be switched on when the existing servers have high
resource usage. Through experimental measurements, exist-
ing studies [19], [37], [38] have shown that the energy con-
sumption of a server is proportional to its resource usage.
Based on these studies, the total energy consumption of a
cloud datacenter is formulated as

Etotal ¼
XT
t¼0

X
v2V

k � Pmax þ ð1� kÞ � Pmax � Ures
t

� �
; (3)

where Pmax is the maximum energy consumption of a server
when it is fully utilized, the fraction k is used to calculate the
energy consumption of an idle server, Ures

t is the resource
usage of all servers by timestep t, and T is the timestep
when the last job is completed.

Different from most of the existing work that regards the
total energy consumption as a performance metric, we con-
sider the energy-efficiency during the job scheduling pro-
cess, which is measured by the average energy consumption
of all successfully completed jobs as

Ejob ¼ Etotal

Number of completed jobs
: (4)

To improve the QoS (i.e., Lnormal and disRate) and
energy-efficiency (i.e., Ejob), a DRL-based resource alloca-
tion method is proposed to execute the job scheduling in a
cloud datacenter. Specifically, we regard the RAS as a DRL
agent and the cloud datacenter as the environment. At each
timestep, the DRL agent chooses an action of scheduling
jobs by interacting with the environment. Accordingly, the
state space, action space, and reward function in DRL are
defined as follows.

State space: In the state space S, the state st 2 S consists
of the resource usage of all servers and resource requests
of all arrived jobs by timestep t. On one hand, Ures

t ¼
½½u1;1; u1;2; . . . ; u1;n�; ½u2;1; u2;2; . . . ; u2;n�; . . . ; ½um;1; um;2; . . . ;um;n��
indicates the usage of different types of resources on all
servers by timestep t, where um;n is the usage of the
nth resource type on the server vm. On the other hand, Ores

t ¼
½½o1;1; o1;2; . . . ; o1;n�; ½o2;1; o2;2; . . . ; o2;n�; . . . ; ½oj;1; oj;2; . . . ; oj;n��
indicates the occupancy requests of all arrived jobs for different
types of resources by timestep t, where oj;n is the occupancy
request of the latest arrived job j for the nth resource type, and
Djob

t ¼ ½d1; d2; . . . ; dj� denotes the durations of all arrived jobs by

timestep t. Therefore, the state of a cloud datacenter by timestep
t is defined as

st ¼ ½sVt ; sJt � ¼ ½Ures
t ; ½Ores

t ;Djob
t ��; (5)

where sVt ¼ Ures
t and sJt ¼ ½Ores

t ; Djob
t � are used to represent

the states of all servers and arrived jobs for the clarity of pre-
sentation. The state space changes when jobs arrive or are
completed, and the dimension of the state space depends
on the situation of servers and arrived jobs, calculated by
(mnþ zðnþ 1Þ), where m, n, and z are the number of serv-
ers, resource types, and arrived jobs, respectively.

Action space: At timestep t, the action at adopted by the
job scheduler is to select and execute jobs from the job
sequence, according to a policy of job scheduling delivered
by the DRL-based resource controller. The policy is gener-
ated based on the current system state, and the job sched-
uler assigns jobs to a specific server for execution. Once a
job is scheduled to an appropriate server, the server will
automatically allocate corresponding resources according to
the resource request of this job. Therefore, the action space
only indicates whether a job will be processed by a server or
not, which is defined as

A ¼ fatjat 2 f0; 1; 2; . . . ;mgg; (6)

where at 2 A. When at ¼ 0, the job scheduler does not
assign the job at timestep t and the job needs to wait in the
job sequence. Otherwise, the job will be processed by a spe-
cific server.

State-transition probability matrix: The matrix indicates the
probabilities of the transition between two states. Taking
Fig. 2 as an example, at timestep t0, there is no job to be proc-
essed and the initial state s0 ¼ ½0; ½½0�; ½0���, where the three
”0” items represent the CPU usage of the server, occupancy
requests of jobs, and job durations, respectively. At t1, the job
j1 is scheduled immediately since the available resources are
sufficient. After taking this action, the state evolves to s1 ¼
½50; ½½50�; ½d1���, where the first ”50” item indicates the CPU
usage of the server, the second ”50” item represents the occu-
pancy request of j1 for CPU resources, and d1 is the duration
of j1. Similarly, after taking the action of scheduling j2 at t2,
the state evolves to s2 ¼ ½80; ½½50; 30�; ½d1; d2���. Specifically,
the state-transition probability matrix is denoted as
IPðstþ1jst; atÞ, which indicates the probabilities of transiting
to the next state stþ1 when taking an action at at the current
state st. The values of the transition probabilities are obtained
by running the DRL algorithm, which outputs the probabili-
ties of taking different actions at a state.

Reward function: The reward function is used to guide the
DRL agent (RAS) to learn better policies of job scheduling
with higher discounted long-term rewards, aiming to
improve the system performance of cloud resource alloca-
tion. Therefore, at timestep t, the total rewards Rt consist of
two parts including the rewards of the QoS (denoted by
RQoS

t ) and the energy-efficiency (denoted by Renergy
t ), which

is defined as

Rt ¼ RQoS
t þRenergy

t : (7)

Specifically, RQoS
t reflects the penalties (hence negative)

for different types of latency at timestep t including Tj;wait
t ,
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Tj;work
t , and Tj;miss

t (as described in Table 1), which is
defined as

RQoS
t ¼ �

X
j2Jseq

w1 � T
j;wait
t þ Tj;work

t

dj
þ w2 � Tj;miss

t

 !
;

(8)

where w1 and w2 are used to weight the penalties. SinceRQoS
t

is a negative value, a job that has a longer duration tends to
wait for a shorter time. This is sensible for a cloud system
with the objective of profit maximization as a job with a lon-
ger duration can lead to higher profits [39].

Moreover, Renergy
t reflects the penalty for energy con-

sumption at timestep t, which is defined as

Renergy
t ¼ �w3 �

X
j2Jseq

Ej;exec
t ; (9)

where Ej;exec
t is the energy consumption of executing a job

by timestep t, and w3 is used to weight the penalty.
During the optimization process of cloud resource alloca-

tion, the DRL agent first chooses an action at (scheduling
jobs) under the current system state st (resource usage and
resource requests) of the environment (cloud datacenter).
Next, the DRL agent receives rewards Rt (the QoS and
energy-efficiency) and steps to the next state stþ1. This pro-
cess is illustrated by an MDP, as shown in Fig. 3.

Due to the uncertainty of system states, the problem of
cloud resource allocation is formulated with model-free
DRL. Based on the discrete-time-based MDPs with a large
action space, an A3C algorithm is utilized to explore adap-
tive and efficient resource allocation in dynamic environ-
ments of cloud datacenters.

4 ADAPTIVE AND EFFICIENT RESOURCE

ALLOCATION USING A3C IN CLOUD

DATACENTERS

This section presents the proposed effective resource alloca-
tion method based on the asynchronous advantage actor-
critic (A3C), which can achieve superior QoS and energy-
efficiency in cloud datacenters. The proposed method
adopts an actor-critic based DRL framework with asynchro-
nous update (A3C) to accelerate the training process. Specif-
ically, the A3C-based method incorporates both value-
based and policy-based DRL algorithms. On one hand, the
value-based DRL determines the value function by using
function approximators and adopts the �-greedy to balance
the exploration and exploitation. Therefore, the DRL agent
utilizes existing experiences to choose good actions of job
scheduling whilst exploring new actions. On the other
hand, the policy-based DRL parameterizes the policy of job
scheduling and directly outputs actions with probability

distributions during the learning process without storing
their Q-values. Thus, the DRL agent can efficiently choose
actions under a large action space.

The key steps of the proposed A3C-based cloud resource
allocation method are shown in Algorithm 1. Based on the
definitions of state space (in Eq. (5)), action space (in Eq. (6)),
and reward function (in Eq. (7)), the actor’s network V pu and
critic’s network Qpu are first initialized with weights and
biases. Next, the actor’s and critic’s learning rate ga and gc,
and the TD error discount factor b are initialized.

Algorithm 1. The A3C-Based Resource Allocation in
Cloud Datacenters

1 Initialize: The actor’s network V pu and critic’s network Qpu

with weights and biases.
2 Initialize: The actor’s and critic’s learning rate ga and gc,
reward decay rate �, TD error discount factor b, counter
temp ¼ 0, and update step u.

3 for each training epoch n ¼ 0; 1; 2; . . . ; N do
4 Receive the initial state s0, where s0 ¼ env:observeðÞ;
5 for t ¼ 0; 1; 2; . . . ; T do
6 Select the action at of scheduling jobs based on the

current system state st of the cloud datacenter, where
st ¼ ½sVt ; sJt � (defined in Eq. (5)) and at 2 A (defined in
Eq. (6)): at ¼ actor:choose actionðstÞ;

7 Execute the scheduling action at, receive the reward Rt

(QoS and energy-efficiency) and the next state stþ1,

where Rt ¼ RQoS
t þRenergy

t (defined in Eq. (7)):

Rt; stþ1 ¼ env:stepðatÞ;
8 Calculate the discounted long-term rewards:

Rdisc ¼ R0 þ �R1 þ :::þ �t�1Rt�1;
9 Calculate the advantage function in the critic, where

Qwðst; atÞ ¼ Rdisc þ �tV put ðstþ1Þ:
Aput ðst; atÞ ¼ Qwðst; atÞ � V put ðstÞ;

10 Minimize the TD error:
dput ¼ Rt þ bV put ðstþ1Þ � V put ðstÞ;

11 Update the state-action value function parameter:
wtþ1  wt þ gcd

put
t rwQwðst; atÞ;

12 Calculate the policy gradient in the actor by
using the advantage function:rutJðutÞ ¼
Eput
½rut logputðst; atÞAput ðst; atÞ�;

13 Update the scheduling policy: utþ1  ut þ garutJðutÞ;
14 Update the state: st ¼ stþ1;
15 Update the counter: temp ¼ tempþ 1;
16 if temp % u ¼¼ 0 then
17 Call Algorithm 2 to asynchronously update policy

parameters in each DRL agent;
18 end
19 end
20 end

The optimization objective of the proposed A3C-based
resource allocation method is to obtain the most rewards.
Therefore, the instant reward Rt (defined in Eq. (7)) is accu-
mulated by using a probability distribution as

JðutÞ ¼
X
st2S

dput ðstÞ
X
at2A

putðst; atÞRt; (10)

where dput ðstÞ is the stationary distribution of MDPs model-
ing cloud resource allocation under the current policy put of
job scheduling.

Fig. 3. An example of the MDP process modeling cloud resource
allocation.
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After the initialization, the training process for optimiz-
ing cloud resource allocation begins. To improve the optimi-
zation objective, the policy parameters of job scheduling are
updated continuously.

In one-step MDPs, the policy gradient of the objective
function is defined as

rutJðutÞ ¼ Eput
½rut logput ðst; atÞRt�: (11)

When it comes to multi-step MDPs, the instant reward Rt

is replaced by the long-term value Qput ðst; atÞ, and the pol-
icy gradient theorem is defined as

Theorem 1. Policy Gradient Theorem [13]: For any differen-
tiable policy putðst; atÞ and any policy objective functions,
the corresponding gradient is defined as

rutJðutÞ ¼ Eput
½rut logputðst; atÞQput ðst; atÞ�: (12)

Based on this theorem, a Temporal Difference (TD) learn-
ing [13] is adopted, which estimates the state-values accu-
rately and guides the update of policy parameters.

Fig. 4 illustrates the framework of the proposed A3C-
based cloud resource allocation method. Through taking
advantage of both policy-based and value-based DRL, the
proposed method is able to handle a large action space and
reduce the variance when estimating gradient.

In each DRL agent, the critic’s network estimates the state-
action value function Qwðst; atÞ � Qput ðst; atÞ and updates
parameter w. Moreover, the actor’s network guides the
update of policy parameters ut of the job scheduling policy
put based on the evaluated values from the critic’s network.
The corresponding policy gradient is defined as

rutJðutÞ ¼ Eput
½rut logputðst; atÞQwðst; atÞ�: (13)

Next, a state-value function V put ðsÞ is used to reduce the
variance when estimating the gradient, which is only
related to the state and does not change the gradient. Thus,
the policy gradient is redefined as

rutJðutÞ ¼ Eput
½rut logputðst; atÞAput ðst; atÞ�; (14)

where Aput ðst; atÞ ¼ Qput ðst; atÞ � V put ðstÞ is the advantage
function. Moreover, V put ðsÞ is updated by the TD learning,
where the TD error is defined as

dput ¼ Rt þ bV put ðstþ1Þ � V put ðstÞ: (15)

To improve the training efficiency, multiple DRL agents
work simultaneously and update their policy parameters of
job scheduling asynchronously, as shown in Algorithm 2.
Specifically, a certain number of DRL agents are initialized
with the same local parameters of neural networks (i.e., the
scheduling policy) and interact with their corresponding
environments of cloud datacenters. For each DRL agent, the
gradients are accumulated periodically in the actor’s and
critic’s networks and the asynchronous update is executed
for the parameters in the global network by using gradient
ascent via RMSProp optimizer [22]. Next, each DRL agent
pulls the latest parameters of the actor’s and critic’s net-
works from the global network and uses them to replace the
local parameters. Based on the updated local parameters,
each DRL agent will continue to interact with its corre-
sponding environment and independently optimize its local
parameters of scheduling policy. Note that there is no coor-
dination among these DRL agents during the local training
process. The A3C-based method will be kept training by
using the asynchronous update mechanism among multiple
DRL agents until the results converge.

Algorithm 2. The Asynchronous Update of Policy
Parameters of Job Scheduling in Each DRL Agent

1 Initialize: The global and local parameters (u and u0) for
actor’s networks, the global and local parameters (w and w0)
for critic’s networks.

2 for i ¼ temp� u; temp� uþ 1; . . . ; temp do
3 Accumulate gradients in the actor:

du  du þru0 logpu0 ðsi; aiÞðRi � VwðsiÞÞ;
4 Accumulate gradients in the critic:

dw dwþ @ðRi � VwðsiÞÞ2=@w0;
5 end
6 Update global parameters by using gradient ascent via
RMSProp: u ¼ u þ gadu; w ¼ wþ gcdw;

7 Synchronize local parameters: u0 ¼ u; w0 ¼ w;
8 Reset gradients: du 0; dw 0;

5 PERFORMANCE EVALUATION

In this section, we first describe the settings and datasets in
our simulation experiments. Next, we evaluate the perfor-
mance of the proposed method and conduct comparative
experiments with other baselines.

5.1 Settings and Datasets

The proposed model of cloud resource allocation is imple-
mented based on the TensorFlow 1.4.0. A cloud datacenter
is simulated with 50 heterogeneous servers, where the frac-
tion k of energy consumption for an idle server is set to 70%
and the maximum energy consumption Pmax of a server is
set to 250 W [37]. Therefore, the energy consumption of a
server is distributed between 175 W and 250 W with the
increase of resource usage from 0% to 100%. Moreover, the
real-world trace data from Google cloud datacenters [8] is
used as the input of our proposed model. The datasets con-
tain the resource usage data of different jobs over 125,000
servers in Google cloud datacenters during May 2011. More
specifically, 50 servers are first randomly extracted from
Google datasets over 29 days, where each server consists of

Fig. 4. Framework of the A3C-based cloud resource allocation method.
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around 100,000 job traces. Next, several essential metrics are
extracted from each job trace, including machine ID, job ID,
start time, end time, and the corresponding resource usage.
For example, Figs. 5 and 6 depict the per-day and per-min-
ute resource (CPU and memory) usage of a server, and they
reflect the ever-changing resource demands of jobs at differ-
ent times. The job duration is assumed to be known before
the scheduling. This assumption is reasonable because users
commonly specify the requirements of their jobs (including
resource usage and job duration) when they want to utilize
cloud resources to execute their jobs, which enables cloud
datacenters to allocate the resources correspondingly. In
addition, the length of job sequence is set to 1000.

During the training process, 10 DRL agents are used to
implement the asynchronous update of policy parameters.
In each DRL agent, the job trace data is fed in the proposed
model by batches, where the batch size is set to 64. As for
the design of DNNs, two fully-connected hidden layers are
built with 200 and 100 neurons, respectively. Moreover, we
set the maximum number of epochs as 1000, the reward
decay rate � as 0.9, and the critic’s learning rate gc as 0.01.
Based on the above settings, extensive simulation experi-
ments are conducted to evaluate the performance of the pro-
posed A3C-based cloud resource allocation method.

To analyze the effectiveness and advantage of the pro-
posed method for cloud resource allocation, extensive com-
parative experiments are conducted. On one hand, the
performance of two advanced DRL-based methods (i.e., PG
[20] and DQL [21]) are assessed. On the other hand, five
classic algorithms are also evaluated as follows.

� Random. Jobs are executed by a random order of job
durations.

� Longest job first (LJF) [25]. Jobs are executed by a
decreasing order of job durations.

� Shortest job first (SJF) [25]. Jobs are executed by an
increasing order of job durations.

� Round-robin (RR)[26]. Jobs are executed fairly in a
circular order, where time slices are employed and
assigned to each job in equal portions.

� Tetris [27]. Jobs are executed based on their resource
demands and the availability of system resources at
the moment they arrive.

5.2 Convergence Results

To evaluate the convergence of the proposed A3C-based
cloud resource allocation method, the impact of two essen-
tial parameters is investigated, including the TD error dis-
count factor b and the actor’s learning rate ga.

First of all, the value of TD error discount factor b is
changed with the constant actor’s learning rate ga ¼ 0:001.
As shown in Fig. 7, higher total rewards and faster conver-
gence (around 400 training epochs) are achieved when b is
set to 0.9. This is because the proposed method with b ¼ 0:9
makes better use of recent rewards to guide the actor’s net-
work and thus better actions are chosen along with the right
direction for higher total rewards. Therefore, b ¼ 0:9 will be
used in the following experiments.

Next, the constant TD error discount factor b ¼ 0:9 is
used to analyze the convergence of our proposed method
with the different values of actor’s learning rate ga. As
shown in Fig. 8, when ga is set to a large value (e.g., 0.1 or
0.01), high total rewards can be obtained in few training
epochs. However, the algorithm converges to the local opti-
mum in this case, and thus it can no longer learn a more
optimized policy. By contrast, when ga is set to 0.001, it only
takes around 400 training epochs to achieve higher total
rewards than the above two cases. When ga decreases to
0.0001, the learning curve always fluctuates strongly with
the increase of training epochs, and it is hard to reach a
smooth convergence in this case. Thus, ga ¼ 0:001 is more
suitable for the next experiments than other values.

5.3 Comparison Under Single-Objective
Optimization

In this subsection, the proposed A3C-based cloud resource
allocation method is first evaluated by several performance
metrics, including the total rewards, QoS (normalized average
job latency and job dismissing rate), and energy-efficiency

Fig. 5. Varying CPU demands of jobs at different times.

Fig. 6. Varying memory demands of jobs at different times.

Fig. 7. Convergence versus different TD error discount factors.
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(average energy consumption of jobs), under different cases
with various average system loads. Next, the proposed
method is compared with some classic resource allocation
methods, including LJF, Tetris, SJF, and RR, under single-
objective (QoS) optimization.

As shown in Fig. 9, the total rewards (represent the QoS)
generally declines with the increase of average system load.
In this case, the proposed method can always achieve higher
total rewards than other methods even if the average system
load becomes higher. By contrast, other classic methods pres-
ent comparable performance only when the average system
load is less than 1.2. Especially, when the average system load
is over 2.0, the performance of these classic methods is only
slightly better than the random scheme. The LJF method even
performs worse than the random scheme when the average
system load is over 2.4. This is because that a large number of
jobs are waiting to be processed when the average system
load is high but the LJFmethod always schedules the job with
the longest job duration in priority, which results in the exces-
sivewaiting ofmany jobs and seriously degrades the schedul-
ing performance. By contrast, the proposed method always
maintains excellent performance. The results verify the
advantage of the proposed method in scheduling jobs under
complicated environmentswith high system loads.

As shown in Figs. 10a and 10c, the proposed method
obtains both the lowest normalized average job latency and
job dismissing rate among all these methods. Especially, the

performance gap becomes larger with the increase of aver-
age system load. This also verifies the strong adaptiveness
of our proposed method in dynamic cloud environments
with changeable average system loads. Besides, the average
job energy consumption is also measured in this case, and
the comparisons are conducted among these methods under
the case of single-objective optimization. As shown in
Fig. 10b, the proposed method leads to the higher average
energy consumption of jobs when the average system load
stays low (i.e., less than 2), although more energy consump-
tion can be reduced when the average system load is over 2.

5.4 Comparison Under Multi-Objective Optimization

In this subsection, the comparative experiments are con-
ducted between the proposedmethod and other classic meth-
ods for cloud resource allocation under multi-objective (QoS
and energy-efficiency) optimization. As shown in Fig. 11, the
total rewards (represent the weighted sum of the QoS and
energy-efficiency) degrade with the increase of average sys-
tem load. This is because the growing and changeable
demands from user jobs increase the complexity of cloud
resource allocation. In this case, the proposedmethod obtains
much higher total rewards than other classic resource alloca-
tion methods when the average system load is high. Espe-
cially, when the average system load is over 1.6 with more
complicated system states, the performance improvement

Fig. 8. Convergence versus different actor’s learning rates. Fig. 9. Total rewards of different resource allocation methods with vari-
ous system loads under single-objective optimization.

Fig. 10. Comparison of performance metrics among different resource allocation methods under single-objective optimization.

CHEN ET AL.: ADAPTIVE AND EFFICIENT RESOURCE ALLOCATION IN CLOUD DATACENTERS USING ACTOR-CRITIC DEEP... 1919

Authorized licensed use limited to: The George Washington University. Downloaded on December 21,2022 at 03:23:24 UTC from IEEE Xplore.  Restrictions apply. 



achieved by the proposed method becomes more obvious.
This is because the proposedmethod is of good ability to find
a better trade-off between the QoS and energy-efficiency dur-
ing the job scheduling process.

As shown in Figs. 12a and 12c, the proposed method out-
performs other resource allocation methods in terms of both
normalized average job latency and job dismissing rate.
This verifies that the proposed method has the excellent sta-
bility of maintaining the superior QoS in the cases of both
single-objective and multi-objective optimizations. More-
over, Fig. 12b depicts the energy-efficiency of different
resource allocation methods, where the proposed method
can always attain the lowest average energy consumption
of jobs among these methods with the increase of average
system load. Thus, the proposed method makes up for the
defects that occur in Fig. 10b under the case of single-objec-
tive optimization. This is because that the energy-efficiency
is integrated in our DRL-based scheduling method, and
thus both the QoS and energy-efficiency are well considered
during the job scheduling. The above results demonstrate
the advantageous performance of our proposed method in
improving the QoS and energy-efficiency.

5.5 Comparison Among Different DRL-Based
Methods

In this subsection, the performance comparison between the
proposed A3C-based method and two advanced DRL-based

methods for cloud resource allocation is conducted under
multi-objective optimization, where the average system
load is 1.2. As shown in Fig. 13, the proposed method can
always achieve higher total rewards than the other two
DRL-based methods during the training process of resource
optimization. Moreover, the learning curve of the proposed
method tends to converge after around 200 training epochs.
However, the PG-based and DQL-based methods respec-
tively require around 800 and 400 training epochs to reach a
relatively-smooth convergence. As shown from Figs. 14a,
14b, 14c, and 14d, the proposed method can achieve the bet-
ter QoS (normalized average job latency and job dismissing
rate) and higher energy-efficiency (average energy con-
sumption of jobs) compared to the other two DRL-based
methods. Therefore, the above results demonstrate the
excellent performance and high training efficiency of the
proposed method. This is because the proposed method is
able to effectively avoid large variance by using the advan-
tage function when estimating the policy gradient. Mean-
while, the efficient convergence can be achieved by using
the asynchronous update mechanism among different DRL
agents.

Finally, the detailed performance metrics of the proposed
A3C-based method and other classic methods for cloud
resource allocation are exhibited when the average system
load is 1.2. As shown in Table 2, the proposed method
reduces over 3% normalized average job latency and 27%

Fig. 11. Total rewards of different resource allocation methods with vari-
ous system loads under multi-objective optimization.

Fig. 12. Comparison of performance metrics among different resource allocation methods under multi-objective optimization.

Fig. 13. Total rewards of different DRL-based methods under multi-
objective optimization when the average system load = 1.2.
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job dismissing rate than the DQL-based DRLmethod, which
performs best among other methods in terms of these two
metrics. The PG-based DRL method results in the worst
energy-efficiency (average energy consumption of jobs)
among all these methods. This is because the PG-based DRL
generates high variance when estimating the policy gradi-
ent. Therefore, it cannot achieve a good load balancing
among different servers. Consequently, it will result in high
loads and low utilization on servers, causing excessive
energy consumption. By contrast, around 9% of the average
energy consumption is saved by using the proposed
method compared to the RR method, which leads to the
lowest average energy consumption of jobs among other
methods. Moreover, the proposed method can achieve
excellent QoS and energy-efficiency simultaneously. This is
because that the training efficiency of the proposed method
is greatly improved by using the asynchronous update of
policy parameters among multiple DRL agents. Therefore,
the proposed method can efficiently approach the global
optimal and well guarantee the QoS and energy-efficiency
simultaneously.

6 CONCLUSION

In this paper, we first formulate the resource allocation issue
in cloud datacenters as a model-free DRL problem with
dynamic system states and various user demands. Next, we
propose an A3C-based resource allocation method to effec-
tively schedule jobs for improving the QoS and energy-
efficiency in cloud datacenters. The extensive simulation

experiments using real-world trace data from Google cloud
datacenters demonstrate the effectiveness of the proposed
method in achieving adaptive and efficient resource alloca-
tion. More specifically, the proposed method outperforms
the classic resource allocation methods (i.e., LJF, Tetris, SJF,
RR, PG, and DQL) in terms of the QoS (normalized average
job latency and job dismissing rate) and energy-efficiency
(average energy consumption of jobs). Moreover, the pro-
posed method works better than the others with the
increase of average system load, and it can achieve higher
training efficiency (faster convergence) than two advanced
DRL-based methods (i.e., PG and DQL). The simulation
results show the great value of the proposed method for
improving resource allocation in cloud datacenters.

In our future work, we plan to first extend the proposed
model to consider the jobs’ priority order. Specifically, we
will need to redefine the state space, action space, and
reward function, taking into account the jobs’ priority order.
For example, the actions of scheduling the high-priority jobs
can lead to better rewards, thus guiding the algorithm to
learn scheduling policies considering the jobs’ priority
order. Next, we intend to design a new query-aware data-
base parameter tuning method using an advanced DRL
model built on this work. Through feeding the features of
query information, the DRL model could learn the relations
among database states, queries, and configurations to real-
ize the automatic parameter tuning. Moreover, we will try
to improve the generalization of the proposed DRL-based
resource allocation scheme by developing an automatic
data augmentation technique, which aims to regularize pol-
icies and value functions with respect to various state transi-
tions and thus allows the DRL agent to capture task
invariances and learn useful behaviors when the environ-
ment changes.
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