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ABSTRACT
Spamming reviews are prevalent in review systems to manipulate
seller reputation and mislead customers. Spam detectors based on
graph neural networks (GNN) exploit representation learning and
graph patterns to achieve state-of-the-art detection accuracy. The
detection can in�uence a large number of real-world entities and it
is ethical to treat di�erent groups of entities as equally as possible.
However, due to skewed distributions of the graphs, GNN can fail
to meet diverse fairness criteria designed for di�erent parties. We
formulate linear systems of the input features and the adjacency
matrix of the review graphs for the certi�cation of multiple fairness
criteria. When the criteria are competing, we relax the certi�ca-
tion and design a multi-objective optimization (MOO) algorithm
to explore multiple e�cient trade-o�s, so that no objective can be
improved without harming another objective. We prove that the
algorithm converges to a Pareto e�cient solution using duality and
the implicit function theorem. Since there can be exponentially
many trade-o�s of the criteria, we propose a data-driven stochastic
search algorithm to approximate Pareto fronts consisting of multi-
ple e�cient trade-o�s. Experimentally, we show that the algorithms
converge to solutions that dominate baselines based on fairness
regularization and adversarial training.
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1 INTRODUCTION
Online reviews evaluate the reputations of businesses and guide
customers on e-commerce websites, such as Amazon [14], Yelp [30],
and Google Play [35]. However, these websites have also attracted
many spammers1 to manipulate product ratings and the less in-
formed customers. Numerous detectors are proposed, using features
derived from texts [20, 34, 42], reviewer behaviors [27, 33, 46], and
graphs [19, 21, 28, 37]. The literature has seen a steady improvement
in detection accuracy, which is nonetheless not the only evaluation
metric. Since the detection can a�ect many parties in e-commerce,
ethical aspects, such as fairness, have caught much attention. We
focus on the fairness of graph neural networks (GNN), which com-
bine representation learning and patterns of the review graphs
connecting reviewers, reviews, and products to deliver superior
detection accuracy [28]. The GNN detector outputs Pr(Ŷi = 1|G) as
the probability of the suspiciousness of the i-th review. The reviews
with high probabilities will be screened or automatically removed.

Whether a review needs to be blocked should depend only on
the characteristics relevant to spamming (such as the intention
and impact of the review [47]). However, such characteristics are
unobservable due to the anonymity of the spammers. Furthermore,
the review graphs can contain attributes, such as the number of
reviews by an author, that can bias the detection2.

We focus on the fairness issue due to the highly skewed distribu-
tion of node degree (see Figure 1, panel (a)). Prior accuracy-focusing
detectors did not consider the degree and can have unfair detection.
For example, reviewers or products with fewer reviews can have a
higher chance of being screened and such treatment is unfair to the
majority of reviewers. We de�ne the protected group of reviewers
(indicated by the sensitive attributeA = 1) as those that have posted
less than a certain number of reviews, and the remaining reviewers
are in the favored group (A = 0). The reviews are grouped according
to their authors (reviewers).

To demonstrate the fairness issue, Figure 1 panel (b) shows the
computation graphs for example reviews from the two groups. A
review from the favored group (A = 0) is connected to its author (the
larger blue circles), which is connected to many other reviews that
can be spam (red circles) or non-spams (black circles). Informative
detection signals of the reviews in the input (bottom) layer can
be diluted by the aggregation operator (averaging or summing)
as messages are passed up. Pr(Ŷi = 1|G) calculated at the root
of reviews from group 0 can be lower than those from group 1,
due to the dilution. The discrepancy between the probabilities is
termed “disparate impact” [11], and “statistical parity” means the
two probabilities are equal.

1According to [40], about 40% of the reviews on Amazon are fake ones.
2The unobservable characteristics form the “construct feature space” (CFS) and the
observable features form the “observable feature space” (OFS) [15]
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(a) Review graph and a GNN model. (b) Computational graphs of the GNN.
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Figure 1: (a) An example review graph G . The GNN runs on G and predicts Pr(Yj = 1 |G), the probability of the corresponding review being
suspicious, given the graphG . (b) Computation graphs of Pr(Yj = 1 |G ) for reviews from the two groups. The roots in group 0 have blue children
(the reviewers), which have many children at the input (bottom) layer that can be spams or non-spams. The messages from non-spams can
dilate the suspicious features from the spam nodes, making group 0 spams harder to detect, thus a gap between the NDCGs of the two groups.
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Figure 2: Satisfying one fairness criterion does not guaran-
tee satisfaction of another fairness criterion.

Statistical parity is not su�cient to ensure fairness: di�erent false
positive rates between two groups means that the innocent reviews
from one group are more likely to be screened, even when the same
percentage of reviews from the two groups are screened [17]. It is
necessary to enforce multiple fairness constraints (e.g., statistical
parity and equalized odds [17]). Note that enforcing one fairness
criterion does not guarantee fairness in another metric (see Figure 2
and Figure 4). Prior work on fair learning on graphs [1, 5, 7, 36]
only concern about a single fairness criterion.

The �rst challenge is to understand the con�ict among multiple
fairness criteria and detection performance. Recent work [15, 24, 26]
certi�ed multiple fairness constraints using the feasibility of the
equality and/or inequality constraints. However, the constraints
are not formulated based on graph properties and detection per-
formance is not considered. Since the class distribution in spam
detection is highly skewed, ranking-based metrics, such as NDCG,
may be more appropriate. However, closed-form constraints for
certi�cating fair ranking have not been formulated. Fair repre-
sentation learning [1, 5, 9, 31] is agnostic about fairness metrics
and cannot reveal their con�icts. Second, when multiple hard fair-
ness constraints are infeasible, one needs to relax the constraints
and �nd Pareto e�cient trade-o�s among the relaxations3 Prior

3 A trade-o� is “Pareto e�cient”, if improving one metric (e.g., accuracy) necessarily
harm at least another metric (e.g., a fairness criterion).

work [1, 9, 23] used fairness-regularized optimization, where a
user-speci�c hyperparameter controls the relative importance of
fairness and classi�cation accuracy. Nonetheless, these methods did
not guarantee Pareto e�ciency and thus not reveal the necessary
trade-o�s (see Figure 6). While there are multi-objective optimiza-
tion (MOO) algorithms designed for fair machine learning [22], the
convergence proof is incomplete and it is not clear how the graph
and GNN can a�ect the convergence. Lastly, the relative impor-
tance of the multiple metrics is unknown before model is trained
and evaluated. Preference-based MOO [22, 32] requires preference
vectors from users. However, the number of preference vectors
increases exponentially in the number of objectives.

To address the above challenges, we study four widely-used fair-
ness criteria, including a ranking-based metric, and formulate linear
constraints to certi�cate the simultaneous satisfaction of these cri-
teria. The constraints are GNN-speci�c and expressed in terms
of the underlying graph structure and the input feature vectors.
The formulation is of independent interest beyond spam detection.
We adopt a well-studied gradient-based MOO algorithm to search
a Pareto optimal solution e�ciently. We develop a proof of the
convergence of the algorithm using the implicit function theorem,
completing the proof in [22]. Unlike [3, 16, 45, 48], we don’t assume
convex formulations of the fairness criteria, since convexity can
over-relax the fairness constraints and lose the regularization [29].
Building on the convergence of the MOO algorithm, we adopt a
stochastic search algorithm [39] 4 for a more e�cient data-driven
search without user-speci�ed preference vectors. Experimentally,
we demonstrate the need to enforce multiple fairness criteria and
the convergence of the proposed algorithms. The stochastic search
algorithm �nds more e�cient solutions that dominate solutions
found by regularization-based methods [45, 48] and adversarial
learning-based methods [1, 5, 31].

2 PRELIMINARIES
2.1 Spam detection based on GNN
Graph neural networks have been used for spam detection [28].
GNN operates on a graph G = (V, E) with a set of nodes V =
{�1, . . . ,�N }. Each node�i has a feature vector xi encoding various

4In their paper, GNN is not studied and certi�cates are not analyzed.
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spam detection features. The undirected edge ei j 2 E indicates that
�i and �j are related. LetW 2 {0, 1}N⇥N be the adjacency matrix
of the graph G, so thatWi j = 1 if and only if ei j 2 E. GNN is a
K-layered neural network. Let {h(k )j , j = 1, . . . ,N ,k = 1, . . . ,K} be
the feature vectors of the node�j output at the k-th layer. The input
feature vector xj is considered to be h(0)j at layer 0. GNN computes

h
(k )
j , k 2 {1, . . . ,K}, as follows:

a
(k )
j = AGGREGATE(k )

⇣n
h
(k�1)
i : ei j 2 E

o⌘
, (1)

h
(k )
j = COMBINE(k )

⇣
h
(k�1)
j ,a(k )j

⌘
, (2)

where the AGGREGATE function �nds a single vector a(k )j from
the vectors of the neighboring nodes at the previous layer. These
functions can take various forms. For example, AGGREGATE(k ) can
be the mean of the input vectors, and COMBINE(k ) the composition
of the ReLU and an a�ne mapping parameterized by � (k ) [25].

Let � = [� (0), . . . ,� (K )] 2 Rd denote all the d trainable param-
eters of the GNN. The prediction Pr(Ŷj = �j |� ;G) is computed by
the sigmoid function � (zj ). zj =

D
� (K ),h(K )

j

E
is the logic and � (K )

maps the last layer’s output h(K )
j to zj .

The aggregation function in multiple layers can represented
by a computation graph. For a node �j , to compute Pr(Ŷj |� ;G), a
spanning tree of the graph G is constructed with root at �j . The
tree is cut-o� at the depth K . We will use the computation graphs
to analyze the compatibility of multiple fairness criteria.

GNN needs to be trained on labeled nodes (assumed to be the �rst
n of the N nodes on G , whose labels are denoted by �j 2 {0, 1}, j =
1, . . . ,n). Since the number of spams and non-spams are imbalanced,
we choose to maximize the NDCG metric for evaluating rankings:

1
Z

nX
j=1

1[�j = 1]
1

log(r j + 1)
, (3)

where r j is the ranking position of the j-th labeled node among
all labeled nodes sorted in descending order of Pr(Ŷj = �j |� ;G). Z
is the maximal possible value of Pn

j=1 1[�j = 1] 1
log(r j+1) across all

rankings so that the loss is in [0, 1]. NDCG is not di�erentiable due
to the sorting, and we adopt the di�erentiable surrogate [6]

`1(� ;G) =
1
Z

X
j, j0:�j<�j

log(1 + exp(zi � zj )), (4)

where Z is the total number of pairs of positive and negative nodes.
The detection can be evaluated on the test set using the NDCG.

2.2 Optimizing fairness metrics
A commonly found fairness criteria is disparate impact [8, 11]

min
⇢
Pr(Ŷ = 1|A = 0)
Pr(Ŷ = 1|A = 1)

,
Pr(Ŷ = 1|A = 1)
Pr(Ŷ = 1|A = 0)

�
. (5)

The fairness is maximized when the above metric is 1, and the
predicted probability is independent of A. To facilitate gradient-
based optimization, we adopt the corresponding surrogate [8, 10]:

`(DI)(� ;G) = |Pr(Ŷ = 1|A = 0) � Pr(Ŷ = 1|A = 1)|, (6)

where Pr(Ŷ = 1|A = a) is estimated as the percentage of the re-
views from group a classi�ed positive by Ŷ . Since the GNN has
probabilistic outputs, we use the approximation

Pr(Ŷ = 1|A = a;� ,G) =
Pn
j=1 1[Aj = a]Pr(Ŷj = 1|� ,G)Pm

j=1 1[Aj = a]
. (7)

Equalized odd is another fairness criterion proposed in [18]. Two
speci�c instances of equalized odd is “equalized false positive rate”,
enforced by the fairness loss

`(EFPR)(� ;G) = |Pr(Ŷ = 1|A = 0,Y = 0) � Pr(Ŷ = 1|A = 1,Y = 0)|,
(8)

and “equalized false negative rate” enforced by the loss

`(EFNR)(� ;G) = |Pr(Ŷ = 0|A = 0,Y = 1) � Pr(Ŷ = 0|A = 1,Y = 1)|.
(9)

The conditional probabilities in `(EFPR) and `(EFNR) can be estimated
similarly as in Eq. (7) but conditioning on both A and Y . Lastly, we
would prefer the detection performance measured in NDCG to be
equal across two groups, using the following loss function

`(XN)(� ;G) =

�����
1
Z0

n0X
j=1

1[�j = 1,Aj = 0]
1

log(r0j + 1)
(10)

� 1
Z1

n1X
j=1

1[�j = 1,Aj = 1]
1

log(r1j + 1)

����� , (11)

with Z0 and Z1 being the normalization for the two groups and r0j
and r1j the ranking position of the j-th node from two groups (A = 0
and A = 1), respectively (nodes are ranked within each group). We
approximate the group-wise NDCG using Eq. (4) within individual
groups `(XN)(� ;G).

3 MULTI-OBJECTIVE FAIR DETECTION
3.1 Motivating multi-objective optimization
Let’s revisit Figure 2. In the left sub�gure, by averaging the pos-
teriors of the three instances within each of the two groups, it is
clear that the averages are di�erent, leading to disparate impact.
However, the detection NDCG are the same across the groups. In
the middle, we let all the Pr(Y = 1|G) be positioned so that their
distances to the decision boundary are the same, leading to statis-
tical parity (no disparate impact). However, the FPR and FNR are
di�erent between both groups. Lastly, on the right sub�gure, we see
no disparate impact and the FPR/FNR are equal across the groups,
but the NDCGs are di�erent between the two groups. The above
example shows that enforcing one fairness criterion (e.g., FPR) is
insu�cient for ensuring another fairness criterion (e.g., NDCG). Is
it possible to satisfy a set of fairness criteria simultaneously?

3.2 (Im)possibility of satisfying multiple
fairness criteria

The above question has been studied in [24, 26], but their statements
are not about the representation learning on graphs. To simpli�ed
our analysis, we consider the linearized GNN [44]:

Pr(Ŷj = 1|G;� ) = �

 
(W̃ )KH(0)

KY
k=0

� (k )
!
, (12)
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where H
(0) = [h(0)1 , . . . ,h

(0)
n ]> is the input feature matrix, W̃ =

D
�1
W , and D = diag(W1n⇥1). We prove that certain fairness crite-

ria can be translated into linear constraints over H0 andW .
Let G0 and G1 be two groups de�ned by a sensitive attribute A

and the random variables in group Gi be denoted by {Yi, j }, where
i 2 {0, 1} and j 2 {1, . . . , |Gi |}. De�ne the indicator vector 1[Gi ],
with 1’s in the entries j for Yj 2 Gi and 0 otherwise. The computa-
tion graph of the simpli�ed GNN, when predicting the class of any
node Yj , is a spanning tree of height K rooted at Ŷj . The spanning
tree’s leaves are the input vectors h(0)j0 of the node Yj0 reachable
from Yj on the graph G in K hops 5. Example computation graphs
are given in Figure 3.

T������ 3.1. Assume the linearized GNN with �xed parameters
� = (� (0), . . . ,� (K )). If the rows of the matrix

QK
k=0 �

(k ) are linearly
independent, then an equality fairness constraintC based on disparate
impact, EFPR, and EFNR, de�ned using the logits zi, j for nodes Yi, j ,
is satis�ed if

1
|G0 |

1[G0]>(W̃ )KH (0) =
1

|G1 |
1[G1]>(W̃ )KH (0), (13)

P����. The averaged logits from group Gi is

1
|Gi |

1[Gi ]>(W̃ )KH (0)
KY
k=0

� (k ). (14)

By equating the two averages, we have


1
|G0 |

1[G0]>(W̃ )KH (0) � 1
|G1 |

1[G1]>(W̃ )KH (0)
� KY
k=0

� (k ) = 0.

(15)
Since the rows of QK

k=0 �
(k ) are linearly independent,

1
|G0 |

1[G0]>(W̃ )KH (0) � 1
|G1 |

1[G1]>(W̃ )KH (0) = 0. (16)

⇤

C�������� 3.1.1. Under the assumptions of Theorem 3.1, the com-
patibility of S fairness equality criteria C1, . . . ,CS , with two groups
G0,s and G1,s , s = 1, . . . , S , can be certi�cated by the feasibility of
the following linear system

1
|G0,s |

1[G0,s ]>(W̃ )KH (0) =
1

|G1,s |
1[G1,s ]>(W̃ )KH (0), s = 1, . . . , S .

where 1[G0,s ] and 1[G1,s ] are the binary indicator vectors for the
two groups de�ned by the criterion Cs .

C�������� 3.1.2. Under the assumptions of Theorem 3.1, if an
fairness criterion is de�ned across over S groups, the criterion is satis-
�ed if the following linear system is feasible

1
|Gs |

1[Gs ]>(W̃ )KH (0) =
1

|Gt |
1[Gt ]>(W̃ )KH (0),8s, t 2 {1, . . . , S}.

where 1[Gs ] and 1[Gt ] are the binary indicator vectors for the two
groups Gs and Gt .

5 In most neural network implementations, such as PyTorch, network parameters are
leaf nodes of computation graphs. We don’t consider parameters in the constraints
since the parameters are �xed as constants.
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Figure 3: A running example demonstrating the (im)possibility.

A similar equality constraint can be proved for the ranking-based
fairness criterion of equalized NDCG. Let G+

i (G�i , resp.) be the set
of positive (negative, resp.) of group i , and 1[G+

i ] and 1[G
�
i ] be

the corresponding indicator vectors. Let n+i = |G+
i | and n�i = |G�i |

be the number of positive and negative examples in group i , for
i = 0, 1.

T������ 3.2. Under the assumptions of Theorem 3.1, the fairness
criterion of equality in NDCG approximated using logits zi, j of Yi, j
is satis�ed if

1
n
�
0 ⇥ n

+
0
∆>0 (W̃ )KH (0) =

1
n
�
1 ⇥ n

+
1
∆>1 (W̃ )KH (0), (17)

with ∆i = n
+
i ⇥ 1[G�i ] � n�i ⇥ 1[G+

i ], for i = 0, 1.

P����. The proof of the theorem is similar to Theorem 3.1. To
use the logits to de�ne equality in NDCG,we replace log(1+exp(zj0�
zj )) in the approximated NDCG loss function `(XN)(� ;G) with zj0 �
zj . The summation in the de�nition of the loss function is then
replaced with the inner product ∆>0 (W̃ )KH (0) and ∆>1 (W̃ )KH (0) for
groups 0 and 1, respectively. ⇤

The above theorems are applicable to general graphs beyond the
review graphs. In the proof, rather than working with the output
probabilities in the fairness constraints, as de�ned in Seciton 2.2,
we relax the fairness criteria that use the probabilities Pr(Y |X ) and
Pr(Y |X ,A) to use the logits zj for the ease of analysis. Be cautioned
that the closeness in the averaged logits is not equivalent to the
closeness in the averaged probabilities. However, when the sigmoid
function is used to compute the probabilities and the logits or their
di�erences are near 0, the approximation is close.
A running example. We demonstrate the theorem on the review
graph, in Figure 3 with three reviewer accounts, 5 reviews, and
3 products. The two spamming reviews are highlighted with red
circles. The letters A, R, and P above the three columns denote the
types (reviewer, review, and product) of the nodes in the respective
columns, and the numbers besides each node identify a node of
the type in those columns. For example, A1 is the �rst reviewer
and R3 is the third review, which is a spamming review. For the
ease of analysis, we assume that the simpli�ed GNN has two layers
(K = 2), and there is no edge connecting a node to itself. The
adjacency matrix is row normalized by node degrees as in Eq. (12).
The computation graphs are shown in Figure 3 panel (b).

The protected group has reviews R1 and R2, and the favored
group has reviews R3, R4, and R5. Statistical parity requires

1
2

⇣
h
(2)
R1 + h

(2)
R2

⌘
=
1
3

⇣
h
(2)
R3 + h

(2)
R4 + h

(2)
R5

⌘
.
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The superscripts indicate the second (output) layer of the GNN.
Using the computational graphs, if the rows of � (0)� (1)� (2) are lin-
early independent, the requirement becomes the following linear
equality constraint:
1
12

⇣
5h(0)R1 + 5h(0)R2 + 2h(0)R3

⌘
=

1
18

⇣
h
(0)
R1 + h

(0)
R2 + 4h(0)R3 + 6h(0)R4 + 6h(0)R5

⌘
.

3.3 Learning a GNN satisfying multiple
fairness requirements

What if multiple desired fairness criteria cannot be satis�ed simulta-
neously? One can then �nd GNNmodels that trade one criterion for
others, with the constraint that the trade-o�s are e�cient, meaning
that improving one fairness criterion necessarily harms at least
another criterion. Such a model is called “Pareto optimal (e�cient)”,
which can be found by the following multi-objective optimization:

min
�

`(� ) = (`1(� ), . . . , `m (� ))>, (18)

where `i is some loss function mapping from Θ to R+ and L is a
function mapping from Rd to Rm . We assume all loss functions are
di�erentiable so that their gradients are well-de�ned. In particular,
we always let the �rst objective function `1 be the ranking loss
Eq. (4) to optimize spam detection performance. Depending on
what fairness criteria are desired, the corresponding fairness loss
functions can be appended as objective functions. For example, if
we care about fairness de�ned by disparate impact, we letm = 2
and `2(� ) be the loss de�ned in Eq. (5); if we want to ensure fairness
de�ned in DI, FNR, FPR, and xNDCG, we can letm = 5 and `2(� ) =
`DI(� ), `3(� ) = `FNR(� ), `4(� ) = `FPR(� ), and `5(� ) = `XN(� ).

D��������� 3.3 (D��������). A model � is dominated by the
model � 0, if `(� 0)  `(� ) element-wisely and for at least one i 2
{1, . . . ,m}, `i (� 0) < `i (� ).

D��������� 3.4 (P����� ������� ��� �����). A model � is
Pareto optimal (or e�cient) if it is not dominated by any other model.
The Pareto front is image of the set of all Pareto optimal solutions
under the mapping ` : Θ! Rm .

To characterize Pareto optimal solutions, we de�ne them ⇥ d
Jacobian matrix

(� (� ))i, j =
@`i
@� j

(� ). (19)

Unlike single objective optimization, at a local Pareto optimal
solution � , the Jacobian matrix � (� ) may not be all zero. That is,
there exists a Pareto optimal solution � so that the gradient of `i
is not a zero vector for at least one i 2 {1, . . . ,m}. A necessary
condition of a local Pareto optimal solution is that there is no vector
g 2 Rd so that � (� )g < 0, where the inequality is element-wise in
them objective values. If there is a vector g so that � (� )g < 0, then
g is a descent direction to make `(� +�g) smaller than `(� ) for some
su�ciently small positive step size � 2 (0, �) for some � 2 (0, 1).

To certi�cate that � is Pareto optimal, or equivalently that there
is no descent direction to further reduce all objectives, one can
solve the following optimization problem [13]:

min
� ,g

� + 1
2 kgk2 (20)

s.t. (Ag)i  � , i = 1, . . . ,m. (21)

Algorithm 1 MOO for �nding one Pareto optimal solution

Input:m objective functions `1, . . . , `m (NDCG and some fair-
ness objective(s)), a small positive tolerance � > 0.
Output: a Pareto optimal solution � .
Initialize GNN model � .
for t = 1, . . . , do
Find the gradients (� (� ))i of individual objective functions `i
at the current solution � .
Use a QP solver to �nd the optimal dual variables �⇤1, . . . , �

⇤
m ,

by solving the dual problem Eq. (22)-(23).
Compute the multi-gradient g = Pm

j=1 �
⇤
j (� (� ))j .

if at g, maxj (� (� )g)j > �� then
break

end if
Update �  � � �kg.

end for
Return the GNN model � .

whereA = � (� ) is a constant matrix given � . If � is a Pareto optimal
solution, then Ag � 0 for any g 2 Rd and the optimal value of the
above optimization is 0 by taking � = 0 and g = 0 2 Rd . If � is not
a Pareto optimal solution, then there is a g 6= 0 so that Ag < 0 and
� = maxi (Ag)i  � 1

2 kgk2< 0. Note that � and the descent direction
g are both functions of the current solution � .

In practice, it is not necessary to �nd the global optimum of
the above strongly convex optimization problem. Instead, �nding a
descent direction g so that � + 1

2 kgk2 is su�ciently smaller than 0
is good enough. According to [13], it is more common to solve the
following dual problem of the above primal problem:

max
�

� 1
2 k

Pm
j=1 �j (� (� ))j k

2 (22)

s.t. Pm
j=1 �j = 1, �j � 0, j = 1, . . . ,m. (23)

The dual problem is a quadratic programming (QP) problem and
� = [�1, . . . , �m] is the set of dual variables for them inequality
constraints in Eq. (21). O�-shelf software and library can be adopted
to �nd the approximately optimal �⇤. After the QP is solved, if the
current solution � is not Pareto optimal, a descent direction is
obtained as a so-called “multi-gradient” g = Pm

j=1 �
⇤
j (� (� ))j , which

is used to update the GNN parameters � :

�  � � �k
mX
j=1

�
⇤
j (� (� ))j . (24)

Otherwise, if � = maxj (Ag)j is not su�ciently smaller than 0 and �
can be claimed to be Pareto optimal. The algorithm description is
given in Algorithm 1. The learning rate �k should be adjusted so
that �k < (1� �)/(2Lmax) where 0 < � < 1 is a pre-speci�ed hyper-
parameter and Lmax is the maximum of the Lipschitz constants of
the gradients of the objective functions.
Relation to regularization-based approaches. Compared with
the training a fairness-regularized GNN [9], such as

`(� ;G) = `1(� ;G) + �`DI(� ;G), (25)

the QP-based approach can �nd the relative importance of di�er-
ent objective functions which are unknown a prior. Further, the
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regularized GNN does not guarantee a Pareto optimal solution, as
shown in the experiments.
Finding Pareto fronts. To �nd multiple Pareto optimal solutions
in the Pareto fronts, Algorithm 2 is adopted from [39]. It maintains a
list of dominating solutions in each outer iteration, while in each of
the inner iterations, it randomly perturbs each previous dominating
solution into several slightly di�erent solutions (“local search”),
which are further optimized by Algorithm 1. Dominated solutions
are removed at the end of each outer iteration.

Algorithm 2 Searching the Pareto front with Stochastic Multi-
Gradient

Input: graph G
Initialization: a list of a single GNN model L0 = {� }.
for t = 0, 1, . . . do

Let Lt+1 = ;.
for each model � in Lt do
Sample r GNN parameters independently from N (� ,� 2

I )
(adding Gaussian noise to each dimension of � ).
Add the sampled model to Lt+1.

end for
Let L0t+1 = ;.
for each model � in Lt+1 do
Apply Algorithm 1 to update � to � 0.
Add � 0 to L0t+1.

end for
Remove models that are dominated from L0t+1.
Let Lt+1 = L0t+1.

end for

3.4 Convergence to a Pareto e�cient solution
It has been proved in [13], that Algorithm 1 will converge to a
local Pareto optimal solution given that the objectives are Lipschitz
continuously di�erentiable and the step sizes are selected using
the Armijo method. Further, in [12], the authors proved that the
rate of convergence for non-convex, convex, and strongly convex
objective functions. There are discussions on whether to use convex
relaxation of fairness metrics [3]. On the one hand, using convex ob-
jective functions can ensure convergence and the rate. On the other
hand, neural networks are typically non-convex, even with con-
vex loss functions, and too much relaxation can cause the fairness
objectives to lose their e�ect [29].

We prove the convergence of Algorithm 1, with a key results
stated in [12, 13] without proof. We found the convergence proof
(Proof of Theorem 3, Section 4.6.4) in [22] also miss a key step (not
proving how the dual variables converge to a stationary point). We
close the gap by completing the proof in [12, 13].

T������ 3.5. (Theorem 3.1 of [12]) All loss functions are lower-
bounded by zero. Let � (0) be the initial GNN model and the maximal
loss function value be F

max = max{`1(� (0)), . . . , `m (� (0))}. Algo-
rithm 1 generates a sequence {� (t )} such that

min
t=0, ...,T�1

kg(t )k
r

Fmax

M

1
p
T

, (26)

whereM = ��min/2 and �min = min{(1 � �)/2Lmax, 1}.

The theorem shows that the descent direction sequence {g(t )}
satis�es

lim inf
t!1

kg(t )k! 0, (27)

and by passing to a subsequence, there is a subsequence of the
descent directions k� (tk )k! 0 as k !1. � (tk ) converges to a limit
point �⇤ where the corresponding kg⇤k= 0. By Eq. (20)-(21), �⇤ is
a Pareto optimal solution. In [12], the authors stated but did not
prove why the corresponding dual variables � also converges to
a stationary point �⇤. We close the gap by proving that �(� ) is a
continuous function � .

T������ 3.6. Let f (� ,�) = Pm
j=1 �j`j (� ) be the objective function

Eq. (22) of the dual problem, and �⇤ be an optimal solution of the
problem. f : Rd+m ! Rm . If r� f (� ,�) is full-rank, then there is a
di�erentiable function �(� ) near �⇤.

P����. Since the dual problem is a linearly constrained qua-
dratic programming and is convex, there is a unique solution �⇤

if the Hessian matrix r2
�,�

f (� ,�) is positive de�nite. Let the con-
straints be

h(� ,�) =
mX
j=1

�j � 1 = 0, (28)

fj (� ,�) = ��j  0, j = 1, . . . ,m. (29)

The Lagrangian is

L(�, µ,� ,� ) = f (� ,�) + µ j fj (� ,�) + �h(� ,�)

Fixing the parameter � , the optimal �⇤ is a function of � , denoted
by �⇤(� ). The KKT conditions at �⇤(� ) are

fj (� ,�⇤(� ))  0, j = 1, . . . ,m, (30)
h(� ,�⇤(� )) = 0, (31)

µ
⇤
j � 0, j = 1, . . . ,m (32)

µ
⇤
j fj (� ,�

⇤(� )) = 0, j = 1, . . . ,m, (33)

rL(�⇤(� ), µ⇤,�⇤,� ) = 0, (34)

The three equalities above constitute a linear system F (�, µ,� ,� ) =
[r�L(�, µ,� ,� ); µ1 f1(� ,�); . . . ; µm fm (� ,�)];h(� ,�)) = 0. By the
Implicit Function Theorem [2], there is a neighborhood around
the point (�⇤, µ⇤,�⇤,� ) and a function s : � ! (�, µ,� ) that is
continuously di�erentiable in a neighbor of � , with Jacobian being:

r� s(� ) = �r�,µ,� F (�, µ,� ,� )�1r� F (�, µ,� ,� ). (35)

The function s further satis�es F (s(� ),� ) = 0, the equalities in the
KKT conditions. ⇤

The di�erentiable function s(� ) maps from a model � to the
optimal dual variable values when solving the problem Eq. (22)-
(23). It shows that � is a continuous function of � . As a result, �
converges to �(�⇤) as � converges to �⇤.

Note: the convergence proof applies to multiple objectives de-
�ned on a training set only. Convergence on the unseen test data
requires more assumptions, such as su�ciently large training sets
and identical training and test distributions.
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Figure 4: From top to bottom row, from left to right, we optimize NDCG along with every subset of the fairness objectives ;,
{`DI}, {`EFPR}, . . . , {`DI, `EFNR, `EFPR, `XN}. Each sub�gure tracks all fairness loss functions, even those not optimized by MOO,
on the test set during training on YelpChi. Fairness loss not optimized can increased while other metrics are optimized.

Table 1: Review dataset statistics

Dataset
Dataset Statistics P (Y =1|A=0)

P (Y =1|A=1)# Accounts # Products # Reviews (% spams)
YelpChi 38063 201 67395 (13.23%) 0.0437
YelpNYC 160225 923 359052 (10.27%) 0.1446
YelpZip 260277 5044 608598 (13.22%) 0.0426

4 EXPERIMENTS
Experimental settings. We evaluate the trade-o�s between mul-
tiple fairness metrics, and those between accuracy and fairness
metrics, We adopt the three Yelp review datasets used previously
for graph-based spam detection [37, 47] (see Table 1). We place
in the favored group (A = 0) the reviewers who have the top
30% number of reviews, and the remaining reviewers in the pro-
tected group (A = 1). Reviews are grouped accordingly. The last
column of the table shows the ratio of spams in the two groups
(P (Y = 1|A = 0)/P (Y = 1|A = 1)). We can see that the class distribu-
tions are dependent on the attribute A: reviews from the favored
group are less likely to be spams. We split the reviewers and their
reviews into training (50%), validation (20%), and test (30%) sets, so
that the ratio of spams and the bias are similar in the three sets.
The isotropic normal distribution for sampling GNN parameters in
Algorithm 2 has variance � 2 = 0.01.

Evaluation metrics. Since the class distributions are imbalanced,
we use NDCG to measure the detection accuracy. As we focus
on Pareto e�ciency, we measure how often the baselines’ trained
models are dominated by the models found by our algorithms.
When there are only two objective functions, the dominance can
be visualized. With all 5 objective functions, it is hard to visualize
the dominance and we instead count the dominated solutions.

4.1 Experimental results
Do we need MOO? In Figure 2, we showed that optimizing one
fairness metric may not guarantee the optimization of other metrics.
Due to space limit, we only show the empirical results on the
YelpChi dataset. We use Algorithm 1 to optimize the NDCG loss (`1)
along with one of the 16 subsets of the 4 fairness losses. The smallest
subset has no fairness loss and the algorithm only optimizes `1. The
largest subset contains all 4 fairness losses and all fairness criteria
are desired. By comparing the �rst two sub�gures in the �rst row,
one can see that disparate impact skyrocketed above the upper limit
0.14 in the �rst, but fell below 0.1 in the second sub�gure when
`DI is minimized explicitly. Interestingly, the fairness loss `EFPR
slightly decreased but not much, while the other two fairness losses
`EFNR and `XN remain the same. The third sub�gure of the same
row shows that, only when `EFPR is optimized by the algorithm
will `EFPR be controlled. Similar e�ect on `DI can be observed by
comparing the third and the last sub�gures in the last row. In
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Figure 5: Convergence of ranking loss function, when optimized
along with di�erent sets of fairness loss functions. From top to bot-
tom: YelpChi, YelpNYC, and YelpZip.

general, all fairness losses need to be minimized when all fairness
criteria need to be met (the last sub�gure).

Convergence of to a single Pareto e�cient solution. We em-
pirically demonstrate the convergence of Algorithm 1. Similar to
Figure 4, on 3 datasets, we solve 45 MOO problems, each of which
has the NDCG loss function `1 (Eq. (4)) and one of the 15 non-empty
subsets of fairness losses. In Figure 5, we plot the convergence of
`1 on the training set6. One can see that in 42 out of 45 MOO in-
stances, the NDCG loss converges, with the three exceptions on
the YelpNYC dataset when optimizing [`1, `XN, `EFNR], [`1, `XN,
`EFPR, `EFNR], and [`1, `DI, `XN, `EFPR, `EFNR]. Note that the rates

6The convergence proof works on objective functions de�ned on the training set only,
and generalization to test distribution requires some large-sample arguments.

Table 2: Number of models found by Algorithm 2 that are
dominated by adversarial fairness learning. Sol’s = Total so-
lutions. Dom’d = Dominated.

YelpChi YelpNYC YelpZip
Epochs # Sol’s #Dom’d # Sol’s #Dom’d # Sol’s #Dom’d

2 10 1 9 0 5 0
4 28 0 31 2 21 0
6 117 0 109 1 71 0
8 256 0 289 0 212 1
10 447 0 597 0 345 1

of convergences are di�erent in di�erent MOO problems. For ex-
ample, the blue curve for optimizing [`1, `XN, `EFPR] only starts
to decrease signi�cantly at epoch 30 when it converges, while the
brown and gray curves converge at around epoch 20. Such di�er-
ence can be caused by the di�erence in the descent directions due
to the di�erent fairness objectives.

Converging to Pareto front. We optimize [`1, `fair], where `1 is
the NDCG loss and `fair is some fairness loss. In Figure 6, we plot
the current dominating solutions in the list Lt+1 in Algorithm 2
every 4 of the total of 20 epochs. It is clear that the fronts converge
towards the lower-left corner of the 2 dimensional space [`1, `fair].

We observe that the competitions between the ranking loss and
each of `DI, `EFNR, and `EFPR are less severe, as the front closely
approaches the lower-left corner where both losses are small. How-
ever, the trade-o� between `1 and `XN is harder: pushing one loss
down means the other loss will go up. This is probably because
both losses are ranking-based and share the same battle ground.
Compare with baselines. We have two baselines:
• The fairness-regularized methods [23, 48, 49] need user-speci�ed
relative importance to balance the objectives. The number of
balancing con�gurations grow exponentially in the number of
objectives. To restrict the search space, we only optimize the
scalar objective `1 + �`fair with � 2 {0.1, 1, 10} only.

• The method in [9] used adversarial learning to obtain fair GNN
without explicitly optimizing any fairness losses. Therefore, the
learned representations can be evaluated against various combi-
nations of fairness criteria.

Both baselines only �nd a single model that may not be Pareto
e�cient. In Figure 6, we compare Algorithm 2 with both base-
lines when optimizing only two objectives [`1, `fair]. In most cases,
the baselines found solutions that are dominated by the Pareto
fronts found by Algorithm 2. The only two exceptions happen on
YelpNYC dataset, where both the regularization method and our
algorithm are optimizing `1 along with `EFNR or `XN. The results
of optimizing all 5 objectives are summarized in Table 2. Only the
adversarial method is compared since the regularization method
requires user-speci�ed preference vectors. The Pareto fronts found
by Algorithm 2 in di�erent training epoch dominated the baseline.

5 RELATEDWORK
Fairness on graphs. Fairness in graphs has been studied in several
contexts. In [10, 50], fair Markov random �elds structure learning
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Figure 6: Convergence of Pareto frontswhen runningAlgorithm2. From top to bottom: YelpChi, YelpNYC, and YelpZip.We run
the algorithm with NDCG loss (`1) and one of the four fairness losses (from left to right: `DI, `EFNR, `EFPR, and `xNDCG. The two
baselines are compared and the fairness-regularized GNN has three di�erent regularization hyperparameters (� = 0.1, 1, 10).

and inference algorithms are proposed, respectively. In [5, 7, 36],
they aimed to �nd a fair embedding of nodes on a graph. They
assume sensitive attributes are available on the nodes to de�ne the
privileged and unprivileged groups, while we have node degree
as the sensitive attribute. In [1, 9], the authors propose to train
GNN using an adversarial opponent that tries to relate prediction
or data representation to sensitive node attributes. In [31], adver-
sarial objective function is added to a deep network so that the
representation and the classi�cation are both insensitive to the
sensitive attribute. The advantage of these methods is that they are
agnostic to the fairness criteria. As a result, however, the methods
cannot optimize speci�c multiple objectives. Our MOO algorithms
converge to Pareto optimal solutions that dominate the solutions
found by adversarial fair learning. The targeted detection problem
can be viewed as a ranking problem on bipartite graphs [4, 38]. The
most relevant one promotes diversity and fairness [41], where a
two-step and regularization approach was adopted.
Game theoretical fairness.The regularized optimization for achiev-
ing accuracy-fairness trade-o�s has been proposed in [23]. An al-
ternative formulation is to place the fairness regularization as a
constraint of the optimization problem for model training [43, 49].
However, these methods only work with a single fairness metric
and need to specify the strength of fairness regularization. Further-
more, these prior works did not explore the Pareto front consisting
of multiple optimal trade-o�s.

Multi-objective for fairness. This work is inspired by prior MOO
works [12, 13, 39], which did not certi�cate and optimize multiple
fairness criteria for GNN. There are work that address multiple
fairness criteria using MOO [22, 32], however, their methods are
preference-based and require user-speci�ed relative objective im-
portance. Our method uses stochastic search and is data-driven.

6 CONCLUSION
We studied the problem of meeting multiple fairness criteria when
training a GNN to detect spams on a review graph. The challenge
of certi�cating the compatibility of multiple fairness criteria is ad-
dressed by formulating linear systems in terms of graph structures
and input features. When the certi�cate fails, it is then desirable
to �nd Pareto e�cient solutions, where improving one objective
necessarily harm another. We propose algorithms with proof of
convergence using the implicit function theorem to �nd Pareto op-
timal solutions, The proposed stochastic search is data-driven and
without user-speci�ed preference vectors. Our solutions dominate
the baselines that use fairness-regularization and adversarial fair
representation learning.
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