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1. Introduction what system calls can be made by a user process. The mecha-
nism has been widely used in academic research and industrial
Linux introduces strong isolation boundaries and segregates ~ Products [6,7]. However, it is still a challenging problem on how
the virtual memory into user space and kernel space to provide to automatlcall.y decide the sysFem call whitelist for seccomp to
memory protection and hardware protection from malicious or ~ configure the filter rules for a given process.
errant software behavior [1]. All privileged functions, such as To obtain the required system calls for a specific user process,
process scheduling, IPC (Inter-process communication), memory ~ the state-of-the-art solutions rely on dynamic analysis to cap-
management, and network management et al., can only be exe- ture system calls when the target process is being dynamically
cuted in the kernel space. The only interface for switching from  traced [8-10]. Although they can easily find most system calls,
user space to kernel space is via the system call mechanism. they have several limitations. First, they cannot guarantee to
The latest stable Linux kernel (v5.18) provides about 350 sys- identify al.l required systerq calls due to thg l.ncomplem coverage
tem calls. However, for any specific user process, even if it only ﬁf dyrtlﬁmlc proce;s .executioni laager, d mlssmgs systeé]n{tcgllt.may
requires a small subset of the system calls for its normal running, ang the process being protected by seccomp. second, 1L 1S time-

it has the potential to invoke all system calls. When a user pro- consuming to dynamically trace dlffer.em paths of a process.
. . . . . Particularly, the user process usually invokes system calls by
cess is compromised and tricked into making vulnerable system . . . LT : . .
. . . . calling various wrapper functions in different libraries, which
calls, it may compromise the entire system by breaking into the sienificantlv increases the tracine complexit
kernel space [2-4]. To enhance system security, the seccomp [5] & y & p v

hani has b d into the Li s |t trict In this paper, we develop a toolkit called TAILOR (sysTem
mechamsm has been merged mnto the Linux kernel to restrnc cAll whiteList generatOR) that mainly relies on the static analysis

to automatically and efficiently generate a complete system call
* Corresponding author. whitelist for seccomp, which can constrain the available sys-
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https://doi.org/10.1016/j.future.2022.04.016
0167-739X/© 2022 Elsevier B.V. All rights reserved.


https://doi.org/10.1016/j.future.2022.04.016
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2022.04.016&domain=pdf
mailto:yanfei@whu.edu.cn
https://doi.org/10.1016/j.future.2022.04.016

Y. Xing, J. Cao, K. Sun et al.

Since most user processes invoke system calls via the standard
library, we develop a function-related system call profiler and
an environment-related system call profiler that work together
to build a mapping table from library functions to the corre-
sponding system calls. The function-related system call profiler
is responsible for collecting the system calls invoked by each
library function via statically analyzing the source code of library.
The environment-related system call profiler focuses on profil-
ing the system calls required to set the running environment
(e.g., memory loading) for each library function. Moreover, it
includes a library function profiler to collect the library functions
that are called by a target program. By matching the called library
functions with the mapping table, we can obtain the system
call whitelist required by the target program via the libraries. In
addition, we can obtain the whitelist of system calls invoked by
directly calling assemble instructions and system call functions
via static analysis. After merging these two whitelists, we can
generate the final system call whitelist.

The function-related system call profiler performs a static
analysis over the library source code to output the system calls
invoked by each library function. The whole process is divided
into three steps: building a function call tree (FCT) for each file,
connecting all FCTs into a function call graph (FCG), and obtaining
the mapping between library functions and system calls. In the first
step, we conduct a lexical analysis and create a deterministic
finite automaton to help identify all function names. After that,
we distinguish all caller functions and callee functions by rec-
ognizing function call relationships. Then we chain function call
relationships to build a FCT for each file. In the second step, we
merge the same nodes on different FCTs to build a FCG. Finally,
we traverse the FCG to obtain the corresponding system calls for
each library function, i.e., function-related system calls.

Besides function-related system calls obtained by
analyzing source codes, there are some other system calls re-
quired for setting the running environment, such as memory
loading, file accessing, and status reading. As these system calls
are invoked at run time, they cannot be obtained by analyzing
source codes. However, when any of these system calls is blocked,
we cannot run programs properly. Thus, we build a running
environment for each library function and track them to ob-
tain the environment-related system calls. Particularly, our study
demonstrates that the number and type of environment-related
system calls remain stable. Therefore, we can obtain the complete
environment-related system calls for each library function. By
obtaining function-related system calls and environment-related
system calls, TAILOR builds a mapping table from library func-
tions to their corresponding system calls. Note that the mapping
table only needs to be constructed once for a specific-version
library.

After building the mapping table, TAILOR leverages a library
function profiler to obtain the library function list called by the
target program. It takes source codes or ELF files as inputs to
obtain the called function list. Afterwards, the profiler identifies
the called library function list according to the library functions
in the previously generated mapping table. Finally, it combines
the library function list called by the target program with the
mapping table to get the library-related system call whitelist.
Moreover, as there are a few cases where applications may di-
rectly invoke system calls, we identify these system calls with
specific identifiers. They will be merged into the final system call
whitelist.

We conduct extensive experiments to evaluate the perfor-
mance of our tool. We first measure the number of system calls
required for a library function. The experimental results show
that most of the library functions invoke less than 20 system calls.
Moreover, we choose 50 general commands and calculate the
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called library functions and the required system calls. Our exper-
iments show that over 80% of testing commands only require less
than 100 library functions and all these testing commands call 76
library functions on average. Also, the number of invoked system
calls for these commands is between 35 and 75 and over 90%
commands invoke less than 50 system calls. Thus, the system call
reduction rate can reach 88% on average. The results demonstrate
that library functions only need a small number of system calls.
To further verify that TAILOR can reduce the attack surface with
the system call whitelist, we collect all Common Vulnerabilities
and Exposures (CVE) related to system calls in recent five years.
The results show that 74% of vulnerabilities can be blocked for
these commands by setting the system call whitelist.

In summary, we make the following contributions:

e We design a toolkit called TAILOR to generate the system
call whitelist for a specific user process. It can effectively
reduce the attack surface by removing unnecessary system
calls that may be misused by malicious attackers.

e We present the system call profiling mechanism that can
build a mapping table between all library functions and
system calls.

e We evaluate the performance of TAILOR on 50 general ter-
minal commands. The experiments show that our toolkit
can effectively reduce the number of unnecessary system
calls and prevent existing vulnerabilities reported in CVE.

2. Background

In this section, we briefly introduce the necessary background
on system calls, library functions, and secure computing mode.

2.1. System calls and library functions

Linux provides three methods for user programs to invoke
system calls, i.e., calling system call functions, calling assemble
instructions, and calling library functions [11]. First, it can directly
call a system call function, such as the function syscall with
a parameter denoted the name of an expected system call. Sec-
ond, the program can embed assemble instructions to invoke a
system call through passing a system call number to the EAX or
RAX register and triggering a software interrupt to switch into
kernel space. However, there are two main disadvantages for the
above two methods. First, they may introduce frequent context
switching between user space and kernel space when directly
invoking system calls. For example, when using the write system
call to output a string to a file, the program must switch to kernel
space and back to user space for each character. This switching
can incur huge overhead for programs. Second, as system calls
vary in different operating systems, directly invoking system calls
cannot be easily ported to different operating systems.

Instead, most applications invoke system calls by calling the
library functions provided by standard library such as GNU C
Library (glibc), which provides a universal, efficient, and secure
way to invoke system calls on different operating systems. For
example, when using the printf library function to output a
string, all the characters are first buffered and then are flushed
to a file using the write system call. In such a case, there is only
one switch from user space to kernel space, which significantly
reduces the switching overhead [12]. Moreover, library functions
are system-independent and make low-level services transparent
to developers. Due to the efficiency and convenience of library
functions, almost all programs use library functions to invoke
system calls [13,14].
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Fig. 1. TAILOR architecture.

2.2. Secure computing mode

Secure computing mode (seccomp) is a security mechanism
that can restrict the system calls available for a process. Seccomp
works in either strict mode or filter mode [15]. In the strict mode,
a user process can only invoke 4 system calls, i.e., read, write,
exit, and sigreturn. Any other system calls tried by this pro-
cess will be blocked. In the filter mode, a configurable policy
containing available system calls can be specified for a process.
To use this mode, three parameters should be provided to set the
filter. The first parameter SECCOMP_SET_MODE_FILTER sets the
filter mode, the second parameter sets flag information, such
as process synchronization and logging, and the third parameter
args points to available system calls defined by a Berkeley Packet
Filter (BPF) [5]. Although the first version of seccomp had been
merged into the Linux kernel in 2005, there still lacks a reliable
toolkit to automatically generate available system call whitelist
for given programs.

3. System overview

Currently, widely exposed system interfaces have become a
critical security challenge [16-21] to operating systems. For ex-
ample, in the latest Linux kernel (v5.18), about 350 system calls
are provided by default for the user-privileged untrusted pro-
cess requiring kernel-privileged services. Nevertheless, most user
processes only need a small portion of the whole system calls
to accomplish their tasks. Consequently, if any user process is
compromised to trigger vulnerable system calls, related kernel
services may get attacked. To solve this problem, we develop
a system toolkit called TAILOR, which automatically customizes
the system call whitelist for untrusted user-privileged programs.
With the assistance of the whitelist, user programs can be pre-
vented from calling unnecessary system calls, and hence the
attacking surface of the system kernel can be effectively reduced.

The architecture of TAILOR is shown in Fig. 1. To profile all
system calls required by the target program, we provide two
profilers to analyze the relationship between library functions
and system calls: (i) a function-related system call profiler to
output the system calls invoked by each library function, and
(ii) an environment-related system call profiler to generate the
system calls invoked when the library functions are being loaded
and executed. By merging the function-related system calls and
the environment-related system calls, we can get a mapping table
from the library function to corresponding system calls. As almost
all programs invoke system calls via library functions, we design
a library function profiler to collect all library functions of the
target program. By comparing these library functions with the
mapping table, library-related system calls of the target program
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can be generated. Moreover, as there are a few cases where
programs directly invoke system calls through inline assembly
instructions or system call functions, TAILOR identifies these sys-
tem calls with specific identifiers. Finally, TAILOR obtains the
complete system call whitelist by merging the library-related
system calls with the direct system calls.

In the following sections, we detail the design of three main
components of TAILOR, namely, the function-related system call
profiler, the environment-related system call profiler, and the
library function profiler.

4. Function-related system call profiler

The function-related system call profiler is responsible for
building the mapping table from library functions to function-
related system calls. Fig. 2 shows the process of obtaining system
calls. For each file in a library, we build a Function Call Tree
(FCT) to denote function call relationships in a file. Afterwards,
we combine FCTs in all files to build a directed acyclic Function
Call Graph (FCG), which denotes all function call relationships
between library functions. Moreover, as the system calls will not
call back other library functions, the system calls always appear
at the ending nodes in an FCG. Therefore, a mapping table from
library functions to system calls can be built by traversing all
paths in an FCG.

4.1. Building an FCT for each file

An FCT is a tree structure where each node is a library function
that has its callee functions as child nodes. It can clearly represent
the caller/callee relationships between functions, ignoring some
unnecessary details like variable declarations and operations.
Identifying Function Names. In programming languages, the
definition, declaration, and calling of functions have a fixed for-
mat. For example, in C language, the definition of functions is:
dataType functionName(parameter list){/*body*/}. In this expres-
sion, the dataType will be chosen from the keyword list, and
the parameter list can be set void or a list of identifiers with
keywords ahead. Similarly, when calling a function, the format
of the callee functions will be like functionName(parameter list).
The functionName above is an identifier. Thus, it will obey the
naming rule for the identifier.

To identify the functions in each file, we design a lexical an-
alyzer based on clang [22], a popular LLVM compiler front-end,
to scan all character sequences and transform them into tokens.
Here, scanning character sequences is based on finite-state au-
tomation. In many cases, we can infer the type of tokens based on
the first non-blank character. The subsequent characters can be
processed one by one until a character that does not belong to the
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Fig. 2. Obtaining function-related system calls.

type of the tokens appears. Then tokenization splits the tokens
and classifies them with corresponding classification marks, such
as identifier and comma. Finally, we match the identifiers with
function definitions and calling format. The classification marks of
function identifiers are changed to function.

Recognizing and Chaining Function Call Relationships. After
identifying function names, we can recognize the function call re-
lationships and chain them together to form FCTs. To identify the
function call relationship, we first distinguish the caller functions
from the callee functions. In C language, the function body cannot
contain the definition of another function. In other words, the
definition of functions cannot be nested. Thus, if we cannot find
the keywords closest ahead of a function mark, this function
should be considered as a callee function. As for a caller function,
it should have a keyword ahead of the function mark and a left-
parentheses mark followed to show the beginning of the function
body. We consider a caller function as a parent node and consider
all functions inside the caller function body as the callee functions
that are denoted as child nodes.

4.2. Generating an FCG via combining all FCTs

After obtaining FCTs in library files, we connect them into
a directed acyclic FCG. The key technique to connect all FCTs
is to merge the same nodes. For example, the function printf
implements by calling the function vfprintf. Meanwhile, the
function sprintf also calls vEprintf. If we merge these two
FCTs by the shared node viprintf, we can build the connection
between different functions while reducing repeating analysis of
the same node. When we merge FCTs, there are two special cases
that should be handled carefully, i.e., function alias and function
call scope.
Processing Function Alias. One common situation of libraries’
implementations is that multiple functions may share the same
functionality with different function and parameter names. Such
function alias can cause an FCG unconnected. For example, when
analyzing printf, there is a statement #define PUT(f, s,
n) _I0_sputn(f, s, n), which replaces _I0_sputn with PUT.
When merging FCTs for printf, it may contain two separate
call trees. To obtain a complete call graph, we merge all function
aliases with the same functionality into the same tree. We also
observe that when there is a function alias, there are usually
multiple aliases followed. Therefore, when connecting FCTs, we
need to link several function alias in a chain. To eliminate the
impacts of function alias when building an FCG, we build a set
of function alias for each chain of function alias and choose one
function name in the set to replace all aliased function names in
the same set.
Handling Function Call Scope. When there are multiple imple-
mentations of the same callee function, we should choose the
appropriate one to build the FCG. For example, if function A calls
B, B may have different implementations in three different places,
namely, in the same file, in the same directory, and out of the
directory. Similar to how a compiler deals with this situation, we
first find the implementation of the callee function B in the same
file. After that, we search the callee function in the header files
of the same directory. Finally, we search its implementation out

108

Algorithm 1 Merging Two Function Call Trees

Input:
G(V,E),G'(V',E')
v, v]f e V', two node of E;

Output:
G(V, E) after merging with G'(V', E’)
1:1 < 0
2: while E/ # null do
3. ifE/ ¢ E then
4: if only one tree rooted by v] then
5: E <« E + Ei’
6: V<V + o + v
7: else
8: add the highest priority tree
9: end if
10: else
11: merge trees rooted by v;
12:  end if
13: 0 «— i+ 1
14: end while
15: if function alias exists then
16:  put all aliased functions in a set
17:  use starting node to express the chain
18:  connect function node with alias
19: end if

of the directory. Once we find the implementation in a place, we
will choose it and stop the search.

Merging FCTs into one FCG. The merging algorithm is shown in
Algorithm 1. The input of this algorithm includes two trees, G and
G’ with node sets, V and V' and edge sets, E and E’, as well as the
ith edge, E/, in G’ and its two nodes, v; and v]. Line 1 initializes
auxiliary variable i to traverse all edges in E’. The main loop is
from Line 2 to Line 14. Line 3 determines whether the ith edge,
E/, is in the set E. If not and only one tree is rooted by v], we add
the edge E] to E and add the nodes v} and v/ to V, as shown in Line
3 to Line 6. If there are several trees rooted by v;, we choose the
highest priority tree according to the function call scope in Line
7. If the ith edge E/ is in the set E, we should merge trees rooted
by v/ with G, as shown in Line 11. In Line 13, it increases variable
i to continue the next loop. Between Line 15 to Line 19, we check
if there are function alias, if so, we connect those function alias in
one set and choose the first aliased function to replace all other
function alias. After doing that, we can obtain a new FCG G(V, E)
after merging with G'(V', E).

4.3. Obtaining function-related system call mapping table

As system calls do not call any other library functions, system
calls are at the leaf nodes in an FCG that we build. To obtain the
mapping relation between library functions and their correspond-
ing system calls, we take the library function name as the starting
node and use the depth-first algorithm to traverse the graph.
Moreover, to guarantee each node will be searched only one time,
we set a flag for all nodes to record the access information. If a
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Algorithm 2 Retrieving System Calls from Call Graph

Input:

G(V, E); start, node to be traversed
Output:

system calls, corresponding to start node

1: nextnode < null

2: path — > next <« start

3: visited — > next < start

4: stack — > next <« start

5: while stack # null do

6: current < get stack top

7: adj < get adjacency list of current
8: ifadj # null then

9: for reading a node in adj do

10: if the node has not accessed then
11: nextnode < this node

12: break

13: end if

14: end for

15:  end if

16:  if nextnode # null then

17: path — > next < nextnode
18: visited — > next < nextnode
19: stack — > next <« nextnode
20: else

21: if system call node then

22 record the syscall name

23: end if

24: stack — > next < null

25:  end if

26: end while

node has been accessed, we can reuse the result corresponding to
this node. After traversing all library functions, we can obtain a
mapping table with two entries, namely, library functions and its
corresponding function-related system calls. Due to space limita-
tions, we present the detailed traversing algorithm as Algorithm
2.

The input of this algorithm is the FCG G, with node set V and
edge set E, and the node to be traversed start. Line 1 to Line
4 initialize all auxiliary variables. Among them, the nextnode
stands for the unvisited adjacent node for the current visited
node, initialized to null, the path represents the paths of the
adjacent nodes, the visited denotes visited nodes, and the
stack means an first-in-last-out list. All the last three variables
are initialized to the start node. The main loop is from Line 5
to Line 26. Line 6 and Line 7 initialize the variables current and
adj to get the value of the stack top and the adjacency list of
current. If the adjacency list is not null, we read a node in adj. If
the node has not been accessed, we assign this node the variable
nextnode and jump out this loop, as shown in Line 8 to Line
15. Then we put the nextnode to the stack top and continue
analyzing its adjacency list, as shown in Line 16 to Line 19. If
the nextnode is equal to null, meaning that this node is a leaf
node, then we determine whether the current node is a system
call. The main method is based on the observation that the library
function will invoke system calls by several specific macros, such
as INLINE_SYSCALL, SYSCALL_NOCANCEL, in which the first
parameter is the system call name. After identifying these macros
in the lead node, we record the system call in the first parameter,
as shown in Line 21 to Line 23. After that, we have reached the
end of this branch, so we will pop the top element of the stack
and continue searching for the next adjacent node, as shown in
Line 24. By finally emptying the stack, we can obtain the system
calls corresponding the start node.
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5. Environment-related system call profiler

When running a program, there will be specific system calls
needed to set the running environment, such as, reading file sta-
tus, initializing memory, and setting stacks. These environment-
related system calls cannot be obtained by analyzing the code of
library functions. Thus, we track the program executing to obtain
the environment-related system calls for the library functions.
Particularly, our experiments show that the number and types
of system call setting the running environment for a library
function are relatively fixed. Thus, we can program and compile
each library function into an executable file and then track the
environment-related system calls during the program execution.
Fig. 3 shows the two main steps to obtain environment-related
system calls, i.e., building the running environment and tracking
system calls.

Building Running Environment. To track the environment-rela-
ted system calls of every library function, we need to prepare the
running environment for them correspondingly. We first insert
strings printing with unique characteristics both at the beginning
and the ending of a program and all traced system calls ahead of
the beginning point and after the ending point are considered as
the environment-related system calls. In some cases, the built-up
running environment should take the context dependency into
consideration. For example, when closing a file using close, it
is required that a corresponding function open has been invoked
for that file. We also observe that these dependent functions are
clearly defined in the Linux manual pages [23] and can be used
cooperatively. Therefore, we build a table to collect all binding
function pairs, whenever there is one function in the pair called,
we will insert all its dependent functions into the program.
Tracking System Calls. After building the running environment,
we can track them to get the system calls required at run time.
The main tool we use for tracking is strace [24], which is an
open-source tracking tool for Linux processes. It can be used to
obtain system calls required for a process and count the number
of system calls with option -c. By tracking and obtaining library
functions’ environment-related system calls, we can build a map-
ping table between library functions and environment-related
system calls. The mapping table can help profile system calls for
different target programs.

6. System call whitelist generation

To generate the system call whitelist for a given program,
we first develop a library function profiler to obtain the library
functions called in each program. Next, we develop a system
call generator to obtain the list of system calls by mapping the
library functions into the library-to-syscall mapping table. We
also develop a direct syscall profiler to collect the set of system
calls that are directly invoked by the program. Finally, we ob-
tain the complete system call whitelist by merging the lists of
library-related system calls and direct system calls.

Library Function Profiler. It is responsible for extracting all
called library functions in each program. The profiler takes source
codes or ELF files as the inputs. When the source code of the pro-
gram is available, the profiler utilizes an existing tool cflow [25]
to obtain all functions presented in the code. By checking if a
function is in the lib-to-syscall mapping table, we can decide if
it is a library function. Given an ELF file, the profiler exploits
the ELF symbol table, which contains all global variables and
function information, to derive the called functions. Specifically,
the profiler first uses the tool readelf [26] to acquire a readable
ELF symbol table for the ELF file. After that, the profiler extracts
the library functions according to the lib-to-syscall mapping table.
Fig. 4 shows an example of the ELF symbol table. We can see that
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Fig. 3. Obtaining environment-related system calls.

Symbol table '.symtab' contains 63 entries:

Num: Value Size Type Bind
0: 0000000000000 © NOTYPE LOCAL
1: 0000000000000238 © SECTION LOCAL
2: 0000000000000254 © SECTION LOCAL
27: ©0000000000000570 0| FUNC LOCAL
28: 000000000RV5bO 0| FUNC LOCAL
29: 0000000000000600 0| FUNC LOCAL
47: 00000000000006e4 0| FUNC GLOBAL
48: 0000000000000000 0| FUNC GLOBAL
49: 0000000000000000 0| FUNC GLOBAL

Vis Ndx Name

DEFAULT UND

DEFAULT 1

DEFAULT 2

DEFAULT 14 deregister_tm_clones
DEFAULT 14 register_tm_clones
DEFAULT 14 _ do_global_dtors_aux
DEFAULT 15 _fini

DEFAULT UND printf@@GLIBC_2.2.5
DEFAULT UND __libc_start_main@@GLIBC_

Fig. 4. An example of ELF symbol table.

for any derived ELF symbol table, the profiler can directly identify
all called functions with the Type as FUNC and further get the
functions’ names as shown in the column of Name.

System Call Generator. After obtaining all the called library func-
tions of a program, we cross-check the identified function list
with the library-to-syscall mapping table. Therefore, we can iden-
tify all library-related system calls for the target program. Note
that even if the program does not invoke any library-related
functions, several fundamental system calls are still needed as the
baseline support for executing any program. In this case, the gen-
erator considers these system calls as a subset of environment-
related system calls and includes them in the final system call
whitelist. Considering a few programs invoke system calls directly
through inline assembly instructions or system call functions, we
use keywords to retrieve this kind of invoking, such as SYSENTER
and int 0x80. As the EAX or RAX register stores the correspond-
ing system call number, we track back the value of EAX or RAX
register to obtain the name of the invoked system call. The final
syscall whitelist consists of both library-related system calls and
directly invoked system calls. By setting the system call whitelist
to the filtering rule of seccomp, we can restrict the available
system calls for a target program and thus reduce the attack
surface of misusing system calls.

7. Evaluation

We conduct extensive experiments to evaluate the perfor-
mance of our toolkit TAILOR. All experiments are conducted on a
computer with an Intel Xeon E5-2620 2.4 GHz 12-core processor
and 16 GB of RAM. It runs Ubuntu 18.04 with the kernel version
4.15.0. The GNU C Library (glibc) version is 2.29. We first measure
the number of system calls for different library functions in glibc.
And we select 50 popular terminal commands and calculate the
called library functions and the invoked system calls for these
commands. To measure the correctness and the effectiveness of
this tool, we compute the vulnerability defense rate for these
testing commands after setting the system call whitelist.

7.1. Number of system calls invoked by one library function

We first measure the number of system calls that may be
invoked by a library function in glibc. The total number of library
functions is 1232. Fig. 5(a) shows the cumulative distribution
function (CDF) of the number of system calls for each library
function. We can see that in the testbed, one glibc library function
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invokes at least 11 system calls, i.e., execve, fstat, access,
close, read, openat, arch_prctl, mmap, mprotect, munmap,
and brk. Among them, execve executes the file; access and
fstat access and get the status of the library file; arch_prctl
sets the thread status; read, openat and close open and read
the library file; brk, munmap, mmap, and mprotect initialize and
allocate the memory. All of them are related to setting a running
environment even if the function does not invoke any function-
related system calls. Moreover, we see that the functions in glibc
can invoke 39 system calls at most. For about 90% of library
functions, the number of invoked system calls is less than 20.

7.2. System calls required for general commands

Then we select 50 popular general commands, such as cat,
dir, chmod, and the detailed information about the testing set is
shown in Appendix. After comparing the called functions with
the mapping table, we can obtain the called library functions
for each command. The statistical data is shown in Fig. 5(b), we
can see that one command calls 11 library functions at least and
160 library functions at most. Over 80% of testing commands
only require less than 100 library functions and all these testing
commands call 76 library functions on average.

7.3. System call reduction

For all these commands, they can possibly invoke all the
system calls by default, and the total number of system calls is
333 in 64-bit compilation mode. Fig. 6(a) shows the cumulative
distribution function of required system calls for these testing
commands, and we can see that our tool can significantly reduce
the system call whitelist. Particularly, the number of invoked
system calls is between 35 and 75 and over 90% commands
invoke less than 50 system calls. Thus, the system call reduction
rate can reach 88% on average.

To verify that commands can properly work with the reduced
system calls, we use seccomp to enforce rules for each command
so that it can only use the system calls in the whitelist. We
execute each command and manually trigger its various functions
to traverse all branch conditions as much as possible. We find that
all the commands can properly work after enforcing the whitelist.
It means TAILOR does not miss the necessary system calls for all
these testing commands.

Compared our tool with confine [27] and temporal [28], when
generating the mapping table for the source-level standard li-
brary, the calling tree cannot be chained due to the function
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aliases. Through our analysis, all these aliases are caused by
macro replacement and there are five replacement situations,
i.e., weak symbol, strong symbol, versioned symbol, jumping
table, and macro function. However, these two works cannot
identify the jumping table and macro functions, leading to an
incomplete mapping table. Thus, when testing our dataset using
these two tools, most of them cannot work normally.

7.4. Preventing software vulnerabilities

From the Common Vulnerabilities and Exposures (CVE) dataset
[29], we collect all vulnerabilities that are exploited via system
calls in recent five years, 70 in total. We first introduce some
vulnerability examples that can be prevented by blocking the
related system calls.

CVE-2019-5489 [30]. This vulnerability exploits the mincore
system call in Linux kernel 4.19. It allows an attacker to obtain
page cache of other processes in the operating system and thus
can leak sensitive information. Particularly, this vulnerability can
be remotely exploited even if the attacker is in a remote server.
However, a malicious application cannot exploit the vulnerability
if we block the mincore system call.

CVE-2019-3901 [31]. This vulnerability exploits the
perf_event_open system call. It can be reproduced in almost
all Linux operating systems before version 4.8. The vulnerability
is caused due to a race condition in perf_event_open. This
race condition allows a malicious application to retrieve sensitive
information. We can block the perf_event_open system call of
an application if it does not need this system call.
CVE-2019-13648 [32]. This vulnerability exploits the sigreturn
system call in Linux kernel 5.2.1. By constructing a specific frame,
a local user can initiate an attack to make the system crash.
However, in most platforms, this system call has been replaced
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by rt_sigreturn, meaning that most programs will not invoke
sigreturn. If we can block this system call for an application,
this vulnerability will be defended automatically.
CVE-2019-11503 [33]. This vulnerability can cause a restore per-
mission bypass. When performing chdir system call to the cur-
rent working directory, the snap-confine [34] can produce a
race condition, if the version is less than 2.39. However, we can
prevent an application from launching the attack by blocking the
chdir system call.

About 75% system calls only correspond to 1 CVE, 19% system
calls have been misused in 2 CVEs, and 7% system calls have
appeared in 3 CVEs. Therefore, by extracting and restricting the
necessary system calls for applications, we can prevent possi-
ble vulnerabilities from being exploited by commands. Fig. 6(b)
shows how many vulnerabilities will be blocked if we leverage
seccomp to restrict the system calls for a command based on its
system call whitelist. We can see that at least 74% of vulnerabil-
ities cannot be exploited by all commands and more than 90%
vulnerabilities cannot be exploited for half of the commands. The
results show that syscall related vulnerabilities can be effectively
blocked by restricting available system calls for commands with
TAILOR.

8. Related work

Security with System Calls A number of studies [35-39] have
been proposed to enhance security with system calls. Ming et al.
[35] check system call sliced segment equivalence to distinguish
similarities between two execution flows. Yamauchi et al. [36]
monitor privilege information change in the processing of system
calls to detect escalation attacks. Moreover, other studies [37-39]
develop advanced approaches by checking the patterns of invok-
ing systems calls to detect malware. Different from the existing
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studies, our work conducts fine-grained system call profiling for
a given program. By restricting available system calls according
to profiling results, we can significantly reduce the attack surface
of both programs and systems.

As far as we know, our work presents the first tool to au-
tomatically profile fine-grained system calls for programs. One
study close to our work is Speaker [10], which profiles and
dynamically updates available system calls for container appli-
cations to reduce the attack surface. However, Speaker requires
users to manually run programs to find their system calls. It is
time-consuming and difficult to traverse all branches of different
programs to capture system calls that may be invoked. Com-
pared to Speaker, TAILOR can efficiently and automatically profile
complete system calls for programs. Therefore, TAILOR guaran-
tees that programs can work normally while reducing the attack
surface.

Also, our tool builds a mapping table for the standard library,

which most applications are used to invoke system calls. Thus it
can be expanded to different scenes, for example, in computing
scenes [40] to enhance the Docker container security, in feature
selection scenes [41] to guarantee algorithm security, in multime-
dia scenes [42,43] to protect communication sides, and in image
processing scenes [44] to prevent model attacking. In one word,
TAILOR is basic infrastructure, on which we can build plenty of
implementations.
Static Analysis. The static analysis technique [45] has been
widely used in various aspects of analyzing programs. A num-
ber of studies [46-49] use static analysis to generate data flow
and control flow, which can be used to detect bugs and vul-
nerabilities [46,49-51], check the integrity to prevent privilege
escalation [47,50,51] and reduce unnecessary path access in pro-
grams [48]. Some studies also use symbolic execution to stat-
ically analyze programs for finding bugs [52] and validating
patches [53]. Moreover, there are studies using static analysis
to build FCG for programs [54] and leverage FCGs to identify
malware [55-57]. However, none of the studies have built FCGs
for library functions to accurately find the mapping between
library functions and system calls.

9. Conclusion

In this paper, we develop a toolkit named TAILOR to generate
the required system call whitelist to reduce the attack surface for
any specific user process. TAILOR is capable of mapping library
functions to their corresponding system calls and obtaining the
invoked system calls via the standard library for any application.
TAILOR solves the problems during the source-level standard
library analysis, i.e., the difficulty in macro function identification,
the unconnected calling tree caused by function replacement, and
the difficulty in identifying the function scope via static analysis.
We use TAILOR to study the glibc library and the experimental
results show that the library functions of glibc invoke at least 11
system calls and at most 39 system calls. Our evaluation of 50
general commands shows that TAILOR can dramatically reduce
the number of available system calls in the whitelist and thus
effectively defeat a number of system calls related CVE vulner-
abilities. In future research, we will divide the running stage of
an application into different stages and customize the seccomp
rule for each stage, which can implement a fine-grained security
measure.
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Table 1
General commands and required system calls. Bin. is short for binary, Func. is
short for function and Sys. is short for system calls.

Bin. Func. Sys. Bin. Func. Sys. Bin. Func.  Sys.
id 66 48 dash 91 63 bzcat 44 42
cp 139 63 date 80 38 zdump 40 36
rm 77 45 diff 121 45 base64 61 36
dd 84 42 dpkg 142 75 bitmap 23 35
XZ 115 46 echo 49 35 catman 43 37
dir 114 47 find 160 57 zipinfo 87 48
cat 58 37 grep 119 40 dirname 50 35
zip 100 48 host 39 36 apt-get 122 36
sed 122 49 kill 69 42 calender 80 49
top 135 52 nice 55 38 apt-mark 93 36
cmp 68 36 bzip2 43 42 basename 51 35
cut 66 36 paste 56 36 apt-cache 53 36
man 83 45 chacl 35 35 ausyscall 11 35
yes 50 35 chgrp 77 47 apt-cdrom 65 37
arch 54 37 chmod 69 39 apt-config 53 36
comm 59 36 chown 79 47 apt-sortpkgs 53 36
curl 127 48 clear 29 36
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