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Abstract. There has been an increased interest in the variation diminishing properties of
controlled linear time-invariant (LTI) systems and time-varying linear systems without inputs. In
controlled LTT systems, these properties have recently been studied from the external perspective of
k-positive Hankel operators. Such systems have Hankel operators that diminish the number of sign
changes (the variation) from past input to future output if the input variation is at most k — 1. For
k = 1, this coincides with the classical class of externally positive systems. For linear systems without
inputs, the focus has been on the internal perspective of k-positive state-transition matrices, which
diminish the variation of the initial system state. In the LTI case and for k = 1, this corresponds to
the classical class of (unforced) positive systems. This paper bridges the gap between the internal
and external perspectives of k-positivity by analyzing internally Hankel k-positive systems, which
we define as state-space LTI systems where controllability and observability operators as well as
the state-transition matrix are k-positive. We show that the existing notions of external Hankel
and internal k-positivity are subsumed under internal Hankel k-positivity, and we derive tractable
conditions for verifying this property in the form of internal positivity of the first kK compound systems.
As such, this class provides new means to verify external Hankel k-positivity, and lays the foundation
for future investigations of variation diminishing controlled linear systems. As an application, we use
our framework to derive new bounds for the number of over- and undershoots in the step responses
of LTI systems. Since our characterization defines a new positive realization problem, we also discuss
geometric conditions for the existence of minimal internally Hankel k-positive realizations.
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1. Introduction. Externally positive linear time-invariant (LTI) systems
x(t+1) = Ax(t) + bu(t),
y(t) = cx(t)

mapping nonnegative inputs u(t) to nonnegative outputs y(t) have been recognized
as an important system class at least since the exposition by Luenberger [26], but
many of their favorable properties have only recently been exploited [33, 38, 14, 36].
Particular emphasis has been given to the subclass of internally positive systems, that
is, externally positive systems such that z(¢) remains in the nonnegative orthant for
nonnegative u(t). As such systems are characterized by nonnegative system matrices
A, b, and ¢, they can be studied with finite-dimensional nonnegative matrix analysis

[7], an advantage that motivated the search for conditions under which an externally
positive system admits an internally positive realization [30, 2, 6].
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At the same time, externally positive systems are central to the study of variation-
diminishing convolution operators

oo

(1.2) y(t) = > gt —)u(r),

T=—00

with nonnegative kernels g, that bound the variation (number of sign changes) of y(t)
by the variation of u(t). The theory of variation-diminishing transformations has a
rich history rooted in the seminal works of Schoenberg [34], Gantmacher and Krein
[17], and Karlin [24]. A linear mapping v — Gu is called k-variation diminishing
(VDy) if it maps an input v with at most k sign changes to an output Gu whose
number of sign changes do not exceed those of w; if the order in which sign changes
occur is preserved whenever u and Gu share the same number of sign variations, the
VD, property is said to be order-preserving (OVDy).

The framework of total positivity [24] provides a characterization of variation di-
minishment: a linear mapping is OVDy_; if and only if its matrix representation
is k-positive, that is, all the minors of order up to k in that matrix are nonnegative
[20, 24]; total positivity refers to the case when this is true for all k. Under this frame-
work, externally positive LTI systems are associated with OVD( Hankel and Toeplitz
operators, while internally positive systems are associated with OVDg controllability
operators, observability operators, and the linear mappings z — Ax.

Despite the link between positive systems and variation-diminishing operators,
it was not until very recently that OVDy_; and k-positivity have been studied as
properties of LTI systems when k& > 1. New results, with applications in nonlinear
systems analysis and model order reduction, have so far focused on two distinct cases:
the external case [19, 20, 18], dealing with controlled LTT systems; and the unforced
case [27, 1, 43], dealing with state-space systems without inputs. The former concerns
the k-positivity of Toeplitz and Hankel operators, while the latter, when translated to
the LTT setting of the present paper, concerns k-positivity of the state-space matrix
A, with b = 0. In contrast to the present work, [1, 43] also consider the case where
the minors of order k (but not necessarily those of order smaller than k) of A are
sign-definite (i.e., A is sign consistent of order k [24]). This line of research has lead
to several nonlinear extensions [40, 39, 43, 42| leading, for instance, to a generalization
of cooperative systems (that is, unforced systems whose linearizations are uniformly
1-positive [3, 22, 35]).

A major result of [20] characterizes (externally) Hankel k-positive systems, i.e.,
systems with OVDy_; Hankel operators, in terms of the external positivity of all
so-called j-compound systems, 1 < j < k, whose impulse responses are given by
consecutive j-minors of the Hankel operator’s matrix representation.

In this paper, we develop a realization theory of Hankel k-positivity based on the
notion of internally Hankel k-positive systems, which we define as state-space systems
where the controllability and observability operators as well as A are OVDy_;. Not
only does this theory enable the study of variation-diminishing systems through finite-
dimensional analysis, but it also establishes an important first bridge between the
aforementioned unforced and external notions. Our main result is a finite-dimensional,
tractable condition for the verification of the OVDy_; property of the controllability
and observability operators. To prove this result, we rely on a new extension of
classical k-positivity verification using consecutive minors. Consequently, internal
Hankel k-positivity can be completely characterized in terms of the existence of a
realization that renders all j-compound systems internally positive, 1 < j < k.
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We then use these insights to discuss geometric conditions for the existence of
minimal internally Hankel k-positive realizations, as previously done for the special
case k = 1 in [30]. In particular, it is easy to verify then that all relaxation systems
[41] (k = o0) have a minimal internally Hankel totally positive realization.

As a practical application, we show how our results can be used to obtain upper
bounds on the number of over- and undershoots in the step response of an LTI system.
This is a classical control problem that lies at the heart of the rise-time-settling-time
trade-off [5], and for which several lower bounds [8, 37, 10, 9], but few upper bounds
[10, 9], have been found. Although our approach produces upper bounds which are not
necessarily tight (a question we leave for future work), it improves on existing results
by directly generalizing the approach in [10, 9]. Nonlinear extensions of this problem
are of interest both in control [25] and online learning in the form of (static) regret
[31]; we thus envision our work as the basis for possible interdisciplinary applications.
Other possible contributions resulting from nonlinear extension are discussed in [20].

This paper is organized as follows. In the preliminaries, we recap total positivity
theory and externally Hankel k-positive systems. Then, we introduce the concept
of internal Hankel k-positivity and present our main results on its characterization.
Subsequently, extensions to continuous-time and applications to the determination of
impulse response zero-crossings are discussed. We conclude with illustrative examples
and a summary of open problems.

2. Preliminaries. This work lies at the interface between positive control sys-
tems and total positivity theory. Alongside some standard notation, this section
briefly introduces key concepts and results from these fields, including recent results
on externally k-positive LTI systems, which are crucial to the motivation of our main
results.

2.1. Notation. We write Z for the set of integers and R for the set of reals,
with Z>o and R>( standing for the respective subsets of nonnegative elements; the
corresponding notation with strict inequality is also used for positive elements. The
set of real sequences with indices in Z is denoted by RZ. For matrices X = (x;;) €
R™ ™ we say that X is nonnegative, X > 0, or X € RIy™ if all elements z;; €
R>o; again, we use the corresponding notation in case of positivity. The notation
also applies to sequences x = (z;) € R%. Submatrices of X € R"*™ are denoted
by X[I,J] := (xij)ier,jes, where IC{1,...,n} and JC{1,...,m}. We also use the
notation X[i : ¢+ 7,7 : j+s] := X[{i,....i +r},{j,....j+ s} for i < n—r
and j < m —s. If I and J have cardinality =, then det(X|[I,J]) is called an r-
minor; furthermore, det(X[i:i4+r— 1,5 : j+r —1]) is called a consecutive r-minor.
For X € R™™" o(X) = {M(X),..., A\ (X)} denotes the spectrum of X, where the
eigenvalues are ordered by descending absolute value, i.e., A\ (X) is the eigenvalue with
the largest magnitude, counting multiplicity. In case the magnitude of two eigenvalues
coincides, we subsort them by decreasing real part. If there exists a permutation
matrix P = (P1 Pg) so that PQTXPl = 0, then X is called reducible and otherwise
irreducible. Further, X is said to be positive semidefinite, X = 0, if X = X and
0(X) C R>o. We use I, to denote the identity matrix in R"*" and write im(X) for the
image/range of a matrix X € R"*™, For § C R", we denote its closure, conver hull,
and convez conic hull by cl(S), conv(S), and cone(S), respectively. S is a polyhedral
cone if there exists k € Z~g and P € R"** such that S = {Pxz : z € RE} =: cone(P).
For A € R**", S is said to be A-invariant, AS C S, if Ax € S for all x € S. For a
subset S C Z, we write ¢ > 0 or g € R‘go if g: S = Ry is a nonnegative function

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 12/20/22 to 136.152.20.112 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

2376 C. GRUSSLER, T. BURGHI, AND S. SOJOUDI

(sequence) and

1, tes8,
Ls(t) == {0 1¢S

for the (1-0) indicator function. In particular, we denote the Heaviside function by
s(t) := 1., (t) and the unit pulse function by §(t) := 10y (). The set of all absolutely
summable sequences is denoted by ¢ and the set of bounded sequences by £x.

2.2. Linear discrete-time systems. We consider finite-dimensional, discrete-
time LTI systems with single input u and single output y. The output g(t) = y(t)
corresponding to u(t) = §(t) is called the impulse response. The transfer function of
the system is given by

oIl (2 =)
H;L:1(Z - pi)’

where r € R, and p; and z; are referred to as poles and zeros, both of which are sorted
in the same way as the eigenvalues of a matrix. Without loss of generality, we assume
that g(0) = 0 (m < n). The tuple (A, b, c) is referred to as a state-space realization of
G(z) if (1.1) holds, with A € R®*™ and b,c" € R™ It then holds that

(2.1) G(z) = g(t)z
t=0

g(t) = cA bs(t — 1).

We assume that the set of poles and the set of zeros of a transfer function are disjoint,
and define the order of a system as the number of poles of G(z). A realization (A, b, c)
is called minimal if the eigenvalues of A are precisely the poles of G(z). Throughout
this work, we assume that A is asymptotically stable (that is, A1 (A) < 1) and u € £o,
which implies g € ¢; and y € ¢,. For t > 0, the Hankel operator (see, e.g., [4, sections
4.4 and 5.4] for an introduction)

—1 0
(2.2) Hyu)(t) = 3 gt —rulr) = 3 gt + T)u(-7)

T=1

T=—00

describes the evolution of y after « has been turned off at ¢t = 0, i.e., u(t) = u(t)(1 —
s(t)). It obeys the factorization

(2.3) Hyu = O(A, ¢)(C(A, b)u)

with the controllability and observability operators given by

-1

(2.4a) z(0) =C(A,b)u := Z AT u(r), u € by,
(2.4b) (O(A, c)zo)(t) := cAlxg, 29 € R™, t € Z>y.

Asymptotic stability of A implies that both (2.2) and (2.4a) are well defined. Finally,
for t,j € Z~q, we will make use of the Hankel matrix

(2.5a)
g(t) glt+1) ... g(tJrjf.l)
Hy(t,j) == g(tT b + Y N AL OF(A, ) AT1CT (A, b),
gt+i—1) glt+j) ... glt+2(—1)
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where
(2.5b) Cl(Ab):=(b Ab ... AI7'p),
(2.5¢) OI(A,c) :==CI(AT, )T,

2.3. Total positivity and the variation diminishing property. A central
idea in this work is that positivity is an instance of the variation diminishing property.
The wvariation of a sequence or vector u is defined as the number of sign-changes in
u, i.e.,

S(U) = Z ]1R<O(ﬁiﬂi+l)a S<0) = 07

i>1
where @ is the vector resulting from deleting all zeros in w.

DEFINITION 2.1. A linear map u — Xwu is said to be order-preserving k-variation
diminishing (OVDy,), k € Z>o, if for all w with S(u) < k it holds that
i S(Xu) < S(u).
il. The sign of the first nonzero elements in u and Xu coincide whenever S(u) =
S(Xu).
If the second item is dropped, then u +— Xu is called k-variation diminishing (VD).
For brevity, we simply say X is (O)VDy.

The OVDy, property extends the cone-invariance of nonnegative matrices, namely
X € Rgém is OVDy, because XRY, C RY,. For generic k, total positivity theory
provides algebraic conditions for the OVDy, property by means of compound matrices.
To define these, let the ith elements of the r-tuples in

Ty i={v={v1,...,0,} CN:1<v; <wvp <---<wv, <n}

be defined by lexicographic ordering. Then, the (i, j)th entry of the rth multiplicative

compound matriz X[, € R()*(T) of X € R™™ is defined by det(X[I, J]), where
I is the ith and J is the jth element in Z,, , and Z,, ,, respectively. For example, if
X € R3*3, then Xig) reads

det(X[{1,2},{1,2}]) det(X[{1,2},{1,3}]) det(X[{1,2},{2,3}])
det(X[{1,3},{1,2}]) det(X[{1,3},{1,3}]) det(X[{1,3},{2,3}])
det(X[{2,3},{1,2}]) det(X[{2,3},{1,3}]) det(X[{2,3},{2,3}])

Notice a nonnegative matrix verifies X[;) = X > 0, which is equivalent to X being
OVDg. This can be generalized through the compound matrix as follows (see [20,
Proposition 4]).

DEFINITION 2.2. Let X € R™™ and k < min{m,n}. X is called k-positive if
Xy 2 0 for 1 < j <k, and strictly k-positive if X;; > 0 for 1 < j < k. In case
k =min{m,n}, X is called (strictly) totally positive.

PROPOSITION 2.3. Let X € R™ ™ with n > m. Then, X is k-positive with
1<k <mifand only if X is OVDy_;.
The following properties of the multiplicative compound matrix will be elementary
to our discussion (see, e.g., [15, section 6] and [23, subsection 0.8.1]).
LEMMA 2.4. Let X € R"*P gnd Y € RP*™.
(i) (XY),q = XY}y (Cauchy-Binet formula).

[r
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(11) U(X[T]) = {Hie] /\Z(X) VNS In,r}-
(iit) X7y = (X"

In conjunction with the Perron—Frobenius theorem [32, 16], this yields a spectral
characterization of k-positive matrices as follows (see, e.g., [15, Chapter 6]).

COROLLARY 2.5. Let X € R"™ ™ be k-positive such that X(;) is irreducible for
1<j5<k. Then,
L A(X) > > A (X) > 0.
ii. )\1(X[J]) = ngl )\Z(X) > 0.

iii. (51 Q)m € R(;O), 1 < j <k, where&; is the eigenvector associated with
Ai(X) for1 <i<k.

The next result shows that it often suffices to check consecutive minors to verify
k-positivity vis-a-vis a combinatorial number of minors (see, e.g., [12, Theorem 2.3
and its proof]).

PROPOSITION 2.6. Let X € R™*™ Lk < min{n,m} be such that
i. all consecutive r-minors of X are positive, 1 <r <k —1,
ii. all consecutive k-minors of X are nonnegative (positive).
Then, X is (strictly) k-positive.

Finally, to be able to apply Proposition 2.6 to matrices lacking strictly positive
intermediate j-minors, we will make use of the following important ancillary result,
also used extensively in [17, 24].

PROPOSITION 2.7. Let F(o) € R"*"™ be given by F(0);; = e=o(=* with o > 0,
and let X € R™™ with m < n. Then for r < m, the following hold:
i. F(o) is strictly totally positive.
ii. F(o) =1 aso — o0, and F(0)X — X as 0 — 0.
iii. If Xj;) >0, and if rank X = m, then (F(0)X); >0 for all ¢ > 0.
iv. If (F(0)X),q 2 0 for all 0 > 0, then X}, = 0.

Proof. Proposition 2.7 (i)—(iii) are proven in [24, p. 220], while Proposition 2.7
(iv) is a consequence of Proposition 2.7 (ii) and the fact that the minors of a matrix
are polynomial in the matrix’s entries (by the well-known Laplace expansion) and
thus also continuous in the entries. O

COROLLARY 2.8. Let X € R"*™ Lk < min{n,m} be such that
i X[l:n,i:i—&—r—lhk >0forl<i<m+1—-randl <r<k,
ii. all consecutive k — 1 columns of X have full rank.
Then, X is k-positive.

Proof. Let o > 0 be arbitrary and F' (o) as in Proposition 2.7. By Corollary 2.8 (i)
and (ii), it follows from Proposition 2.7 (iii) that all consecutive r-minors of F(o)X
are positive for 1 < r < k — 1. In addition, by Corollary 2.8 (i) and Proposition
2.7 (i), all consecutive k-minors of F(c)X are nonnegative. Thus, F (o)X fulfills the
assumptions of Proposition 2.6, and the result follows from Proposition 2.7 (iv). O

Remark 2.9. Note that, in general, neither the positivity assumption in Propo-
sition 2.6 (i) nor the rank assumption in Corollary 2.8 (ii) can be dropped. For

example,
1 01
X = (1 0 0)
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fulfills Corollary 2.8 (i), but det(X[{1,2},{1,3}]) = —1. A suitable extension of
Corollary 2.8 that avoids this problem is given in Theorem 3.6.

2.4. Hankel k-positivity and compound systems. The OVDj property of
LTT systems (1.1) has been studied in [20], where a distinction is made between
LTT systems with OVDy, Toeplitz and Hankel operators. The latter are particularly
relevant to this work.

DEFINITION 2.10. A system G(z) is called Hankel k-positive if Hy is OVDy_q
(k>1). If k = oo, then G(z) is said to be Hankel totally positive.

In other words, G(z) is OVD_; from past inputs to future outputs. Note that
if G(z) is Hankel k-positive, then it is also Hankel j-positive, 1 < j7 < k. Since an
OVDy_1 H, maps nonnegative inputs to nonnegative outputs, it can be verified that
Hankel 1-positivity coincides with the familiar property of external positivity.

DEFINITION 2.11. G(z) is externally positive if y € Ri%o for all u € Ri%o (and
z(0) = 0). a B

A central observation of [20, Lemma 2] is the following characterization involving
k-positive matrices.

LEMMA 2.12. A system G(z) is Hankel k-positive if and only if for all j € Z>y,
Hy(1,j) is k-positive.
Using Corollary 2.8 and Proposition 2.7, it is easy to show that k-positivity of

Hankel matrices only require checking the nonnegativity of consecutive minors [12].
From (2.5a), each of these consecutive minors is given by

915 (t) := det(Hy(t, 7)),

which is interpreted as the impulse response of an LTI system G{;(z), called the jth
compound system. The compound systems feature in the following characterization
[20, Theorem 1].

PROPOSITION 2.13. Given G(z) and 1 < k < n, the following are equivalent:
i. G(z) is Hankel k-positive.
ii. Gpj)(2) is esternally positive for 1 < j < k.
ili. Hy(1,k—1) >0, Hy(2,k—1) =0 and G(z) is externally positive.
iv. Gy is Hankel k — j + 1-positive for 1 < j < k.
In particular, the equivalence between Hankel OVDj and external positivity be-
comes evident as both properties require g = g > 0 [14].
A key fact for our new investigations is that if (A,b,c) is a realization of G(z),
then G[;1(2) can be realized as

(26) (A[j]vcj(Aa b)[j]70j(Avc)[j])7
since
det(Hgy(t, 7)) = Hg(taj)[j] = O’(4, C)[j](A[j])tilcj(Aa b)[j]
by (2.5a) and Lemma 2.4. Note that by (2.5a), gj;; = 0 if j > n, which is why k& = n

coincides with the case & = co. The following pole constraints of Hankel k-positive
systems will also be important for our new developments [20, Proposition 6].
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PROPOSITION 2.14. Let G(z) = 22:1 A (ZT’T“)b be Hankel k-positive. Then,

my=--=mg_1=1and pr_1 >0 ifk < Zfz:l me. In particular, G(z) is Hankel
totally positive if and only if all poles are nonnegative and simple.

3. Internally Hankel k-positive systems. In this section, we introduce and
study a subclass of Hankel k-positive systems which admit state-space realizations
such that the OVDy_; property also holds internally.

DEFINITION 3.1. (A,b,c¢) is called internally Hankel k-positive if A, C(A,b), and
O(A,c) are OVDi_1 (1 <k <mn). If k =n, we say that (A,b,c) is internally Hankel
totally positive.

Internally Hankel k-positive systems are, therefore, OVDy_1 from past input u

to 2(0), and from z(0) to all future z(¢) and future output y. In particular, by (2.3),
all internally Hankel k-positive systems are also (externally) Hankel k-positive, and
setting u = 0 recovers the k-positive property of unforced systems as partially studied
in [27, 1, 43]. Thus, Definition 3.1 bridges the external and the autonomous notions
of variation diminishing LTI systems. In the remainder of this section, we aim to
answer the following main questions:

I. How does internal Hankel k-positivity manifest as tractable algebraic properties

of (4,b,¢)?

II. When does a system have a minimal internally Hankel k-positive realization?
Our answers will generalize the well-known case of k =1 [30, 2, 6, 14, 26], which we
will see coincides with the familiar class of internally positive systems [14].

DEFINITION 3.2. (A,b,c¢) is said to be internally positive if for all u € Ri%o and
all z(0) > 0, it follows that y € Ri%(’ and z(t) > 0 for all t > 0.

In section 4, our findings are extended to continuous-time systems, and we use
our result to establish a framework that upper bounds the variation of the impulse
response in arbitrary LTI systems.

3.1. Characterization of internally Hankel k-positive systems. We start
by recalling the following well-known characterization of internal positivity in terms
of system matrix properties [26].

PROPOSITION 3.3. (A, b, c) is internally positive if and only if A,b,c > 0.

Therefore, internal positivity indeed implies that (A,b,c) is internally Hankel
1-positive (through Proposition 2.3). The converse can be seen from the following
equivalences, which give a first characterization of internal Hankel k-positivity.

LEMMA 3.4. For (A,b,c), the following are equivalent:
i. C(A,b) and O(A,c) are OVDy_1, respectively.
ii. For allt >k, Ct(A,b), and O(A,c) are k-positive, respectively.
In particular, (A,b,c) is internally Hankel k-positive if and only if A, Ct(A,b)
and O'(A,b) are k-positive for all t > k.

Proof. By Proposition 2.3, it suffices to show that C(A,b) is OVDy_; if and only
if Ct(A,b) is OVDy_4 for all t > k. For O(A, ¢), the proof is analogous via the duality
(2.5¢).
=: Follows by considering inputs u with u(7) =0 for 7 < —t¢.
<: Let u be an input with S(u) < k — 1. Since

S(CH(A,B) (u(=1) ... u(=t)))<k—1
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for all ¢ > 0. In the limit ¢ — oo we obtain S(C(A,b)u) < k — 1. |

Next, we want to find a finite-dimensional and, thus, certifiable characterization
of internal Hankel k-positivity. To this end, we derive our first main result: a sufficient
condition for k-positivity of the controllablility and observability operators.

THEOREM 3.5. Let (A, b, c) be a realization of G(z) such that A is k-positive. The
following hold:
i. If CI(A, b)) =2 0 for 1 < j <k, then Ct(A,b) is k-positive for all t > k.

i. If OI(A, c)j) =20 for1<j <k, then O A, c) is k-positive for all t > k.
To prove this rebult we need the following extension of Corollary 2.8.

THEOREM 3.6. Let X € RUS™, m>n, 2 <k <n, andY € R"*? be such that
L X[l:ni:i+k— ][]>Of0r1<z<m+17k
ii. all consecutive k — 1 columns of X have full rank.
1. Xy = (X Y) 18 k — 1-positive.
iil. Y[1:n,4) € im(X[1:n,m—k+2:m]),1<i<p.
iv. IfY[1:n,j]=0, then Y[1:n,i] =0, j <i<p.
Then, Xy is k-positive.

Proof. Since X is k-positive by Theorem 3.6 (i) and (ii) and Corollary 2.8, and Y
is k-positive by Theorem 3.6 (iii) and (iv), to show that Xy is k-positive we only need
to prove the nonnegativity of all k-minors which involve at least one column of X and
one column of Y. We shall prove this fact by induction on the number of columns of
Y involved in the computation of those minors. It turns out this is equivalent to an
induction on p by the following argument.

Our assumptions, and the claim of the theorem, are invariant to deletions of
columns in Y. Thus, checking the nonnegativity of k-minors that involve N < k — 1
columns of Y is equivalent to proving the claim for all Y € R"*¥ that fulfill Theorem
3.6 (iii)—(v). Further, if we have shown our claim for p = N < k — 1, then proving
it for p = N + 1 only requires checking all minors that involve N + 1 columns of Y.
Thus, we perform induction on p, with the induction assumptions and claim being
those of the theorem.

The base case p= 1. By Theorem 3.6 (iv), Y[1:n,1] = X[1:n,m —k+2: mla
for some o € R¥=1. If Y[1 : n, 1] = 0, then the claim follows trivially. Otherwise, by
Theorem 3.6 (ii), there exists a nonsingular X [Z, m—k+2 : m] such that X[Z, m—k+2 :
m]a = Y[Z,1]. Then, applying Cramer’s Rule together with the k — 1-positivity of
Xy gives

(3.1) Am_i(=1)">0,0<i<k—2. 0

Next, let P := {i: o; # 0} and X}, denote the matrix that is identical to Xy, except
that x; is deleted. Then, if ¢ € P, all the consecutive k — 1-columns of X{. have full
rank and by (3.1), it is readily seen that

(XY) = |os|X[L:n,m —k+2:mfy, >0.

Hence, X% is k-positive by Corollary 2.8 for all i € P, which is why the only k-minors
that are not verified to be nonnegative are those that contain y; and all z;, i € P.
Since these minors are zero by construction (of a low-rank matrix), the base case is
proven.

Induction step. Let us assume that the claim holds true for p = N <k —1. We
want to show that Xy is k-positive also when p = N +1. To this end, we have already

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 12/20/22 to 136.152.20.112 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

2382 C. GRUSSLER, T. BURGHI, AND S. SOJOUDI

noticed that only the nonnegativity of minors that involve all columns of Y € R?*N+1
needs to be verified. As in the base case, Y = 0 is trivial and otherwise, consider the
matrices X%, i € P, which by the induction assumption are k-positive. Then, the
only possible k-minors of Xy that remain to be checked are those that are made up
by all z;, ¢ € P and all columns in Y. Since these minors are zero by construction,
this concludes the proof.

Proof to Theorem 3.5. We will prove the first item by induction over the minor
size. The second item follows by duality. We begin by noticing that all consecutive all
consecutive j columns are of the form A‘C7(A,b), i > 0, which by assumption fulfill
AiCj(A,b)[j] > 0. Further, note that the nonnegativity of the j-minors with j = 1
(base case) and j > n. := rank(C*(A, b)) is trivial.

It therefore suffices to check j-minors with 1 < j < min{k, n.} under the assump-
tion that C*(A,b) is j — 1-positive for all t > j — 1. If all consecutive j — 1 columns
of Ct(A,b) have full rank, then C*(A,b) is j-positive by Corollary 2.8. Otherwise, if
rank(ACI71(A,b)) < j — 1, then rank(A!C7=1(A,b)) < j — 1 for all I > 4, and the
following hold:

i. The first min{¢, n.} columns of C*(A4,b) are linearly independent.
ii. If i* is the smallest integer for which rank(A? C7=1(A,b)) < j — 1, then Ab €

span(A¥b, ..., ATHIT3 1> 45— 1).

iii. If A% =0, then A'b =0 for all [ > i.

For sufficiently large t > j, X = C" T772(A,b) and Y = A" +1=2Ct=""=I+2( A b) then
define a splitting Ct(A,b) = (X Y) with X and Y fulfilling Theorem 3.6. This
concludes the proof. 0

Combining Lemma 3.4 and Theorem 3.5 gives the following characterization of
internal Hankel k-positivity.

THEOREM 3.7. (A,b,c) is internally Hankel k-positive if and only if the realiza-
tions of the first k compound systems of (A,b,c) in (2.6) are (simultaneously) inter-
nally positive.

3.2. Internally Hankel k-positive realizations. To approach the question
of the existence of (minimal) Hankel k-positive realizations, we turn to an invariant
cone approach, which has proven to be useful in dealing with the case k =1 [30, 6].
The following is a classical result.

PROPOSITION 3.8. For G(z), the following are equivalent:
1. G(z) is externally positive with minimal realization (A, b, c).
2. There exists an A-invariant proper convex cone K such that b € K and c¢' €
K*.
In particular, G(z) has an internally positive realization if and only if K can be chosen
to be polyhedral.

Several algorithms for finding such an invariant polyhedral cone can be found,
e.g., in [13, 14]. Internal positivity is, therefore, a finite-dimensional means to verify
external positivity. However, since not every externally positive system admits an
internally positive realization [30, 14], we cannot expect that all externally positive
compound systems have internally positive realizations, and, as a consequence, in-
ternal Hankel k-positivity does not follow from its external counterpart. For Hankel
total positivity, however, the two notions are equivalent.

PROPOSITION 3.9. G(z) is Hankel totally positive if and only if there exists a
minimal realization that is internally Hankel totally positive.
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Proof. By Proposition 2.14, it holds that G(z) = Y1, S7o- with p; > 0 and
r; > 0. This admits a realization A = diag(p,,,...,p1) and b = ¢ with b; = VTn—it1,
1 <4 < n. Thus, A is totally positive, and by applying [20, Lemma 22| to the sub-
matrices of C7(A,b), also C7(A,b) = O(A,c)T is totally positive for all j > 1. Thus,
the result follows by Theorem 3.7. O

To bridge the gap between external and internal Hankel k-positivity, we address
the existence of minimal internal realizations.

THEOREM 3.10. G(z) with order n and minimal realization (A, b, ¢) has a minimal
internally Hankel k-positive realization, k < n, if and only if there exists a P € R™"*"
with rank(P) = n such that for all 1 < j <k

(3.2a) AP = PN for some k-positive N,
(3.2b) Cj(A,b)[j] € cone(Py),
(3.2¢) Oj(A,c)E] € cone(P))".

Proof. =: Let (A4,by,cy) be a minimal internally Hankel internally k-positive
realization. By the similarity of minimal realizations there exists an invertible P €
R™ ™ such that for 1 < j <k

AP = PN with k-positive N = A,
C](A7b)[3] = P[J]C](A-i-a b+)[
O(4A, C)[j]P[j] =0/(As, C+)[

P
ib
which by Lemma 3.4 shows the claim.

<: If (3.2a)—(3.2c) hold, then there exists a minimal internally positive realization
(N, g, h) with nonnegative

| .
CH(N, g)y) = Py € (A B),
O/ (N, h);; = O (A, 0) ;P

il = 7]
for 1 < j <k and k-positive N. Thus, by Theorem 3.7, (N, g, h) is internally Hankel
k-positive. ]

Remark 3.11. From Proposition 3.8, we know that in case of k = 1, Theorem 3.10
remains true even if we drop minimality, i.e., P € RE*K with K > n. The reason
for this lies in the fact that there always exists a controllable, internally positive
(A4, bs,cy) [14, 30]. To be able to conclude the same for k& > 1, we would need
to show that (3.2a) and (3.2b) are sufficient for the existence of by with b = Pby
and Cj(A+,b+)[j] > 0 for 1 < j < k. Together with Theorem 4.6, it is possible
to show then that Theorem 3.10 extends to nonminimal internally Hankel k-positive
realizations, i.e., P € R™¥ with K > n.

Finally, under an irreducibility condition, all autonomous k-positive systems give
rise to an internally Hankel k-positive system.

PROPOSITION 3.12. Let A € R™ ™ be k-positive with irreducible A[j], 1<ji<Ek.
Then there exists a b € R™ such that Cj(A,b)[j] >0 foralll < j <k and (AD) is
controllable.

Proof. By Corollary 2.5, A{(A) > -+ > Ag(4) > 0. Let &;,...,&; denote the
associated eigenvectors. Our goal is to show that there exists o € R* with oy > --- >
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ag > 0 such that b = 2?21 a;¢&; fulfills the first part of the claim. Then, by continuity
of the determinant there also exists such a b with (A, b) controllable.
We begin by writing

CI(AD) = (€1 ... aply) V7,
where V7 is the Vandermonde matrix
1T A(A) ... M4
vi=1| : ; : ,
1 a(A) .. (A
so that Lemma 2.4 implies
CH(A b)) = (& - akgk)[jlvim.

Since V7 [j] 1s a positive vector [11, Example 0.1.4], we can absorb its contribution
into the choice of o and assume without loss of generality that

(3.3) ClAb) = (& - fk)[j]diag(al,...,ozk)me,

where e is the vector of all ones. Thus, Cj(A7b)[j] is a linear combination of the
columns in (§1 5;.@)[],], where each column is multiplied by the diagonal entry
in diag(ay, . .. ,ak)m. In particular, the first column of (51 e Sk) 0 is positive by

Corollary 2.5 and multiplied by the largest factor szl «;. Therefore, by choosing
inductively sufficiently large oy > -+ > ap > 0, the vector C7(A,b) ) 18 dominated

by the contribution from ngl o (51 @)m (as part of the linear combination
(3.3)), proving their positivity for 1 < j < k. 0

An example why the irreducibility in Proposition 3.12 cannot, in general, be
dropped is given at the end of section 5.

4. Extensions. In this section, we first discuss extensions of our results in
discrete-time (DT) to continuous-time (CT) systems, followed by applications to step-
response analysis.

4.1. Continuous-time systems. The tuple (A4,b,¢) is a CT state-space real-
ization if

o(t) = Az (t) + bu(t),
W (t) = As(®) + bu(t)

with A € R™*", b,cT € R". Its impulse response is
(4.2) g(t) = cetbs(t)

and the controllability and observability operators are given by

(4.3a) Cor(A,D)u = /0 e ATbu(t)dr,

— 00

(4.3b) (Our(A, €)20)(t) := ce?xo, zo € R™, t > 0.
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As for DT systems, we assume g to be absolutely integrable and u to be bounded. By
defining the variation of a continuous-time signal u : R — R as

Ser(uw) := sup  S([u(ty),...,u(ts)]),

n€Zso
t1 <o <tn

we can define CT internal Hankel k-positivity as follows.

DEFINITION 4.1. A CT system (A, b, c) is called CT internally Hankel k-positive
if eAt, C..(A,b), and O, (A,c) are OVDy_y for allt > 0.

As in DT, we seek to characterize these systems through finite-dimensional k-
positive constraints. We will do so by discretization of (4.3), which allows us to
apply our DT results. To this end, consider for h,j > 0, the (Riemann sum) sampled
controllability operator

u(=h)
, —! A A u(—2h)
(4.4a) CLM(Ab)u:=h Y e *"bu(ih) = he*CI(e*",b) .
i=—j :
u(—jh)
and the sampled observability operator
y(h)
y(2h) : .
(4.4b) : = O c)eMry =1 OLM(A, ¢)xo.
y(jh)

Note that for each w and zg with finite variation there exist sufficiently large j
and small h such that Ser(Cop(A,b)u) = S(CEM(A,b)u) and Ser(Oup (A, c)zg) =
S(Oé’f (A4, c)xg). Thus, Proposition 2.3 allows connecting the OVDy_; property of
the CT operators (4.3) to k-positivity of the matrices CI (A, b) and OLF (A, ¢), where
we consider all j > k. Since, by Lemma 2.4, k-positivity of these matrices follows
from k-positivity of e4”, C7(eA",b), and 07 (e4", ¢), we arrive at the following CT
analogue of Lemma 3.4.

LEMMA 4.2. A CT system (A,b,c) is CT internally Hankel k-positive if and only
if there exists a € > 0 such that the DT system (e, b,c) is DT internally Hankel
k-positive for all h € (0,¢).

Using Theorem 3.7, CT internal Hankel k-positivity can be verified by checking
that the realizations

((eAh)[j]aCj(eAh7b) Oj(eAhaC)[j])

b
are internally positive for 0 < j < k. However, it is undesirable to do this for all
sufficiently small h. Next, we will discuss how to eliminate this variable from the
above characterization. A classical result in that direction states that e4? > 0 for
all h € (0,¢), € > 0 (and, in fact, all A > 0) if and only if A is Metzler (i.e., A
has nonnegative off-diagonal entries) (see, e.g., [14, Theorem 2]). In general, the
(multiplicative) compound matrix of e* can be expressed in terms of the additive
compound matriz [28, section 1]

d

ALl = log(exp(4) ;) = %eAhm
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which satisfies
1s)
(4.5) (6Ah)[J] == eA h.
In other words, eA" is k-positive for all h > 0 if and only if AU is Metzler for 1 < j < k.
A special feature of CT systems is that the latter holds if and only if AVl is Metzler
for 1 < j < min{k, 2} (see [39, Theorem 4 and Corollary 1] and [29]).
The next result will also allow us to remove h from the conditions involving
C7 (et b) and O (e?" ) c).
THEOREM 4.3. Let (A,b,c) be a CT system such that AUl is Metzer for 1 < j <
k. Then, the following holds:
i Cj(A,b)[j] >0 for 1 < j <k if and only if there exists a sufficiently small
€ > 0 such that Cj(eAh,b)[j] >0 foralll1<j<kanddalhe(0¢).
ii. Oj(A,c)[j] >0 for 1 < j <k if and only if there exists a sufficiently small
€ > 0 such that Oj(eAh,c)m >0 foralll <j<kandallhe(0,¢).

Proof. We only show the first item, as the second follows analogously. Let us begin
by showing that we can assume rank(C’(A4,b)) = rank(C?(e#”,b)). To see this, note
that if rank(C’ (A4, b)) < j, then all A% € im(C7~*(A, b)) for all i > j—1. In particular,
ety = 300 (‘Lli}!b)lb € im(C771(A,b)) for all h > 0 and thus, rank(C’ (e b)) < j.
Conversely, if rank(C’ (e b)) < 4, then by suitable column additions we also have

rank(C? (I — e, b)diag(1, h, ..., h? 1)) = rank(C? (h~1(I — e*"), b)) < 4,

which, due to the lower semicontinuity of the rank [21], proves in the limit A — 0 that
rank(C’ (A, b)) < j. Hence, we can assume that rank(C7(A, b)) = rank(C7(e", b)) = 7,
as otherwise C7 (A, b) ;) = 0 and the claim holds trivially.

Next, let C7(A, b);; = 0 for 1 < j < k, which by Proposition 2.7 (ii) and (iii)
is then equivalent to (F(0)C’(A,b));; > 0 for all ¢ > 0 . Further, suitable column
additions within C/(A,b) yield the equivalence to (F'(¢)C’(I + hA,b));; > 0 for all
o, h > 0. Since (I + hA)b can be approximated arbitrarily well by e4"b for suf-
ficiently small h > 0, the continuity of the determinant implies the equivalence to
(F(o)C7 (eAh, b))y; > 0 for all o > 0 and all sufficiently small 7 > 0. Hence, our claim
follows for sufficiently small & > 0 by invoking Proposition 2.7 (iv). d

In conjunction with Theorem 4.3 and Lemma 4.2, it follows that Theorem 3.7
remains true in CT.

THEOREM 4.4. Let (A,b,c) be a CT system. Then, (A,b,c) is CT internally
Hankel k-positive if and only if

(46) (A[J] ’ Cj (Av b) Fik Oj (A7 C) [J])
is CT internally positive for all 1 < j <k

Note that our defined compound system realizations are indeed the CT compound
systems, whose external positivity can be used to verify CT (external) Hankel k-
positivity. Finally, an analogue to Theorem 3.10 can be obtained by substituting
(3.2a) with the condition stated in the following lemma, extending the corresponding
result in [30].

LEMMA 4.5. Let A € R™ " gnd P € R™*¥. Then, eM*P = PeVt with ™t k-
positive for all t > 0 if and only if there exits a X > 0 such that (A + A\I,)P =
P(N + Mg) with (N 4+ Mg)Ul >0 forall1 < j<k.
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Proof. We begin by remarking the following properties of the additive compound
matrix [28]: let X,Y € R™*" and Z € R™*K :
1. (X 4+ Y)W = xU 4yl
2. (BXtZ)[j] = ethZ[]—].
«: Let (A+Al,)P = P(N + M) for some A > 0 such that (N 4 M)V > 0 for
all 1 < j <k. Then, for all £ > X\ with ¢t > 0 and i € N, it holds that (A + {I,)P =

P(N + lIK) and consequently,

P = lim (In + At) P =P lim (IK + Nt) = pelt,
1—»00 (3 1—>00
Moreover, by the first property above NU! is Metzler, 1 < j < k, which by (4.5)
implies that e™N? is k-positive for ¢ > 0.
=: Let e P = PeN* with k-positive eN* for all t > 0. Then, by definition of the
additive compound matrix and the properties above, it holds that

(A+ AL, Py = (AU 4 ATV Py,
= Py (N4 AT = Pj(N + M)V

for all A > 0, 1 < j < k, where NUl is Metzler by (4.5). Thus, by choosing A
sufficiently large, we conclude that (N + AI K)[j] is nonnegative for all 1 < j <k. O

4.2. Impulse and step response analysis. Next, we apply our results to the
analysis of over- and undershooting in a step response, a classical problem in control
(see, e.g., [5]). For LTI systems, the total number of over- and undershoots equals the
number of sign-changes in the impulse response. While several lower bounds for these
sign changes have been derived [8, 37, 10, 9], fewer results seem to exist on upper
bounds [9, 10].

In our new framework, we observe that the impulse response of (A4,b,c) fulfils
g(t) = (O(A, c)b)(t). Therefore, if O(A,c) is OVDg_1, then the impulse response of
(A,b,c) changes its sign at most S(b) times for all S(b) < k — 1, and has the same
sign-changing order as b in case of an equal number of sign-changes. Similarly to
Theorem 3.10, we conclude the following result.

THEOREM 4.6. Let (A, b, c) be a minimal realization of G(z). Then, G(z) admits
a realization (A4,by,cy) such that Ay and O(Ay,cy) are OVDg_q if and only if
there exist a k-posztwe N € REXE gnd a P € R"K with K > n such that AP = PN

andO(Ac) € cone(Py;))* for 1 < j <k, where k <n.

Proof. <=: Let N and P be as above. Defining A, := N, we have that A, is
k-positive and thus OVDy_1 by Proposition 2.3. Furthermore, defining c; := cP > 0,
it follows from the assumptions that AP = PA, and (’)j(A,c)[Tj] € cone(P;)* 1 <
j < k, that OJ(AJMCJF) = 0J(A, APy 20,1 < j <k Hence, O(Ay,cy) is
OVDy_1 by Theorem 3. 5 and Lemma 3 4

=: Let A4 and O(A4,c4) be OVDy_1. Analogously to the construction in the
necessity proof of [30, Theorem 5|, there exists a P € R"*¥ such that AP = PA,
and c¢; = cP. Therefore, also 07 (A,0) ;1P = Oj(A+,c+)[j], which concludes the
proof. ]

Since the realization (A4, b, c4) may not be unique, it remains an open question
how to minimize the sign changes in by in order to make the upper bound the least
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conservative. We leave an answer to this question for future work. It should be noted
that the approach in [9] essentially corresponds to the case where a realization with a
totally positive observability operator exists, because it assumes positive distinct real
poles and real zeros, apart from multiple poles at zero.

5. Examples.

5.1. Internal Hankel k-positivity. Consider a system given by the realization

0.25 0.25 0.20 1
AL =1025 030 030|, by=cl =01
0.10 0.35 0.40 0

For this realization, we have

100 27.5 16.575
C3(Ay,b+)=10"2| 10 28 19.325],
0 135 17.95

252.5 176.675 6.73375
C3(Ap,bH)g =107 | 135 1795  26.98625 |,
135 17.95  24.17125

and C3(Ay, b+)[g = 21.472625 - 1073, Furthermore, we have

1.25 25 1.5
Ay =10"2(625 8 3
9.75 7 1.5
and Ay = det A = —2.25-107? (all numbers above are exact). Several facts can

be stated regarding this realization. First, rank A = rankC?(A,,by) = 3, and thus
the system is controllable. Furthermore, A, is 2-positive, but not 3-positive, while
C3(A4,by) is 3-positive. It immediately follows from Theorem 3.5 that the controlla-
bility operator C(A4,by) is 2-positive, which can readily be verified numerically. Sec-
ond, it can be verified (we omit the details) that O3(A,, ¢ ) is full-rank and 3-positive;
we conclude from Theorems 3.7 and 3.5 that the (minimal) realization (A4,b4,cy)
is internally Hankel 2-positive, but not 3-positive (since A+[3} = det A < 0). The

canonical controllable realization of G(2) = ¢y (213 — A} )~tby reads

0 1 0 0 0.0058 \
. = , = , c=|—-0.
5.1 A 0 0 1 b= 10 0.6565
—0.00225 —0.1075 0.95 1 1.01

which is not internally Hankel k-positive for any k& > 1. For the two realizations
above, the P matrix from Theorem 3.10 is simply the canonical controllability state-
transformation matrix, given by

P = 63(A+7 b+)c3(A7 b)_l'

To illustrate the variation-diminishing property, we show in Figures 1 and 2 the time
evolution of y4 () = (O(AL,by)x0)(t) and y(t) = (O(A,b)xo)(t) for the initial con-
dition ¢ = (—40.5,0.9,0.015)T. It can be seen that given S(zo) = 1, the internally
Hankel 2-positive realization yields S(y4) = 0, and the sign variation in x¢ is dimin-
ished; the controllability canonical realization yields S(y) = 3, and the variation in xg
is increased.
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F1G. 1. The output of the internally Hankel 2-positive realization, y+(t) = (O (A4, bs)xo)(t),
has a smaller variation than xo = (—40.5,0.9,0.015)T.
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Fi1c. 2. The output of the canonical controllable form realization (5.1), y(t) = (O(A,b)zo)(t),
has a larger variation than xo = (—40.5,0.9,0.015)T.

5.2. Impulse response analysis. Consider the following system, previously
shown as an example in [9]:
(z —0.22)(z — 0.6)

z23(z —0.7)

G(z) =

The transfer function G(z) has a realization given by

07 1 0 0 0 1\ "

0 010 1 0
(52) A=10 00 1| "= |-0s2|" = o

0 00 0 0.132 0

It can be verified that this realization has totally positive A and O*(4,¢c). By
Theorem 3.5 and Lemma 3.4, O (A, ¢) is then totally positive and the number of sign
changes in the impulse response of G(z) (and, hence, the number of extrema in its
step response) is upper bounded by S(b) = 2; the same upper bound was previously
obtained by [9]. Figure 3 shows that this bound is tight.

However, in contrast to [9], our framework does not assume real poles or zeros.
In particular, the modified transfer function

(z—=0.54+14)(z— 0.5 —1)
23(z —0.7) ’

Gm(z) =

can be realized with the same A and ¢ as in (5.2) and with b= (0 1 —1 1.25)T,
which again provides a tight upper bound on the variation of the impulse response.
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Fic. 3. Impulse response of the system in (5.2) has two zero crossings, which coincides with
our derived upper bound.

Finally, note that by Proposition 2.14, there cannot be any b such that C(A,b)
is 2-positive, because otherwise (A, b, c) would be Hankel 2-positive. This illustrates
the importance of the irreducibility condition in Proposition 3.12.

6. Conclusion. Under the assumption of k-positive autonomous dynamics, this
work has derived tractable conditions for which the controllability and observability
operators are k-positive. These results have been used in two ways.

First, we introduced and studied the notion of internally Hankel k-positive sys-
tems, i.e., systems which are variation diminishing from past inputs with at most k—1
variations to future states to future outputs. It has been shown that these proper-
ties are tractable through internal positivity of the associated compound systems. In
particular, internal Hankel k-positivity provides a means of studying external Hankel
k-positivity with finite-dimensional tools. As a result, this systems class combines
and extends two important system classes: (i) the celebrated class of internally pos-
itive systems (k = 1) [14] and (ii) the class of relaxation systems [41] (k = o0); the
latter has also been shown to admit minimal internally Hankel totally positive real-
izations. Moreover, our results lay the groundwork for future work linking unforced
variation diminishing systems, as considered in [27, 1, 43], with the theory of ex-
ternally variation diminishing systems [20]. Finally, as a generalization of the case
k =1 found in [30], a characterization of when an externally Hankel k-positive system
possesses a minimal internally Hankel k-positive realization has been discussed. In
future work, the characterizations for nonminimal realizations and realization algo-
rithms shall be addressed. Noticeably, we have not introduced an internal notion for
externally Toeplitz k-positive systems: this is a consequence of the nonseparability
of the Toeplitz operator. Thus, contrary to the standard definition of internal posi-
tivity, this suggests that the Hankel operator is a more natural object with which to
associate internal positivity.

Second, we have developed a new framework for upper-bounding the number of
sign-changes in the impulse response of an LTI system. In particular, while the re-
sults of [9] are recovered in the case k = oo, our framework allows considering generic
k. In future work, we plan to address the conservatism of our analysis, its numer-
ical tractability, and the theoretical implication of the location of zeros. Further,
we believe that a nonlinear extension of our framework, by means of the well-known
controlled cooperative/monotone systems class (see, e.g., [3]), will be of timely im-
portance. For instance, the cumulative difference between a step response and the
output, called the (static) regret, is a common tractable measure in online learning
[31] and adaptive control problems [25]. However, its meaningfulness depends on a
small variability such as a small variance or a bounded variation.
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