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Tuning conformational asymmetry in particle-forming diblock
copolymer alloys†

Logan J. Case, Frank S. Bates, and Kevin D. Dorfman∗

Self-consistent field theory is employed to compute the phase behavior of binary blends of conforma-
tionally asymmetric, micelle-forming diblock copolymers with miscible corona blocks and immiscible
core blocks (a diblock copolymer “alloy”). The calculations focus on establishing conditions that
promote the formation of Laves phases by tuning the relative softness of the cores of the two dif-
ferent Laves phase particles via independent control of their conformational asymmetries. Increasing
the conformational asymmetry of the more spherical particles of the Laves structure has a stabi-
lizing effect, consistent with the expectations of increased imprinting of the Wigner-Seitz cells on
the core/corona interface as conformational asymmetry increases. The resulting phase diagram in
the temperature-blend composition space features a more stable Laves phase field than that pre-
dicted for conformationally symmetric systems. The phase field closes at low temperatures in favor
of macrophase separation between a hexagonally-packed cylinder (hex) phase and a body-centered
cubic phase. Companion calculations, using an alloy whose components do not produce a hex phase
in the neat melt state, suggest that the Laves phase field in such a blend will persist at strong
segregation.

1 Introduction
Compositionally asymmetric diblock polymer melts produce par-
ticulate phases when cooled below their order-disorder transi-
tion (ODT). For linear AB diblock copolymers, the ordered state
selection is governed by three parameters: (i) the segregation
strength χN, where χ is the Flory-Huggins parameter and N is
the total degree of polymerization; (ii) the minority block vol-
ume fraction fA = NA/N, where NA is the degree of polymeriza-
tion of the minority block; and (iii) the conformational asym-
metry εAB = bA/bB, where bi is the statistical segment length
of block i.1–5 The classic theoretical diblock copolymer phase
diagram focuses on systems with low conformational asymme-
try (εAB ≈ 1),6–8 where the resulting micelles pack on a body-
centered cubic (bcc) lattice,9–11 with a narrow region of close-
packing near the ODT.7,12–14

It is now recognized that increasing conformational asymmetry
in compositionally asymmetric diblock copolymers gives rise to a
different class of particle packings known as Frank-Kasper phases
(Fig. 1a).15–19 In contrast to bcc, which has a single particle
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type arranged on a high symmetry lattice, Frank-Kasper phases
are low-symmetry, tetrahedrally close-packed phases possessing
multiple particle types,20,21 each with a distinct volume and, im-
portantly, a distinct sphericity.5,22,23 Conformational asymmetry
furnishes two synergistic effects that ultimately combine to stabi-
lize Frank-Kasper phases relative to bcc. First, larger εAB shifts the
order-order transitions to larger fA, delaying the onset of hexag-
onally packed cylinders (hex).1,22,24–27 Second, larger εAB pro-
duces softer micellar cores that can be partially imprinted by the
Voronoi cells of the lattice,5,19,23,28–30 which introduces a ten-
dency to prefer systems with a higher average sphericity of the
constituent particles.23 Taken together, these two effects lead to
Frank-Kasper phases possessing a better balance of chain stretch-
ing against interfacial area than bcc as conformational asymme-
try increases.5,22,23 Among the 27 known Frank-Kasper phases
in metallic alloys,31 only σ 15,16,18,32–38 and A1518,36 are be-
lieved to be equilibrium states in neat diblock copolymer melts.
Non-equilibrium C14 or C15 Laves phases can be accessed via
thermal processing,17,35,39,40 but their emergence as equilibrium
states is stymied by their large particle volume asymmetry (Fig.
1b).37,41–44

Since each particle type in a Frank-Kasper phase possesses a
unique sphericity (Fig. 1c),5,22,23 fully elucidating the role of con-
formational asymmetry on the formation of Frank-Kasper phases
is challenging in a neat diblock copolymer melt because there is
but a single conformational asymmetry parameter, εAB. To under-
stand more deeply how conformational asymmetry impacts or-
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Fig. 1 (a) Illustration of the Frank-Kasper σ , A15, C14, and C15 phases, highlighting the symmetry-inequivalent particle positions and associated
Wigner-Seitz cells. (b) Volume of each particle type relative to the number-averaged particle volume for the structure, V0,phase. (c) Isoperimetric
quotient IQ = 36πV2/S3 of each particle type as reported by Kim et al.,17 relative to that of bcc, where V is the particle volume and S is the particle
surface area. Bar colors in (b) and (c) match the colors of the corresponding particles in (a). Particles are labeled in (b) and (c) according to phase
and Wyckoff position. Structures in (a) are generated using a Matlab program developed by Lindsay et al. 45

dered state selection, it is desirable to control each particle type’s
conformational asymmetry independently. One approach to ac-
cess such control is going beyond a neat AB diblock copolymer
melt to a diblock copolymer alloy consisting of two (or more) di-
block copolymers with miscible majority blocks and immiscible
minority blocks.46 The simplest such system is a binary alloy con-
sisting of a blend of AB and B′C diblock copolymers,46 where the
prime notation indicates a different degree of polymerization. To
achieve this objective, the χ-parameter between blocks A and C
must be large enough to prevent mixing of the particle cores.46

Such a binary blend possesses two conformational asymmetry pa-
rameters, εAB and εBC, which quantify the softness of the AB and
B′C micelle cores, respectively.

In the present contribution, we use self-consistent field theory
(SCFT)47,48 to investigate the ability of conformationally asym-
metric block copolymer alloys to stabilize Laves phases. Laves
phases are attractive for our purposes because they consist of two
particles with disparate volumes and sphericities.17,23,49 As a re-
sult, this system is ideally suited for studying the tunability of the
different types of particle cores enabled by binary block copoly-
mer alloys. Prior work has already demonstrated from SCFT the
potential for diblock copolymer alloys to address the challenge
imposed by the volume asymmetry of a Laves phase (Fig. 1b).46

Here, we show that Laves phases can be further stabilized via
differing conformational asymmetries in a polymer alloy, thereby

providing a design strategy to address both volume asymmetry
and sphericity asymmetry of the constituent particles, and clearly
illustrating the power of controlling conformational asymmetry of
each particle independently to enable the formation of complex
particle packings in diblock copolymers.

2 Methods

Following prior work,46 we select highly compositionally asym-
metric diblocks with equal core block fraction fA = fC = 0.20
to promote formation of quasi-spherical micelles at sufficiently
high segregation strength. To simplify the ensuing analysis, we
choose symmetric segregation strengths for the individual diblock
copolymers, such that χABNAB = χBCNB′C = χN where χi j is the
Flory-Huggins interaction parameter between monomers i and j
and NAB and NB′C are the degrees of polymerization of the AB
and B′C chains, respectively. To enhance the immiscibility of
A and C relative to A/B or B/C interactions, we select a larger
Flory-Huggins parameter between monomers A and C such that
χACNAB = 2(χN). In reporting our results, it is convenient to ex-
press the results in terms of temperature as well. To do so, we
will assume that χ is purely enthalpic and set the reference tem-
perature T0 to correspond to χN = 30.

It is worthwhile to make a preliminary estimate here of where
we might anticipate Laves phases to emerge in a conformationally
asymmetric binary alloy, building on the prior analysis for confor-
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mationally symmetric systems.46 Stabilization of a Laves phase in
this alloy system requires that (i) the AB and B′C form micelles
with appropriate volume asymmetry α = VB′C/VAB and (ii) the
chains are blended at a ratio which yields a particle stoichiometry
of approximately 2:1.46 If we choose the B′C diblock to form the
larger micelles (the red particles in Fig. 1), the expected blend
fraction for Laves phase formation is

φAB = 1−φB′C =
2

2+α
(1)

as in prior work.46 The preferred micelle radius for the AB di-
block scales as its radius of gyration Rg,AB, and similarly for
the B′C diblock, so the volume asymmetry can be written as
α = (R3

g,B′C/R3
g,AB). Using the unperturbed radius of gyration as

a starting point for the particle size and Gaussian statistics, then
Rg,AB is given by R2

g,AB = R2
g,A +R2

g,B, and similarly for Rg,B′C. The
corresponding Laves phase volume asymmetry for a given set of
AB and B′C chains is then

α =

(
NB′C

NAB

)3/2
[

1+ fC
(
ε2

BC−1
)

1+ fA
(
ε2

AB−1
)]3/2

(2)

where we have grouped the terms to highlight the separate con-
tributions of the chain lengths in the first term, and the sta-
tistical segment lengths in the second term. Note that when
all monomers have the same statistical segment lengths (i.e.,
εAB = εBC = 1.0), Equation 2 reduces to the result obtained pre-
viously for conformationally symmetric alloys.46

Our numerical analysis uses SCFT47,48 with a Gaussian chain
model47,50,51 to predict the behavior of the alloy system. All
calculations are performed using the C++ version of the open-
source PSCF code using either the canonical or grand canonical
ensembles.52–54 More details about the particular methodologies
employed to analyze phase equilibria or compute phase bound-
aries are available in the Supporting Information.

3 Results

Our first objective is to understand how chain length and con-
formational asymmetry affect the stability of Laves phases, us-
ing the independent control over conformational asymmetry to
adjust the softness of the AB and B′C micelle cores for different
chain lengths. We thus consider systems with chain length asym-
metries 0.5 ≤ NB′C/NAB ≤ 2.0 for conformational asymmetries of
1.00, 1.25, and 1.50 applied to (i) the AB diblock, (ii) the B′C di-
block, and (iii) both the AB and B′C diblocks simultaneously. For
each of these conditions, we performed canonical SCFT simula-
tions of the C14 and C15 Laves phases and compared their free
energies per chain of size NAB (denoted by F/nkBT ) against po-
tential macrophase separation via the common tangent construc-
tion.55 Among the three most common Laves phases (C14, C15,
and C36),49 we consider only C14 and C15 because they are gen-
erally expected to be stable compared to C36,56 and are the only
Laves phases observed in block polymer systems.17,35,37,39–41,57

Candidate phases for construction of the common tangent tie
lines were face-centered cubic spheres (fcc), body-centered cubic
spheres (bcc), and hexagonally-packed cylinders (hex), each with

both AB-rich and B′C-rich varieties. At each condition, the com-
mon tangent representing macrophase separation for comparison
to the Laves phases was taken to be the lowest-energy tangent
among tangents formed by each (AB-rich, B′C-rich) phase pair-
ing. In general, bcc-bcc macrophase separation is the relevant
candidate to compare with the Laves phase, with the exception of
a few cases of fcc-bcc macrophase separation. The analysis was
performed at two segregation strengths, χN = 25 and χN = 28,
chosen based on the neat diblock phase diagrams25 such that a
neat diblock melt with block fraction fi = 0.2 and conformational
asymmetry of εi j = 1.0 or εi j = 1.5, respectively, would be near the
center of the bcc window. Details of this analysis are available in
the Supporting Information.

Figure 2 depicts the lowest energy of the C14 Laves phase rela-
tive to macrophase separation at each of the conditions described
above at χN = 28. Note that the Laves phases are nearly de-
generate in free energy (see Fig. S3) consistent with prior litera-
ture;17,39,46,56,58 thus selection of C14 over C15 for the analysis
is inconsequential. At this segregation strength, the macrophase
separation reference is dominated by coexistence of AB-rich and
B′C-rich bcc morphologies; the only exceptions occur when B′C-
rich fcc overtakes B′C-rich bcc at the highest conformational
asymmetry condition (εi j = 1.5) for very low NB′C/NAB, high-
lighted by the shaded regions in the figure.

The data in Fig. 2 demonstrate the distinct effects of each con-
formational asymmetry on both the stability of the Laves phases
and the chain length asymmetry most favorable to their forma-
tion. Increasing the conformational asymmetry of the AB diblock
(Fig. 2a) generally destabilizes Laves phases while shifting the
minima of the F vs NB′C/NAB toward higher chain length asym-
metry. If instead εBC is increased (Fig. 2b), the opposite effect
is observed with the Laves phases becoming more stable with
increasing conformational asymmetry and the minima of F vs
NB′C/NAB shifting to lower NB′C/NAB. Simultaneously increasing
both εAB and εBC (Fig. 2c) leads to competition between these
two opposing trends, resulting in only minimal changes to F vs
NB′C/NAB.

The stabilizing effect of εBC and the destabilizing effect of
εAB both can be attributed to the softening of micelle cores
and the resultant imprinting on the polyhedral Wigner-Seitz
cell.5,19,23,28–30 As conformational asymmetry increases, faceting
of the micelle core creates more interfacial area, but the ther-
modynamic cost, relative to micelle volume, is lower for more
spherical polyhedra.5,22,23 In neat diblock systems, Frank-Kasper
phases are proposed to form at higher conformational asymme-
try because their particles are, on average, more spherical than in
bcc.17,23 Critically, however, this does not mean that all Wigner-
Seitz polyhedra in a Frank-Kasper phase are more spherical than
those in bcc,17 as shown in Fig. 1c. Rather, the thermodynamic
benefits of the polyhedra that are more spherical (the red Laves
phase particles in Fig. 1) tend to outweigh the costs of those that
are less spherical. In the Laves phases, the smaller micelles (AB)
reside in domains that are less spherical than bcc, while the larger
micelles (B′C) are in more spherical domains.17 Therefore, when
increasing εAB, there is a thermodynamic cost (relative to bcc for-
mation) incurred by deforming the small micelle cores without
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Fig. 2 Minimum free energy of the C14 Laves phase relative to the macrophase separation tangent line at various conformational asymmetries for (a)
the AB diblock, (b) the B′C diblock, or (c) both the AB and B′C diblocks for χABNAB = χBCNB′C = 28.0, χACNAB = 56.0, and fA = fC = 0.20. Shaded
regions indicate those in which B′C-rich fcc is used in the macrophase separation tangent, rather than B′C-rich bcc, which only correspond to εBC = 1.5
in (b) or εAB = εBC = 1.5 in (c). The same analysis performed at χN = 25 exhibits similar results (see Fig. S2).

the larger domains as a counter-balance; likewise, increasing εBC

creates a relative thermodynamic benefit without the opposing
cost of the smaller micelles.

The observed shifts in the locations of the F vs NB′C/NAB min-
ima result from the effects of conformational asymmetry on the
radius of gyration of a diblock copolymer. Increasing εi j at fixed N
increases the micelle volume. When increasing εAB, this swelling
applies to the smaller particles in the Laves structure. Such
changes reduce the volume asymmetry, making the Laves struc-
ture less stable. Increasing the chain length asymmetry compen-
sates somewhat for the unfavorable swelling of AB micelles, re-
sulting in the rightward shift of the curves. The reverse holds
true for B′C: increasing εBC swells the larger particles for a given
value of N, thus promoting excess volume asymmetry and de-
manding reduced length asymmetry in response to stabilize the
Laves phase. In fact, the swelling induced by εBC = 1.50 is suffi-
cient on its own to produce the requisite Laves volume asymmetry,
with the observed minimum occurring at NB′C/NAB = 1.0.

Neither of these trends are evident in Fig. 2c, in which εBC

and εAB are increased together. Instead, simultaneous changes to
both conformational asymmetries obscure the competing effects
described above, resulting in minimal changes to the free-energy
curve. This condition is analogous to the single conformational
asymmetry available in neat diblock melts obscuring the individ-
ual particle effects, and highlights the value of leveraging multiple
conformational asymmetries. The same analysis as that in Fig. 2
was performed at χN = 25 and produced similar results (see Fig.
S2). For both values of χN, the Laves phases had their lowest
relative free energy when εBC = 1.5 and NB′C/NAB = 1.0, so this
condition was selected for further analysis.

Having established the impacts of simultaneously varying con-
formational asymmetry and chain length, we now investigate the
applicability of the simple estimate for the optimal conditions for
Laves phase stability in Equation 2. Figure 3 compares the opti-
mum NB′C/NAB at χN = 25 and χN = 28 from our SCFT results
against values predicted by Equation 2 with varying conforma-
tional asymmetry. Predicting NB′C/NAB from Equation 2 requires
a volume asymmetry α to use as a basis. For this basis, α = 1.48 is

a good choice because the same value has appeared in prior work
as (i) the best volume asymmetry observed from SCFT in con-
formationally symmetric diblock alloys,46 and (ii) the optimum
volume asymmetry for Laves phases obtained from the uncon-
strained diblock foam model.23 Figure 3 reveals two shortcom-
ings in this estimate. First, the model fails to capture the effects of
χN, consistently underestimating the chain length asymmetry for
χN = 28. Such a failure makes sense when considering that the
chains’ radii of gyration will deviate more strongly from the ideal
Gaussian estimate used in our derivation as segregation strength
increases. Second, the model significantly underestimates the im-
pact of εAB. However, when varying εBC, the model shows rea-
sonable agreement with the observed value. Overall, the simple
model of Equation 2 captures the χN = 25 behavior in Figs. 3b
and 3c, but fails to capture the effects of segregation strength or
accurately reflect the behavior in Fig. 3a.

We now continue our investigation with a thorough analysis of
the phase behavior of the diblock alloy system with NB′C/NAB =

1.0, εAB = 1.0, and εBC = 1.5, identified prior to our discussion
of Equation 2 as most effectively stabilizing the Laves phases
amongst all of the systems we studied. To generate the phase
diagram in Fig. 4, most phase boundaries were established first
using the common-tangent construction55 and canonical ensem-
ble SCFT calculations. In addition to the C14, C15, fcc, bcc, and
hex phases already described, 15 additional competitors were
included in these calculations. The competing phases are in-
spired by a 2014 study of B1AB2CB3 multiblock terpolymers by
Xie et al. 59 and are identical to those chosen by Magruder et al. 46

for their block polymer alloys study. A list of all phases con-
sidered in the calculations is included in Table S1. Subsequent
grand canonical calculations were used to resolve the region near
each invariant point, where grand canonical ensemble’s higher ac-
curacy for problems involving macrophase separation53 substan-
tially benefits the identification of the three-phase coexistence at
these points. Grand canonical calculations were also used to map
the phase boundaries near the ODT, where both canonical SCFT
calculations and common tangent calculations started to suffer
from failed convergence. C14 was used to represent the Laves
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Fig. 3 The chain length asymmetry NB′C/NAB at the F vs. NB′C/NAB minima at χN = 25 (Fig. S2) and χN = 28 (Fig. 2), compared to the chain length
asymmetry predicted by Equation 2 for α = 1.48 when (a) εAB is varied, (b) εBC is varied, and (c) εAB and εBC are varied together. In (a), no minimum
could be clearly observed for εAB = 1.5, as the lowest observed free energy occurred at NB′C/NAB = 2.0, which was the highest value considered.

Fig. 4 (a) Phase diagram for an AB/B′C alloy with NB′C/NAB = 1.0, fA = fC = 0.20, εAB = 1.0, εBC = 1.5, and assuming purely enthalpic χ values
such that χACNAB = 2(χN) at all T and (b) a detailed view of the Laves phase field within that phase diagram. The reference temperature, T0, was
chosen to correspond to χN = 30. Non-linear segments of the phase diagram are drawn using cubic splines fit to the sampled data. A companion
phase diagram showing all of the points where SCFT calculations were performed is provided in Fig. S4.
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phases while mapping the phase diagram. A detailed description
of the canonical and grand canonical methodologies are included
in the Supporting Information.

The phase diagram in Fig. 4a bears substantial qualitative re-
semblance to that presented by Magruder et al. for the conforma-
tionally symmetric case,46 with many characteristics reminiscent
of metal alloy phase diagrams. In each case, the diblock alloys dis-
play a eutectic transition from a disordered liquid to coexistence
between AB-rich and B′C-rich fcc phases, as well as a peritectoid
transition to a Laves phase field upon cooling from coexistence
of simple sphere phases (fcc or bcc). In the conformationally
asymmetric case, however, the temperature difference between
the eutectic and peritectoid points is greatly reduced when com-
pared to prior results for a conformationally symmetric system.46

The peritectoid transitions of the two systems also differ on which
simple sphere phase overtakes the Laves phase: bcc in the confor-
mationally symmetric case,46 and fcc here. As also noted by Ma-
gruder et al.,46 experimental realization of this narrow eutectic to
peritectoid transition is unlikely, given that fluctuation effects are
expected to destroy the high-temperature regions of the diagram.

Below the peritectoid point, the Laves phase field widens as
temperature decreases, and Laves coexistence with AB-rich and
B′C-rich fcc phases is overtaken by coexistence with the corre-
sponding bcc phases. At χN = 28, the highest segregation strength
tested by Magruder et al.,46 we find a Laves phase field with a
width of 0.006 in φAB. This exceeds the 0.002 width in φAB re-
ported previously,46 consistent with the expectation that confor-
mational asymmetry stabilizes Laves phases in the blend, while
still possessing the narrow width characteristic of a phase field.
The phase field reaches a maximum width at χN = 29.62 where
the AB-rich bcc window closes, and the Laves phase starts to co-
exist with the AB-rich hex phase. At this segregation strength, the
AB diblock would naturally form a hex phase in the neat melt. As
the system is cooled further, conversion of the cylinder-forming
AB diblock into spheres becomes increasingly unfavorable. The
Laves phase field thus closes in a eutectoid transition to coexis-
tence of B′C-rich bcc and AB-rich hex, which dominates the phase
diagram at lower temperatures. The shape of the Laves phase
field is difficult to resolve in Fig. 4a, so we include Fig. 4b to
focus on the Laves window and help illuminate these details.

Compared to the neat melt conditions, both the AB-rich and
B′C-rich fcc phase become stable over a much broader range of
χN with the introduction of minority component. Aggregation of
the minority component at the octahedral void of the structure
has been shown to stabilize the fcc phases,60,61 thus producing
this effect. The difference in conformational asymmetry of the
two diblocks results in substantial asymmetries in the phase dia-
gram, particularly with regard to AB-rich and B′C-rich phase tran-
sitions. Conformational asymmetry shifts the phase boundaries of
the neat B′C diblock relative to that of the AB diblock.1,22,24–27

These morphological differences between the neat diblock melts
carry over into the blended behavior, resulting in the asymme-
tries observed in Fig. 4. Of particular interest is the absence of
any B′C-rich hex formation. The presence of hex on the AB-rich
side of the diagram results in a rapid transition from a gradually
broadening Laves phase field to a rapidly narrowing one.

Fig. 5 The Laves phase window for NB′C/NAB = 1.4, fA = fC = 0.20, εAB =

εBC = 1.5, and assuming purely enthalpic χ values such that χACNAB =

2(χN). The reference temperature T0 was chosen to correspond to χN =

30. A peritectoid point and its associated tie line are included as a guide
for the eye, but the position is interpolated from common-tangent data
at χN = 25.5 and χN = 26, and are therefore marked with a dashed line
and open data marker to reflect the imprecision of this estimate.

The narrowing of the Laves phase field at the AB-rich bcc-hex
transition suggests that, without competition from hex phases,
conformationally asymmetric binary diblock alloys may exhibit a
Laves phase field out to strong segregation. In order to test this
speculation, we need to select a system in which neither diblock
undergoes a transition to hex in the neat melt. From Fig. 2c, we
see that when both diblocks have a conformational asymmetry of
1.5, the Laves phase remains stable when the ratio of the degrees
of polymerization is used to induce volume asymmetry. We also
know that a neat diblock with ε = 1.5 and f = 0.2 will not assem-
ble into hex below χN = 40,25 which is an approximate upper
bound for the ability to converge Frank-Kasper phase SCFT calcu-
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lations with our software. Thus, we choose to further analyze an
alloy system where εAB = εBC = 1.5 and NB′C/NAB = 1.4, which
corresponds with the lowest relative free energy for Laves phases
at the desired conformational asymmetry from our testing.

Using the same set of competing phases as for Fig. 4, the Laves
phase field was mapped for this alloy. Canonical ensemble calcu-
lations were used in a common tangent analysis to identify the
stable region for the Laves phase. As can be seen in Fig. 5,
the Laves window remains open and continues to broaden up
to χN = 40. The Laves window also shifts to lower φAB upon
cooling, consistent with the trend seen in the work of Magruder
et al. for conformationally symmetric alloys where NB′C/NAB was
also used to create distinct particle sizes.46 It is also interesting
to note that at the low-temperature end of Fig. 5, the AB-rich
(right) side of the Laves window is much more nearly vertical
than on the B′C-rich (left) side. Diblocks with the same block
fraction and conformational asymmetry should exhibit the same
phase behavior in the neat-melt limit; one might expect this sym-
metry to carry into the blending behavior and, likewise, into the
Laves coexistence boundaries. However, both the deflection of the
Laves window to lower φAB and the differing verticality of the co-
existence boundaries demonstrate that this is not the case. This
difference results from the asymmetry in chain length between
the AB and B′C diblocks and resultant differences in their ability
to pack in the interstitial sites of the bcc phases.

4 Conclusions
Using the Frank-Kasper Laves phases as a case study, we have
demonstrated the ability of block polymer alloys to decouple the
potentially competing effects of conformational asymmetry in dif-
ferent particle types, thereby probing the subtleties of its role in
phase selection. In Laves phases, this decoupling revealed that in-
creasing conformational asymmetry in the smaller, less spherical
Laves particles has a detrimental effect on Laves phase stability,
while increasing it in the larger, more spherical micelles is benefi-
cial. The absence of significant changes to Laves stability when
conformational asymmetry is simultaneously increased in both
particles highlights how information can be obscured by compe-
tition when only a single conformational asymmetry is available
– such as in a neat diblock melt.

Our results also demonstrate the value of independent con-
formational asymmetry control as a tool for designing self-
assembling block polymer systems. Not only do we find that in-
creasing conformational asymmetry in the large particles stabi-
lizes the Laves phases, we also find that this effect is sufficient to
produce the volume asymmetry required for Laves phase forma-
tion, without the need for asymmetry in the degrees of polymer-
ization of the constituent chains, and results in a lower relative
free energy for the Laves phases than was seen in the conforma-
tionally symmetric case. The phase diagram of this system bears
a striking resemblance to that reported for the conformationally
symmetric case,46 with a slightly broader Laves window and a
greater variety of phases coexisting with the Laves phase. With
increasing segregation strength, increasing preference for cylin-
der formation by one of the diblocks causes cylinders to rapidly
out-compete the Laves phases, thus closing the Laves phase field.

We are further able to leverage conformational asymmetry to
avoid this cylinder formation and stabilize the Laves phases out
to high segregation strength, suggesting the potential to extend
the Laves phase field out to the strong segregation limit by bal-
ancing chain composition, degrees of polymerization, and confor-
mational asymmetries.

Based on the results presented here, and in prior work,46 a
substantial barrier to practical application of this methodology is
likely to be the large windows of predicted macrophase separa-
tion. Introduction of some compatibilizing mechanism, such as
hydrogen bonding between the corona blocks,62 to favor greater
contact between the distinct micelle types may further stabilize
the Laves phase in an alloy-type blend. Although the literature on
diblock copolymer alloys has so far focused on Laves phases, the
methodology will likely find utility tuning individual domains in
other Frank-Kasper phases or other morphologies, particularly if
mechanisms can be found to reduce the size of macrophase sepa-
ration windows.
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S1 Self-Consistent Field Theory

Calculations in this work are performed using the C++ implementation of the Polymer Self-

Consistent Field (PSCFpp) software package.S1 In this section, we present the formulation of

the block copolymer self-consistent mean field theory (SCFT) implemented in PSCFpp. Our

discussion here closely follows the formalism presented alongside PSCFpp’s Fortran-based

predecessor,S2,S3 although the present discussion is specific to the diblock alloy system. More

generalized discussions of SCFT are available elsewhere.S4–S6

Using PSCFpp, we consider a system of incompressible, continuous Gaussian chain poly-

mers composed of three unique monomer types i ∈ {A,B,C}, with statistical segment lengths

bi. These monomers are coarse-grained and occupy the common monomer reference volume

v. The interaction strength between two monomers i and j 6= i is given by the Flory-Huggins

parameter χij; self-interaction of a monomer i with itself is thermodynamically neutral with

χii = 0. We consider a blend of two diblock polymer chains k ∈ {AB,B′C} with total chain

degrees of polymerization NAB for the AB chain and NB′C for the B′C chain. These total

degrees of polymerization represent the sum of the degrees of polymerization of their con-

stituent blocks such that NAB = NA+NB is the sum of NA A-monomers and NB B-monomers

while NB′C = NB′ + NC is the sum of NB′ B-monomers and NC C-monomers. In the blend,

the overall volume fractions of the AB and B′C polymers are φAB and φB′C = 1−φAB, respec-

tively. The requirement of a uniform coarse-grained monomer volume v yields an equivalence

between volume and degree of polymerization such that the volume fraction of a block within

a polymer chain is given by its degree of polymerization: fA = NA/NAB for the A-block in

the AB chain and fC = NC/NB′C for the C-block in the B′C chain. SCFT calculations in

PSCFpp are performed on a single unit-cell with periodic boundary conditions to represent

the structure throughout a macroscopic volume. This unit cell has volume V and contains

n = V/v monomers.

It is useful to note that, in the context of SCFT calculations in PSCFpp, a “monomer”

acts as a bookkeeping device and there is far more flexibility in its definition than would be
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appropriate in a synthetic or experimental context. In the SCFT formalism, a “monomer”

need not represent a single chemical repeat unit, as is typical in a synthetic context, but

instead represents the molar mass of polymer chain occupying one monomer reference vol-

ume, v.S3 In our calculations, v is chosen such that NAB = 1 which produces two convenient

outcomes. First, chain length asymmetry, NB′C/NAB, becomes numerically equivalent to

NB′C. Second, energies can be easily reported on a per-chain basis because the number of

monomers in the system, n, can be interpreted as the number of chains of length NAB. Sin-

turel et al. S7 offer a helpful discussion about mapping the SCFT parameters to those of real

polymers.

In SCFT, the many-body particle-particle interactions of the polymer melt are replaced

by a spatially varying chemical potential field acting on a representative set of non-interacting

polymer chains in the saddle-point approximation that is relevant as a mean-field description.

The potential field acting on monomer i at spatial position r is denoted by ωi(r) and given

for each monomer by

ωA(r) = χABρB(r) + χACρC(r) + ξ(r) (S1)

ωB(r) = χABρA(r) + χBCρC(r) + ξ(r) (S2)

ωC(r) = χACρA(r) + χBCρB(r) + ξ(r) (S3)

where ρi(r) is the average local volume fraction of monomer i at position r and ξ(r) is a

Lagrange multiplier enforcing the incompressibility constraint,

ρA(r) + ρB(r) + ρC(r) = 1 (S4)

Running an SCFT calculation requires that the user first provide an initial guess for ωA,

ωB, and ωC. These initial values are used to compute the partition function of each polymer
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k according to

Qk =
1

V

∫
V

dr qk(r, Nk) (S5)

where the forward propagator qk(r, Nk) represents the solution of the modified diffusion

initial value problem for chain type k,

∂qk (r, s)

∂s
=

[
b2i(s)

6
∇2 − ωi(s)(r)

]
qk(r, s), qk(r, 0) = 1 (S6)

where s ∈ [0, Nk] is the coordinate along the chain contour. The subscript i(s) on bi(s) and

ωi(s) indicate that the statistical segment length and chemical potential field will be those

corresponding to the monomer type at contour position s. More explicitly: when k = AB,

we use bA and ωA(r) when integrating over the region s ∈ [0, NA] and we use bB and ωB(r)

for integration over s ∈ [NA, NAB]; when k = B′C, we use bC and ωC(r) for integration over

s ∈ [0, NC] and we use bB and ωB(r) for integration over s ∈ [NC, NB′C].

The forward propagator qk(r, s) is a normalized partition function for the portion of chain

k on [0, s] when the chain contour segment s is constrained to position r. Under the same

positional constraint of segment s, the normalized partition function for the remainder of

chain k, [s,Nk], is given by the backward propagator q†k(r, s) which is the solution of the

modified diffusion initial value problem

− ∂q†k(r, s)

∂s
=

[
b2i(s)
6
∇2 − ωi(s)(r)

]
q†k(r, s), q†k(r, Nk) = 1 (S7)

The product of the forward and backward propagators, qk(r, s)q†k(r, s), is proportional to

the probability of finding chain contour segment s at position r.S4 This proportionality can

then be used to compute the average local volume fractions of each monomer, ρi(r), which

in turn can be used to compute the potential field for each monomer ωi(r). Details of the

local monomer volume fractions differ between the canonical and grand canonical ensembles,

and are given below in Equations S8-S9 and S13-S14 respectively.
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The circular dependence of Equations S1-S3 on Equations S8-S10 (or Equations S13-

S15) via Equations S4-S7 means that the SCFT calculation must iterate on ωi(r) from

the user-provided initial guess until these equations become self-consistent within a specified

tolerance. In our calculations, we measure error using the relative residual norm described by

Matsen S8 and converge calculations to a tolerance of 1× 10−6. Iterations are done according

to an Anderson Mixing schemeS8–S10 which optimizes unit cell parameters simultaneously

with the fieldS10,S11 to minimize stress and obtain an accurate free energy.

S1.1 Canonical Ensemble

In the canonical ensemble, system composition is specified for the system by declaring φAB

and φB′C in the input file. Using these values, and the partition functions above, the local

volume fractions of each monomer are calculated withS6

ρA(r) =
φAB

QABNAB

∫ NA

0

ds qAB(r, s)q†AB(r, s) (S8)

ρB(r) =
φAB

QABNAB

∫ NAB

NA

ds qAB(r, s)q†AB(r, s) +
φB′C

QB′CNB′C

∫ NB′C

NC

ds qB′C(r, s)q†B′C(r, s) (S9)

ρC(r) =
φB′C

QB′CNB′C

∫ NC

0

ds qB′C(r, s)q†B′C(r, s) (S10)

After these equations are solved self-consistently with those in Equations S1-S7, the

Helmholtz free energy per monomer is given byS2

F

nkBT
=

1

V

∫
dr [(χABρAρB + χACρAρC + χBCρBρC)− (ωAρA + ωBρB + ωCρC)]

+
φAB

NAB

(
ln
φAB

QAB

− 1

)
+
φB′C

NB′C

(
ln
φB′C

QB′C
− 1

) (S11)

where kBT is the Boltzmann constant and T is the absolute temperature.
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S1.2 Grand Canonical Ensemble

Instead of system composition, calculations in the grand canonical ensemble specify the

dimensionless chemical potential of the AB and B′C polymers (µAB/kBT and µB′C/kBT ,

respectively). These chemical potentials are related to the overall volume fractions by S6

exp

(
µk

kBT

)
Qk = φk (S12)

This relation, combined with incompressibility of the system, means that µAB/kBT and

µB′C/kBT are not independent, allowing us to set µAB/kBT = 0 throughout our calculations

while varying µB′C/kBT . The relation in Equation S12 can also be used to compute the local

volume fractions of each monomer via substitution into Equations S8-S10, giving

ρA(r) =
1

NA

exp

(
µAB

kBT

)∫ NA

0

ds qAB(r, s)q†AB(r, s) (S13)

ρB(r) =
1

NAB

exp

(
µAB

kBT

)∫ NAB

NA

ds qAB(r, s)q†AB(r, s)

+
1

NB′C
exp

(
µB′C

kBT

)∫ NB′C

NC

ds qB′C(r, s)q†B′C(r, s)

(S14)

ρC(r) =
1

NB′C
exp

(
µB′C

kBT

)∫ NC

0

ds qB′C(r, s)q†B′C(r, s) (S15)

After the calculation converges, the grand canonical free energy is given byS12

Fg = −PV (S16)

where P is the system pressure. For our alloy system, the number of AB chains, nAB, and

the number of B′C chains, nB′C, along with their respective chemical potentials can be used

to relate the grand canonical free energy to the Helmholtz free energy withS6

Fg = F − nABµAB − nB′CµB′C (S17)
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which can be combined with Equation S16 to give

PV = −F + nABµAB + nB′CµB′C (S18)

By noting that nk = nφk/Nk and non-dimensionalizing Equation S18 by dividing by nkBT ,

we obtain
Pv

kBT
= − F

nkBT
+
φAB

NAB

(
µAB

kBT

)
+
φB′C

NB′C

(
µB′C

kBT

)
(S19)

which gives the dimensionless pressure output by PSCFpp in terms of the dimensionless

chemical potentials, dimensionless Helmholtz free energy, and overall species volume frac-

tions, all of which are also reported by the program.S3

S2 Phase Coexistence

For two or more phases to be in equilibrium, they must have equal pressure and temperature,

and the chemical potential of each species in the system must be the same in all phases. In

the SCFT calculations employed here, the temperature of the system is set by the Flory-

Huggins parameter χij; therefore, the equal temperature condition for equilibrium is met as

long as calculations are done at fixed χij, regardless of the ensemble in which calculations are

performed. Establishing the equal-pressure and equal-chemical potential conditions differs

by the ensemble selected. The remainder of this section describes the methods for equilibrium

determination in the canonical and grand canonical ensembles.

S2.1 Canonical Ensemble: Common Tangent

The SCFT calculations performed here assume incompressibility of the polymers. Due to

this assumption in the canonical ensemble, the addition of a constant pressure to the system

will not change the Helmholtz free energy.S6 This means that the pressure in the canonical

ensemble is arbitrary, and the requirement of constant pressure can always be met. The
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requirement of equal chemical potential in all phases for each species is established via the

common tangent construction.S13

To numerically determine a common tangent between phases I and II, the Helmholtz

free energy data for each phase, collected at intervals of ∆φAB = 0.005, is first fit to a

cubic spline, giving the energy of each phase as a function of φAB, F I(φAB) and F II(φAB).

To ensure fidelity to the underlying data, this spline was computed with a zero smoothing

factor, which forces the curve to pass exactly through all data points.S14 The compositions

of the two coexisting phases, φI
AB and φII

AB, were then calculated numerically by seeking the

root of

f(φI
AB, φ

II
AB) =

f1(φI
AB, φ

II
AB)

f2(φ
I
AB, φ

II
AB)

 (S20)

where f1 and f2 are given by

f1(φ
I
AB, φ

II
AB) =

dF I

dφAB

(φI
AB)− F I(φI

AB)− F II(φII
AB)

φI
AB − φII

AB

(S21)

f2(φ
I
AB, φ

II
AB) =

dF II

dφAB

(φI
AB)− F I(φI

AB)− F II(φII
AB)

φI
AB − φII

AB

(S22)

The root of f(φI
AB, φ

II
AB) occurs when the slope of the tangent to each energy curve, dF i/dφAB,

is equal to the slope of the line connecting the two tangent points,
(
φI
AB, F

I(φI
AB)
)
and(

φII
AB, F

II(φII
AB)
)
, which guarantees that the points are co-linear along the common tangent.

This construction is depicted in Fig. S1.

Optimization was done with the SciPy root-finding method scipy.optimize.root us-

ing the ‘hybr’ method option, which uses a modified Powell method as implemented in

MINPACK.S15,S16 In general, we find this method to be very robust for common tangent

calculations, with most tangent calculations converging when the mid-point of each energy

curve is used as the initial guess for the respective φi
AB, which was the default initial guess

for our calculations.

When this methodology was used to choose a macrophase separation pairing for com-
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parison to the Laves phase, as done in Fig. S2 or Fig. 2 of the main text, phases I and

II represent the AB-rich and B′C-rich bcc or fcc phases. This same methodology was used

in construction of the phase diagram to determine phase boundaries along the Laves phase

field, in which case phases I and II would represent a Laves phase and one of the AB-rich or

B′C-rich phases.

Figure S1: Representative illustration of the common tangent calculation method for arbi-
trary phases I and II, using hypothetical quadratic Helmholtz free energy curves for these
phases, F I(φAB) and F II(φAB) respectively. The method iterates on the values of the coex-
istence compositions, φI

AB (phase I) and φII
AB (phase II), to find the root of Equation S20.

The solid lines are the tangents to F I(φAB) and F II(φAB) at the points
(
φI
AB, F

I(φI
AB)
)
and(

φII
AB, F

II(φII
AB)
)
, respectively. These tangent points are marked with black dots. The dashed

line connects the two tangent points,
(
φI
AB, F

I(φI
AB)
)
and

(
φII
AB, F

II(φII
AB)
)
. The slopes of the

tangent lines and the connector line are indicated on the graph algebraically as they are listed
in Equations S21 and S22. When all three slopes are equal, at the root of Equation S20,
the tangent points

(
φI
AB, F

I(φI
AB)
)
and

(
φII
AB, F

II(φII
AB)
)
will be co-linear along the common

tangent.
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S2.2 Grand Canonical Ensemble

Our approach to phase coexistence in the grand canonical ensemble follows the method de-

scribed by Matsen S17 and that used by Magruder et al. S18 in their work on conformationally

symmetric diblock alloys. Due to the incompressibility of the system, the chemical potentials

of the AB and B′C chains are not independent, allowing us to choose µAB/kBT = 0 for all

calculations. This trivially satisfies the chemical potential criteria for the AB chain. The

chemical potential value input to PSCF for the B′C chain, µB′C/kBT , is then controlled as

an independent variable and phases are compared across µB′C/kBT values (similarly to φAB

in the canonical ensemble). By controlling the value of µB′C/kBT , we thus also meet the

chemical potential criterion for B′C. The pressure of each phase as calculated with Eqn. S19

is output by PSCF following convergence of the SCFT calculation. The final equilibrium

criterion, equal pressure, is met when the Pv/kBT vs µB′C/kBT curves of the phases inter-

sect. In general, SCFT calculations were run at increments of 0.0005 in µB′C/kBT . In some

cases, however, larger sampling increments were required when large ranges of µB′C/kBT

needed to be sampled to find an intercept. These larger sampling increments were most

often needed while resolving the high-temperature regions near the ODT, where the P (µB′C)

curves of disorder and the AB-rich or B′C-rich fcc phases were nearly parallel. In these cases,

µB′C/kBT needed to be sampled over ranges up to two orders of magnitude larger than was

typically required. Regardless of sampling increment, interpolation was used to determine

the chemical potential and composition of the phases at equilibrium.

S3 Impact of Conformational Asymmetry

As discussed in the main text, we evaluated the impact of conformational asymmetry in

each of the Laves particles by simultaneously varying the chain length asymmetry and the

conformational asymmetries. At each condition conformational asymmetry and chain length

asymmetry, we ran canonical ensemble SCFT calculations at a variety of blend fractions for
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the Laves phases and a set of AB-rich and B′C-rich macrophase separation competitors. We

used the common tangent construction to determine which set of AB-rich and B′C-rich phases

made the most competitive macrophase separation pair, and compared the Laves phase

energy to this macrophase separation tangent. The results of this analysis at χN = 28.0

were reported in Figure 2 of the main text. Figure S2 reports the results of this analysis

at χN = 25.0. Unlike at χN = 28, where bcc-bcc coexistence dominated the macrophase

separation reference, here both fcc and bcc appear frequently on both ends of the macrophase

separation tangent. Aside from the more frequent appearance of fcc phases, the trends seen

here are quite similar to those reported in the main text.

Figure S2: Minimum free energy of the C14 Laves phase relative to the macrophase sep-
aration tangent line at various conformational asymmetries for (a) the AB diblock, (b)
the B′C diblock, or (c) both the AB and B′C diblocks for χABNAB = χBCNB′C = 25.0,
χACNAB = 50.0, and fA = fC = 0.20. Shaded regions indicate those in which one or both of
the AB-rich and B′C-rich fcc phases are used in the macrophase separation tangent (in place
of the corresponding bcc phase) at one or more of the conformational asymmetries studied
here.

S4 Candidate Phases

In order to generate the phase diagrams reported in the main text, we needed to consider

a variety of competitor phases in addition to the Laves phases and macrophase separation

candidates. Table S1 lists the phases considered during construction of phase diagrams. The

table contains crystallographic information, SCFT spatial discretization, and information on
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the number of particles and assignment of particles as AB or B′C micelles. As stated in the

main text, the phases considered in this work are inspired by the work of Xie et al. S19 and

match the candidate set employed by Magruder et al. S18 In constructing our phase diagram,

we have chosen to omit hexagonally close-packed spheres (hcp) from the set of candidate

phases. The hcp phase is nearly degenerate with fcc,S19,S20 and any changes (if any) it would

produce in the phase diagram would be negligible; fcc is taken to be representative of both

close-packed sphere phases.

Several of the candidate phases listed here (specifically ReO3, TiO2, CaF2, and α-Al2O3)

proved particularly difficult to converge in many regions of the phase diagram, as noted

previously by Magruder et al.,S18 and are therefore missing from many of the canonical

ensemble calculation sets. Among these phases, ReO3 proved the most problematic, as we

were unable to achieve convergence of an initial field at the desired conformational asymmetry

for either of the phase diagrams reported in this work (Figures 4 and 5 of the main text).

In the case of εBC = 1.5, we were unable to converge an initial field for α-Al2O3. Finally,

we were unable to obtain initial fields for either TiO2 or CaF2 for εAB = εBC = 1.5. In all

cases, if we were unable to obtain an initial field at the desired conformational asymmetry,

we assume the phase is highly unfavorable at the conditions being considered, and omit it

from the analysis.
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Table S1: Complete list of phases considered during generation of the phase diagrams. Table
includes the name of the phase (Phase name); the label used to identify the phase in figures
(Label Name); The crystal system and space group of the phase; the spatial discretization
used in SCFT calculations for the phase (SCFT grid size); the number of nominally spherical
particles in a unit cell of the phase (Particles per unit cell); the ratio of the number of particles
composed of AB chains to the number of particles composed of B′C chains (AB:B′C particle
ratio).

Phase name Label
name

Crystal
system

Space
group

SCFT
grid size

Particles
per unit

cell

AB:B′C
particle
ratio

MgZn2 C14 Hexagonal P63/mmc 64x64x104 12 2:1
MgCu2 C15 Cubic Fd3m 96x96x96 24 2:1

W bcc Cubic Im3m 48x48x48 2 0 or 1*
CsCl alt-bcc Cubic Pm3m 64x64x64 2 1:1
Cu fcc Cubic Fm3m 48x48x48 4 0 or 1*

Hexagonally
packed cylinders hex Hexagonal p6mm 48x48 N/A 0 or 1*

Alternating hex alt-hex Hexagonal p6mm 48x48 N/A 2:1
Inverted alt-hex (alt-hex)i Hexagonal p6mm 48x48 N/A 1:2

Nb3Sn A15 Cubic Pm3n 64x64x64 8 1:3
AlB2 AlB2 Hexagonal P6/mmm 64x64x64 3 2:1

sapphire (α-BN) α-Al2O3 Trigonal R3c 64x64x64 10 3:2
α-BN α-BN Hexagonal P63/mmc 48x48x64 4 1:1
CaF2 CaF2 Cubic Fm3m 64x64x64 12 2:1
Li3Bi Li3Bi Cubic Fm3m 64x64x64 16 3:1

Inverted Li3Bi (Li3Bi)i Cubic Fm3m 64x64x64 16 3:1
rocksalt NaCl Cubic Fm3m 64x64x64 8 1:1
ReO3 ReO3 Cubic Pm3m 64x64x64 4 3:1
σ-FeCr σ Tetragonal P42/mnm 128x128x64 30 1:2**
TiO2 TiO2 Tetragonal P42/mnm 64x64x42 6 1:2
ZnS ZnS Cubic F43m 64x64x64 8 1:1

*These structures represent the AB-rich and B′C-rich morphologies considered for macrophase separation.
All particles are composed of the majority species, with the minority located in interstitial sites.
**Particle assignment for σ is not trivial given the complexity of the structure. Here, B′C is placed in particles
with volume above the number-averaged particle volume for the phase (Wyckoff positions 4f, 8i′, and 8j) while
AB is placed in particles with volumes below this average (Wyckoff Positions 2b, and 8i), according to the
volumes computed by Reddy et al. using the diblock foam model.S21 This “above average” vs “below average”
criteria was chosen for consistency with the Laves phases, in which B′C was assigned to the larger particles.
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S5 Laves Phase Degeneracy

The main text reports that choice of Laves phase to use in the analysis would have little

impact on the results because the Laves phases are found here to be nearly degenerate in

free energy. To support this claim, Figure S3 shows the free energy of the C15 Laves phase

relative to C14 based on the canonical ensemble SCFT calculations used to generate the

phase diagram in Figure S4. We have chosen to use the C14 phase as the representative

Laves phase in our analysis because our data show that it is, within the Laves phase field,

more stable than C15. However, within this range, the total difference in the Laves phase free

energies never exceeds 1× 10−4 kBT per chain of length NAB. It is interesting to note that,

over a brief composition window at lower φAB than the Laves phase field, C15 is briefly more

stable than C14; regardless, it still remains metastable relative to macrophase separation.

Figure S3: The energy of the C15 Laves phase relative to that of C14 from canonical ensemble
SCFT data used to generate the phase diagram in Fig. 4 of the main text and Figure S4
here. The vertical dotted lines represent the bounds (in φAB) of Figure S4b and Fig. 4b,
and serve as a guide for the range relevant to the Laves phase field reported in this work.
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S6 Phase Diagram

In this work, most of the calculations have been done in the canonical ensemble, with the

grand-canonical ensemble reserved for resolving 3-phase coexistence and the region near the

ODT. In the canonical ensemble, system composition is specified directly via blend fractions,

which are bound on [0,1]. This naturally-bounded domain allows energy profiles (sweeps in

blend fraction with other parameters fixed, such that common tangent calculations can be

completed) to be computed in parallel at a variety of conditions without concern that the

resultant data will miss the coexistence region. In contrast, the chemical potential in the

grand-canonical ensemble is specified rather than the blend fraction. The chemical potential

is not similarly bounded, and the numerical range in which coexistence would be observed

is not known a priori. It is also not known how far the chemical potential at coexistence

may shift with changes in, for example, segregation strength or chain length. By running

canonical ensemble calculations in parallel at the desired parameter ranges (in our case,

segregation strength) we can quickly obtain results over the desired range. When additional

accuracy is needed, these initial results can then act as a guide to estimate chemical potential

values when refining three-phase coexistence or the regions near disorder.

Construction of the phase diagram reported in Figure 4 for an alloy with NB′C/NAB = 1.0

and εBC = 1.5 started with initial sets of canonical ensemble SCFT calculations followed by

common tangent constructions at χN = 23.5 (the lowest value at which the Laves phases

converged) and integer values of χN from 24.0 to 40.0 to obtain a coarse map of the phase

boundaries. Subsequent canonical ensemble, common-tangent calculations were then per-

formed at increments of 0.5 in χN around the AB-rich and B′C-rich coexistence transitions

points (such as where the AB-rich phase in coexistence with the Laves phase field changes

from fcc to bcc, or from bcc to hex). These first two rounds of calculation considered only

the Laves phases and the macrophase separation competitors. A third round of canonical en-

semble calculations added the remaining competitors at a selection of segregation strengths.

Below the transition to Laves-hexAB coexistence, competing phases were run at all sampled

S16



segregation strengths. Above this transition, we noticed that the AB-rich hex phase quickly

out-competes the Laves phases and suspected that it would similarly outcompete the other

sphere-forming morphologies. We chose to run the remaining competitors only at χN = 30,

χN = 40, and at odd values of χN from 31 to 39 finding that, indeed, all competitors are

similarly outcompeted by AB-rich hex with increasing χN . On the basis of this result, we

chose not to run the competing phases at the remaining χN values. Finally, grand canonical

ensemble calculations were used to refine the position of invariant points and map the region

near the ODT.

Here, Figure S4 reports the same phase diagram as Fig. 4 of the main text, but includes

the particular points used to generate the diagram. Each dot in Figure S4 represents a

point at which we have collected SCFT data. Data were collected at the highest density

near invariant points where grand canonical ensemble was used to resolve the three-phase

coexistence conditions. The reported data show that the splines used to draw the phase

boundaries introduce no anomalous shapes and broadly reflect the collected data.
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Figure S4: (a) Phase diagram for an AB/B′C alloy with NB′C/NAB = 1.0, fA = fC = 0.20,
εAB = 1.0, εBC = 1.5, and assuming purely enthalpic χ values such that χACNAB = 2 (χN)
at all T and (b) a detailed view of the Laves phase field within that phase diagram. Points
indicate conditions at which we collected SCFT data. The reference temperature, T0, was
chosen to correspond to χN = 30. Non-linear segments of the phase diagram are drawn
using cubic splines fit to the sampled data.
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