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Abstract

In this paper, we present Co-scale conv-attentional image
Transformers (CoaT), a Transformer-based image classifier
equipped with co-scale and conv-attentional mechanisms.
First, the co-scale mechanism maintains the integrity of
Transformers’ encoder branches at individual scales, while
allowing representations learned at different scales to ef-
fectively communicate with each other; we design a series
of serial and parallel blocks to realize the co-scale mecha-
nism. Second, we devise a conv-attentional mechanism by
realizing a relative position embedding formulation in the
factorized attention module with an efficient convolution-like
implementation. CoaT empowers image Transformers with
enriched multi-scale and contextual modeling capabilities.
On ImageNet, relatively small CoaT models attain superior
classification results compared with similar-sized convolu-
tional neural networks and image/vision Transformers. The
effectiveness of CoaT’s backbone is also illustrated on ob-
ject detection and instance segmentation, demonstrating its
applicability to downstream computer vision tasks.

1. Introduction

A notable recent development in artificial intelligence is
the creation of attention mechanisms [38] and Transform-
ers [31], which have made a profound impact in a range of
fields including natural language processing [7, 20], docu-
ment analysis [39], speech recognition [8], and computer
vision [9, 3]. In the past, state-of-the-art image classifiers
have been built primarily on convolutional neural networks
(CNNs) [15, 14, 27, 26, 11, 36] that operate on layers of
filtering processes. Recent developments [30, 9] however
begin to show encouraging results for Transformer-based
image classifiers.

In essence, both the convolution [15] and attention [38]
operations address the fundamental representation problem
for structured data (e.g. images and text) by modeling the
local contents, as well as the contexts. The receptive fields

* indicates equal contribution.
Code at https://github.com/mlpc—ucsd/CoaT.
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Figure 1. Model Size vs. ImageNet Accuracy. Our CoaT model
significantly outperforms other image Transformers. Details are in
Table 2.

in CNNs are gradually expanded through a series of con-
volution operations. The attention mechanism [38, 31] is,
however, different from the convolution operations: (1) the
receptive field at each location or token in self-attention
[31] readily covers the entire input space since each token
is “matched” with all tokens including itself; (2) the self-
attention operation for each pair of tokens computes a dot
product between the “query” (the token in consideration)
and the “key” (the token being matched with) to weight the
“value” (of the token being matched with).

Moreover, although the convolution and the self-attention
operations both perform a weighted sum, their weights are
computed differently: in CNNs, the weights are learned dur-
ing training but fixed during testing; in the self-attention
mechanism, the weights are dynamically computed based
on the similarity or affinity between every pair of tokens.
As a consequence, the self-similarity operation in the self-
attention mechanism provides modeling means that are po-
tentially more adaptive and general than convolution oper-
ations. In addition, the introduction of position encodings
and embeddings [31] provides Transformers with additional
flexibility to model spatial configurations beyond fixed input
structures.

Of course, the advantages of the attention mechanism are
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not given for free, since the self-attention operation com-
putes an affinity/similarity that is more computationally de-
manding than linear filtering in convolution. The early de-
velopment of Transformers has mainly focused on natural
language processing tasks [31, 7, 20] since text is “shorter”
than an image, and text is easier to tokenize. In computer
vision, self-attention has been adopted to provide added mod-
eling capability for various applications [34, 37, 44]. With
the underlying framework increasingly developed [9, 30],
Transformers start to bear fruit in computer vision [3, 9] by
demonstrating their enriched modeling capabilities.

In the seminal DEtection TRansformer (DETR) [3] algo-
rithm, Transformers are adopted to perform object detection
and panoptic segmentation, but DETR still uses CNN back-
bones to extract the basic image features. Efforts have re-
cently been made to build image classifiers from scratch, all
based on Transformers [9, 30, 33]. While Transformer-based
image classifiers have reported encouraging results, perfor-
mance and design gaps to the well-developed CNN models
still exist. For example, in [9, 30], an input image is divided
into a single grid of fixed patch size. In this paper, we de-
velop Co-scale conv-attentional image Transformers (CoaT)
by introducing two mechanisms of practical significance to
Transformer-based image classifiers. The contributions of
our work are summarized as follows:

* We introduce a co-scale mechanism to image Trans-
formers by maintaining encoder branches at separate
scales while engaging attention across scales. Two
types of building blocks are developed, namely a serial
and a parallel block, realizing fine-to-coarse, coarse-
to-fine, and cross-scale image modeling.

* We design a conv-attention module to realize relative
position embeddings with convolutions in the factor-
ized attention module that achieves significantly en-
hanced computation efficiency when compared with
vanilla self-attention layers in Transformers.

Our resulting Co-scale conv-attentional image Transformers
(CoaT) learn effective representations under a modularized
architecture. On the ImageNet benchmark, CoaT achieves
state-of-the-art classification results when compared with the
competitive convolutional neural networks (e.g. Efficient-
Net [29]), while outperforming the competing Transformer-
based image classifiers [9, 30, 33], as shown in Figure 1.

2. Related Works

Our work is inspired by the recent efforts [9, 30] to realize
Transformer-based image classifiers. ViT [9] demonstrates
the feasibility of building Transformer-based image classi-
fiers from scratch, but its performance on ImageNet [23]
is not achieved without including additional training data;
DeiT [30] attains results comparable to convolution-based

classifiers by using an effective training strategy together
with model distillation, removing the data requirement in [9].
Both ViT [9] and DeiT [30] are however based on a single
image grid of fixed patch size.

The development of our co-scale conv-attentional trans-
formers (CoaT) is motivated by two observations: (1) multi-
scale modeling typically brings enhanced capability to rep-
resentation learning [11, 22, 32]; (2) the intrinsic connection
between relative position encoding and convolution makes it
possible to carry out efficient self-attention using conv-like
operations. As a consequence, the superior performance of
the CoaT models shown in the experiments comes from two
of our new designs in Transformers: (1) a co-scale mecha-
nism that allows cross-scale interaction; (2) a conv-attention
module to realize an efficient self-attention operation. Next,
we highlight the differences of the two proposed modules
with the standard operations and concepts.

* Co-Scale vs. Multi-Scale. Multi-scale approaches
have a long history in computer vision [35, 19]. Con-
volutional neural networks [15, 14, 11] naturally im-
plement a fine-to-coarse strategy. U-Net [22] enforces
an extra coarse-to-fine route in addition to the standard
fine-to-coarse path; HRNet [32] provides a further en-
hanced modeling capability by keeping simultaneous
fine and coarse scales throughout the convolution lay-
ers. In a parallel development [33] to ours, layers of
different scales are in tandem for the image Transform-
ers but [33] merely carries out a fine-to-coarse strategy.
The co-scale mechanism proposed here differs from the
existing methods in how the responses are computed
and interact with each other: CoaT consists of a series
of highly modularized serial and parallel blocks to en-
able attention with fine-to-coarse, coarse-to-fine, and
cross-scale information on tokenized representations.
The joint attention mechanism across different scales
in our co-scale module provides enhanced modeling
power beyond existing vision Transformers [9, 30, 33].

* Conv-Attention vs. Attention. Pure attention-based
models [21, 13, 44, 9, 30] have been introduced to the
vision domain. [21, 13, 44] replace convolutions in
ResNet-like architectures with self-attention modules
for better local and non-local relation modeling. In
contrast, [9, 30] directly adapt the Transformer [31] for
image recognition. Recently, there have been works
[1, 6] enhancing the attention mechanism by introduc-
ing convolution. LambdaNets [1] introduce an efficient
self-attention alternative for global context modeling
and employ convolutions to realize the relative posi-
tion embeddings in local context modeling. CPVT [6]
designs 2-D depthwise convolutions as the conditional
positional encoding after self-attention. In our conv-
attention, we: (1) adopt an efficient factorized atten-
tion following [1]; (2) extend it to be a combination of
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depthwise convolutional relative position encoding and
convolutional position encoding, related to CPVT [6].
Detailed discussion of our network design and its rela-
tion with LambdaNets [1] and CPVT [6] can be found
in Section 4.1 and 4.2.

3. Revisit Scaled Dot-Product Attention

Transformers take as input a sequence of vector represen-
tations (i.e. tokens) X, ..., Xy, or equivalently X € RV*€,
The self-attention mechanism in Transformers projects each
X; into corresponding query, key, and value vectors, using
learned linear transformations W&, WX and WV e RE*C,
Thus, the projection of the whole sequence generates rep-
resentations Q, K,V € RV*C. The scaled dot-product
attention from original Transformers [31] is formulated as :

Att(X) = softmax ( Qj‘g

In vision Transformers [9, 30], the input sequence of
vectors is formulated by the concatenation of a class token
CLS and the flattened feature vectors X1, ..., Xgw as image
tokens from the feature maps F € RF>*W*C for a total
length of N = HW + 1. The softmax logits in Equation 1
become not affordable for high-resolution images (i.e. N >
C) due to its O(N?) space complexity and O(N2C') time
complexity. To reduce the length of the sequence, ViT [9, 30]
tokenizes the image by patches instead of pixels. However,
the coarse splitting (e.g. 16x 16 patches) limits the ability to
model details within each patch. To address this dilemma, we
propose a co-scale mechanism that provides enhanced multi-
scale image representation with the help of an efficient conv-
attentional module that lowers the computation complexity
for high-resolution images.

)V (1)

4. Conv-Attention Module
4.1. Factorized Attention Mechanism

In Equation 1, the materialization of the softmax logits
and attention maps leads to the O(N?) space complexity
and O(N2C) time complexity. Inspired by recent works [5,
25, 1] on linearization of self-attention, we approximate the
softmax attention map by factorizing it using two functions
é(-),(-) : RN*C 5 RN*C" and compute the second
matrix multiplication (keys and values) together:

FactorAtt(X) = 6(Q) (¢(K)Tv) )

The factorization leads to a O(NC’ + NC + CC") space
complexity (including output of ¢(-),¢(-) and intermediate
steps in the matrix product) and O(NCC") time complex-
ity, where both are linear functions of the sequence length
N. Performer [5] uses random projections in ¢ and ¢ for a

Output Feature Map

N=xC
NxC NxC
LT

Factorized Convolutional

Attention Relative Position
Encoding

‘ Softmax ‘
NxC CxN
Q

Convolutional

Position Lo

Encoding 8

NxC & Matrix Product

(® Hadamard Product
Input Feature Map 5 Elementwise Sum

Figure 2. Illustration of the conv-attentional module. We apply
a convolutional position encoding to the image tokens from the
input. The resulting features are fed into a factorized attention with

a convolutional relative position encoding.

provable approximation, but with the cost of relatively large
C'. Efficient-Attention [25] applies the softmax function for
both ¢ and ¢, which is efficient but causes a significant per-
formance drop on the vision tasks in our experiments. Here,
we develop our factorized attention mechanism following
LambdaNets [1] with ¢ as the identity function and </ as the
softmax:

FactorAtt(X) = % (softmax(K)TV) (3)

where softmax(-) is applied across the tokens in the se-
quence in an element-wise manner and the projected chan-
nels C" = C. In LambdaNets [1], the scaling factor 1/\/(_7
is implicitly included in the weight initialization, while our
factorized attention applies the scaling factor explicitly. This
factorized attention takes O(NC + C?) space complexity
and O(NC?) time complexity. It is noteworthy that the
proposed factorized attention following [1] is not a direct
approximation of the scaled dot-product attention, but it
can still be regarded as a generalized attention mechanism
modeling the feature interactions using query, key and value
vectors.

4.2. Convolution as Position Encoding

Our factorized attention module mitigates the compu-
tational burden from the original scaled dot-product atten-
tion. However, because we compute L = softmax(K)'V €
RE*C first, L can be seen as a global data-dependent linear
transformation for every feature vector in the query map Q.
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Figure 3. CoaT model architecture. (Left) The overall network architecture of CoaT-Lite. CoaT-Lite consists of serial blocks only, where
image features are down-sampled and processed in a sequential order. (Right) The overall network architecture of CoaT. CoaT consists of
serial blocks and parallel blocks. Both blocks enable the co-scale mechanism.

This indicates that if we have two query vectors q;, q, € R¢
from @ and q; = q5, then their corresponding self-attention
outputs will be the same:

FactorAtt(X), = vy 92

Ve /T
Without the position encoding, the Transformer is only com-
posed of linear layers and self-attention modules. Thus, the
output of a token is dependent on the corresponding input
without awareness of any difference in its locally nearby
features. This property is unfavorable for vision tasks such
as semantic segmentation (e.g. the same blue patches in the
sky and the sea are segmented as the same category).

L = FactorAtt(X)2 (4)

Convolutional Relative Position Encoding. To enable vi-
sion tasks, ViT and DeiT [9, 30] insert absolute position
embeddings into the input, which may have limitations
in modeling relations between local tokens. Instead, fol-
lowing [24], we can integrate a relative position encoding
P ={p; € RCi=-M=L M=} yith window size
M to obtain the relative attention map EV € RV > in at-
tention formulation, if tokens are regarded as a 1-D sequence:

RelFactorAtt(X ) = % (softmax(K )TV) +EV (5

where the encoding matrix E € RV *" has elements:
Eij =1(i,7)q - Pj-i, 1<i,7 <N (6)

in which 1(3, j) = 1y;_ij<(m—1)/23(%,7) is an indicator
function. Each element E;; represents the relation from
query q; to the value v; within window M, and (EV);
aggregates all related value vectors with respect to query
q;. Unfortunately, the EV term still requires O(N?) space

complexity and O(N2C) time complexity. In CoaT, we
propose to simplify the EV term to EV by considering each
channel in the query, position encoding and value vectors as
internal heads. Thus, for each internal head [, we have:
l c oo (1) (1 -0 0,

Ei(j) = ]l(z,_;.')qg( )p_g'lia EV:‘ = Z_;s Ea(j)v_;(i ) (7)
In practice, we can use a 1-D depthwise convolution to
compute EV:

Ev?Y = Q0 o ComviD(P®, VD), ®)

EV = Q o DepthwiseConv1D(P, V) )

where o is the Hadamard product. It is noteworthy that
in vision Transformers, we have two types of tokens, the
class (CLS) token and image tokens. Thus, we use a 2-D
depthwise convolution (with window size M x M and kernel
weights P) and apply it only to the reshaped image tokens
(ie. Qme, Vime ¢ REXWXC from Q, V respectively):

~ img

EV " = Q™2 o DepthwiseConv2D(P, V™) (10)
EV = concat(EAVimg, 0) (11)

ConvAtt(X) = %(soﬂmax(K)TV) +EV (12)
Based on our derivation, the depthwise convolution can be
seen as a special case of relative position encoding.

Convolutional Relative Position Encoding vs Other Relative
Position Encodings. The commonly referenced relative po-
sition encoding [24] works in standard scaled dot-product
attention settings since the encoding matrix F is combined
with the softmax logits in the attention maps, which are
not materialized in our factorized attention. Related to our

9984



Image Class !
! Tokens Token i

Input Feature Maps
Figure 4. Schematic illustration of the serial block in CoaT. In-
put feature maps are first down-sampled by a patch embedding
layer, and then tokenized features (along with a class token) are
processed by multiple conv-attention and feed-forward layers.

work, the main results of the original LambdaNets [1] use
a 3-D convolution to compute E'V directly and reduce the
channels of queries and keys to Cx where Cx < C, but
it costs O(NCC¥) space complexity and O(NCCy M?)
time complexity, which leads to relatively heavy compu-
tation when channel sizes Cg, C are large. A recent up-
date in LambdaNets [1] provides an efficient variant with
depth-wise convolution under resource constrained scenarios.
Our factorized attention computes EV with only O(NC)
space complexity and O(NCM?) time complexity, aiming
to achieve better efficiency.

Convolutional Position Encoding. We then extend the
idea of convolutional relative position encoding to a general
convolutional position encoding case. Convolutional relative
position encoding models local position-based relationships
between queries and values. Similar to the absolute posi-
tion encoding used in most image Transformers [9, 30], we
would like to insert the position relationship into the input
image features directly to enrich the effects of relative posi-
tion encoding. In each conv-attentional module, we insert
a depthwise convolution into the input features X and con-
catenate the resulting position-aware features back to the
input features following the standard absolute position en-
coding scheme (see Figure 2 lower part), which resembles
the realization of conditional position encoding in CPVT [6].

CoaT and CoaT-Lite share the convolutional position en-
coding weights and convolutional relative position encoding
weights for the serial and parallel modules within the same
scale. We set convolution kernel size to 3 for the convolu-
tional position encoding. We set convolution kernel size to
3, 5 and 7 for image features from different attention heads
for convolutional relative position encoding.

The work of CPVT [6] explores the use of convolution
as conditional position encodings by inserting it after the
feed-forward network under a single scale ( % X %). Our
work focuses on applying convolution as relative position
encoding and a general position encoding with the factorized
attention.

Conv-Attentional Mechanism The final conv-attentional
module is shown in Figure 2: We apply the first convo-
lutional position encoding on the image tokens from the
input. Then, we feed it into ConvAtt(-) including factorized
attention and the convolutional relative position encoding.
The resulting map is used for the subsequent feed-forward
networks.

5. Co-Scale Conv-Attentional Transformers
5.1. Co-Scale Mechanism

The proposed co-scale mechanism is designed to intro-
duce fine-to-coarse, coarse-to-fine and cross-scale informa-
tion into image transformers. Here, we describe two types of
building blocks in the CoaT architecture, namely serial and
parallel blocks, in order to model multiple scales and enable
the co-scale mechanism.

CoaT Serial Block. A serial block (shown in Figure 4)
models image representations in a reduced resolution. Ina
typical serial block, we first down-sample input feature maps
by a certain ratio using a patch embedding layer, and flatten
the reduced feature maps into a sequence of image tokens.
We then concatenate image tokens with an additional CLS
token, a specialized vector to perform image classification,
and apply multiple conv-attentional modules as described in
Section 4 to learn internal relationships among image tokens
and the CLS token. Finally, we separate the CLS token from
the image tokens and reshape the image tokens to 2-D feature
maps for the next serial block.

CoaT Parallel Block. We realize a co-scale mechanism
between parallel blocks in each parallel group (shown in
Figure 5). In a typical parallel group, we have sequences
of input features (image tokens and CLS token) from serial
blocks with different scales. To enable fine-to-coarse, coarse-
to-fine, and cross-scale interaction in the parallel group, we
develop two strategies: (1) direct cross-layer attention; (2)
attention with feature interpolation. In this paper, we adopt
attention with feature interpolation for better empirical per-
formance. The effectiveness of both strategies is shown in
Section 6.4.

Direct cross-layer attention. In direct cross-layer attention,
we form query, key, and value vectors from input features
for each scale. For attention within the same layer, we use
the conv-attention (Figure 2) with the query, key and value
vectors from current scale. For attention across different
layers, we down-sample or up-sample the key and value
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in the final CoaT-Lite and CoaT models reported on the ImageNet benchmark.

Table 1. Architecture details of CoaT-Lite and CoaT models. C; represents the hidden dimension of the attention layers in block ¢; H;
represents the number of attention heads in the attention layers in block z; R; represents the expansion ratio for the feed-forward hidden
layer dimension between attention layers in block z. Multipliers indicate the number of conv-attentional modules in block 2.

Coal-Lite Coal
Blocks Output Ty Mt Small Medium Tiny Mini Stmall
. Oy =64 O, =64 ), =64 ;=128 [y, =152 [ ¢ =152 [ =152
Se“?g"”k 56 x 56 Hi=8 |x2 Hi =8 |x2 Hi=8 |x3 Hy = %3 Hi=8 |x2||mHm=8 [x2||H=8 |x2
! Ry =8 R =8 R =8 Ry=4 | By =4 | li=4 | By =4
Serial Block [ Ca=128 ] [ 02=128 ] [ C2=128 ] Cy =256 [ 02 =152 | [ C2=216 ] [ =320 ]
(Sa) 28 « 28 Hy;=8 %2 Hy; =8 x 2 Hy;=8 x4 H, = % 6 Hy; =8 x 2 H, =8 x 2 H,=8 ®x 2
2 | Hz=8 | Bz=8 | Hz=8 =4 | Az=4 | Hz2=4 | f1=4
Serial Rlock [ Oy =256 ] [ 5 =320 ] [ C5 =320 ] Cy =320 [ 03 =152 ] [ €5 =216 ] [ 0y =320 ]
“(S) 14 % 14 H;=8 %2 Hy =8 %2 H;=8 %6 H =8 %10 Hy;=8 %2 Hy=8 %2 Hy=8 x2
8 | Rs =4 | Rs=4 | Rs =4 Ry =4 | Ry=4 | Ra=14 | By =4
Serial Rlock [ Cy =320 ] [ Cy=512 ] [ Cy =512 ] Cy =512 [ 0y =152 ] [ €y =216 ] [ 0y =320 ]
S TxT Hy=8 %2 Hy=8 x 2 Hy=8 x 3 H,=8 % 8 Hy=8 x 2 H;=8 x 2 H,=8 ®x 2
¢ | Ra=14 | Ra=14 | Rs=4 Ry=4 | Ry=4 | | Ra=4 | | By=4 |
28 x 28 [ 0y =152 ] [ Cy=216 ] [y =320 ]
Paralle] Group 14 x 14 Hy=8 * 6 H;=8 * 6 H,=8 ® 6
TxT | Ri=4 | | Ra=4 |  Ri=4
#Params 5M 1M 20M 45M 5.5M 10M 22M

vectors to match the resolution of other scales, which en-
ables fine-to-coarse and coarse-to-fine interaction. We then
perform cross-attention, which extends the conv-attention
with queries from the current scale with keys and values
from another scale. Finally, we sum the outputs of conv-
attention and cross-attention together and apply a shared
feed-forward layer. With direct cross-layer attention, the
cross-scale information is fused in a cross-attention fashion.

Attention with feature interpolation. Instead of performing
cross-layer attention directly, we also present attention with
feature interpolation. First, the input image features from
different scales are processed by independent conv-attention
modules. Then, we down-sample or up-sample image fea-
tures from each scale to match the dimensions of other scales
using bilinear interpolation, or keep the same for its own
scale. The features belonging to the same scale are summed
in the parallel group, and they are further passed into a shared
feed-forward layer. In this way, the conv-attentional module
in the next step can learn cross-scale information based on

the feature interpolation in the current step.

5.2. Model Architecture

CoaT-Lite. CoaT-Lite, Figure 3 (Left), processes input im-
ages with a series of serial blocks following a fine-to-coarse
pyramid structure. Given an input image I € REXWxC,
each serial block down-samples the image features into lower
resolution, resulting in a sequence of four resolutions: F; €
R%x%xc“l, F2 c R%X%XCQ, FS c R%xl—"‘;xca, F4 c
R#% %35 %Ca_[p CoaT-Lite, we obtain the CLS token in the
last serial block, and perform image classification via a linear
projection layer based on the CLS token.

CoaT. Our CoaT model, shown in Figure 3 (Right), con-
sists of both serial and parallel blocks. Once we obtain
multi-scale feature maps {Fy, Fs, F3, F,} from the serial
blocks, we pass Fy, F5, F,; and corresponding CLS tokens
into the parallel group with three separate parallel blocks.
To perform classification with CoaT, we aggregate the CLS
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Table 2. CoaT performance on ImageNet-1K validation set.
Our CoaT models consistently outperform other methods while
being parameter efficient. ConvNets and ViTNets with similar
model size are grouped together for comparison. “#GFLOPs” and
Top-1 Acc are measured at input image size. “*” results are adopted
from [33].

Arch. | Model | #Params | Input #GFLOPs | Top-1 Acc.
ConvNets | EfficientNet-B0 [29] 5.3M 2242 0.4 77.1%
ShuffleNet [43] 5.4M 2242 0.5 73.7%
ViTNets | DeiT-Tiny [30] 5.7M 2242 1.3 72.2%
CPVT-Tiny [6] 5.7M 2242 - 73.4%
CoaT-Lite Tiny (Ours) 5.7M 2242 1.6 77.5%
CoaT Tiny (Ours) 5.5M 2242 44 78.3%
ConvNets | EfficientNet-B2[29] 9M 2602 1.0 80.1%
ResNet-18+ [11] 12M 2242 1.8 69.8%
ViTNets | PVT-Tiny [33] | 13m | 2242 L9 | 751%
CoaT-Lite Mini (Ours) 11M 2242 2.0 79.1%
CoaT Mini (Ours) 10M 2242 6.8 8L.0%
ConvNets | EfficientNet-B4 [29] 19M 3802 42 82.0¢;
ResNet-50+ [11] 25M 2242 41 78.5%
ResNeXt50-32x4d* [36] 25M 2242 43 79.5%
ViTNets | DeiT-Small [30] 22M 2242 4.6 79.8%
PVT-Small [33] 24M 2242 3.8 79.8%
CPVT-Small [6] 22M 2242 - 80.5%
T2T-ViT,-14 [40] 22M 2242 6.1 81.7%
Swin-T [17] 29M 2242 45 81.3%
CoaT-Lite Small (Ours) 20M 2242 4.0 81.9%
CoaT Small (Ours) 22M 2242 12.6 82.1%
ConvNets | EfficientNet-B6 [29] 43M 5282 19 84.0%
ResNet-101+ [11] 45M 2242 7.9 79.8%
ResNeXt101-64x4d+ [36] |  84M 2242 15.6 81.5%
ViTNets | PVT-Large [33] 61M 2242 9.8 81.7%
T2T-ViT,-24 [40] 64M 2242 15 82.6%
DeiT-Base [30] 86M 2242 17.6 81.8%
CPVT-Base [6] 86M 2242 - 82.3%
Swin-B [17] 88M 2242 154 83.5%
Swin-B [17] 88M 3842 47 84.54
CoaT-Lite Medium (Ours) 45M 2242 9.8 83.6%
CoaT-Lite Medium (Ours) 45M 3842 28.7 84.5%

tokens from all three scales.

Model Variants. In this paper, we explore CoaT and CoaT-
Lite with several different model sizes, namely Tiny, Mini,
Small and Medium. Architecture details are shown in Ta-
ble 1. For example, tiny models represent those with a SM
parameter budget constraint. Specifically, these tiny mod-
els have four serial blocks, each with two conv-attentional
modules. In CoaT-Lite Tiny architectures, the hidden dimen-
sions of the attention layers increase in later blocks. CoaT
Tiny sets the hidden dimensions of the attention layers in
the parallel group to be equal, and performs the co-scale
mechanism within the six parallel groups. Mini, small and
medium models follow the same architecture design but with
increased embedding dimensions and increased numbers of
conv-attentional modules within blocks.

6. Experiments

6.1. Experiment Details

Image Classification. We perform image classification on
the standard ILSVRC-2012 ImageNet dataset [23]. The stan-
dard ImageNet benchmark contains 1.3 million images in
the training set and 50K images in the validation set, cov-

Table 3. Object detection and instance segmentation results
based on Mask R-CNN on COCO val2017. Experiments are
performed under the MMDetection framework [4]. “*” results are
adopted from Detectron2.

Backbone #Params | w/FPN I x w/ FPN 3%

(M) AP® AP™ | AP® APT
ResNet-18*% 31.3 342 313 | 363 332
PVT-Tiny [33] 329 367 351 | 398 374
CoaT-Lite Mini (Ours) 30.7 414 38.0 429 389
CoaT Mini (Ours) 30.2 451 406 465 418
ResNet-50* 44.3 386 352 | 410 372
PVT-Small [33] 44.1 404 378 | 43.0 399
Swin-T [17] 47.8 437 398 | 46.0 416
CoaT-Lite Small (Ours) 39.5 452 407 457 411
CoaT Small (Ours) 41.6 465 418 490 437

Table 4. Object detection and instance segmentation results
based on Cascade Mask R-CNN on COCO val2017. Experi-
ments are performed using the MMDetection framework [4].

Backbone #Params | w/FPN I x w/ FPN 3%

(M) AP®  AP™ | AP" AP™
Swin-T [17] B5.6 48.1 417 | 504 437
CoaT-Lite Small (Ours) 77.3 49.1 425 489 426
CoaT Small (Ours) 79.4 504 435 522 451

Table 5. Object detection results based on Deformable DETR

on COCO val2017. DD ResNet-50 represents the baseline result

using the official checkpoint. ResNet-50 and our CoaT-Lite as DD

backbones are directly comparable due to similar mode] size.
Deformable DETR (Multi-Scale)

AP APy AP;; | APs APy AP

DD ResNet-50 [46] 445 637 487 | 268 476 596

DD CoaT-Lite Small (Ous) 47.0 665 512 288 503 633
DD CoaT Small (Ours) | 484 685 524 | 302 518 638

Backbone

ering 1000 object classes. Image cropping sizes are set to
224%224. For fair comparison, we perform data augmen-
tation such as MixUp [42], CutMix [41], random erasing
[45], repeated augmentation [12], and label smoothing [28],
following identical procedures in DeiT [30].

All experimental results for our models in Table 2 are re-
ported at 300 epochs, consistent with previous methods [30].
All models are trained with the AdamW [18] optimizer under
the NVIDIA Automatic Mixed Precision (AMP) framework.

. . _ lobal batch si
The learning rate is scaled as 5 x 1074 x EX& 24 skze 51; =

Object Detection and Instance Segmentation. We con-
duct object detection and instance segmentation experiments
on the Common Objects in Context (COCO2017) dataset
[16]. The COCO2017 benchmark contains 118K training
images and 5K validation images. We evaluate the gener-
alization ability of CoaT in object detection and instance
segmentation with the Mask R-CNN [10] and Cascade Mask
R-CNN [2]. We use the MMDetection [4] framework and
follow the settings from Swin Transformers [17]. In addition,
we perform object detection based on Deformable DETR
[46] following its data processing settings.

For Mask R-CNN optimization, we train the model with
the ImageNet-pretrained backbone on 8 GPUs via AdamW
optimizer with learning rate 0.0001. The training period
contains 12 epochs in 1 x setting and 36 epochs in 3 x setting.

0987



For Cascade R-CNN experiments, we use three detection
heads, with the same optimization and training period as
Mask R-CNN. For Deformable DETR optimization, we train
the model with the pretrained backbone for 50 epochs, using
an AdamW optimizer with initial learning rate 2 x 10~%,
B1 = 0.9, and B2 = 0.999. We reduce the learning rate by a
factor of 10 at epoch 40.

6.2. CoaT for ImageNet Classification

Table 2 shows top-1 accuracy results for our models on
the ImageNet validation set comparing with state-of-the-art
methods. We separate model architectures into two cate-
gories: convolutional networks (ConvNets), and Transform-
ers (ViTNets). Under different parameter budget constraints,
CoaT and CoaT-Lite show strong results compared to other
ConvNet and ViTNet methods.

6.3. Object Detection and Instance Segmentation

Tables 3 and 4 demonstrate CoaT object detection and
instance segmentation results under the Mask R-CNN and
Cascade Mask R-CNN frameworks on the COCO val2017
dataset. Our CoaT and CoaT-Lite models show clear perfor-
mance advantages over the ResNet, PVT [33] and Swin [17]
backbones under both the 1x setting and the 3 x setting. In
particular, our CoaT models bring a large performance gain,
demonstrating that our co-scale mechanism is essential to
improve the performance of Transformer-based architectures
for downstream tasks.

We additionally perform object detection with the De-
formable DETR (DD) framework in Table 5. We compare
our models with the standard ResNet-50 backbone on the
COCO dataset [16]. Our CoaT backbone achieves 3.9%
improvement on average precision (AP) over the results of
Deformable DETR with ResNet-50 [46].

6.4. Ablation Study

Effectiveness of Position Encodings. We study the effec-
tiveness of the combination of the convolutional relative
position encoding (CRPE) and convolutional position en-
coding (CPE) in our conv-attention module in Table 6. Our
CoaT-Lite without any position encoding results in poor
performance, indicating that position encoding is essential
for vision Transformers. We observe great improvement
for CoaT-Lite variants with either CRPE or CPE, and the
combination of CRPE and CPE leads to the best perfor-
mance (77.5% top-1 accuracy), making both position encod-
ing schemes complementary rather than conflicting.

Effectiveness of Co-Scale. In Table 7, we present perfor-
mance results for two co-scale variants in CoaT, direct cross-
layer attention and attention with feature interpolation. We
also report CoaT without co-scale as a baseline. Comparing
to CoaT without a co-scale mechanism, CoaT with feature

Table 6. Effectiveness of position encodings. All experiments
are performed with the CoaT-Lite Tiny architecture. Performance
is evaluated on the ImageNet-1K validation set.

Model | CPE | CRPE | Top-1 Acc.

CoaT-Lite Tiny | X X 68.8%
X v 75.0%
4 X 75.9%
4 4 71.5%

interpolation shows performance improvements on both im-
age classification and object detection (Mask R-CNN w/
FPN 1x). Attention with feature interpolation offers a clear
advantage over direct cross-layer attention due to less com-
putational complexity and higher accuracy.

Table 7. Effectiveness of co-scale. All experiments are performed
with the CoaT Tiny architecture. Performance is evaluated on the
ImageNet-1K validation set and the COCO val2017 dataset.

Model | #Params Input #GFLOPs | Top-1 Acc. @input  AP® AP™
CoaT wio Co-Scale 55M 2242 44 ‘ 77.8% 416 379

CoaT w/ Co-Scale
- Direct Cross-Layer Atiention
- Atiention w/ Feature Interp.

55M 2242 48
55M 2242 4.4

T7.0% 421 383
T83% 425 386

Computational Cost. We report FLOPs, FPS, latency,
and GPU memory usage in Table 8. In summary, CoaT
models attain higher accuracy than similar-sized Swin Trans-
formers, but CoaT models in general do have larger la-
tency/FLOPs. The current parallel groups in CoaT are more
computationally demanding, which can be mitigated by re-
ducing high-resolution parallel blocks and re-using their
feature maps in the co-scale mechanism in future work. The
latency overhead in CoaT is possibly because operations (e.g.
layers, position encodings, upsamples/downsamples) are not
running in parallel.

Table 8. ImageNet-1K validation set Its cc d with the concurrent work
Swin Transformer[ 17]. Computational metrics are measured on a single V100 GPU.

Mosdel | #Params | Input GFLOPs FPS Latency Mem | Top-1Acc. Top-5 Acc.
Swin-T [17] 28M | 2247 45 755 l6ms  22IM | 812% 95.5%
CoaT-Lite Small (Ours) M 224 40 634  32ms MM §19% 95.6%
CoaT Small (Cus) M 22427 126 111 60ms  3TIM 821% 9%6.1%
Swin-5 [17] soM | 2242 87 437 29ms  3ITIM 83.2% 96.2%
Swin-B [17] sEM | 224 154 278 30ms  S5TOM 83.5% 96.5%
CoaT-Lite Medinm (0urs) | 45M 2247 98 319 S2ms  429M  83.6% 9%6.7%
Swin-B [17] M | 384 471 85 33ms  1250M | 84.5% 97 0%
CoaTLite Medinm (Oum) | 45M 3847 287 97 S6ms  937TM  S4.5% 7.1%

7. Conclusion

In this paper, we present a Transformer based image clas-
sifier, Co-scale conv-attentional image Transformer (CoaT),
in which cross-scale attention and efficient conv-attention
operations have been developed. CoaT models attain strong
classification results on ImageNet, and their applicability to
downstream computer vision tasks has been demonstrated
for object detection and instance segmentation.
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