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ABSTRACT

With the great opportunities created by the new advances in Industry 4.0, many manufacturers
are testing and investing in new equipment and infrastructure to deploy these technologies. How-
ever, there are a huge number of small and medium-sized manufacturers (SMMs) that are lagging
behind due to the lack of in-house R&D capabilities and workforce shortage and/or financial con-
straints to afford such investment. Additionally, application of theoretical production research in
SMMs often confront challenges such as low data availability and data quality, etc. In this paper,
we describe a case study at a local medium-sized manufacturer of electromechanical devices for
industrial, consumer, and medical applications, who was struggling to meet ever-growing market
demand, and apply a novel approach of production system modelling to overcome the challenge of
unavailability of the operation up- and downtime data. Specifically, the parametric model of the pro-
duction system is identified using several system performance metrics derived based on the parts
flow data of the in-process buffer. With the mathematical model constructed, the system bottle-
neck is analysed and a number of improvement scenarios are explored that can potentially enhance
the system throughput. Finally, model sensitivity is analysed by calculating the deviation of the
model-predicted performance metrics to those produced by a reference nominal model. This analy-
sis demonstrates that the model constructed using our proposed approach is robust even when the
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system parameters vary from the baseline ones.

1. Introduction

According to the data gathered by SCORE, 98.6% of
American manufacturing companies are small busi-
nesses, and 75.3% of those businesses have fewer than
20 employees due 2019 (Weston 2019). While the rapid
development of Industry 4.0 technologies are creating
vast opportunities, small and medium-sized manufac-
turers (SMMs) are facing various challenges in adapt-
ing to this transformation. One of the areas of concern
is the adoption of advanced data analytics in improv-
ing the operating efficiency of their production systems.
Indeed, although the popular machine learning/AI tech-
niques have made great strides in tasks such as pat-
tern recognition, natural language processing, computer
vision, etc., its reliance on pre-labelled training/testing
data has greatly impeded its way into system-level pro-
duction analysis, coordination and control, especially for
SMMs. On the other hand, theoretical studies in produc-
tion systems have accumulated a great amount of results
and most of the methods developed are based on math-
ematical models of manufacturing processes (see, for

instance, Li and Meerkov 2009; Gershwin 1994; Yao 1994;
Papadopoulos, Heavy, and Browne 1993). In manufactur-
ing practice, however, building a high-fidelity model of a
real manufacturing process is not trivial, which usually
requires solid training, extensive experience, sharp intu-
ition, and a large amount of time (Li and Meerkov 2009;
Sun et al. 2020).

Generally speaking, the first step of production sys-
tem modelling is to transform the overall system layout
to a standard topological/structural model (Cox 1990;
Li and Meerkov 2009). This step is typically straightfor-
ward. The next step is to identify the parameters of the
machines and buffers in the model using factory floor
production data. A commonly used approach is to col-
lect the operating status data (i.e. up- and downtimes)
for each operation (either manually or using automatic
data collection mechanisms such as PLCs). In certain sit-
uations where a work cell contains multiple operations,
algorithms must be devised to calculate the aggregated
parameters of the work cell as a whole in order to feed the
theoretical system model used for analysis. In practice,
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this conventional approach (collecting operation status
data) typically faces the following challenges or limita-
tions, especially to SMMs:

e Data unavailability: In some cases, operating status
data are not readily available, which is very common
in SMMs. One of the main contributing factors is
the presence of a high number of manual operations
involved. Many SMMs do not have automatic data
collection modules or equipment that connect with
machines to record the machine status in real-time.
Collecting up- and downtime data for such systems
usually imposes additional burden on the workforce
(e.g. via manual time study), which the manufacturers
usually cannot afford.

e Data complexity: In manufacturing facilities, where
IT infrastructure is available for automated collection
of machine operating status data, it is very common
that the operating data of different equipment are pro-
grammed using different operation/failure codes. For
example, a failure mode for Equipment A may not be
applicable to other equipment. As a result, one must
learn and decode all operating/failure modes of vari-
ous types of equipment in order to extract the machine
up- and downtime data correctly and feed them into a
production system model.

e Data quality: For either automatically or manually
collected data, errors and invalid entries are often
inevitable due to various sources of noise or disrup-
tion in an industrial environment. As a result, the
raw data usually cannot be directly used to feed the
mathematical model. A critical step is perform data
cleaning to improve the quality of the data and ensure
data integrity. This process (e.g. cross-checking data
validity) may be very complex and time-consuming,
especially for operation up- and downtime data.

These challenges, along with the lack of in-house exper-
tise, usually make it difficult for SMMs to effectively
apply the conventional approach to carry out modelling,
analysis, and control for the production systems in their
practice. To overcome these challenges, a new approach
is proposed in our prior work (Sun et al. 2020; Sun and
Zhang 2020), based on which one can identify the param-
eters of a production system based on standard perfor-
mance metrics derived from parts flow data. To our best
knowledge, this is the first work of reversely calculating
machine parameters based on the analytical expressions
of performance metrics in production systems research.
The advantages of this new approach include:

o Standard performance metrics data: This approach
uses data with commonly accepted definition, such as

throughput (average number of parts produced per
time unit), work-in-process (average number of parts
in a buffer). This greatly reduces the ambiguity that
may be contained in operating status data and makes
it easier for the approach to be generalised to differ-
ent manufacturing facilities/industries (without hav-
ing to learn the complex operation/failure modes of
equipment in a new facility).

e Convenience for automatic data collection: It should
be noted that the performance metrics data used in
this approach are measured based on part-counting.
This can be accomplished by deploying sensors, such
as weight sensors, photoelectric sensors, cameras (e.g.
on a smart phone), into the manufacturing process.

With these advantages above, we apply this new mod-
elling approach to a case study in a local SMM, which
designs and manufactures electromechanical devices for
industrial, consumer, and medical applications. Based
on the mathematical model identified by the pro-
posed approach, improvement of system operations to
enhance the throughput is discussed and the model valid-
ity/sensitivity is demonstrated by numerical experiments.

The rest of the paper is organised as follows: Section 2
reviews typical approaches for mathematical modelling
of production systems as well as industrial case studies
reported in the literature. Section 3 overviews the back-
ground of the case study, the system studied, and the
problems addressed in this paper and lay out the chal-
lenges and the approach to be used. Mathematical mod-
elling, including structural and parametric modelling, is
carried out in Section 4, while the identification of the
system parameters is studied in Section 5. Section 7 anal-
yses the baseline performance of the system and inves-
tigates several improvement plans that can increase the
system throughput. The sensitivity of the model is dis-
cussed in Section 8. Finally, the conclusions and future
work are summarised in Section 9.

2. Literature review

2.1. Mathematical models for production systems
analysis

In manufacturing systems research, a production sys-
tem is typically modelled as a stochastic process, where
the operation of the machines are characterised by ran-
domly distributed uptimes, downtimes, and/or cycle
times, and the buffers are defined by their storing capac-
ity (see Papadopoulos, Heavy, and Browne 1993; Gersh-
win 1994; Yao 1994; Li and Meerkov 2009). Note that
these models are universally applicable to production sys-
tems in both SMMs and large manufacturers with the



difference typically being the detailed model assumptions
used.

The commonly used mathematical models for char-
acterising such random behaviour of production oper-
ations include the Bernoulli reliability model, geomet-
ric reliability model, and exponential reliability model.
Under the Bernoulli reliability model, the machine status
(up or down) is modelled as Bernoulli random vari-
ables, while the geometric reliability model formulates
the up- and downtime of a machine as geometric ran-
dom variables. Production system models with Bernoulli
and/or geometric reliability machines are characterised
by discrete-time Markov chains. Similarly, the exponen-
tial reliability model formulates the up- and downtime of
a machine as exponential random variables and produc-
tion system models with exponential reliability machines
are characterised by continuous-time Markov chains.

Using Markovian analysis and an iterative
aggregation-based analytical approach, various theoret-
ical problems have been studied for production sys-
tem models with Bernoulli, geometric, and exponential
machines. Representative results include performance
metrics calculation (see Jia et al. 2015; Ju, Li, and
Deng 2016; Feng et al. 2018; Jia and Zhang 2019; Bai
et al. 2021), lean buffering design (see Chiang, Hu, and
Meerkov 2008), bottleneck identification and continuous
improvement (see Biller et al. 2008, 2009; Xie and Li 2012;
Li 2013; Tu and Zhang 2022), multi-job production (see
Zhao and Li 2013; Zhao, Li, and Huang 2014; Zhao and
Li 2015; Alavian, Denno, and Meerkov 2017), preventive
maintenance (see Ambani, Meerkov, and Zhang 2010; X.
Liu, Wang, and Peng 2015; Y. Liu et al. 2021), production
control (see Zhang and Yue 2011; Chen et al. 2012; Biller,
Meerkov, and Yan 2013; Jia et al. 2016; Wang and Ju 2021),
etc. These production system models have also been suc-
cessfully applied to numerous industrial case studies (see
below).

2.2. Conventional approach for parameter
identification when modelling a production system

In theoretical studies of production systems, the machine
reliability parameters (i.e. machine average up- and
downtime, efficiency) are usually assumed to be known
and/or randomly generated in statistical experiments
(for instance, Y. Liu, Li, and Chiang 2010; Yan and
Zhao 2013; Meerkov and Yan 2014). In industrial case
studies, these parameters (and other parameters of the
theoretical model adopted) are usually identified from
factory floor measurements of the equipment operating
status directly.

For example, in a case study at an automotive paint
shop reported by Arinez et al. (2009), the production
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system is modelled as a serial production line with
rework. The Bernoulli reliability model is adopted and
the machine model parameters are identified using one-
month of equipment operating status data measured by
the plant PLC system. Moreover, customised formulas
are devised to calculate the Bernoulli model parame-
ters based on the operation up- and downtime data.
Similarly, in the case study of a multi-product machin-
ing line at motorcycle manufacturing plant in Park and
Li (2019), the authors simplify a complex production
process through aggregation to transform the overall
system into a two-stage production line and built a
Bernoulli line model for a series of model-based anal-
ysis. To identify the efficiencies of the two aggregated
machines, the up-/downtime data are collected from
15 machines and customised procedures are developed
to obtain the parameters of the aggregated model. For
another example, Zandieh, Joreir-Ahmadi, and Fadaei-
Rafsanjani (2017) studies the buffer and preventive main-
tenance period allocation problem in a single-type water
heater production line. In this case study, the system
is modelled as a non-homogeneous, unreliable produc-
tion line. The model parameters, including processing
time, repair time, maintenance time, time between fail-
ures, and time between preventive maintenance, are
extracted from preprocessed real production data. This
preprocessing step also involves aggregating the data of
different operating status recorded on the equipment.
Moreover, the workstation failure rates are estimated by
the managers’ experience. In addition, Liberopoulos and
Tsarouhas (2005) investigate the improvement of an auto-
mated pizza production line and present a statistical
analysis of a set of field failure data. In this study, the
average downtime of each machine is computed based
on hand-written records of failures spanning a period of
four years. In Nwika, Umoh, and Amaewhule (2017), to
evaluate the reliability of individual section machines in
a glass manufacturing facility, the mean time to repair
and the mean time between failures are identified using
five years’ of data. In a case study at a Toyota manufac-
turing plant, Li (2013) builds an exponential assembly
system model and uses three-month data to calculate the
average up/downtime in order to implement the contin-
uous improvement. Similar studies using this operation
up/down status data-based production systems mod-
elling approach (referred to as the conventional approach)
can be found in Li and Meerkov (2009), Jia et al. (2015),
Du, Xu, and Li (2016), and Tu et al. (2020), etc.

It should be noted that, although the conventional
modelling approach has been successfully applied in
a number of studies at large and small/medium-sized
manufacturing plants, its limitations (see discussions
in Section 1) are also commonly acknowledged by
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researchers in this area. Specifically, the availability and
quality of equipment operating status data in produc-
tion systems can be hard to ensure in many practical
scenarios (e.g. in some small and medium-sized manu-
facturers), which usually leads to significant efforts spent
on collecting, cleaning, and processing the data. In addi-
tion, designing customised algorithms to calculate the
model parameters of aggregated/combined operations
often requires knowledge and expertise in production
systems modelling and analysis.

2.3. New approach for parameter identification
when modelling production systems

To overcome these challenges, a new modelling approach
is proposed in Sun et al. (2020) to reversely compute the
parameters of a production system model based on mea-
sured performance metrics of the system, i.e. through
inverse modelling (Reddy and Andersen 2002; Anish and
Shankar 2020). It should be noted that, matching system
performance metrics is a commonly-used approach to
identify parameters of a system model in many different
fields of engineering. For instance, in Lima, Jacobina, and
de Souza Filho (1997), in order to determine the values of
the steady-state equivalent circuit parameters of a three-
phase squirrel-cage induction machine, the authors for-
mulate and solve a nonlinear optimisation problem to
minimise the least-squared error between the theoret-
ical values of stator current, input power, and electro-
magnetic torque calculated by the analytical expression
with circuit parameters and the experimental data value
collected from a machine test. Additionally, Reddy and
Andersen (2002) investigates different inverse modelling
methods with application to off-line model parameter
estimation of a field-operated chiller. In the area of pro-
duction systems engineering, two different methods have
been studied to inversely estimate machine parameters
in multiple-machine Bernoulli production line models:
analytical expression-based method (Sun et al. 2020)
and statistical/machine learning-based method (Sun and
Zhang 2020). In both studies, standard system perfor-
mance metrics (throughput, work-in-process, etc.) are
used as the input to identify the machine parameters. In
a follow-up work, Sun and Zhang (2021) developed an
analytical expression-based method to identify parame-
ters in a two-machine synchronous exponential line and
Tu et al. (2020) implement a neural network method
for parameter identification in synchronous exponen-
tial lines with multiple machines. The neural network
approach, however, usually involves long training pro-
cesses and may be difficult to generalise to other cases
(e.g. asynchronous operations, systems with parallel con-
struction, etc.). While our prior work (Sun et al. 2020; Sun

and Zhang 2020, 2021; Tu et al. 2020) has laid a theoreti-
cal foundation for the new production system modelling
approach, its efficacy has not been tested in a practical
industrial environment, especially the sensitivity of the
identified model when the system parameters vary from
the baseline values. Therefore, the goal of this paper is
to extend the analytical inverse modelling approach to
an asynchronous exponential production system model
and test the applicability of this method in a practical
industrial case study. Additionally, based on the iden-
tified model, productivity improvement is investigated
and model sensitivity is discussed under improvement
scenarios.

2.4. Research originality and contributions

The main contributions of the paper are as follows. From
the theoretical aspects, this paper

e develops an eflicient and robust search algorithm for
machine parameter estimation in two-machine asyn-
chronous exponential models;

e tests the accuracy of the new parameter identification
algorithm through numerical/statistical experiments;

o justifies the efficacy of this production system mod-
elling approach via an industrial case study; and

o verifies the applicability of the identified model
through a model sensitivity analysis.

For the industrial perspective, this paper

e describes the implementation process of the new mod-
elling approach in a practical system;

e describes in detail the baseline analysis and the design
of potential improvement projects; and

e explains the selection and implementation of the
improvement project.

This work not only provides a stepping stone for further-
ing the theoretical research in innovating the production
system modelling approach but also offers a detailed ref-
erence for researchers and practitioners to implement
this approach in real manufacturing practice.

3. System description and problems addressed
3.1. Project background

This study is carried out at a local medium-sized man-
ufacturing company, which designs and manufactures
electromechanical devices for industrial, consumer, and
medical applications. The company produces over 100
end products in the factory from over 15 product
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Figure 1. System layout.

families. The production system studied in this paper
is dedicated to one of its staple products, which was
expected to see a significant increase in volume. This
volume increase mainly comes from the company’s deci-
sion to move the production from overseas back to the
U.S. to comply to the Made-in-USA certification required
by majority of its customers. In addition, due to highly
stable demand and reliably forecast of this product, the
manufacturer manages the production of this product
in a make-to-stock regime based on sales forecast from
historical records.

Before the case study was carried out, this production
system constantly failed to meet production target. Since
the manufacturer also produces several other products
simultaneously in the factory, it didn’t have extra work-
force to be allocated to this particular production system
or to produce this particular product in other parts of the
factory. Thus, to ensure on-time delivery of the product
orders, the manufacturer had to use overtime and extra
shifts in this system. On the other hand, the manufac-
turer did not have any in-house expertise and resources
to solve this issue. As a result, the manufacturer applied
for assistance through the Quiet Corner Innovation Clus-
ter (QCIC) at the authors’ institution funded by the U.S.
Economic Development Administration. The objective
of the QCIC is to leverage university resources to create
an innovation network to drive economic development
in the New London, Tolland, and Windham Counties in
Connecticut, USA, by sponsoring collaborative projects
with small and medium-sized manufacturing enterprises
in the region. The study reported in this paper was one of
the projects conducted through the QCIC with focus on
improving the manufacturer’s production efficiency.

3.2. System layout

The layout of the production system studied is shown in
Figure 1. The system has two work cells. The enclosures
of the device are retrieved from the warehouse to be made
available at the input of Work Cell 1. The operator at Op.
1-1 uses a drill press to make several holes on the enclo-
sure. At Op. 1-2, an operator affix labels on the exterior

and interior of the enclosures. Then, at Op. 1-3, an oper-
ator visually inspects the quality of the previous two steps
and make sure locations of the holes as well as the place-
ment and orientation of the labels comply to the product
design. The intermediate products are then places on a
conveyor to be transported to Work Cell 2. Work Cell 2 is
comprised of two parallel lines, which split the work load
and carry out identical processing work. Specifically, the
operators at Op. 2-11 and Op. 2-21 install the printed
circuit board (PCB), electrical wires, switch, and several
small mechanical parts into the enclosure and fix them
in place by applying screws into the holes drilled in Op.
1-1. Finally, Op. 2-12 and Op. 2-22 visually inspect the
assembled devices (e.g. gaps, alignment), test the electri-
cal/mechanical functions, fix any issue discovered, and
package the finished products with instruction manual
cards into cardboard boxes.

3.3. Problems addressed

As one can see, all operations in this production sys-
tem involve human labour and it is often difficult
for the management to identify or trace production
issues/interruptions since there is no production data
being recorded outside of the total number of units pro-
duced in a shift before this case study was carried out.

To better understand the manufacturing process, a
series of meetings were held in the manufacturing facility
with the engineers, operators, supervisors, and managers,
to learn about the demand/sales/inventory information
of the product, its components and production bill-of-
materials, detailed operations of each individual manu-
facturing step, the tricks and challenges in completing
each individual step, training and management of the
operators, typical problems/failures/stoppages in the pro-
duction process, actions that have been taken or plans
that will be taken to fix these issues, concerns about
production disruption caused by this study, etc.

As an outcome from the initial meetings between
the manufacturer and the academic team, it was deter-
mined that the goals of this case study would include
studying the baseline performance of the production
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Figure 2. Diagram of the problems addressed in this research.

system, developing improvement plan, and helping the
manufacturer implement the plan to enhance the system
performance in order to meet potential demand growth
in future years.

Thus, in this case study, the following problems are
addressed by the academic team (see Figure 2 for an
illustration):

e Modeling: Collect data and construct a mathematical
model for the production system.

o Analysis: Use the mathematical model to quantita-
tively understand and analyse the baseline perfor-
mance of the system operation.

e Improvement: Based on the system model and the
baseline performance, investigate and develop poten-
tial improvement plans to enhance system perfor-
mance.

3.4. Challenges and proposed approach

Clearly, to ensure the accuracy of the quantitative anal-
ysis of the production system, the mathematical model
must have high fidelity. In the conventional approach for
mathematical modelling of production systems, occur-
rences and duration up- and downtimes of all operations
are recorded in order to obtain the reliability model and
parameters of the operations (see Li and Meerkov 2009).
This approach, unfortunately, is not feasible in this case
study, because all operations in the system under consid-
eration are manual. First of all, defining up and down
states of manual operations is usually challenging and
strongly depends on the nature of the processing work
conducted at each operation. Secondly, recording the up
and down events of manual operations typically requires
additional labour to conduct a full on-site time study of

the operations involved over an extended period of time.
Neither the manufacturer nor the academic team carry-
ing out this case study can afford this much effort. Lastly,
measuring up- and downtimes of manual operations may
require some close-up observation of the operators. It
was learned from the meetings with the operators that
this intrusive approach may cause stress and negatively
impact their productivity and performance.

To overcome these challenges, the new modelling
approach is adopted. In particular, parts flow data, i.e.
the number of parts at different stages of the system, will
be recorded (instead of operation up- and downtimes)
to measure system performance metrics (e.g. through-
put, work-in-process). Then, we inversely identify the
parameters of the individual operations by matching
the given performance metrics data. This approach is
first proposed for production systems modelling in Sun
et al. (2020) which studies the Bernoulli production sys-
tem models. Using the basic framework of inverse mod-
elling approach, but different from Sun et al. (2020), we
formulate this model parameter identification problem as
an optimisation problem to minimise the sum of squared
errors of estimated performance metrics:

mxin Z(Fk(x) - 0,2‘)2, st.xeX, (1)
k

where x is the model parameters vector, Fy(x) is the esti-
mated performance metric k under parameter x, ;" is
the observed/measured value of the performance metric,
and X is the feasible set of x. Detailed implementation of
this approach to the system at hand, further analysis, and
productivity improvement are described in the following
sections.



Work Cell 2

Work Cell 1

System structural model:

Simplified structural model:

Figure 3. Structural modelling of the medical device production
system.

4. Mathematical models

4.1. Structural/parametric modelling and model
assumptions

Based on the physical layout of the system (Figure 1), it is
not difficult to construct the structural model of the sys-
tem shown in the block diagram of Figure 3, where circles
represent the operations/workstations and the rectangle
in the middle represents the in-process buffer connect-
ing the two work cells. Note that no buffers are present
within the work cells as the operators in the same work
cells are expected to work synchronously inside a work
cell. We can further aggregate the operations in each work
cell to reach the simplified structural model shown in
Figure 3.

To obtain the parametric model of the system, we
model the operations as unreliable machines, because the
operations may experience cycle overruns and delays due
to various factors. In addition, since no prior knowledge
is available about the up- and downtime of the operations,
it is assumed that they can be modelled using the expo-
nential reliability model. Under this model, it is assumed
that the up- and downtime of a machine/operation are
exponential random variables with parameters A (1/min)
and p (1/min), respectively. The parameters A and w
are referred as the breakdown rate and repair rate of the
machine, respectively. Given parameters A and pu, the
machine’s efficiency e, can be calculated as

1% Tup

e= = , (2)
At Tup + Tdown

where Ty, = 1/A and Ty = 1/ are the average up-
and downtimes, respectively. In addition, the processing
speed of a machine is denoted as ¢ (parts/min), while
the cycle time is denoted as 7 (min). Thus, for the com-
plete structural model, an operation can be characterised
by a vector: (A1 414 C1k)> k =1, 2, 3, for the ones in
Work Cell 1, and (A2,ijs M2,ijs €2,if)> B j =1, 2, for the
ones in Work Cell 2. Similarly for the simplified structural
model, the aggregated/virtual machines are characterised
by (A}, uf,c}), i = 1, 2. Finally, the in-process buffer is

1
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Figure 4. Structural and parametric modelling of the production
system studied.

characterised by its storing capacity N, i.e. the maximum
number of parts that the buffer can hold (see Figure 4).

Furthermore, based on the production operations of
the actual system, the following assumptions are made for
operations of the mathematical models of the production
system:

o Full model (seven-machine-one-buffer model):

(1) (1)For consecutive machines with no interme-
diate buffers in-between, part processing takes
place only when all machines involved are up.

(2) (2)For parallel lines, parts are evenly allocated to
each line involved.

(3) (3)Machines mj ;) in Work Cell 2 are said to be
starved is they are up, the buffer is empty, and the
machines in Work Cell 1 are processing jobs with
rate slower than ¢ ;1 (or (¢2,1,1 + ¢2,2,1) if both are
up).

(4) (4)Machines m; 3 in Work Cell 1 are said to be
blocked 1is it is up, the buffer is full, and the
machines in Work Cell 2 are processing jobs with
rate slower than ¢ 3.

(5) (5)Machine m; ; in Work Cell 1 is not starved for
raw materials and machines m1; ; , in Work Cell 2
are not blocked by finished goods inventory.

(6) (6)If a machine is up and neither blocked nor
starved, then it processes parts with rate up to
the minimum capacity among the consecutive
machines connected with it.

e Simplified model (two-machine-one-buffer model):

(1) (1)Machine m) is said to be starved if it is up, the
buffer is empty, and machine m] is either down or
processing jobs with rate slower than c. Assume
that machine m] is never starved for raw material.

(2) (2)Machine m] is said to be blocked if it is up, the
buffer is full, and machine m} is either down is
processing jobs with rate slower than cj. Assume
that machine m) is never blocked.
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(3) (3)If machine m] is up and neither blocked
nor starved, then it processes parts with rate c;
(parts/min).

In summary, the production system model considered
is a single-product (with unlimited arrival) serial pro-
duction line with unreliable operations (with randomly
distributed up- and downtimes), zero in-process buffer-
ing within a cell, and a finite-capacity buffer connecting
the cells. Under these model assumptions, the throughput
and work-in-process of the production system model are
defined as:

o Throughput, TP: the average number of parts pro-
duced by machines m; 1, and m,;, combined in
the complete structural model or by machine m} in
the simplified structural model per unit of time (e.g.
minute, hour) during steady state;

o Work-in-process, WIP: the average number of parts
contained in buffer b during steady state.

In addition, we define two other performance indices to
be used in this work:

e Probability that buffer b is empty, Py,
e Probability that buffer b is full, Py.

Note that TP and WIP are considered as the most impor-
tant metrics in manufacturing research and practice and
are commonly monitored on the factory floor. In the case
of Py and Py;, although they are not commonly measured
on the factory floor, they can still be estimated using the
fractions of time that the buffer is empty and full, respec-
tively, during a certain observation period. For the system
under consideration, due to the difficulties of monitor-
ing the operations up- and downtime data described in
Subsection 3.4, we measure the parts flow and occu-
pancy of the buffer (i.e. the entrances/exits of parts
to/from the buffer and the number of parts in the buffer)
instead. There are three advantages of measuring the
buffer data. First, the measurement (counting the num-
ber of parts) is straightforward and involves no ambigu-
ity. Second, all four performance metrics can be derived
from the buffer data. Third, the data collection does not
require much labour and does not put extra stress on the
operators.

In the subsequent analysis, we mainly use the two-
machine simplified model since this model has a smaller
machine parameter set that can possibly be identified
using just TP, WIP, Py, and Py, and these perfor-
mance metrics can be calculated using analytical formu-
las (Li and Meerkov 2009). The seven-machine complete
model are only used in Subsection 7.4 when we discuss

the effects of reducing individual operation downtimes
under additional assumptions about the relationships
among machine parameters. The sensitivity of the mod-
els with respect to system parameter change and to those
addition assumptions are discussed in Section 8.

5. Model parameter identification
5.1. Data collected

It should be noted that, due to confidentiality, data mask-
ing was applied to the original data collected from the
manufacturing floor before being presented in this paper.
However, the ones presented still retain similar qualita-
tive features from the actual data. The storing capacity
of the conveyor buffer is measured based on the total
length of the conveyor space and dimensions of the prod-
uct. It was determined that the capacity of buffer b is
N = 15. The reliability parameters (i.e. breakdown rate
A and repair rate ) of the operations were not collected
due to the challenges discussed in Subsection 3.4. Instead,
we only measured the (average) cycle time of each opera-
tion under typical operating conditions via a time study.
The results are as follows:

71 = [0.89 0.80 0.84] (min),

206 2.02] .
= [1.99 2.11} (min). (3)

Thus, the processing speeds of my x’s and m;;;’s in the
complete 7-machine structural model can be obtained as
follows:

c1 = [1.1200, 1.2524, 1.1915] (parts/min),

0.4854 0.4944 .

2= [0.5032 0.4739] (parts/min). )
Using the parts flow and occupancy of the buffer mea-
sured during a 4-week span (typically 2-3 times a week
and about 4h each time), the following performance
metrics were obtained:

TP* = 0.6724 (parts/min), WIP* = 9.4745 (parts),

Py =0.0788, Py = 0.3297.
(5)

5.2. Method to parameter identification for the
simplified model

Using these data above, we first identify the parame-
ters of the simplified two-machine-one-buffer model. To
accomplish this, based on the machine connection rela-
tionship, the equivalent/aggregated processing speeds of



m] and m} can be calculated as:

¢; = min{cy,1, 12, ¢1,3} = 1.12 (parts/min),
¢y = min{cy 1,1, ¢21,2} + min{can1, €222} (6)

= 0.9594 (parts/min).

Given ¢, cj, and N, system performance metrics TP,
WIP, Py, and Py are functions of AJ, u}, A}, uj.
The formulas of these functions are derived in Li and
Meerkov (2009) and are omitted here due to space lim-
itations. In addition, since A} can be determined based
on p] and e; using

A =uid—e)/e, (7)

instead of identifying (A}, u}, A3, u3) directly, we define
and identify the machine reliability parameter in the form
of x = (i}, u}, e}, €). Note that these two formulations
are equivalent but the latter gives more convenience in
determining the feasible region of the machine param-
eters. Next, we define the vector-valued function F(x)
as:

[ f1(%)
fx)

f(x)

| f4(x)

[ TP(1Y, 15, €], e5) — TP*
WIP(ui, uy, ey, ey) /N — WIP* /N
Po(uy, iy, €1, €3) — Py

| PN 1y 13> €15 €5) — Py

F(x) =

(8)

where TP*, WIP*, Pj, and P}; are the observed system
performance metrics given in (5). Based on the above, we
formulate the following constrained optimisation prob-
lem:

Find machine parameter x = (uj, u3,ej,e;) that min-
imises the 2-norm of error function F over a certain
box-constraint set X, i.e.

min  f(x) = |[F®)|%
x (9)

st. xeX,

where X ={x e R* | < u} < pu,e; < e} <ey,
i = 1,2} is a box-set containing all possible values
of u?’s and e}’s and 1}, fy, €, and e, are the lower-
and upper-bounds for the parameters.

Since the objective function f(x) of (9) can be com-
puted analytically, it is possible to apply gradient-based
numerical optimisation algorithms to solve the optimi-
sation problem considered in this paper. A commonly

INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH . 9

used gradient-based method to solve box-constrained
optimisation problems is the projected gradient method
(Bertsekas 2016). However, as a first-order method, it
usually suffers from slow convergence. To overcome this
issue and incorporate higher-order information into the
projected search, the projected quasi-Newton method
(Schmidt, Kim, and Sra 2012) is introduced by calcu-
lating the projection step using an approximate Hessian
matrix of the objective function. Projected quasi-Newton
method has been proved to be globally convergent and
achieves superlinear convergence rate under certain con-
ditions in Bertsekas (2016), Schmidt, Kim, and Sra (2012)
and Kim, Sra, and Dhillon (2010). However, if the objec-
tive function is not convex, a local minimum may be
obtained by the gradient-based method. To overcome
this issue, the multi-start strategy of global search can
be used, which is capable of exploring more than a sin-
gle basin of attraction of the objective function (Peri and
Tinti 2012).

In this case study, to solve the parameter identifi-
cation problem (9) and to ensure global optimum, we
thus develop the following multi-start modified pro-
jected quasi-Newton method (MMPQN). The steps of
this algorithm are as follows:

Step 1: Tighten the feasible region. Given the observed
throughput TP*, we can easily obtain e; > TP*/cin,
where ¢;in = min{c,c}}. Therefore, the lower
bound of e; can be rewritten as e; = max{TP*/cmin,
er} and the corresponding feasible region becomes

X ={xeR* W < pi < pwe) <ei <eyi=12)
(10)

Step 2: Multi-start policy. Partition the feasible region
X' using multi-dimensional grid and create initial
point set P. There are four decision variables in opti-
misation problem (9) and each variable has a box-
constraint. For the i-th decision variable (dimen-
sion), we uniformly partition its constraint inter-
val into d; segments. This results in D = dj x dy X
ds x dy sub-regions. In each sub-region, we ran-
domly sample a point xflo) = (,uio), ,uéo), ego), e§0)) as
an initial point. This leads to the initial point set P
consisting of D initial points.

Step 3: From each initial point selected, we compute a
candidate feasible solution using a modified pro-
jected quasi-Newton method, in parallel with other
initial points together.

(i) (i)Initialization of gradient scaling matrix. Let
k = 0. With the nth initial point x,(qo) = (MEO),
,ué()),ego),ego)) in P, calculate the initial gra-

dient scaling matrix as $© = §|| Vf(x,so)) |71,
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(ii)

(iii)

(iv)

where I is the identity matrix and § € (0,1)
is a parameter of the algorithm (Nocedal and
Wright 2006).

(ii)Armijo rule along the projection arc. Using
[-]* to denote the projection on the constraint
set{xe R"|a; <x; <b;,i=1,...,n},theith
coordinate of the projection of vector x is given
by Bertsekas (2016):

ai if x; < aj,

[x]t ={b ifx;> b, (11)
x; otherwise.
Then, the projection arc is defined as
P @) = [xP — eSOV T, (12)

where & € (0,1) and S® is the gradient scal-
ing matrix (Schmidt, Kim, and Sra 2012). By
Armijo rule (Bertsekas 2016), under algorithm
parameters 8 € (0,1) and o € (0,1), we find
the smallest non-negative integer q such that

F&P) — P (g9 =

oV T[x® _xBgay) (13)

Let o = B1. The feasible projection arc vector
is given by

0 = [xB _ qsPvfx0)+ (14)
and the feasible direction is d = i,gk) — xi,k) .

(iii) Update xﬁ,kH). With diminished step size

s=y1, where y € (0,1) and q = [k/10], we

calculate x,(qu) as

XD =50 1 5. 4. (15)

(iv)Update SV, To calculate the new gradi-
ent scaling matrix to be used in the feasible
projection arc vector (14) in the next iteration,
we first divide the variables into two groups: free
and restricted. The latter refers to the subset of
variables that are close to their bounds:

RO = (i] chk) <aj+e, Bif(i(k)) > 0}

Uil > b — e, 0fGP) < 0},
(16)

where € is very small positive number. All
other variables constitute the set of free vari-
ables, denoted as F®. Without loss of general-
ity, assume that S(k) ={1,...,Kg}and RE —
{Kr + 1,...,n},where K is the number of free
variables in the current iteration and K is the

total number of variables (K = 4 for the prob-
lem addressed in this paper). Then, the new
gradient scaling matrix is calculated as

—=(k+1)
glk+D) — [S 0} , (17)

0 I

where S*™ is given by the principal subma-
trix of the approximated inverse of the Hessian
matrix as induced by the free variables calcu-
lated via the Broyden-Fletcher-Goldfarb-Shanno
(BFGS) update (Nocedal and Wright 2006). In
other words, the Newton-type Hessian matrix-
based gradient scaling only applies to the free
variables, while the descent of the restricted
variables is along the gradient direction.

(v) (v)Convergence criteria. Let k = k+ 1. If | Vf

(x,gk))ll < €g, terminate algorithm and output
the nth candidate solutionX,, = x,(f)
return Step (ii).

Step 4: Select optimal solution. With D different ini-
tial points from P, we obtain D candidate feasible
solutions {X;, Xy, . .., Xp}. The optimal solution X is
selected as the one that leads to the lowest value of
objective function.

;otherwise,

Note that the analytical formula of Vf(x) is all but impos-
sible to derive. Therefore, we use the central difference
formula (Nocedal and Wright 2006; Bertsekas 2016) as
an approximation:

o)
0x;
Fx e xi+ A xn) — X — AL Xy)
2A ’
(18)

where A is a very small positive number. In the following
numerical experiments, we set A = 10712, In summary,
the procedure of the MMPQN algorithm is also described
in the pseudo-code as below.

5.3. Identified model parameters

The proposed algorithm MMPQN applies second-order
gradient-based method with the reduction of searching
space and utilises multiple start points, which are well
distributed in the feasible space. These features make
the algorithm highly computationally efficient and capa-
ble of obtaining high-quality solution. Using MMPQN,
we solve the parameter identification problem (9) under
observed performance metrics (5) and obtain the param-
eters of the simplified two-machine-one-buffer model as



Algorithm  Multi-start Modified Projected Quasi-
Newton Method (MMPQN)
Determine the tightened feasible region X’ based on
(10).
Based on the multi-start policy, select D different ini-

tial points in X to construct the initial point set P =

0 0
{xg ),...,X(D)}.

forn=1,...,Ddo
Initialization with quo): Set k=0 and S© =
SIVFE) |1, where § € (0,1).
while | V/ (x|l > ¢ do
1. Find appropriate value for «® using Armijo

rule;
2. Compute the projection arc: ig,k) = [x,(qk) —
a®sOVf o] s

3. Compute the feasible direction: d = i,(qk) -

P,
4. Update qukH) = x,(qk) + y49.d, where y €
(0,1) and g = [k/107;

5. Compute the approximated inverse of the Hes-
sian matrix §(k+l) via BFGS update method;

6. Determine restricted variables set SR by (16);

7. Set S**tD — 1 and then, let Sg]{-H) = §$+1),

Vi, j ¢ R,
8.k=k+1;
end while
%, = x©
n — n -
end for
Return X = arg min f(X,).
Xy

follows:
Ty, =2494, Tj. =940, e} =07263,
Topo = 1714, Tlo,, =521, €5 = 0.7669.
(19)
6. Model validation
The conventional production system modelling

approach usually validates the identified model by com-
paring the model-predicted system performance metrics
with the ones measured on the factory floor (Li and
Meerkov 2009). Following this idea, we calculate the
system performance metrics based on the two-machine-
one-buffer model and the identified system parame-
ters (19) and evaluate the errors compared with the
observed ones (5) using

|TP — TP*| S ox
GTPZTIOO%’ €P0=|PO_PO|’
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|WIP — WIP¥|

- 100%,
N

EPN = |/15N — P;F\]L
(20)

EWIP =

where ™ denotes the performance metrics obtained from
the two-machine line model. As a result, it was obtained
that

erp = 348 x 107%%, ewp = 8.63 x 107%%,

ep, =319 x 10710, ep, =1.43 x 10717,

(21)

In other words, the parameters identified can provide a
perfect match to observation data from the factory floor
(in the sense of system performance metrics).

In addition, it is desirable to determine how close
the identified machine parameters (19) match the actual
operation of the two work cells. Unfortunately, a direct
comparison is not feasible due to no measurement data
available from the operations. As an alternative, an
indirect approach is considered. Specifically, instead of
focussing on the identified machine parameters (19)
for this particular system, we turn to evaluate the per-
formance of the MMPQN algorithm in identifying the
machine parameters in general, including the parame-
ter estimation accuracy, convergence, computation effi-
ciency. To accomplish this, we generates 10,000 two-
machine exponential lines with machine parameters ran-
domly and equiprobably selected from

wi € (1/15,1/5),
¢; € (0.75,1.25),

ei € (0.7,0.95),
i=1,2. (22)

The buffer capacity of each line is selected as N; = K -
max(1/p1,1/u2), where K is randomly generated from
(1,3). These parameter ranges are selected to reflect
typical manufacturing cases where the exponential line
model is appropriate: the downtime about 5-15 times of
the machine cycle time and the buffer can accommodate
roughly 1-3 downtimes on average. For the 10,000 lines
generated above, we calculate their performance metrics
based on the analytical expressions derived in Li and
Meerkov (2009), which are used as the input to iden-
tify the machine parameters with MMPQN algorithm.
All computations reported in this paper were imple-
mented in MATLAB R2021a on an HP ENVY TEO1-
2275xt workstation with 11th Gen Intel(R) Core(TM)
i7-11700 CPU 2.50 GHz processor and 16.0 GB of RAM.
For 10,000 lines studied in this experiment, the MMPQN
algorithm converges in finite steps and reaches the
near-zero optimisation objective function value (average
Sfmin = 2.94 x 10~12) with very short computation time
(0.1032 s on average).
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Table 1. Average estimation errors of performance metrics.

erp (%)

438 x 1076

ewip(%) €p, €py

3.46 x 1070 293 x 1078 3.29 x 1078

For each line generated above, the estimation errors
of the machine parameters identified by MMPQN, com-
pared with the true machine parameters, Ty, ;, Tj,,
and e} are calculated based on

| Tupi = iyl
er = P TUP 000,
up,i T*
up,i
| Taowni — Tippmi|
€Ty, = —mt Tdownil 10005, (23)
OWn,1 T*
down,i
|&; — e o
€ei=e—*'100A), Z=1,2.

1

where © denotes the estimated machine parameters
obtained by MMPQN algorithm. Moreover, the errors of
the performance metrics calculated using the identified
machine parameters for the 10,000 lines are evaluated
based on (20). The average of these estimation errors are
summarised in Table 1. As one can see, the MMPQN
method can consistently obtain machine parameters that
match the input (observed) performance metrics almost
perfectly. For individual machine parameters, the esti-
mated average up- and downtimes typically have about
0.0001% error compared with the true machine param-
eters, while the estimated machine efficiencies are only
about 8 x 107°% different from the true parameters (see
Table 2).

Therefore, based on the low performance metrics esti-
mation error obtained in (21) for the production system
at hand and the high accuracy of parameter estimation
of the MMPQN method, in general, demonstrated in
Table 2, we claim that the two-machine line model and
the machine parameters (19) for the production system
studied in this paper are validated.

7. System baseline analysis and improvement

In this section, based on the mathematical model con-
structed in Section 4 and identified model parame-
ters in Section 5, we analyse the baseline performance
of the system and investigate options for performance
improvement to meet the manufacturer’s goal of increas-
ing the throughput by 10-15%. This is achieved by

studying and combining the effects of increasing pro-
cessing speed, increasing buffer capacity and reducing
machine/operation downtime.

7.1. System bottleneck

The bottleneck (BN) of a production system is defined as
the machine m; that leads to the maximal increase of TP
when the processing speed of one machine is increased.
Mathematically, Work Cell 4, i € {1,2}, is the BN, if

oTP  9TP
— > _’

Vij#i 24
36,‘ 8Cj J 7& : ( )

Using the two-machine-one-buffer model, the parame-
ters identified in (19) and the bottleneck identification
method introduced in Li and Meerkov (2009), we obtain
that the BN of the system is Work Cell 2. Similarly, we
define the BN in Work Cell 2 as the machine that leads
to the maximal increase of Work Cell 2’s overall process-
ing speed when the processing speed of one machine is
increased. Based on (4) and (6), we can easily find out
that Op. 2-22 is the BN of this work cell, and, thus, the
BN of this production system.

This conclusion is consistent with the observation on
the factory floor and discussion with the production per-
sonnel as well. Indeed, Op. 2-12 and Op. 2-22 involve
some dexterous manipulations of small objects while
holding the main product in place. The operator at Op.
2-22 during this study was a new employee that just fin-
ished training on the job not long ago and, thus, was less
proficient compared to her peer in Op. 2-12. Similarly,
although Op. 2-11 is not the BN, it is another constrain-
ing operation besides Op. 2-22, because it is also staffed
by a new employee. The plant intentionally pair an inex-
perienced operator (Op. 2-11 and Op. 2-22) with an
experienced one (Op. 2-12 and Op. 2-21) in each of
the parallel lines in Work Cell 2 to enable teaching and
assisting on the spot.

7.2. Effects of increasing machine processing speed

Given that Work Cell 2 is the BN of the system, we discuss
the following four improvement scenarios of increasing
the processing speeds of its operations (Table 3):

o Improvement Scenario I:
° Action: Increase the processing speed of Op.
2-2210 ¢y = 0.4944.

Table 2. Average estimation errors of machine parameters.

€Tup (%) €Tup2 (%) €Tdown,1 (%)

€Tgomn (%) €e; (%) €e, (%)

9.79 x 10~* 342 x 1074 9.98 x 10~*

3.67 x 10~* 7.19 x 107> 8.50 x 10>




INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH 13

Table 3. Improvement scenarios of increasing machine processing speeds in Work Cell 2.

Q,ij c; TP (parts/hour) TP improvement %
Baseline parameters [ggggg gi?;‘g] 0.9594 40.34 -
Improvement Scenario | :gggg; 3:2:1: 0.9798 40.96 1.53%
Improvement Scenario |l :(())ggg; gj?gg: 0.9683 40.62 0.68%
Improvement Scenario lll :ggggg g:gii: 0.9888 41.22 2.17%
Improvement Scenario IV :gg;g; g:ig;: 1.0534 4295 6.45%

° Rationale: Since Op. 2-22 is the BN of the sys-
tem, it is natural to prioritise its improvement
over other operations in the system. This can
be accomplished, for instance, by offering bet-
ter training and retaining more experienced
workers by the manufacturer.

e Improvement Scenario II:

° Action: Increase the processing speed of Op.
2-11to cp,1,1 = 0.4944.

° Rationale: Although Op. 2-11 is the not the
BN, it is also an operation that strongly lim-
its the productivity of the system. In addition,
the processing accomplished at Op. 2-11 and
Op. 2-21 are less complex than that at Op.
2-12 and Op. 2-22, which may lead to an easier
implementation for improvement in practice.

o Improvement Scenario III:

° Action: Increase the processing speeds of both
Op. 2-11 and Op. 2-22 to 31,1 = €222 =
0.4944.

Rationale: This scenario is the combination of
the above two, where the operations staffed
by inexperienced operators (Op. 2-11 and Op.
2-22) are to be improved to gain similar profi-
ciency as an experienced one (Op. 2-12).

o Improvement Scenario IV :

° Action: Increase the processing speeds of all
operations in Work Cell 2 to ¢;,;; = 0.5267, so
that the BN of this system shifted to Work Cell
1. We refer this scenario as maximum speed-up
on system BN.

Rationale: As mentioned above, Work Cell 2
involves some quite dexterous manipulations of
small objects using one hand, while holding the
main product in place to align the pre-drilled
holes using the other hand. To make things
more challenging, the holding was performed
while suppressing a relatively strong spring
inside the product enclosure. This improve-
ment scenario is created to explore the potential

of designing and introducing a fixture that can
mitigate the complexity of the operations and
thus improve productivity.

The results of the improved throughput under each sce-
nario are also summarised in Table 3. As one can see,
these improvement scenarios can increase the through-
put by 1.5-6.5%, which cannot reach our improvement
target. Thus, in the following, we further investigate the
effects of increasing buffer capacity and reducing opera-
tion downtime on system throughput.

7.3. Effects of increasing buffer capacity

In this subsection, we study the effects of increasing
buffer capacity on top of the four improvement scenarios
discussed above. Specifically, with the identified model
parameters (19), we increase the buffer capacity from
N =15 to N = 30 and calculate the throughput of the
system under the baseline processing speed as well as
under the four scenarios of improved processing speeds.
The effects of buffer capacity increase are evaluated based
on the additional improvement in TP introduced by
increasing the buffer capacity (on top of the improve-
ment reported in Table 3). The results are illustrated in
Figure 5.

W

—*—Orginal
—— Scenario [
Scenario IT
—#— Scenario I1T| | |
—#— Scenario [V

(parts/hour)

=
W

Additional TP improvment

Additional TP improvment (%)

15 20 25 30
N

Figure 5. Improvementin TP by adjusting N under each scenario.
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As shown in this figure, increasing buffer capacity
has practically identical effects on throughput in all four
improvement scenarios as well in the baseline parameter
case and can make another 4.5% improvement on system
throughput when the buffer capacity is doubled. While
the result suggests that combining the maximum pro-
cessing speed improvement on BN (i.e. Scenario IV) and
doubled buffer capacity can increase the throughput by
about 11.5%, this is achieved by stretching both avenues
to the limit with no headroom to spare, which may
not be ideal in practical implementation. Thus, potential
improvement by reducing machine/operation downtime
is further discussed in next subsection.

7.4. Effects of reducing machine downtime

In addition to machine/operation processing speed and
buffer capacity, reducing downtime of the operations
is also a commonly used method to improve system
throughput in manufacturing practice. In this case study,
since the up- and downtime data of each individual
operation are not available, a direct analysis of effects
of operation downtime reduction is not possible. Thus,
an approximation procedure is developed to estimate
the resulting model parameters of the work cells when
the downtime of an operation is reduced. Based on
the estimated model parameters, the effects of reduc-
ing operation downtime on system throughput are then
calculated.

7.4.1. Algorithm to parameter estimation for the
complete model

In order to estimate the new model parameters of a
work cell when the downtime of a certain operation in
this work cell is reduced, the first step is to identify the
parameters of the seven individual machines. Specifically,
according to the knowledge gained from the interviews
with the operators, engineers, and managers on the fac-
tory floor, the workload within each work cell is usually
balanced by design such that the stand-alone throughput
of each operation in the same work cell is similar. More-
over, for the operations that are connected consecutively
in a group, i.e. (Op. 1-1, Op. 1-2, Op. 1-3), (Op. 2-11,
Op. 2-12), and (Op. 2-21, Op. 2-22), their ‘stoppages’
are also similar. Therefore, based on this information, we
assume the following for the seven-machine-one-buffer
model:

e The operations in the same work cell have identical
stand-alone throughput, i.e.

Work Cell 1 : C1,1€1,1 = C1,2€12 = C1,3€1,3, (25)

€2,1,1€2,1,1 = €2,1,2€2,1,2>
€22,1€22,1 = €222€222>
min(cz,1,1,€2,1,2) - €2,1,1€2,1,2

= min(cy,1,1,€2,1,2) - €2,1,1€2,1,2-

(26)

Work Cell 2 :

e The consecutive operations in a group have identical
downtime (breakdown rate), i.e.

Work Cell 1 : Taown1,1 = Tdown12 = Tdown,1,3> (27)
Work Cell 2 : Taown2,1,1 = Tdown2,1,25

Tdown,2,2,1 = Tdown,2,2,2> (28)

or

M1,1 = U122 = U1,35
(29)

M2,1,1 = M2,1,2,  M2,2,1 = 2,22,

In addition, Yan and Zhao (2013) derive formulas to
approximate the aggregated parameters of a group of par-
allel machines or consecutive machines. Specifically, for a
group of W parallel machines, the aggregated parameters
of the group as a whole can be calculated as

w
P — Zi:l Ci€j par 1 — el (30)
- w ci > down — ZW 1
i=1"1 i=1 Tdown,i+TuP,i

For a group of Z consecutive machines, the aggregated
parameters of the group can be calculated as

1 — gfon
con
Town = ZZ 1 . (31)

z
o — 1_[ ¢,
j=1 =1 Taown;j+ Tupj
Thus, based on (30), (31) and the assumptions above, we
can reversely calculate the parameters of each individual
operations in the seven-machine model as follows:

e Work Cell 1: It follows from (31) that the parameters
of the individual machines should satisty:

2

TV _ 1— el
down,1 — 3 1—ey; °
i=1 Tdown,l,i

el = ey,1€1,2€1,3, (32)

Solving these equations with assumptions (25)
and (27), we can obtain:

3 1
(e} 1_[,-:1 c1,j)3
el,l =

Cl,i

Yi(d—ey)

v

o (33)

v
Tdown,l,i = Tdown,l
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Using the two-machine model parameters, these
equations lead to

e1,1 = 0.8931, 0.9489, e 3 = 0.8571,

Taown13 = 10.33.

€1,2

Tdown,l,l = Tdown,l,z =

(34)

e Work Cell 2: Similarly, the parameters of the opera-
tions should satisfy:

min(cy,1,1,€2,1,2) - €2,1,1€2,1,2
+ min(cy,1,1,€2,1,2) - €22,1€2,2,2

. . b
min(cy,1,1,€2,1,2) + min(cy,1,1, €2,1,2)

14
1—e,

3 2 l—eyj -
Zi:l ijl Tdown,2,i,j

ey =
(35)

v —
down,2 —

Solving these equations with assumptions (26)
and (28) under the two-machine model parameters
results in

€2,1,1 = 0.8786, €2,12 = 0.8626, €221 = 0.8550,
e222 = 0.9079,
Tdown,Z,l,l = Tdown,2,1,2 =11.13,

Tdown,2,2,1 = Tdown,2,2,2 = 11.04.
(36)

7.4.2. Improvement scenarios

With the identified parameters of the seven-machine
model (34) and (36) and the equations to calculate
aggregated machine parameters in the two-machine
model (32) and (35), the effects of reducing downtime
on system throughput can be analysed. Specifically, the
analysis is conducted under the baseline parameters and
processing speed modification scenarios Improvement
Scenario I and Improvement Scenario IV in Subsec-
tion 7.2, in combination with the original buffer capacity
N =15 and doubled capacity N = 30. For each case,
we reduce the downtime of an operation by a factor of
a%, a € [0,50], with a referred as the reduction factor,
and calculate the additional improvement in throughput
resulted from the downtime reduction. Note that, due to
the parallel structure in Work Cell 2, we reduce the down-
time of the operations carrying out the same process-
ing work simultaneously (i.e. Tyown2,1,1 and Tgown2.2.1
together and T joyn 2,12 and Tgown,2,2,2 together) to mimic
the elimination/alleviation of certain common causes
for failures/stoppages. The modified individual machine
downtime ((1 — a%) Tdown,1.k O (1 — a%) Taown,2,ij) is
first used to update its own efficiency (ey x or e3,;;). Then,
the modified operation downtime and efficiency are
plugged back into (32) or (35) to obtain the aggregated
machine parameters (¢; and T} " ;) of the two-machine-
one-buffer model. Finally, the improved throughput is
calculated based on the closed-form expression for TP
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given in Li and Meerkov (2009) for two-machine asyn-
chronous exponential lines. The resulting additional
improvement in TP from downtime reduction are shown
in Figures 6 and 7.

As one can see, for the operations in Work Cell 1,
the throughput is the most sensitive to the downtime
reduction at Op. 1-3. While within Work Cell 2, the
throughput is more sensitive to the downtime reduction
at Op. 2-11/2-21. Between Op. 1-3 and Op. 2-11/2-21,
the latter appears to be more impactful. Furthermore,
reducing their downtime in half may lead to an addi-
tion 5-6% improvement in TP. On the factory floor,
reducing downtime at Op. 2-11/2-21 can be achieved by
identifying and alleviating the dominant stoppage/failure
causes/modes and will be considered in the recommen-
dation/implementation stage next.

7.5. Recommendations and implementation

To facilitate selecting the improvement actions, a total
of 10 improvement plans (IPs) are designed. For opera-
tion speed-up, we consider Scenario I (speed-up on BN
of Work Cell 2) and Scenario IV (maximum speed-up on
system BN) and select three levels of downtime reduction
factor (10%, 25% and 40%) for Tjowp2,i1. Then, buffer
capacities are selected to further boost the throughput
under various combinations of operation speed-up and
downtime reduction. This leads to IPs 1-9, grouped into
three levels of TP improvement (7.5%, 10%, and 12.5%),
and IP 10, which is the potentially maximal improvement
with each improvement action stretched to the maxi-
mum. The modifications of system parameters required
for each IP are given in Table 4. These IPs are intended to
provide the production management a mix of different
options to improve their operations. The TP improve-
ment for each IP as well as the breakdown of the improve-
ment by actions (operations speed-up, downtime reduc-
tion, and buffer expansion) are given in Figure 8. The
figure can further help them visualise the results of dif-
ferent improvement plans and make decision based on
their desired target, preferences, and available resources.

With the analysis and follow-up discussion with the
production supervisor and company officials, IP 6 was
eventually selected by the team. To implement this plan,
we designed and delivered a 3D-printed fixture that can
hold the part steady in place. This relieves both hands of
the operators to performance the tasks more efficiently,
leading to shorter processing times in all operations in
Work Cell 2. In addition, using this fixture also effectively
eliminates the most common stoppages in these oper-
ations, thus, reducing the downtime of the operations.
Finally, since the product has a relatively small footprint

Table 4. Improvement plans of each TP improvement target.

TP Impr. Operation Reduction

Target Impr. Plan Speed-up of Tdown,2,i1 N

7.50% Impr. Plan 1 Scenario | 10% 30
Impr. Plan 2 Scenario | 25% 23
Impr. Plan 3 Scenario | 40% 18

10.00% Impr. Plan 4 Scenario | 40% 26
Impr. Plan 5 Scenario IV 10% 21
Impr. Plan 6 Scenario IV 25% 17

12.50% Impr. Plan 7 Scenario IV 10% 30
Impr. Plan 8 Scenario IV 25% 24
Impr. Plan 9 Scenario IV 40% 19
Impr. Plan 10 Scenario IV 50% 30

in dimension, the current buffer is capable of accommo-
dating 3-4 more parts on top of the nominal capacity
of N = 15. After implementation of these actions, the
system throughput was improved to 0.7477 parts/min
or 44.86 part/hour, about 11% improvement over the
baseline and similar to what is predicted by the analysis.

8. Model sensitivity analysis

Although the model parameters identified in Sub-
sections 5.2 (for the two-machine-one-buffer model)
and Subsection 7.4.1 (for the seven-machine-one-buffer
model) can perfectly fit the observed system perfor-
mance metrics. It does not directly imply that these
model parameters are indeed the true parameters of the
production system. In particular, the identical down-
time and identical stand-alone throughput assumptions
used to estimate the seven-machine model parameters in
Subsection 7.4.1 may not hold exactly in practice and the
parameters calculated under these assumptions may be
different from the actual up- and downtime characteris-
tics of the operations. Such issues may lead to deviation
of the performance metrics from the true values when
we design improvement actions discussed in Section 7,
which requires modification of the model parameters.
Thus, in this section, we investigate the sensitivity of
the models identified through the proposed modelling
approach with respective to these assumptions.

To carry this out, we first search for a set of machine
parameters that leads to the same performance metrics
of (5) under the seven-machine model. A solution is
given below:

A1 = [0.0091,0.0119,0.0170],
0.0047 0.0075]

>

22=100095 0.0053
(37)
p1 = [0.1379,0.1222,0.1092],

0.0487 0.0449
0.0460 0.0508 |

K2
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Equivalently, based on (7), the machine reliability param-
eters can also be expressed as

Tup,1 = [109.69,83.73, 58.69],

133.40]
187.48 |

o [21297
up:2 = 1105.30

Taown, = [7.25,8.18,9.16],

20.55 22.26] (38)

2172 19.68

Tdown,z = |:

e; = [0.9380,0.9110, 0.8650],

o, _ [09120 08570
27 10.8290 0.9050 |

As one can see, these parameters are quite different from
the ones calculated in Subsection 7.4.1.

8.1. Sensitivity analysis of the two-machine model

The approach of parameter identification proposed in
Section 5 guarantees that the two-machine line model
parameters obtained fit the observed system performance
metrics (5) (almost) perfectly. However, it provides no
guarantee that this still holds when the machine pro-
cessing speeds are modified (as discussed in Subsec-
tion 7.2) and/or when the buffer capacity is changed (as
discussed in Subsection 7.3). Therefore, we calculate the

performance metrics of the system based on the hypoth-
esised ‘true’ parameters (37) or (38) using simulations
under the four operation speed-up scenarios in Subsec-
tion 7.2, for buffer capacity up to N = 30. The results
are compared with the performance metrics analytically
calculated from the two-machine line model. The errors
of throughput and work-in-process are computed based
on (20) and plotted in Figure 9.

As one can see, the errors of both performance met-
rics are low for all cases studied: within 1% for TP and
0.7% for WIP. This implies that the inference made
with the two-machine line model remains valid for the
improvement scenarios under the hypothesised system
parameters above.

8.2. Sensitivity analysis of the seven-machine
model

In the seven-machine model, it is assume that the oper-
ations in the same work cell have identical stand-alone
throughput (see (25) and (26)) and the operations in the
same group have identical downtime (27) and (28)). The
hypothesised ‘true’ system parameters (37) or (38) appar-
ently do not meet these assumptions. Based on these
parameters (37) or (38), we calculate again the through-
put and work-in-process of the system using simulations
for downtime reduction cases at each operation. The
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average errors, when compared to those calculated in
Subsection 7.4, are summarised in Figures 10 and 11.

As one can see, the seven-machine model can still
provide a highly accurate estimation of both throughput
and work-in-process (less 1% errors) when modifying
the average downtime of operations in Work Cell 2 by
as much as 50%. In the case of operation downtime
reduction in Work Cell 1, the errors increase as the
T4own moves away from the baseline value, because of
the larger deviation of hypothesised ‘true’ parameters of
the operations in Work Cell 1 from assumptions (25)
and (27). Despite the increasing trend, the system per-
formance estimates still remain in a relatively reasonable
range (less than 1.5% error for TP and less than 2% error
for WIP).

8.3. Summary

In this section, we analyse the sensitivity of the model
identified using our proposed approach. As demon-
strated by the data, this approach can predict the per-
formance metrics accurately not only under the nominal
parameters but also in a reasonable range of parameter
change even when some of the assumptions about the
relationship among individual machine parameters are
violated. This property of the modelling approach allows
construction of a robust mathematical model for the pro-
duction system without precise knowledge of T, and

Taown of individual machines. This is critical in design-
ing continuous improvement projects in manufacturing
practice, where the prediction accuracy of the model is
the key to the assessment of various what-if scenarios.

Finally, it should be noted again that, implementing
the conventional modelling approach (measuring up-
and downtimes of the operations) and the algorithms in
Li and Meerkov (2009) and Yan and Zhao (2013) requires
the up- and downtime data of all seven machines in the
two work cells, which may face a number of challenges
in practice as discussed in Sections 1 and 3. On the other
hand, monitoring and measuring the parts flow data in
the buffer is sufficient for the proposed approach to col-
lect the input data, TP, WIP, Py, and Py. This can be more
efficient and convenient in practice.

9. Conclusions

In this paper, considering the challenges of collecting
and processing the machine status data in small and
medium-sized manufacturing plants, we develop a novel
approach to modelling a production system, in which
parts flow data of in-process buffer are collected and used
for identifying the model parameters. This new approach
is applied in a case study at a local small manufacturer
of medical devices to understand its baseline perfor-
mance and to design continuous improvement actions
to enhance its productivity. To accomplish this, we first



construct the structural and parametric model of the sys-
tem. In particular, two models are considered: a complete
seven-machine model and a simplified two-machine pro-
duction line model. Then, we formulate the parameter
identification problem for the two-machine line model as
a constrained optimisation problem that aims at search-
ing for the optimal machine parameters to match the
given performance metrics data (TP, WIP, Py, and Py).
To solve this optimisation problem, multi-start modi-
fied projected quasi-Newton method is developed, which
shows great optimisation performance and computa-
tional efficiency via numerical experiments. Based on the
identified model parameters, we investigate potential TP
improvement via operation speed-up, buffer expansion,
and downtime reduction. These analyses lead to several
improvement plans that were handed over to the pro-
duction personnel. One improvement plan was selected
for implementation, resulting in increased throughput as
predicted by the analysis. Finally, the efficacy, validity,
and robustness of the models are investigated through
various numerical experiments of model sensitivity
analysis.
The implications of this work are two-fold:

e From the academic perspective, the paper develops a
method for machine reliability parameter identifica-
tion in a production system parts flow model and tests
its performance through numerical/statistical experi-
ments and an industrial case study. This work justifies
the efficacy of the approach of performance metrics-
based manufacturing system modelling and lays the
foundation for extending the theoretical methods to
more complex system models.

e From the industrial perspective, this work describes
a model-based analysis and improvement design
approach for a practical manufacturing system. Mul-
tiple scenarios were explored based on the model
identified. Based on the analysis, recommendations
were formulated and offered to the manufacturer, who
eventually adopted the recommendations and saw
the productivity performance improvement expected
from the model. This modelling-analysis-
improvement design process can be generalised to
other manufacturing systems, where collecting parts
flow data in in-process buffers is relatively easy and
convenient.

In future work, this new modelling approach will be
extended to more complex production system models,
such as multi-stage production line models and assem-
bly system models, and generalised to systems with
machines following other reliability models (e.g. geomet-
ric, Gamma, etc.). Furthermore, we will continue our
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effort in promoting and applying this approach in real
manufacturing systems.
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