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Abstract

We tackle the problem of point cloud recognition. Un-
like previous approaches where a point cloud is either con-
verted into a volume/image or represented independently in
a permutation-invariant set, we develop a new representa-
tion by adopting the concept of shape context as the build-
ing block in our network design. The resulting model, called
ShapeContextNet, consists of a hierarchy with modules not
relying on a fixed grid while still enjoying properties similar
to those in convolutional neural networks — being able to
capture and propagate the object part information. In ad-
dition, we find inspiration from self-attention based models
to include a simple yet effective contextual modeling mech-
anism — making the contextual region selection, the feature
aggregation, and the feature transformation process fully
automatic. ShapeContextNet is an end-to-end model that
can be applied to the general point cloud classification and
segmentation problems. We observe competitive results on
a number of benchmark datasets.

1. Introduction

Convolutional neural networks (CNN) [20, 19, 29, 31,
14] and their recent improvements [32, 16, 39, 43] have
greatly advanced the state-of-the-arts for a wide range of
applications in computer vision. Areas like classification,
detection [1 1, 26], and segmentation [22, 13] for 2D im-
ages have witnessed the greatest advancement. Extend-
ing 2D-based convolution to 3D-based convolution for 3D
computer vision applications such as 3D medical imaging
[23, 10], though still effective, is arguably less explosive
than the 2D cases. This observation becomes more evi-
dent when applying 3D convolution to videos [33, 4, 34, 40]
where 2D frames are stacked together to form a 3D matrix.
Innate priors induced from careful study and understanding
of the task at hand are often necessary.

The development of large datasets of 2D static images
like ImageNet [9] is one of the key factors in the recent

*Equal contributions.

Figure 1. A motivating example to illustrate how the basic build-
ing block of our proposed algorithm, the shape context kernel, is
applied to a 3D point cloud to capture the contexual shape infor-
mation.

development of deep learning technologies. Similarly, the
emergence of 3D shape based datasets such as ShapeNet
[5] has attracted a great deal of attention and stimulated ad-
vancement in 3D shape classification and recognition. In ar-
eas outside of computer vision, the 3D shape classification
and recognition problem has been extensively studied in
computer graphics [7, 12, 28] and robotics [27, 36]. Unlike
2D images where pixels are well-positioned in a strict grid
framework, shapes encoded by 3D point clouds [38, 42]
consist of individual points that are scattered in the 3D space
where neither is there a strict grid structure nor is there an
intensity value associated with each point.

To combat the 3D point cloud classification problem,
there have been previous works [17, 42, 30, 38] in which
scattered 3D points are assigned to individual cells in a
well structured 3D grid framework. This type of conver-
sion from 3D points to 3D volumetric data can facilitate the
extension from 2D CNN to 3D CNN but it also loses the
intrinsic geometric property of the point cloud. A pioneer-
ing work, PointNet [0], addresses the fundamental repre-
sentation problem for the point cloud by obtaining the in-



trinsic invariance of the point ordering. Well-guided proce-
dures are undertaken to capture the invariance within point
permutations for learning an effective PointNet [6], achiev-
ing state-of-the-art results with many desirable properties.
One potential problem with PointNet, however, is that the
concept of parts and receptive fields is not explicitly ad-
dressed, because the point features in PointNet are treated
independently before the final aggregation (pooling) layer.
An improved work, PointNet++ [25], has recently been de-
veloped to incorporate the global shape information using
special modules such as farthest point sampling and geo-
metric grouping. Our paper instead focuses on developing
a deep learning architecture for point cloud classification
that connects the classic idea of shape context [3] to the
learning and computational power of hierarchical deep neu-
ral networks [20]. We name our algorithm ShapeContextNet
(SCN) and a motivating example is shown in Figure 1.
Before the deep learning era [19], carefully designed fea-
tures like shape context [3] and inner distances [21] were
successfully applied to the problem of shape matching and
recognition. In shape context, an object is composed of a
number of scattered points and there is a well-designed disc
with unevenly divided cells to account for the number of
neighborhood points falling into each cell; the overall fea-
tures based on the occurrences of the points within every
individual cells give rise to a rich representation for the ob-
ject parts and shapes. Shape context was widely used before
but kept relatively distant to the deep learning techniques.

(@) (b)

Figure 2. An illustration of our shape context kernel displayed in a
spherical coordinate system. (a) the shape context kernel, the num-
ber of bins on polar angle (¢), number of bins on azimuthal angle
(6) and number of bins on radial distance (r) are manually spec-
ified. Different colors of edges represent different binary affinity
matrices indicating different bins. (b) the attentional shape con-
text “kernel”, where there is no predefined bins, and the soft affin-
ity matrix, or attention weights (indicated by edge thickness) are
learned during training.

Motivated by the rich representational power of shape
context [3], as well as the recent success in deep convo-
lutional neural networks [19], we propose a new method,
ShapeContextNet (SCN) that adopts shape context as the

basic building block acting like convolution in CNN. The
basic network architecture of SCN is illustrated in Figure 4
with the basic shape context descriptor shown in Figure 2.
We do not force a given set of points into volumetric data,
nor do we remove the spatial relationship of the points. In-
stead, we build layers of shape context to account for the
local and the global contextual information in a hierarchy
learned by an end-to-end procedure. In order to incorpo-
rate the local shape context descriptor into a neural net-
work, we break a shape context block into three key compo-
nents, namely selection, aggregation, and transformation.
For a point p; in the point cloud {p1, pa,...,Pi,---, DN},
the set of all N — 1 points forms a rich context depicting
the shape information centered at p;. However, using all the
neighborhood points might be computational and spatially
unattractive. We instead design shape context kernel with
distributed bins in the log-polar space, shown in Figure 2
which is inspired by the shape context descriptor [3]. The
selection operation thus decides a set of neighboring points
of p; to define coarse groups of neighboring points for p;
to attend to. The aggregation operation (such as histogram,
or pooling) builds a robust descriptor that captures the dis-
tribution over relative positions. The transformation oper-
ation projects the descriptor to a high-dimensional feature
space by fusing features from different neighboring points
or groups. Like in the standard CNN, SCN propagates the
local part information through hierarchical layers to capture
the rich local and global shape information.

Although the concept of building deep shape context is
simple, we still face many implementation choices in prac-
tice: how to design the shape context bins and handle the
additional computation cost for computing “point to bin”
relationships, how to choose an aggregation operation that
preserves feature discriminability, etc. We are inspired by
the recent development in attention-based models that are
mainly applied in natural language processing tasks such
as sequence-to-sequence modeling [2, 41]. A self-attention
approach is proposed in [35] and achieves state-of-the-art
results on the neural machine translation task with an ar-
chitecture design that consists of a stack of self-attention
blocks. The dot-product self-attention block has no recur-
rence — keys, values and queries come from the same place
and is highly efficient in computation. We connect the self-
attention idea with shape context within a supervised learn-
ing setting. Self-attention combines the selection and aggre-
gation process into a single soft alignment operation. The
resulting model enjoys the property of shape context and
is an end-to-end trainable architecture without the bells and
whistles of a handcrafted selection operation (bins). We call
it Attentional ShapeContextNet (A-SCN).

We apply SCN and A-SCN to 3D point shape classifi-
cation and segmentation datasets [38, 42] and observe im-
proved results over the PointNet [6] model.



2. Method
2.1. Revisiting the Shape Context Descriptor

We first briefly describe the classic shape context de-
scriptor, which was introduced in a seminal work [3] for
2D shape matching and recognition. One main contribution
in [3] is the design of the shape context descriptor with spa-
tially inhomogeneous cells. The neighborhood information
for every point in a set is captured by counting the number
of neighboring points falling inside each cell. The shape de-
scriptor for each point is thus a feature vector (histogram) of
the same dimension as the number of the cells with each fea-
ture dimension depicting the number of points (normalized)
within each cell. The shape context descriptor encodes the
rich contextual shape information using a high-dimensional
vector (histogram) which is particularly suited for matching
and recognition objects in the form of scattered points. For
each point p; in a give point set, shape context computes a
coarse histogram £; of the relative coordinates of the neigh-
boring point,

hi(l) = #{p; # pi : (pj — pi) € bin(l)}.

Shape context uses a log-polar coordinate system to de-
sign the bins. Figure 3 shows a basic 2D shape context de-
scriptor used in our method (note that we make the cen-
ter cells larger which is slightly different to the original
shape context [3] design where the center cells are relatively
small).

Figure 3. Example of a 2D shape context kernel with 24 bins (n, =
3 and ng = 8).

There were also attempts to extend shape context to 3D.
In [18] concentric shells, polar angle ¢ and azimuthal angle
6 are considered to divide the space into different quadrants.
We use a similar design for our bins, as is shown in Fig-
ure 2 (a). Although shape context is considered as one of
the most successful descriptors in computer vision, its inte-
gration into the modern deep learning framework has been
under-explored.

2.2. A General Formulation

In this section, we introduce a generalized formula-
tion for shape context to build our deep ShapeContextNet.
Let a given point set (cloud) for one shape be P =

{p1,p2,- ,pi, -+ ,pn}. Bach p; € R? is a point rep-
resented by its 3D coordinates. Our proposed ShapeCon-
textNet (SCN) is a neural network architecture (shown in
Figure 4) with its basic building block being SCN block
(illustrated in Figure 2 (a)). Each SCN block consists of
three operations: selection, aggregation, and transforma-
tion, which will be explained in detail below.

Selection. For a point cloud P of N points, the selection
operation is to produce an affinity matrix A € {0, 1}V*V,
where A(%, j) = 1 indicates that a point p; has an edge to a
reference point p;, while A(7, j) = 0 indicates that a point
p; has no connection to point p;. The connected component
centered at point p; is a representation of the global shape
arrangement. In the original shape context, the selection
operation first divides the space into L bins. In that case, in-
stead of having a single affinity matrix, we build L disjoint
affinity matrices simultaneously, and A'(7,7) = 1 means
p; € bin(l) of the reference point p;, for I = 1,---, L.
Note that the selection operations do not necessarily rely
on any predefined partitioning of space, and can be auto-
matically learned in the same vein as attention mechanism,
where the A is the N x NN attention weight. The attentional
selection operation can either be hard or soft assignments.
Aggregation. After the selection operations, to form a
compact representation of shape arrangement at a refer-
ence point p;, we need to aggregate the information from
the selected points. We denote an aggregation function as
m. In original shape context, for N points and L bins,
and a reference point p;, we have L aggregation functions
mt, 1 = 1,---, L, which together form the histogram rep-
resentation. Each m! is a counting function that counts the
number of points in bin(l), which can be represented as a
sum pooling function m} = Y 1[A'(4, j) = 1].

In a more general form, m can be a weighted sum op-
erator (dot product) such that m; = > i A(1,7) - pj using
the learned attention weights A. p; could be simply the in-
put coordinates p;, or any arbitrary feature vector associated
with that point.

Transformation. Now we have an aggregated represen-
tation for the reference point p;. It is natural to add a
feature transformation function f to incorporate additional
non-linearity and increase the capacity of the model. In the
original shape context, after a local descriptor is built, a dis-
criminative classifier, e.g. a support vector machine, can be
added for the final classification task. The transformation
can be realized by a kernel function such as a radial basis
function. In the context of deep neural networks, an MLP,
or convolutional layer with a non-linear activation function
can be used for the feature transformation purpose.

Shape context block. After we introduce the above three
operations, the shape context descriptor SC' can be formu-
lated as,

SC; = f(hi) = f([hi(1),---
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Figure 4. ShapeContextNet (SCN) and Attentional ShapeContextNet (A-SCN) architectures.
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The classification network has 5

ShapeContext blocks; each block takes N point feature vectors as input, and applies the selection, aggregation and transformation opera-
tions sequentially. The ShapeContext blocks can be implemented by hand-designed shape context kernels (SCN block), or a self-attention
mechanism learned from data (A-SCN block). See text in Section 2 for details.

where m} = 3, 1[A'(i,j) = 1]. Note that every com-
ponents in this formulation can be implemented by a back-
propagatable neural network module, and thus, similar to a
convolutional layer, SC' is a compositional block that can

be used to build a shape context network,
SCNet = SC;(SCi(SCi(---)))

2.3. ShapeContextNet

Shape context kernel. Similar to [18], we use concentric
shells to design the shape context kernel. The kernel is ad-
justable with three parameters: polar angle ¢, azimuthal an-
gle 6 and radial distance r (Figure 2 (a)). In our setting, ¢
and 6 are evenly divided into different sectors, while for r,
a logarithmic parametrization of the shell radii is used. We
also set a maximum radius of the sphere max R, which de-
fines the receptive field size for a single shape context ker-
nel. Thus the design of the shape context kernel is paramer-
ized by the maximum radius (max ), the number of bins
for radius r (n,.), angles 6 (ng) and angles ¢ (ny). The com-
bined number of bins for a shape context kernel is equal to
Ny X Ny X N

Selection. With the L bins induced by a shape context ker-

nel, the selection operation builds L disjoint affinity matri-
ces A', ..., AL where each matrix is corresponding to a
specific bin. We generate the affinity matrices online during
training and share them across different layers.

Aggregation. Following original shape context, the aggre-
gation operation is simply a sum-pooling layer that aggre-
gates points (associated with D-dimensional feature vec-
tors) within each bin. Note that the sum-pooling layer
can be implemented by L parallel matrix multiplications,
as A is binary. The aggregation operation results in L
sets of pooled features, thus the output is a tensor of shape
N x L x D.

Transformation. Finally the transformation operation is
realized by a convolutional layer with a [L, 1] kernel that
fuses L sets of feature points and projects them to (higher
dimensional) output feature vectors of D,,;. A ShapeCon-
text block consists of above operations and our ShapeCon-
textNet is a stack of ShapeContext blocks with increas-
ing output dimensions of D,,;. We follow the over-
all network configuration of PointNet and use D,,; =
(64,64, 64,128,1024) as the output dimensions for each
ShapeContext block.

Limitations. While being conceptually simple and en-



joying good properties of classic shape context descrip-
tors such as translation-invariance, handcrafting shape con-
text kernels are not straight-forward and hard to general-
ize across different point cloud datasets which usually have
varying size and density. This motivates us to propose the
following attention-based model.

2.4. Attentional ShapeContextNet

We now introduce a different approach inspired by
research in natural language processing (sequence-to-
sequence) tasks. Traditional sequence-to-sequence models
usually adopt recurrent neural networks (e.g. LSTM[15]),
external memory or temporal convolutions to capture the
context information. The dot-product self-attention pro-
posed in [35] is a model that handles long path-length
contextual modeling by a light-weight gating mechanism,
where the attention weight matrix is generated using a
simple dot-product. It is worth-noting that self-attention
is also invariant to the input ordering. Unlike traditional
attention-based sequence-to-sequence models, in a self-
attention block, guery vector Q € RP<, key vector K €
RPx (usually Dg = Dg) and value vector V' € RPV are
learned from the same input. In a supervised classification
setting, one can think @, K and V are just three feature
vectors learned by three independent MLP layers. Atten-
tion weights are computed by a dot product of @ and K,
and then multiplied with V' to obtain the transformed repre-
sentation.

Figure 2 shows the similarities and differences between

manually specified shape context kernels and the automat-
ically learnable self-attention mechanism: They all aim to
capture the distribution over relative positions; they are uni-
fied under the same formulation in Section 2.2; the selection
operation in self-attention does not rely on hand-designed
bin partitioning as it can be learned from data; self-attention
has better modeling capability by adopting a weighted sum
aggregation function, in contrast to using a simple sum-
pooling function.
Selection and Aggregation. We consider computing self-
attention on the whole point cloud P of size N. The se-
lection operation produces a soft affinity matrix, which is
the self-attention weight matrix A of size N x N, the ag-
gregation operation is transforming the value vector V' with
weight matrix A by a dot product,

QKT
VDq

Transformation. MLPs with ReLU activation function can
be added as a feature transformation operation after each
self-attention operation (Equation 1). To further improve
the model expressiveness, we add a simple feature gating
layer to the MLP, similar to [8, 24].

Attention(Q, V, K') = Softmax( ) -V

2.64%
%4 i)
1 %
& v
] b
= L
5 e \
A}
g | N
U "i
- " 1.18%
o
E L 0.84%
on s 0.66% 0.68% o g
1 -"""'"-.,, _______ LT
0.6 4 -
o H s

1 2 :
Number of ShapeCoitext Blocks

Figure 5. Ablation analysis on the number of ShapeContext
blocks. The error rates obtained by increasing the number of
ShapeContext blocks. Metric is overall accuracy on 2D MNIST
test set (N = 256). The bin configuration is: max R = 0.5, n, =3,
ng = 12.

Model N | Error rate (%)
PointNet[6] 256 0.78
PointNet++[25] 512 0.51
shape context local | 256 1.18
ShapeContextNet | 256 0.60

Table 1. 2D point cloud classification results on the MNIST
dataset. ShapeContextNet achieves better performance than Point-
Net showing the effectiveness of contextual information; the shape
context local model consists of only one shape context block.

3. Experimental Results
3.1. ShapeContextNets: 2D case

We first showcase the effectiveness of deep ShapeCon-
textNet which has a stack of shape context blocks.

2D point set is generated for MNIST dataset following
the same protocol as used in PointNet[6], where 256 points
are sampled for each digit. We use a shape context kernel
with max R = 0.5, n,, = 3 and ny = 12, thus 36 bins in
total.

Table | shows that a simple 5-layer SCN achieves better
performance than PointNet, showing that using the distri-
bution over relative positions as a context feature is indeed
helpful for the shape recognition task. The performance
of SCN is also competitive to the recent PointNet++[25]
model which uses 512 points as input. shape context local is
a model that consists of only one shape context block, which
resembles the “feature extraction and classifier learning”
pipeline in traditional computer vision. To better under-
stand the importance of hierarchical learning in ShapeCon-
textNet, in Figure 5, we vary the number of shape context
blocks from O to 5 in the network (Figure 4), where the 5-
layer model is our ShapeContextNet, the 1-layer model is
the shape context local model, and 0 means no shape con-



text block. We observe that as the number of shape context
blocks increases, the error rate decreases.

3.2. ShapeContextNets: 3D case

We evaluate the 3D shape classification performance of
SCN on the ModelNet40[38] dataset, with point cloud data
from 12,311 CAD models in 40 categories. We use 9,843
for training and 2,468 for testing. Following [6], 1,024
points are sampled for each training/testing instance. Ta-
ble 2 summarizes the impact of different shape context ker-
nel design choices parametrized by max R, n,., ng and ng.

max No.of No.of No.of | accuracy | accuracy
R rbins  Obins ¢bins | avg. class overall

PointNet vanilla[6] - - 87.1
PointNet[6] - - - - 86.2 89.2
PointNet++[25] - - - - - 90.7
(A) 0.25 3 3 3 86.2 89.3
(B) 1 84.8 88.6
©) 0.5 2 86.7 89.6
(D) 4 86.5 89.6
(E) 3 2 81.4 84.8
F) 4 82.2 84.2
(G) 3 2 85.5 88.9
(H) 4 87.5 89.7
SCN (I) 0.5 3 3 3 87.6 90.0

Table 2. Ablation analysis on shape context kernel design in
ShapeContextNet. We evaluate SCN models with different ker-
nel configurations (model (A)-(I)). max R is the maximum lo-
cal radius for the sphere shape context kernel at each reference
point. n,., ng and n are the number of different shell and angle
bins. Unlisted values are identical to those of the preceding model.
We report averaged and overall accuracy on ModelNet40 test set
(N=1024).

We obtain the best results with max R = 0.5. Note that
the coordinates of point cloud in ModelNet40 are normal-
ized to [—1,1]. This means the receptive field of a single
shape context kernel covers around a quarter of the entire
point cloud. With the same radius bin configuration, the
test accuracy peaks when n, = ng = ng = 3. Empirically,
the number of r bins has the least impact on the test accu-
racy, whereas the number of 6 bins appears to be crucial for
the performance. With minimal change in architecture to a
vanilla PointNet (by replacing the MLP layers to carefully
designed shape context kernels), ShapeContextNet (model
(I)) achieves better or competitive results compared to full
PointNet model (with additional input/feature transforma-
tion layers), and the recent PointNet++ model (with special
sampling/grouping modules).

3.3. Attentional ShapeContextNet

ModelNet40 Shape Classification. The architecture of
Attentional ShapeContextNet (A-SCN) follows the gen-
eral design of ShapeContextNet (SCN). In contrast to
using hand-crafted shape context kernels, we adopt the
self-attention module as the shape context block in the
network (Figure 4). Q, K and V feature vectors are

ReLU BN residual  Numof | accuracy | accuracy
A-SCN | Q=K? Q/K/V  Q/K/V  connect. heads avg. class overall
(A) v VI IV IV v 1 85.7 89.0
(B) X 28.2 36.7
©) X v 85.7 89.1
(D) XIXIX 86.1 89.2
(E) XIXIV 87.4 89.8
(F) 2 86.3 89.2
(G) 4 87.2 89.8

Table 3. Ablation analysis on the Attentional ShapeContextNet
architecture. We evaluate the Attentional ShapeContextNet
model on ModelNet40 dataset with different hyperparameter set-
tings (model (A)-(G)). We report class-averaged and overall ac-
curacy on test set. Unlisted values are identical to those of the
preceding model. @), K and V here represent the feature vectors
learned in an A-SCN block (Figure 4).

learned from the input using three MLPs. We use
Dk = Dg = (32,32,32,32,64) and Dy = Doy =
(64,64,64,128,1024) for each block. Attention weight
matrix of shape NV x N is computed according to Equa-
tion 1. Table 3 summarizes the performance of A-SCN with
different hyperparameters. The choices of different hyper-
parameters are generally aligned with those in [35] on the
machine translation task. For example, the residual connec-
tion is necessary in order to learn a good model, and learn-
ing Q and K vectors independently is better than weight-
sharing. Note that similar to SCN where L affinity matrices
are used, we can also learn multiple attention weights in
parallel for A-SCN. This is called multi-head attention in
[35]. However, empirically we find that using multi-head
attention does not yield better performance comparing to
the one-head model, and introduces additional computation
overhead. Therefore, in this paper A-SCN refers to our one-
head model (model (E)). A-SCN is able to achieve 89.8%
overall accuracy, which is on par with SCN, but with a sim-
pler design and fewer critical hyper-parameter to set.

In Figure 6 we show surprisingly diverse and semanti-
cally meaningful behavior of the learned attention weights.
For a reference point, it oftentimes attends to areas far away
to itself. The selected areas are usually descriptive and dis-
criminative parts of a model, e.g. back or legs of a chair.
Figure 7 visualizes how shape information is propagated
and condensed into a compact representation in a multi-
level neural network. For a fixed reference points, attention
becomes increasingly sparse, and focuses on smaller areas
when the level gets higher.

ShapeNet Part Segmentation. Part segmentation is a
challenging task in 3D object recognition domain. Given a
set of points of a 3D shape model (e.g. a plane), the part
segmentation task is to label each point in the set as one
of the model’s part (e.g. engine, body, wing and tail). We
follow the experimental setup in [6], and defines the task as
a point-wise classification problem.

Our model (A-SCN) is trained and evaluated on



mean | aero bag cap car chair ear guitar knife lamp laptop motor mug pistol rocket skate table
phone board

# shapes 2690 76 55 898 3758 69 787 392 1547 451 202 184 283 66 152 5271
Wu [37] - 632 - - - 735 - - - 744 - - - - - - 74.8
Yi [42] 81.4 | 81.0 784 777 757 876 619 920 854 825 957 70.6 919 859 531 698 753
3DCNNI6] 794 | 751 728 733 70.0 872 635 884 796 744 939 587 918 764 512 653 77.1
PointNet++[25] | 85.1 | 824 79.0 87.7 773 90.8 71.8 91.0 859 83.7 953 716 941 813 587 764 82.6
PointNet[6] 83.7 | 834 787 825 749 8.6 73.0 915 859 80.8 953 652 930812 579 728 80.6
A-SCN (ours) 84.6 | 83.8 80.8 835 793 905 69.8 91.7 865 829 960 692 938 825 629 744 808

Table 4. Segmentation results on ShapeNet part dataset. We compared the results with Wu [37], Yi [42], 3DCNN from [6], PointNet [6]
and recent PointNet++[25] which uses additional normal direction features. The results are evaluated with mean IoUs(%) metric on points.
Our A-SCN model achieves competitive performance for point cloud part segmentation.

(L]

Figure 6. Attention weights learned by A-SCN on three shape models: a plane, a chair and a toilet. First column in each row shows
the original point cloud. The other columns visualize learned weights for one randomly sampled reference point. Higher value indicates
stronger connection to the reference point. Attention weights learned by A-SCN are diverse, sparse, and semantically meaningful and a

reference point learns to attend to discriminative parts of a model.

Block 4

Block 3

Block 1 Block 2
Figure 7. Attention weights learned on different levels. In A-
SCN, shape information is propagated and condensed into a com-
pact representation through a multi-level network structure. From
left to right are attention weights, for a fixed reference point,
learned in the first, second, third and fourth attentional shape con-
text block. Attention becomes increasingly sparse, and focuses on
smaller areas with compact representations.

ShapeNet part dataset following the data split from [5].
ShapeNet part dataset [42] consists of 16,881 object from
16 object categories, where each object category is labeled
with 2-5 parts. During training, we randomly sample 1024
points from the 3D point cloud of each object and use
cross-entropy as our loss function. We also followed the
settings from [42], which assume the object category labels
are known and encoded by one-hot encoding. During
testing, we test the model on all the points from each object
and evaluated using point mean intersection over union
(mIoU), which averages IoU across all part classes similar
to [6]. Our A-SCN model outperforms PointNet over most
categories, and is on par with the recent PointNet++ model
which augment the input points with additional normal
information. Full results for part segmentation are listed in
Table 4.



Ground i’ruth

Input Scene
Figure 8. Visualization of semantic segmentation results by A-SCN. From left to right: original input scenes; ground truth point cloud
segmentation; PointNet[6] segmentation results and Attentional ShapeContextNet (A-SCN) segmentation results. Color mappings are red:
chairs, purple: tables , orange: sofa, gray: board, green: bookcase, blue: floors, violet: windows, yellow: beam, magenta: column, khaki:
doors and black: clutters.

S3DIS Semantic Segmentation. Stanford 3D indoor
scene dataset[!] includes 6 large scale areas that in total
have 271 indoor scenes. Each point in the scene point cloud
is associated with one label in 13 categories. We follow
[6] for data pre-processing, dividing the scene point cloud
into small blocks. We also use the same k-fold strategy for
training and testing. We randomly sample 2,048 points from
each block for training and use all the points for testing. For
each point, we use the XYZ coordinates, RGB value and the
normalized coordinates as its input vector.

mean [oU(%) | overall accuracy (%)
PointNet [6] 47.71 78.62
A-SCN (ours) 52.72 81.59

Table 5. Results on scene semantic segmentation. Mean
IoU(%) on and point-wise accuracy are reported. Our Attentional
ShapeContextNet model outperforms PointNet in both metrics.

The evaluation results of our method are in Figure 5.
By taking into account the global shape context in a hier-
archical learning way, our A-SCN model achieves 52.72%
in mean IoU and 81.59% in point-wise accuracy, improv-
ing the results by PointNet in both metrics. Some of our

PointNet A-SCN

segmentation results are visualized in Figure 8.

4. Conclusion

To tackle the recognition problem for 3D/2D point
clouds, we develop a new neural network based algorithm
by adopting the concept of shape context to build our basic
building block, shape context kernel. The resulting model,
named as ShapeContextNet (SCN), consists of hierarchical
modules that are able to represent the intrinsic property of
object points by capturing and propagating both the local
part and the global shape information. In addition, we pro-
pose an Attentional ShapeContextNet (A-SCN) model to
automate the process for contextual region selection, fea-
ture aggregation, and feature transformation. We validated
the effectiveness of our model on a number of benchmark
datasets and observed encouraging results.
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