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Abstract— High-fidelity mathematical models are essential to
implement model-based analysis and control in manufacturing
research and practice. Currently, such models are typically
conducted manually in an ad hoc manner. This approach
presents several limitations, especially to small and medium-
sized manufacturers, such as unavailability of equipment status
data, inconvenient data collection process, non-standard and
non-unique modeling rules, etc. In this paper, we describe a
case study at a local small manufacturer of medical devices
and apply a novel approach of production system modeling
to overcome various practical challenges in collecting up- and
downtime data of the operations. Specifically, the parametric
model of the production system is identified based on system
performance metrics derived from the parts flow data. With
the model constructed, system bottleneck is analyzed and then,
to enhance system throughput, potential improvement actions
including operation speed-up, downtime reduction, and buffer
expansion are explored. Finally, model sensitivity is analyzed
by comparing the deviation of the model-predicted performance
metrics to those produced by a reference nominal model.

I. INTRODUCTION

The emergence and development of Industry 4.0 during
the past decade have lead to great advances in computation
power and data analytics technologies. Data-driven modeling
and analysis has since become increasingly popular in man-
ufacturing research and practice. However, small/medium-
sized manufacturers (SMMs) typically face various chal-
lenges in utilizing the production data to create mathemat-
ical models for their production systems to improve their
production processes. In current manufacturing research,
a production system is typically modeled as a stochastic
process, where the operations/machines are characterized by
randomly distributed uptimes, downtimes, and cycle times
[1]-[3]. The conventional approach to determine the para-
metric system model is to collect the status data (i.e., up- and
downtimes) from each individual workstation and extract the
model parameters by aggregating and analyzing those data.
To apply this approach, one of the greatest challenges for
the SMMs is the unavailability of system-wide automatic
data collection technologies or equipment that can monitor
the status of all operations/machines and record the data
in real-time. Moreover, even when machine status data are
available (either through automatic or manual collection), the
data cleaning process is often tedious and complicated due
to issues such as noise, data integrity and ambiguity.
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As reported in the literature, the conventional production
system modeling approach often leads to significant efforts in
collecting, cleaning, and processing the production data and
in designing algorithms to calculate the system parameters.
For instance, in the case study of an automated pizza
production line carried out in [4], the average downtime of
each machine is computed based on hand-written records of
failures spanning a period of four years in order to present
a statistical analysis of the failure data and investigate the
improvement of this production line. Moreover, in [5], the
authors collect the up-/downtime data from 15 machines to
calculate the parameters of a two-stage aggregated line model
simplified from a complex motorcycle manufacturing system,
which involves a large amount of data processing work. In
[6], a Bernoulli model is built for a production system with
quality control devices in a picture tube plant. A large amount
of data of up-/downtime of each machine are collected to
compute the Bernoulli parameters. The similar method is also
adopted by [7] in a case study at an automotive body shop.
Besides, in paper [8], a method to model a manufacturing
system for productivity improvement is introduced and a
software tool is developed to implement this method by
connecting the analytical algorithm with the automatic data
acquisition system for real-time production data collection.
This method, however, still requires a customized calculation
algorithm for the system considered. Clearly, the lack the
in-house expertise, extra workforce, and IT infrastructure
makes it it difficult for the SMMs to effectively apply this
production modeling approach in their practice.

To overcome these limitations, it is proposed in [9]—
[11] to reversely compute the parameters of a production
system model based on measured system performance met-
rics, i.e., through inverse modeling [12], [13]. In this new
approach, the input are the system performance metrics
(e.g., throughput, work-in-process), which have commonly
accepted definitions. This can greatly reduce the ambiguity
that may be contained in operating status data. Moreover, the
performance metrics used in this approach can be measured
based on part-counting. This can be easily accomplished
by deploying sensors (e.g., weight sensors, photoelectric
sensors) into the manufacturing process. Thus, the goal of
this paper is to extend this new modeling approach to an
asynchronous exponential production system models and
apply and test the robustness of this approach in a case study.

The rest of the paper is organized as follows: The system
operation and problems addressed are described in Section
II. Mathematical modeling is implemented in Section III.
Section IV analyzes the baseline system performance and
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explores some improvement actions for increasing the system
throughput. The model sensitivity is discussed in Section V.
Finally, the conclusions and future work are summarized in
Section VI

II. SYSTEM OPERATION AND PROBLEM DESCRIPTION

A. System layout and operation

The production system studied in this paper is from a local
SMM, which designs and produces electrical/mechanical
devices for medical applications. The layout of this particular
production system is shown in Fig. 1.
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Fig. 1. Layout of the medical device production system

There are two work cells in this production system. Both
work cells consist of two parallel lines, which split the work
load and carry out identical processing work. The enclosures
of the device are retrieved from the warehouse to be made
available at the input of Work Cell 1. The operators at Op. 1-
11 and Op. 1-21 use the drill presses to make several holes on
the enclosure. At Op. 1-12 and Op.1-22, the operators affix
labels on the exterior and interior of the enclosures. Then, at
Op. 1-13 and Op. 1-23, the operators inspect the quality of
the previous two steps to ensure locations of the holes and
the labels comply to the product design. The intermediate
products are then places on a conveyor to be transported to
Work Cell 2. The operators at Op. 2-11 and Op. 2-21 install
the printed circuit board, electrical wires, switch, and several
small mechanical parts into the enclosure and fix them in
place by applying screws into the holes drilled in Op. 1-11
and Op. 1-21. Finally, the operators at Op. 2-12 and Op. 2-22
inspect the assembled devices, test the electrical/mechanical
functions, fix any issue discovered, and package the finished
products with instruction manual cards into cardboard boxes.

B. Problem Description

As one can see, all operations in this production system
involve human labor and the production issues/interruptions
are often difficult to identify or trace. There is no production
data recorded before, outside of the total number of units
produced in a shift. On the other hand, the manufacturer
did not have any in-house expertise and resources to solve
this issue. To help the manufacturer enhance the system
performance, the following problems are addressed:

o Modeling: Construct mathematical model for the pro-

duction system based on the layout and collected data.

« Analysis: Use the mathematical model to quantitatively

analyze the baseline system performance.

« Improvement: Based on the system model and the

baseline analysis, investigate potential improvement ac-
tions to enhance system performance.

III. MATHEMATICAL MODELING
A. Structural and parametric modeling

Based on the system layout (Fig. 1), we build the complete
model as Fig. 2, where the circles represent operations and
the rectangle represents the in-process buffer connecting the
two work cells. Note that no buffers are inside the work cells
as the operators in the same work cells are expected to work
synchronously. Then, we further aggregate the operations in
each work cell to reach the simplified model.

Work Cell 1

Work Cell 2

|
|
|
Complete :
|
|
|

Model:
R l = == __
Lyl N 3,15, ¢35 /
Simplified /a\ 1T
Model: U I_l U
m{ b mj

Fig. 2. Structural and parametric modeling

Since the operations may experience cycle overruns and
delays, we model them as unreliable machines and assume
the up- and downtime of a machine are exponential random
variables with parameters A (1/min) and p (1/min), respec-
tively. The parameters A and p are referred as the breakdown
rate and repair rate, respectively. Given parameters A and p,
machine efficiency e, is calculated as

[ Tup
ei}\“r,U/iTup“FTdown’ .

where T, = 1/X and Tyoun = 1/p are the average
up- and downtimes, respectively. In addition, the processing
speed of an operation is denoted as ¢ (parts/min), while the
cycle time is denoted as 7 (min). Thus, for the complete
system model, an operation can be characterized by a vector:
()\l,j,k7ul,j,k7cl,j,k)s 7 = 1,2 and k£ = 1,2,3, for the
ones in Work Cell 1; and (Mg 1, ph2,h,1,C2,h,0)s Ryl = 1,2,
for the ones in Work Cell 2. Similarly for the simplified
model, the aggregated/virtual machines are characterized
by (AY,u?,c?), i = 1,2. Finally, the in-process buffer is
characterized by its capacity [V, i.e., the maximum number
of parts that the buffer can hold (also see Fig. 2).

B. Model Parameter Identification

1) Data collected: In this system, we measure the buffer
capacity based on the total length of the conveyor space
and dimensions of the product, i.e., N = 15. The reliability
parameters (A and p) of each operation were not available
due to the challenges discussed in Section I. The average
cycle time of each operation under typical conditions was
measured as follows:

L _ | 182 187 1.99 (min), 75 — 1.56 1.65 (min)
7| 295 2.28 2.21 » 27 183 1.76 '
)
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Thus, the processing speeds of my ;’s and mo ;’s in the
ten-machine model can be obtained as follows:

_ { 0.5482 0.5302 0.5025

=1 0.4451 0.4386 0.4526 ](pam/mm)’

3)

| 0.6379 0.6061
27| 0.5464 0.5614

] (parts/min).

Using the parts flow data of the buffer measured during a 4-
week span, the following performance metrics were obtained:

TP* = 0.7026 (parts/min),
WIP* = 5.6808 (parts),

P =0.2816

. “4)
Py = 0.0709,

where these performance metrics are defined as follows:

o Throughput, T P: the average number of parts produced
by machines 1312 and mg 22 combined in the com-
plete model or by machine mj in the simplified model
per time unit (e.g., minute, hour) during steady state;

o Work-in-process, WIP: the average number of parts
contained in buffer b during steady state;

o Probability that buffer b is empty, Py;

o Probability that buffer b is full, Py.

2) Algorithm: According to the machine connection rela-
tionship presented in [3] and [14], the aggregated processing
speeds of m; can be calculated as:

i = Zmin{CLjJ, €1,5,2, 1,53} = 0.9411 (parts/min),

’ (&)
s =Y _min{can,1,Co,n,2} = 1.1525 (parts/min).
h
For a two-machine model, given c¢}’s and N, TP, WIP,
Py, and Py are functions of AY’s and pu)’s (¢ = 1,2), which
are derived in [3]. Instead of identifying (AY, u¥, AY, u3)
directly, we identify the machine parameters in the form of
x = (uY, 13, €Y, ey), which is more convenient in expressing
the feasible region of x. Next, we define F(x) as:

f1(x) TP(M?,/LS,EY,@S) —-Tp*

Foo— | 2200 | | WIPG et e5)/N — WIPT/N
f3(x) Po(uy, ps, ef,e3) — Py
fa(x) Pr(py,p3,e7,e3) — P

(6)
where T'P*, WIP*, Py, and Py, are the observed system
performance metrics given in (4). Based on the above, we
formulate the following constrained optimization problem:

Find x = (uY, 3, €Y, e8) that minimizes the 2-norm of error
function ¥ over a certain box-constraint set X, i.e.,
. 2
min f(x) = [[F(x)], @
s.t.x e X,
where X = {x € R*|; < 1l < iy, ep < €¥ <ey,i=1,2}%
and y, [y, €1, and e, are the lower- and upper-bounds for
the parameters 1} ’s and €;’s.

To solve problem (7), we propose a searching algorithm
based on projected quasi-Newton method [15] in combi-
nation with the multi-start strategy of global search [16],
called multi-start modified projected quasi-Newton method

(MMPQN). We use [-]* to denote the projection on the
constraint set {x € R* | a; < x; < b;,i =1,...,4}, and the
ith coordinate of the projection of x is given by [17]:

a; if xX; S a;,
[ZCZ'PL = bi if T Z bi, (8)
x; otherwise.

The projection arc is defined as X(a) = [x — aSV f(x)]T,
where o € (0,1) and S is gradient scaling matrix. To find
an appropriate « in each iteration, Armijo rule [17] is used
and we find the smallest non-negative integer ¢ such that

f(x) = F(x(87) > oV (x)"[x — x(89)], )

where 8,0 € (0,1). Then, a = 9. Next, to calculate S for
next iteration after updating x along the feasible direction,
we first divide the variables of X into two groups: free and
restricted. The latter refers to the subset of variables that are
close to their bounds:

R={i|Zi <ai+e 0if(X) >0} U
{i]Z; > b — ¢ 0:f(X) <0},
where € is very small positive number. The quasi-Newton-
type gradient scaling only applies to the free variables, while
the restricted variables descend along the gradient direction.

In summary, we randomly select D initial points from X and
the steps MMPQN are described as Algorithm 1.

(10)

Algorithm 1 Multi-start Modified Projected Quasi-Newton
Method (MMPQN)
forn=1,...,D do
Initialization: Set
k=0,x© = (ugo),uéo)7 e§0)7 eéo)) € X and
SO = §||V £(x(©)||~'1, where 6 € (0,1) [18].
while ||V f(x®)|| > ¢, do
. Find appropriate value for a(*) using Armijo rule;
2. Compute the projection arc:
xF) = [x(*) — a)SE)YT f(x))]* ;
3. Compute the feasible direction: d*) = x(*) —x (),
. Update x*+1) = x(*) 4 5.4 where s € (0,1);
5. Compute the approximated inverse of the Hessian
matrix SU T via BFGS method [18] ;
6. Determine restricted variables set R(*) by (10);
7. Set S**+1) = 1, and then, let
S§Z+1) _ ggcjﬂ)’ Vi, j ¢ R
8. k=k+1;
end while
%, = xF),
end for
Return X = argmin f(X,,).

Xn

=

N

Using the MMPQN method, we solve problem (7) with
observed performance metrics (4) and obtain the parameters
of the simplified two-machine model as follows:

Ty, = 12.68,
TY, 2 = 19.04,

T;own,l = 3037
T;own,Z = 7667

ey = 0.8071,

11
ey = 0.7129. (an
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With the identified parameters (11), we estimate the perfor-
mance metrics based on the two-machine model and evaluate
the errors compared with the observed ones using

TP —TP* 5 _ ps
€rp = % - 100%, ep, = |Po — Py,
TP (12)
WIP - WIP* = X
ewip = WIP - WIPT| 100%, epy = |Py — Py,
where ~ denotes the estimated performance metrics. As a

result, both erp and ey rp are below 10~6%, while both
€p, and ep, are below 107, In other words, these identified
parameters can provide an almost perfect match to observed
performance metrics from the factory floor.

IV. SYSTEM BASELINE ANALYSIS AND IMPROVEMENT
A. Blockage, starvation, and system bottleneck

With the identified model parameters, we can estimate
those performance metrics which are difficult to be measured
during production, such as blockage of Work Cell 1 (BL1)
and starvation of Work Cell 2 (S7T5). Using the two-machine
line model, we obtain BL; = 0.0605 and ST5 = 0.1033.

Furthermore, the system bottleneck (BN), which is the
machine that leads to the maximal increase of 7T'P when the
processing speed of one machine is increased, can be iden-
tified. Using the bottleneck identification method introduced
in [3], we obtain that the BN of the system is Work Cell 1,
because BL, < ST5. Moreover, we define the BN in Work
Cell 1 as the machine that leads to the maximal increase of
Work Cell 1’s overall processing speed when the processing
speed of one machine is increased. Based on (3) and (5), we
can easily obtain that Op. 1-22 is the BN of Work Cell 1.

B. Effects of increasing machine processing speed

Since Work Cell 1 is the system BN, we consider increas-
ing its processing speed to improve the system T'P. With the
identified parameters, we first find out the threshold point ¢
that makes the BN switch to Work Cell 2, i.e., ¢ = 1.1045.
We assume ¢i = 1.1045 to be the upper bound of cf
improvement and the corresponding improved TP is 0.7735
part/min, which amounts to 10.09% improvement over the
baseline throughput 7'P*. Then, the increases of T'P with
¢y € [0.9411,1.1045] are plotted in Fig. 3. Additionally,
we set 2.5%, 5% and 7.5% as the T'P improvement targets,
namely, minor, medium, and major improvement, and then,
we find the corresponding cj which bring the T'P to these
improvement targets (see Fig. 3).

To achieve those particular cj’s, we create following
improvement plans shown as Table I. Since the operators
(usually trainees on the job) on the second parallel line have
much lower processing speed than those on the first line,
we prioritize their improvement, which can be accomplished
through better training by more experienced operators. Be-
sides, we improve the performance of the lower operators
on the first line to let them gain the similar speed as the
most proficient one. Finally, the manufacturer may explore
the potential of designing and introduce new technologies to
reach the maximum improvement.

Medium Impr. §
¢l =10121 |
|

R

E TP = 0.7377 "W S
S04 TR 1 Major Impr. 10 5
= {ef =10535 | B
S { TP = 07553 | 2
072 i Minor Tmpr | 5 ;‘l
| cf = 09751 ° =

Original | TP = 0.7202 N

- S A | n i i U

094 096 098 1 102 104 106 108 1.1

Fig. 3. TP and improvement (%) vs. c

TABLE I
IMPROVEMENT PLANS OF OPERATION SPEED-UP IN WORK CELL 1

U

C1,45.k 1
Minor (2.5%) 0.5482 0.5302 0.5025 0.9751
Improvement 0.4726 0.4726 0.4726 ’
Medium (5%) 0.5482 0.5302 0.5302 10121
Improvement 0.4819 0.4819 0.4819 ’
Major (7.5%) 0.5482 0.5482 0.5482 1.0535
Improvement 0.5053 0.5053 0.5053 T
Max. (10.1%) 0.5523 0.5523 0.5523 1.1045
Improvement 0.5522 0.5522 0.5522 ’

C. Effects of reducing machine downtime

Reducing downtime of the operations is also a commonly
used method to improve system throughput. In this case
study, since the up- and downtime data of each individual
operation are not available, we first estimate the individual
machines’ parameters (Tiown,1,5,k> €1,5,ks Ldown,2,h, and
e2 1) based on the identified parameters of the aggregated
machines (1y,,,,, ¢ and T, ., and e3). In practice,
the operations in the same work cell typically have similar
performance through work balancing efforts. Therefore, we
assume that each parallel line in a work cell has identical
aggregated downtime and stand-alone throughput and also,
the consecutive machines in the same line has identical
downtime and stand-alone throughput. Based on the formulas
to approximate the aggregated parameters of a group of
parallel machines or consecutive machines derived in [14],
we reversely calculate the individual machines’ parameters
from those of the aggregated machines. Generally, supposing
Work Cell ¢ consists of W parallel lines and each line
contains Z consecutive machines, the algorithm is as follows.

1) Let Th00 5, eis and ¢ denote the estimated av-

erage downtime, efﬁmency and processing speed of the
jth parallel line, and then we have

iy =min{cij1, ..., cij2} (13)
()
C; €;
par __ 7~ par v
€ = W ePar Tdown iy WTdown,i' (14)
Cij
con con
2) Let T30, ; ;. r and €79 denote the estimated average

downtime and efficiency of the kth machine on the jth
line, and then we have
con (efy Hk 1Cuk)

i,k — (15)

Ci,j,k

N
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par 4 _ pcon
een _ Tdown,i,j Zk:l(l ei,j,k)
down,i,j,k — 1— epa'r
i

(16)

With the above algorithm, we obtain the estimated param-
eters (denoted as =) of each individual machine as follows:

)

N 6.59 6.59 6.59 - 16.79 16.79
Tdown,l =

b T =
6.34 6.34 6.34 down,2 16.40 16.40

.| 0.8750 0.9048 0.9546 .| 0.8025 0.8446
s { 0.9538 0.9679 0.9380 } 2= { 0.8834 0.8511 } '
A7
Due to the parallel structure in both work cells, we
reduce the downtime of the operations carrying out the
same processing work simultaneously (e.g., Tyown,1,1,1 and
Tiown,1,2,1 together) to mimic the alleviation of certain
common causes for failures/stoppages. Given the value of
reduction factor a, the modified individual machine down-
time, (1—a%)Tdown, 1,5,k Of (1—a%)Tdown,2,h,1, is first used
to update its own efficiency, e; jr or ez ;. Then, with the
modified downtime and efficiency, the aggregated machine
parameters, e and Té’own’i, of the two-machine model can
be computed via the algorithm in [14]. Finally, the improved
TP is calculated based on the two-machine model. The
resulting improvement in T'P are shown in Fig. 4, assuming
the maximum of reduction factor of each Ty, is 50%.

0.73 Tdown, , | 4
E0.725 —Tdowny, . E
g > g
= 072 5
g 23
£0.715 o=
o, =)
=071 1=

(=¥

0.705 =

0
0 10 20 30 40 50 0 10 20 30 40 50

Reduction factor (%) of Tdownl .

ik Reduction factor (%) of Tdown,

h,l
Fig. 4. TP and improvement (%) vs. Tyown reduction

Based on Fig. 4, with the same reduction factor, reducing
the Tyown of Work Cell 2 leads to larger T'P improvement.
In particular, when we reach the maximum reduction on
the Tyown of Op. 2-11 and Op. 2-21, the largest possible
TP can be obtained as TP = 0.7342 (part/min), which
is about 4.50% higher than the baseline 7'P*. Thus, only
minor improvement target (2.5%) of T'P can be achieved
via reducing Ty, and the lowest necessary reductions
of Tdoum,l,j,la Tdown,l,j,% Tdown,Z,h,h Tdow7L,2,h,2s (jvh =
1,2) are 36%, 48%, 29% and 30%, respectively.

D. Effects of increasing buffer capacity

Besides operation speed-up and downtime reduction, the
system throughput can be improved via buffer expansion.
Specifically, with the identified model parameters (11), we
increase the buffer capacity from N = 15 to its double size
N = 30 and estimate the throughput of the system. The
resulting effects of buffer capacity increase are illustrated in
Figure 5. As shown in this figure, buffer expansion leads to
4.40% improvement on system throughput when the buffer
capacity is doubled. To reach the minor improvement target,
the lowest needed buffer capacity is 22.

IS

0.73 9
£0.725 . B
g > 8
s 072 5
< 14 5
£0.715 <2
[ =)
=071 {17

[}

0.705 =

0
15 20 25 30
N
Fig. 5. TP and improvement (%) vs. N

These recommendations were submitted to the plant for
consideration of implementation.

V. MODEL SENSITIVITY ANALYSIS

Although the parameters identified for the simplified two-
machine model can perfectly fit the observed system perfor-
mance metrics, it is important to show whether this model is
still robust when some model parameters (i.e., ¢, NV, etc.) are
changed for improvement. Furthermore, with the identical
downtime and identical stand-alone throughput assumptions
applied to the ten-machine model in Subsection IV-C, the
identified parameters may be far from the actual up- and
downtime of the operations. This may lead to deviation
of the performance metrics from the true values when we
design improvement actions. Thus, in this section, we study
the robustness and sensitivity of the model when the “true”
system parameters are different from the identified ones.

To carry this out, we first search for a set of machine
parameters that leads to the same performance metrics of
(4) under the ten-machine model. A solution is given below:

34.85 30.62 32.25 7.05 5.92
Tdown,l = y Ldown,2 = 5

31.11 32.84 29.67 7.15 6.26

~ | 0.9212 0.9153 0.9358 _ | 0.8372 0.8635
e { 0.9020 0.9212 0.9385 ] I { 0.8581 0.8465 } '

(18)
As one can see, these parameters are quite different from the
ones calculated in (17). In these experiments, we vary the
processing speed, operation downtime and buffer capacity
to mimic the potential improvement scenarios (similar to
Section IV). With the new ¢’s, Tyown’s or N’s, the estimated
performance metrics are computed based on the two-machine
line model and compared with the performance metrics of
the modified system evaluated using simulation.

Similarly to Subsection IV-B, cf is selected to be modified.
We uniformly select ¢{ € [0.9411,1.1045] as ¢ and
assign each c; j ; based on following policy. If ¢ /2 <
min{cy 1 5}, then let min{cy 2} = ¢ — min{c1,1.1},
and all c;;1’s are fixed. Otherwise, let min{c; ;r} =
¢ /2, Vj. With these ¢4 5 1’s, fixed 2 5,;’s and the “true”
parameters (18), we compute the “true” performance metrics
of the system by simulation. The estimation errors of T'P and
W I P obtained from the two-machine model are summarized
in Fig. 6. Clearly, the model identified using the proposed
approach still maintains high accuracy in estimating 7'P and
W P, even through the the machine parameters are different
and ¢y j;’s are modified.
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Then, with the "true” parameters (18), we calculate system
TP and W IP using simulations for the downtime reduction
cases at each operation. The average errors, when compared
to those calculated in Subsection IV-C, are illustrated in
Fig. 7. Despite the increasing trend of the errors when the
reduction factors rise, the system performance estimates still
remain in a relatively reasonable range.

1.5 1.5
—%—Tdown . —%— Tdown, .
Lj.1 1.1
1 Au-—Tdownld.’2 1 +Td0wnl,j,2
Tdown, . Tdown, .
1,j.3 1,i,3
i i A

it

Average €., (%)
Average e, (%)

Ly
0.5 0.5 - W
e *,JA ﬁ ‘&
NPt AR g
0 10 20 30 40 50 0 10 20 30 40 50
Reduction factor (%) Reduction factor (%)

Fig. 7. TP and WIP error (%) for reducing Tyown, 1,5,k

Similarly, We calculate the performance metrics with the
“true” parameters (18) using simulations for different buffer
capacity up to N = 30. The errors of TP and WIP
calculated from the two-machine model are plotted in Fig. 8.
The errors of both performance metrics are low for all cases
studied: below 2% for TP and 3% for WIP.
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Fig. 8. TP and WIP error (%) vs. N

As demonstrated by the model sensitivity analysis, our ap-
proach can predict the performance metrics quite accurately
not only under nominal parameters but also in a reasonable
range of parameter change, all without any knowledge of T,
and Tz, of individual machines. Such property is critical
in designing improvement projects in manufacturing practice.

VI. CONCLUSION

In this paper, we apply a novel approach to modeling a
production system in a case study at a local small manu-
facturer of medical devices. Specifically, we transform the

complete ten-machine system model into a simplified two-
machine asynchronous exponential line model. The model
parameters are identified using multi-start modified pro-
jected quasi-Newton method to match the given performance
metrics derived from the collected parts flow data. With
the identified model parameters, we analyze the baseline
performance and develop improvement actions to enhance its
productivity. Finally, we study the sensitivity of the identified
model through extensive numerical experiments. Future work
includes extending this new modeling approach to more
complex production system models, such as multi-stage
production line models and assembly system models, and
generalize the method to systems with machines following
other reliability models (e.g. geometric, Gamma).
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