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Abstract 
We have developed a Machine Learning Assisted Hybrid ReaxFF Simulation method 

("Hybrid/Reax"), which alternates reactive and non-reactive molecular dynamics simulations 

with the assistance of machine learning (ML) models to simulate phenomena that require longer 

time scales and/or larger systems than are typically accessible to ReaxFF. Hybrid/Reax uses a 

specialized tracking tool during the reactive simulations to further accelerate chemical reactions. 

Non-reactive simulations are used to equilibrate the system after the reactive simulations stage. 

ML models are used between reactive and non-reactive stages to predict non-reactive force field 

parameters of the system based on the updated bond topology. Hybrid/Reax simulation cycles 

can be continued until the desired chemical reactions are observed. As a case study, this method 

was used to study the crosslinking of a polyethylene matrix analogue (decane) with crosslinking 

agent dicumyl-peroxide. We were able to run relatively long simulations (>20 million MD steps) 

on a small test system (4660 atoms) to simulate crosslinking reactions of PE in the presence of 

dicumyl peroxide. Starting with 80 PE molecules, more than half of them crosslinked by the end 

of the Hybrid/Reax cycles on a single Xeon processor in under 48 hours. This simulation would 

take approximately one month if run with pure ReaxFF MD on the same machine.  
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Introduction  
Molecular Dynamics (MD) is a widely adopted method to study diverse molecular systems at an 

atomistic level, ranging from biophysics to chemistry to materials science,1-3 by calculating the 

potential energy surface (PES) of the system to predict various observables. The PES of the 

system can be accurately calculated with Quantum Mechanical (QM) methods4 or efficiently 

with classical empirical force fields5-8 which are simplified descriptions of interactions between 

atoms. While QM models provide highly accurate results, they are of limited applicability in 

terms of spatial and temporal scales due to their high computational expense. In its most 

conventional form (i.e. classical MD), MD simulations usually employ parameterized force 

fields that enable the study of large systems, with millions to billions of degrees of freedom, 

using atomistic models that are computationally tractable and scalable on large computer 

systems. MD simulations can thus be used to address a wide range of challenging scientific and 

engineering problems, which would have been very hard using experimental techniques or 

computationally intractable using a full QM approach. Example applications of MD range from 

two dimensional materials,9-11 polymeric systems,12-17 ferroelectric systems18-19 and the 

computational design of new battery materials.20-23  

Modern force fields can be grouped into two categories, reactive and non-reactive.6 Reactive 

force fields allow the breaking and creation of chemical bonds during the simulation while non-

reactive force fields use a fixed bond scheme to provide more efficient computation. Balancing 

accuracy with computational efficiency in MD simulations depends on the force field used to 

describe the PES of the system. ReaxFF is a reactive force field, originally developed to simulate 

hydrocarbons and later extended to a wide range of materials.11-14, 16, 18-19, 24-27  Ideally, reactive 

force fields would be used in MD simulations to directly study phenomena where chemical 

reactions play crucial roles. However, chemical reactions, for example the hydrolysis and 

crosslinking of polymers,12, 17, 28-29 hydrocarbon oxidation,30 chemisorption,31 defect formation11 

and diffusion,32 and growth processes,9 typically require long reaction times – beyond 

microseconds - that are often infeasible with reactive force fields, which typically are 

computationally limited to tens of nanosecond time scales. Accelerating reactive MD simulations 

can facilitate observation of these reactions within a reasonable simulation time. In this regard, 

there have been efforts such as developing custom algorithms to efficiently utilize the latest GPU 

hardware,12, 33-34 and introducing probability space to dynamical simulations.35-37  
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Non-reactive force fields often use a fixed bond scheme approach to improve computational 

efficiency by calculating bonded interactions over a predetermined neighbor list. For instance 

Optimized Potential for Liquid Simulations (OPLS)8—a non-reactive force field designed to 

simulate organic liquids—uses this approach and runs approximately 50 times faster compared to 

ReaxFF with the caveat of being unable to handle chemical reactions. Thus, OPLS can access to 

long simulation times, beyond microseconds, for large systems. 

Machine learning (ML),38-39 a subset of artificial intelligence (AI) methods, has recently become 

popular for use in MD simulations.40 ML can be defined as an effort to give computers the ability 

to learn without being explicitly programmed. ML methods have been widely used as a 

classification tool in many disciplines.38 In computational materials science, it has been used in 

learning relations between carefully designed descriptors and their corresponding observables 

(binding energies, diffusion speeds, reaction efficiency, etc.).41-45  A more fundamental area in 

which ML methods are employed in the field of computational materials science is prediction of 

the PES.41-42, 44, 46-47 ML-predicted PES’s are often called ML force fields. In recent years, with 

advances in computer hardware and performance, they have gained popularity over DFT-based 

methods. However, ML force fields are, in general, at least an order of magnitude slower than 

empirical force fields.40  

In this paper, we report the development of a method to accelerate reactive MD simulations: 

running reactive force field steps and then non-reactive steps in a loop, with an ML model gluing 

these two methods together. We dubbed this method ML assisted Hybrid Reax Simulations 

(Hybrid/Reax).  As a case study, we used Hybrid/Reax to simulate polyethylene (PE) 

crosslinking chemistry, which involved the creation of carbon-carbon bonds between decane 

molecules using the common peroxide crosslinking agent dicumyl-peroxide (DCP). The set of 

reactions which leads to the formation of interconnected PE chains involves breaking the O-O 

bond of the DCP molecule to form two radicals, said radicals abstracting two H atoms from two 

different PE chains, and the resulting -CH- radicals forming a crosslink between the two chains. 

This process requires both the chemistry of bond cleavage/formation and the migration of 

radicals into the vicinity of hydrogen atoms or other radicals, and thus the computational expense 

via traditional methods would be high. In this case study, Hybrid/Reax simulates these reactions 

using a reactive and a non-reactive force field in a hybrid fashion to take advantage of the time 

scales of the non-reactive force field without losing the ability to carry out chemical reactions. 
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Method 
The Hybrid/Reax simulation cycle composed of three stages (Figure 1). After relaxing the 

system with a non-reactive MD simulation, the Hybrid/Reax simulation cycles starts with the 

first stage, where a non-reactive MD simulation is run to relax the system, and continues with the 

second stage in which the reactive MD simulation along with the tracking tool was employed to 

conduct chemical reactions based on preset conditions.48  In the final stage, positions and 

bonding information are transferred to the ML model to predict non-reactive force field 

parameters and charges. After prediction of non-reactive force field parameters and charges, the 

Hybrid/Reax returns to the first stage and continues these cycles until desired chemical reactions 

are completed. In the following, we will describe these stages in detail. 

 

Figure 1. Flow chart of ML assisted Hybrid Reax (Hybrid/Reax) simulation. a) Non-reactive MD simulation relaxes 
the system. b) Reactive MD simulation with tracking tool conducts chemical reactions and c) a ML based converter 
predicts OPLS parameters and charges based on the bond topology.  

Non-Reactive MD Simulations 

We used the Optimized Potential for Liquid Simulations (OPLS) force field for non-reactive MD 

simulations.8 OPLS was developed for the simulations of organic liquids.8 The energy of the 

system consists of non-bonded and bonded interactions. Coulomb and Lennard Jones type 

potentials were defined for non-bonded interactions: 
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In Eq. 1, 𝑞$ are charges, and  𝜖$ and 𝜎$ are Lennard Jones parameters for each atom. The 

geometric mean is used as mixing rule to calculate 𝜖$% and 𝜎$%. Finally, 𝑓$% is a scaling factor so 

that we can use the same parameters for inter- and intra-molecular interactions. Bond bending 

and stretching interactions are defined as:  

Eq. 2. 𝐸()*+"+ = ∑ 𝐾#(𝑟 − 𝑟)),()*+- + ∑ 𝐾.(𝜃 − 𝜃/),0*12"-  

Where 𝑟/ and 𝐾# are equilibrium bond lengths and bond stretching coefficients, and 𝜃/ and 𝐾. 

are equilibrium bond angle and bending coefficients, respectively. Torsional energy is defined as 

a fourth order Fourier expansion over dihedral angle 𝜙$ : 
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Where 𝐶%56,8$  are Fourier coefficients.49 The OPLS force field may assign different atom types to 

a particular element based on the bond topology. For instance the parameters of a carbon atom in 

a benzene ring differ from those of a carbon atom in an alkane group; similarly, the parameters 

of a  carbon-carbon bond in a butane molecule may differ from those of a carbon-carbon bond in 

a carboxyl group.8 Furthermore, the OPLS force field uses a fixed bond scheme which does not 

allow bond forming/breaking reactions. Thus, initial bond topology along with coordinates of 

atoms should be supplied at the beginning of the simulation.    

ReaxFF with Tracking Tool 

For reactive MD simulations, we employed ReaxFF which is a bond-order based potential with 

energy described by bonded and non-bonded interactions: 

Eq. 4. 𝐸 = 𝐸-"29 + 𝐸4):2);( + 𝐸<0*	+"#	>002- + 𝐸()*+ + 𝐸0*12" + 𝐸3)#-$)* + 𝐸?)*%:103$)* +

𝐸@A()*+ + 𝐸2)*"AB0$# + 𝐸)C"# + 𝐸:*+"# 

In Eq. 4, 𝐸-"29 , 𝐸4):2);( and 𝐸<0*	+"#	>002- represent non-bonded interactions and the rest are 

all functions of bond order which is a metric of chemical bonding between two interacting atoms. 

Bond orders are calculated at every step and corrected for over- and under-coordination cases. 

This enables ReaxFF to simulate chemical reactions during the simulation. The relatively 

complex functional form of ReaxFF allows transferability with the caveat of having a larger 

parameter set. A typical ReaxFF force field for a binary system contains around 40 parameters to 
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be trained with experimental data or higher-order calculations. Interested readers may consult the 

literature for detailed information.6 

Experimental time scales for certain chemical reactions, especially those with high barrier 

energies or involving intermediary steps, may range from seconds to hours, which are 

inaccessible with MD simulations. Methods such as the ‘bond-boost’ and the “bond restraint” 

were applied to ReaxFF simulations to observe certain chemical reactions. We employed a 

recently developed “tracking tool” which tracks atom positions during the MD simulation and 

identifies early stages of a chemical reaction to apply appropriate restraints to drive the system 

across the reaction barrier.48 

Predicting OPLS Parameters and Charges with ML Model 

In general, functional forms of force fields which define the PES of a system contain specific 

coefficients (e.g. force field parameters for each atom, bond, angle, etc.) to be fitted against a 

database are created by compiling experimental data and density functional theory 

calculations.50-51 The desire to use the same force field for a wide range of materials leaves two 

choices: designing a fairly complex force field with a large number of parameters to capture 

different materials or assigning different atom types for different materials (i.e. individual 

ligands or molecules). While developers of ReaxFF follow the former route, as mentioned earlier 

OPLS force field parameters for bonded interactions depend on bond topology of the system. 

This choice along with fixed bonds accelerates the computational speed of OPLS approximately 

50 times compared to ReaxFF. 

In the second stage we expect chemical reactions to occur during reactive MD simulations with 

tracking tool. Hence the bond topology of the system will be different at the end of this stage. To 

continue the simulation after the reactive MD stage, the OPLS parameters’ dependence on bond 

topology necessitates identification of local bond topology to assign proper parameters for each 

interaction. Thus, we developed ML models to predict OPLS parameters and charges based on 

the local bond topology. One of the key factors to the success of ML models is designing a 

feature vector/descriptor which represents distinctive features of each data point in the database. 

Since the OPLS force field defines atom types based on the neighbors of each atom, a descriptor 

based on neighbors should work best. In Supp. Fig.1 we present a sample molecule and provide 

descriptors based on this molecule. For instance, a descriptor for a pairwise parameter would be 
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a vector with three components, the mass of the particular atom, its number of neighbors, and the 

total mass of its neighbors (Supp. Table 1). This descriptor should identify a particular atom with 

its local bond topology. Bond stretching (Supp. Table 2), bond angle (Supp. Table 3) and 

dihedral parameters (Supp. Table 4) were designed with this logic.  

 Since electrostatic interactions are long ranged, we designed a descriptor to not be limited with 

first neighbors and included second and third neighbors of each atom. Thus, the first component 

of descriptor for predicting charges would be the mass of a particular atom followed by the 

masses of its first, second, and third neighbors. In this case we fixed the length of the descriptor 

vector to 16 components and padded with zeros where needed. 

Collecting Data 

The quality of the training data is another key factor for the success of the ML model. Thus we 

aimed to compile relevant small molecules as much as possible to construct the training database 

starting with those shipped with Biochemical and Organic Simulation System (BOSS) 

software.52 To extend the database, a Python script was created to search and scrape molecule 

information from the ChemSpider database,53 a website that hosts a chemical information 

database of more than 77 million molecules. Keywords such as “di-cumyl,” “peroxide,” and 

“alkane” were used to find relevant molecules. SMILES codes of around 10,000 individual 

molecules were downloaded, and OPLS parameters and charges for each of these molecules 

were generated using BOSS. For each molecule, a data file containing positions and OPLS 

parameters in LAMMPS format was created. Next, descriptors were created for each type of 

interaction (pairwise, bond-stretching, bond-bending, and dihedral), and corresponding 

parameters were matched to construct the ML training dataset. BOSS software employs the 

CM1A54 method to calculate charges, but we opted to train a ML model to predict charges along 

with force field parameters in this project. 

Predicting Charges 

We trained a Dense Neural Network (DNN) of one input and five hidden layers with 512 

artificial neurons on each layer using TensorFlow suite55 to predict charges. Rectifier Linear Unit 

was used as the activation function for artificial neurons. The training dataset contains 83,985 

individual data points and is split 80/20 for training and validation, respectively. The DNN 

converged to a loss of 0.000778 and a mean absolute error of 0.0164 after 200 epochs (Figure 
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2a). Charges predicted by the DNN are compared to those calculated with the CM1A method in 

Figure 2b. The performance of DNN in predicting charges of individual atoms was reasonably 

good. However, when predicting the total charge of a molecule, since DNN has no information 

on the total charge state, this information should be included by rescaling the charges (e.g. total 

charge of the molecule equals zero). 

 

Figure 2. a) Training the DNN for 200 epochs for predicting charges and b) validation of predicted charges. 

Predicting Pairwise Parameters  

Unlike charges, analyzing the database shows that pairwise parameters, 𝜖 and 𝜎 of Eq. 4, were 

not distributed evenly as displayed in Figure 3 a and b. This distribution renders regression 

models inefficient: instead, classifier-type models should perform better. Thus, unique values of 

𝜖 and 𝜎 in the training dataset were selected as class labels and a DNN with one input layer, two 

hidden layers, and one output layer were trained. The dimensions of the output layers were 22 

and 19 for 𝜖 and 𝜎, respectively. The dataset split 80/20 as training and validation sets, 

respectively. After 200 epochs both models were converged to 0.97 and 0.96 accuracy values 

respectively. Figure 3c and d compares predicted pairwise parameters with the ones generated by 

BOSS. 
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Figure 3 Histogram plots of number of occurrences of parameter values 𝜀 (a) and 𝜎 (b) in the training set. Validation 
of pairwise parameters 𝜀 (c) and 𝜎 (d) predicted with DNN. 

Predicting Bond Stretching Parameters 

Bonded interactions in OPLS force field consist of bond stretching and bond bending terms (Eq. 

2). There are two parameters for bond stretching interaction, 𝑟/ and 𝐾#: equilibrium bond length 

and bond stretching coefficients. There were over 300,000 bond type descriptors and their 

corresponding parameters in the training dataset; analyzing the training data set shows the 

correlations between the mass of an atom in the bond with the equilibrium bond length, 𝑟/  and 

also between equilibrium bond length and the bond stretching coefficient 𝐾# (Figure 4). 

 

Figure 4. Correlation between masses and bond stretching parameters. 

To take advantage of these correlations, a two-step process was designed to predict equilibrium 

bond lengths and bond stretching parameters. In the first step, a DNN was trained with bond 
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descriptors (Supp. Table 2) to predict equilibrium bond lengths. Then, in the second step, those 

equilibrium bond lengths were appended to the bond descriptors to train a similar DNN to 

predict bond stretching coefficients. Figure 5 summarizes training the DNN for bond stretching 

parameters. Due to correlation between equilibrium bond lengths and masses of bond atoms, the 

DNN for equilibrium bond lengths quickly converged in under 100 iterations/epochs (Figure 5a). 

Conversely, the DNN trained to predict bond stretching parameters converged in 1000 epochs 

(Figure 5b). The training database was split 80/20 for training and verification, respectively 

(Figure 5c and d).  

 

Figure 5. Predicting bond stretching parameters. Loss and mean absolute error of Dense Neural Network (DNN) 
trained for equilibrium bond length (a) and bond stretching coefficients (b) and verification of trained DNN for 
equilibrium bond length (c) and bond bend stretching coefficients (d). 

Predicting Bond Bending Parameters 

Bond bending energy in OPLS has two terms (Eq. 2)—equilibrium bond angle and bong bending 

coefficient—which are defined by atom types and the neighbors in the bond angle. The 

descriptor for bond bending parameters was designed as follows: The first three components are 

masses of angle atoms, the next three components are number of neighbors of angle atoms, and 

finally the last three components are the sum of masses of neighbors of angle atoms (Supp. Table 
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3Error! Reference source not found.). There were over 500,000 bond angle descriptors and 

their corresponding bond bending parameters in the training database. DNN’s were trained to 

predict bond bending parameters and both DNN’s were converged in 250 epochs (Figure 6 a and 

b). The training database was split 80/20 for training and verification, respectively. Comparison 

of predicted values with values generated by BOSS are presented in Figure 6 c and d. 

 

Figure 6. Predicting bond bending parameters. Loss and mean absolute error of Dense Neural Network (DNN) 
trained for a) equilibrium bond angle and b) bond bending coefficients and verification of trained DNN for c) 
equilibrium bond angle and d) bond bending coefficients. 

Predicting Dihedral Parameters 

Like pairwise parameters, dihedral parameters were also not distributed evenly, thus instead of 

regression, DNN classifiers were used. The Dihedral energy function has four parameters.  For 

each parameter in Eq. 3 a separate DNN classifier was trained. The descriptor vectors for 

dihedral angle parameters were designed as follows: The first four components are masses of 

atoms in the dihedral angle, the next four components are number of atoms bonded to each 

dihedral atom, and the last four components are the total mass of bonded atoms to each dihedral 

atom (Supp. Table 4).  There were close to 1,000,000 dihedral descriptors with corresponding 

dihedral angle parameters in the training database. 
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The number of unique values found in the training database for each parameter Ci determined the 

dimension of the output layer. There were 3 hidden layers with 512 artificial neurons in each 

DNN. The training of DNN’s for dihedral angle parameters are summarized in Supp. Fig. 2. All 

four DNN’s were converged to >99% accuracy. The training database was split into 80/20 for 

training and verification, respectively. Overlayed histogram plots of predicted values and 

corresponding test values of parameters are presented in Supp. Fig. 3. 

Case Study: Crosslinking of Polyethylene 
Polymer simulations require intensive computational resources due to the necessity of a 

relatively large simulation box. ReaxFF has been previously utilized to investigate certain 

chemical reactions in polymer systems.13-17 Here we present the dynamical simulation of 

decane/peroxide chemical reactivity as a case study to demonstrate effectiveness of the newly 

developed ML Assisted Hybrid simulation technique to model complex polymer systems (e.g. 

polyethylene crosslinking). We build the system by randomly placing 80 decane (C10H22) and 50 

dicumyl-peroxide (C18H22O2, DCP) molecules in a simulation box of length 20 nm each 

dimension. In total there were 4660 atoms in the system. We used Polybuild56, an in-house tool, 

to build the systems. Before starting the hybrid simulation cycle, we gradually compressed the 

simulation box to 4.0 nm in each dimension over 100 ps to achieve final density of 0.65 g/cm3.  

 

 

 

Figure 7. Schematic diagram for the basic crosslinking reaction of decane (polyethylene) with dicumyl-peroxide. a) 
Dicumyl peroxide extracts hydrogens from two CH2 monomers and b) forms two cumyl alcohols and PE chains with 
radical sites. c) Two PE chains form a crosslink via radical sites. 
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In a recent paper, Akbarian et al. studied the crosslinking of decane with dicumyl-peroxide using 

ReaxFF.17 The crosslinking reaction starts with breaking up the O-O bond, then O atoms of the 

peroxide radicals capture H atoms from two alkane molecules resulting radical sites on each PE, 

followed by the formation of a crosslink between two decane molecules (Figure 7). This reaction 

often involves intermediate steps, and its observation requires relatively long simulation times. 

Thus, we setup the “tracking tool” mentioned earlier, to track molecules in order to identify 

configurations of molecules that have the potential to be part of this reaction. Once the tracking 

tool detects such a configuration described in Figure 7, it applies attractive forces between O 

atoms, H atoms, and C atoms from each PE molecule, and repulsive force between O atoms of 

the DCP molecule to drive the system into the crosslinking reaction. After completing this 

reaction, ML Assisted Hybrid/Reax circles back to non-reactive MD simulation to relax the 

system. For each cycle, typically 20,000 MD steps were run by ReaxFF with the tracking tool 

whereas 1,000,000 MD steps were run by the non-reactive MD simulation. After 20 cycles with 

ML Assisted Hybrid/Reax simulation, more than half of the initial 80 decane molecules had 

undergone crosslinking reactions. During the simulations almost all the crosslinking agents, DCP 

molecules, were consumed. At the end there were around 20 polymer molecules with more than 

10 C atoms (Figure 8). In total, 20 million MD steps were simulated on a 16 core Intel Xeon E5 

processor in 24 hours. This simulation would take approximately one month if it were run with 

the ReaxFF technique on the same machine. 
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Figure 8 a) Molecule composition of the system during ML Assisted Hybrid Reax Simulations. b) Snapshot of the 
system and c) focus on the crosslinked decane after 20 million MD steps. 

 

Conclusions 
In this paper we developed a hybrid simulation method making use of non-reactive, Optimized 

Potential for Liquid Simulations (OPLS) and reactive (ReaxFF) force fields. The method uses a 

tandem approach, cycling back and forth between these two force fields with the help of Dense 

Neural Networks (DNNs) trained to predict OPLS parameters and atomic charges after ReaxFF 

simulations. Since the OPLS force field assigns parameters based on the local topology, 

descriptors for each parameter were designed based on the topology to train DNNs. The 

“tracking tool” was used during the ReaxFF simulations to accelerate chemical reactions. This 
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approach reduced the computation time significantly. Finally, we applied this method to a well-

known crosslinking reaction of dicumyl peroxide and decane to demonstrate the efficiency of our 

hybrid approach. We expect that the developed method will be useful in areas where reactive 

simulations of large systems with longer simulation times are needed. 
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