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Abstract
We have developed a Machine Learning Assisted Hybrid ReaxFF Simulation method

("Hybrid/Reax"), which alternates reactive and non-reactive molecular dynamics simulations
with the assistance of machine learning (ML) models to simulate phenomena that require longer
time scales and/or larger systems than are typically accessible to ReaxFF. Hybrid/Reax uses a
specialized tracking tool during the reactive simulations to further accelerate chemical reactions.
Non-reactive simulations are used to equilibrate the system after the reactive simulations stage.
ML models are used between reactive and non-reactive stages to predict non-reactive force field
parameters of the system based on the updated bond topology. Hybrid/Reax simulation cycles
can be continued until the desired chemical reactions are observed. As a case study, this method
was used to study the crosslinking of a polyethylene matrix analogue (decane) with crosslinking
agent dicumyl-peroxide. We were able to run relatively long simulations (>20 million MD steps)
on a small test system (4660 atoms) to simulate crosslinking reactions of PE in the presence of
dicumyl peroxide. Starting with 80 PE molecules, more than half of them crosslinked by the end
of the Hybrid/Reax cycles on a single Xeon processor in under 48 hours. This simulation would
take approximately one month if run with pure ReaxFF MD on the same machine.
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Introduction

Molecular Dynamics (MD) is a widely adopted method to study diverse molecular systems at an
atomistic level, ranging from biophysics to chemistry to materials science,'-* by calculating the
potential energy surface (PES) of the system to predict various observables. The PES of the
system can be accurately calculated with Quantum Mechanical (QM) methods* or efficiently
with classical empirical force fields>® which are simplified descriptions of interactions between
atoms. While QM models provide highly accurate results, they are of limited applicability in
terms of spatial and temporal scales due to their high computational expense. In its most
conventional form (i.e. classical MD), MD simulations usually employ parameterized force
fields that enable the study of large systems, with millions to billions of degrees of freedom,
using atomistic models that are computationally tractable and scalable on large computer
systems. MD simulations can thus be used to address a wide range of challenging scientific and
engineering problems, which would have been very hard using experimental techniques or
computationally intractable using a full QM approach. Example applications of MD range from
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two dimensional materials,’!! polymeric systems,!?"!7 ferroelectric systems!®-!” and the

computational design of new battery materials.?%-23

Modern force fields can be grouped into two categories, reactive and non-reactive.® Reactive
force fields allow the breaking and creation of chemical bonds during the simulation while non-
reactive force fields use a fixed bond scheme to provide more efficient computation. Balancing
accuracy with computational efficiency in MD simulations depends on the force field used to
describe the PES of the system. ReaxFF is a reactive force field, originally developed to simulate
hydrocarbons and later extended to a wide range of materials.!!-14 16, 18-19.24-27 Tdeally, reactive
force fields would be used in MD simulations to directly study phenomena where chemical
reactions play crucial roles. However, chemical reactions, for example the hydrolysis and
crosslinking of polymers,'? !7-2829 hydrocarbon oxidation,*® chemisorption,®! defect formation!!
and diffusion,*? and growth processes,’ typically require long reaction times — beyond
microseconds - that are often infeasible with reactive force fields, which typically are
computationally limited to tens of nanosecond time scales. Accelerating reactive MD simulations
can facilitate observation of these reactions within a reasonable simulation time. In this regard,

there have been efforts such as developing custom algorithms to efficiently utilize the latest GPU

hardware,!'? 3334 and introducing probability space to dynamical simulations.?>-3’



Non-reactive force fields often use a fixed bond scheme approach to improve computational
efficiency by calculating bonded interactions over a predetermined neighbor list. For instance
Optimized Potential for Liquid Simulations (OPLS)3—a non-reactive force field designed to
simulate organic liquids—uses this approach and runs approximately 50 times faster compared to
ReaxFF with the caveat of being unable to handle chemical reactions. Thus, OPLS can access to

long simulation times, beyond microseconds, for large systems.

Machine learning (ML),*-3? a subset of artificial intelligence (AI) methods, has recently become
popular for use in MD simulations.*® ML can be defined as an effort to give computers the ability
to learn without being explicitly programmed. ML methods have been widely used as a
classification tool in many disciplines.*® In computational materials science, it has been used in
learning relations between carefully designed descriptors and their corresponding observables
(binding energies, diffusion speeds, reaction efficiency, etc.).*!"*> A more fundamental area in
which ML methods are employed in the field of computational materials science is prediction of
the PES.#1-42 44.46-47 M_-predicted PES’s are often called ML force fields. In recent years, with
advances in computer hardware and performance, they have gained popularity over DFT-based
methods. However, ML force fields are, in general, at least an order of magnitude slower than

empirical force fields.*

In this paper, we report the development of a method to accelerate reactive MD simulations:
running reactive force field steps and then non-reactive steps in a loop, with an ML model gluing
these two methods together. We dubbed this method ML assisted Hybrid Reax Simulations
(Hybrid/Reax). As a case study, we used Hybrid/Reax to simulate polyethylene (PE)
crosslinking chemistry, which involved the creation of carbon-carbon bonds between decane
molecules using the common peroxide crosslinking agent dicumyl-peroxide (DCP). The set of
reactions which leads to the formation of interconnected PE chains involves breaking the O-O
bond of the DCP molecule to form two radicals, said radicals abstracting two H atoms from two
different PE chains, and the resulting -CH- radicals forming a crosslink between the two chains.
This process requires both the chemistry of bond cleavage/formation and the migration of
radicals into the vicinity of hydrogen atoms or other radicals, and thus the computational expense
via traditional methods would be high. In this case study, Hybrid/Reax simulates these reactions
using a reactive and a non-reactive force field in a hybrid fashion to take advantage of the time

scales of the non-reactive force field without losing the ability to carry out chemical reactions.



Method

The Hybrid/Reax simulation cycle composed of three stages (Figure 1). After relaxing the
system with a non-reactive MD simulation, the Hybrid/Reax simulation cycles starts with the
first stage, where a non-reactive MD simulation is run to relax the system, and continues with the
second stage in which the reactive MD simulation along with the tracking tool was employed to
conduct chemical reactions based on preset conditions.*® In the final stage, positions and
bonding information are transferred to the ML model to predict non-reactive force field
parameters and charges. After prediction of non-reactive force field parameters and charges, the
Hybrid/Reax returns to the first stage and continues these cycles until desired chemical reactions

are completed. In the following, we will describe these stages in detail.

Non-Reactive > @ Reactive

Relaxing system ReaxFF-Tracking

ML Converter
predict OPLS

parameters
and charges >3

Figure 1. Flow chart of ML assisted Hybrid Reax (Hybrid/Reax) simulation. a) Non-reactive MD simulation relaxes
the system. b) Reactive MD simulation with tracking tool conducts chemical reactions and ¢) a ML based converter
predicts OPLS parameters and charges based on the bond topology.

Non-Reactive MD Simulations

We used the Optimized Potential for Liquid Simulations (OPLS) force field for non-reactive MD
simulations.® OPLS was developed for the simulations of organic liquids.® The energy of the
system consists of non-bonded and bonded interactions. Coulomb and Lennard Jones type
potentials were defined for non-bonded interactions:
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In Eq. 1, g; are charges, and ¢; and o; are Lennard Jones parameters for each atom. The
geometric mean is used as mixing rule to calculate €;; and o;;. Finally, f;; is a scaling factor so
that we can use the same parameters for inter- and intra-molecular interactions. Bond bending

and stretching interactions are defined as:

Eq. 2. Epondea = Zbonds Kr(r - ro)z + Zangles Ky 6 — 60)2

Where r,, and K, are equilibrium bond lengths and bond stretching coefficients, and 8, and Ky
are equilibrium bond angle and bending coefficients, respectively. Torsional energy is defined as

a fourth order Fourier expansion over dihedral angle ¢, :

i i

Eq.3.  Eiorsion = Zi% [1+ cos(¢;) %Zl [1—cos(2¢;)] + %é [1+ cos(3¢)] + C2_4 [1—cos(4¢,)]

Where Cj"=1'4 are Fourier coefficients.* The OPLS force field may assign different atom types to

a particular element based on the bond topology. For instance the parameters of a carbon atom in
a benzene ring differ from those of a carbon atom in an alkane group; similarly, the parameters
of a carbon-carbon bond in a butane molecule may differ from those of a carbon-carbon bond in
a carboxyl group.® Furthermore, the OPLS force field uses a fixed bond scheme which does not
allow bond forming/breaking reactions. Thus, initial bond topology along with coordinates of

atoms should be supplied at the beginning of the simulation.

ReaxFF with Tracking Tool
For reactive MD simulations, we employed ReaxFF which is a bond-order based potential with

energy described by bonded and non-bonded interactions:

Eq- 4. E= Eself + ECoulomb + EVan der Waals + Ebond + Eangle + Etorsion + Econjugation +

EH—bond + Elone—pair + Eover + Eunder

In Eq. 4, Eseir » Ecoutomb and Eygn ger waals represent non-bonded interactions and the rest are
all functions of bond order which is a metric of chemical bonding between two interacting atoms.
Bond orders are calculated at every step and corrected for over- and under-coordination cases.
This enables ReaxFF to simulate chemical reactions during the simulation. The relatively
complex functional form of ReaxFF allows transferability with the caveat of having a larger

parameter set. A typical ReaxFF force field for a binary system contains around 40 parameters to



be trained with experimental data or higher-order calculations. Interested readers may consult the

literature for detailed information.®

Experimental time scales for certain chemical reactions, especially those with high barrier
energies or involving intermediary steps, may range from seconds to hours, which are
inaccessible with MD simulations. Methods such as the ‘bond-boost’ and the “bond restraint”
were applied to ReaxFF simulations to observe certain chemical reactions. We employed a
recently developed “tracking tool” which tracks atom positions during the MD simulation and
identifies early stages of a chemical reaction to apply appropriate restraints to drive the system

across the reaction barrier.*®

Predicting OPLS Parameters and Charges with ML Model

In general, functional forms of force fields which define the PES of a system contain specific
coefficients (e.g. force field parameters for each atom, bond, angle, etc.) to be fitted against a
database are created by compiling experimental data and density functional theory
calculations.’*->! The desire to use the same force field for a wide range of materials leaves two
choices: designing a fairly complex force field with a large number of parameters to capture
different materials or assigning different atom types for different materials (i.e. individual
ligands or molecules). While developers of ReaxFF follow the former route, as mentioned earlier
OPLS force field parameters for bonded interactions depend on bond topology of the system.
This choice along with fixed bonds accelerates the computational speed of OPLS approximately

50 times compared to ReaxFF.

In the second stage we expect chemical reactions to occur during reactive MD simulations with
tracking tool. Hence the bond topology of the system will be different at the end of this stage. To
continue the simulation after the reactive MD stage, the OPLS parameters’ dependence on bond
topology necessitates identification of local bond topology to assign proper parameters for each
interaction. Thus, we developed ML models to predict OPLS parameters and charges based on
the local bond topology. One of the key factors to the success of ML models is designing a
feature vector/descriptor which represents distinctive features of each data point in the database.
Since the OPLS force field defines atom types based on the neighbors of each atom, a descriptor
based on neighbors should work best. In Supp. Fig.I we present a sample molecule and provide

descriptors based on this molecule. For instance, a descriptor for a pairwise parameter would be



a vector with three components, the mass of the particular atom, its number of neighbors, and the
total mass of its neighbors (Supp. Table I). This descriptor should identify a particular atom with
its local bond topology. Bond stretching (Supp. Table 2), bond angle (Supp. Table 3) and
dihedral parameters (Supp. Table 4) were designed with this logic.

Since electrostatic interactions are long ranged, we designed a descriptor to not be limited with
first neighbors and included second and third neighbors of each atom. Thus, the first component
of descriptor for predicting charges would be the mass of a particular atom followed by the
masses of its first, second, and third neighbors. In this case we fixed the length of the descriptor

vector to 16 components and padded with zeros where needed.
Collecting Data

The quality of the training data is another key factor for the success of the ML model. Thus we
aimed to compile relevant small molecules as much as possible to construct the training database
starting with those shipped with Biochemical and Organic Simulation System (BOSS)
software. To extend the database, a Python script was created to search and scrape molecule
information from the ChemSpider database,>® a website that hosts a chemical information
database of more than 77 million molecules. Keywords such as “di-cumyl,” “peroxide,” and
“alkane” were used to find relevant molecules. SMILES codes of around 10,000 individual
molecules were downloaded, and OPLS parameters and charges for each of these molecules
were generated using BOSS. For each molecule, a data file containing positions and OPLS
parameters in LAMMPS format was created. Next, descriptors were created for each type of
interaction (pairwise, bond-stretching, bond-bending, and dihedral), and corresponding
parameters were matched to construct the ML training dataset. BOSS software employs the
CM1A>* method to calculate charges, but we opted to train a ML model to predict charges along

with force field parameters in this project.
Predicting Charges

We trained a Dense Neural Network (DNN) of one input and five hidden layers with 512
artificial neurons on each layer using TensorFlow suite®® to predict charges. Rectifier Linear Unit
was used as the activation function for artificial neurons. The training dataset contains 83,985
individual data points and is split 80/20 for training and validation, respectively. The DNN
converged to a loss of 0.000778 and a mean absolute error of 0.0164 after 200 epochs (Figure



2a). Charges predicted by the DNN are compared to those calculated with the CM1A method in
Figure 2b. The performance of DNN in predicting charges of individual atoms was reasonably

good. However, when predicting the total charge of a molecule, since DNN has no information
on the total charge state, this information should be included by rescaling the charges (e.g. total

charge of the molecule equals zero).
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Figure 2. a) Training the DNN for 200 epochs for predicting charges and b) validation of predicted charges.
Predicting Pairwise Parameters

Unlike charges, analyzing the database shows that pairwise parameters, € and o of Eq. 4, were
not distributed evenly as displayed in Figure 3 a and b. This distribution renders regression
models inefficient: instead, classifier-type models should perform better. Thus, unique values of
€ and o in the training dataset were selected as class labels and a DNN with one input layer, two
hidden layers, and one output layer were trained. The dimensions of the output layers were 22
and 19 for € and o, respectively. The dataset split 80/20 as training and validation sets,
respectively. After 200 epochs both models were converged to 0.97 and 0.96 accuracy values
respectively. Figure 3c and d compares predicted pairwise parameters with the ones generated by

BOSS.
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Figure 3 Histogram plots of number of occurrences of parameter values ¢ (a) and o (b) in the training set. Validation
of pairwise parameters ¢ (c) and o (d) predicted with DNN.

Predicting Bond Stretching Parameters

Bonded interactions in OPLS force field consist of bond stretching and bond bending terms (Eq.
2). There are two parameters for bond stretching interaction, ry and K,.: equilibrium bond length
and bond stretching coefficients. There were over 300,000 bond type descriptors and their
corresponding parameters in the training dataset; analyzing the training data set shows the
correlations between the mass of an atom in the bond with the equilibrium bond length, r, and

also between equilibrium bond length and the bond stretching coefficient K, (Figure 4).
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Figure 4. Correlation between masses and bond stretching parameters.

To take advantage of these correlations, a two-step process was designed to predict equilibrium

bond lengths and bond stretching parameters. In the first step, a DNN was trained with bond



descriptors (Supp. Table 2) to predict equilibrium bond lengths. Then, in the second step, those
equilibrium bond lengths were appended to the bond descriptors to train a similar DNN to
predict bond stretching coefficients. Figure 5 summarizes training the DNN for bond stretching
parameters. Due to correlation between equilibrium bond lengths and masses of bond atoms, the
DNN for equilibrium bond lengths quickly converged in under 100 iterations/epochs (Figure 5a).
Conversely, the DNN trained to predict bond stretching parameters converged in 1000 epochs
(Figure 5b). The training database was split 80/20 for training and verification, respectively

(Figure 5c and d).
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Figure 5. Predicting bond stretching parameters. Loss and mean absolute error of Dense Neural Network (DNN)
trained for equilibrium bond length (a) and bond stretching coefficients (b) and verification of trained DNN for
equilibrium bond length (c) and bond bend stretching coefficients (d).

Predicting Bond Bending Parameters

Bond bending energy in OPLS has two terms (Eq. 2)—equilibrium bond angle and bong bending
coefficient—which are defined by atom types and the neighbors in the bond angle. The
descriptor for bond bending parameters was designed as follows: The first three components are
masses of angle atoms, the next three components are number of neighbors of angle atoms, and

finally the last three components are the sum of masses of neighbors of angle atoms (Supp. Table
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3Error! Reference source not found.). There were over 500,000 bond angle descriptors and
their corresponding bond bending parameters in the training database. DNN’s were trained to
predict bond bending parameters and both DNN’s were converged in 250 epochs (Figure 6 a and
b). The training database was split 80/20 for training and verification, respectively. Comparison

of predicted values with values generated by BOSS are presented in Figure 6 ¢ and d.
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Figure 6. Predicting bond bending parameters. Loss and mean absolute error of Dense Neural Network (DNN)
trained for a) equilibrium bond angle and b) bond bending coefficients and verification of trained DNN for c)
equilibrium bond angle and d) bond bending coefficients.

Predicting Dihedral Parameters

Like pairwise parameters, dihedral parameters were also not distributed evenly, thus instead of
regression, DNN classifiers were used. The Dihedral energy function has four parameters. For
each parameter in Eq. 3 a separate DNN classifier was trained. The descriptor vectors for
dihedral angle parameters were designed as follows: The first four components are masses of
atoms in the dihedral angle, the next four components are number of atoms bonded to each
dihedral atom, and the last four components are the total mass of bonded atoms to each dihedral
atom (Supp. Table 4). There were close to 1,000,000 dihedral descriptors with corresponding

dihedral angle parameters in the training database.
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The number of unique values found in the training database for each parameter C; determined the
dimension of the output layer. There were 3 hidden layers with 512 artificial neurons in each
DNN. The training of DNN’s for dihedral angle parameters are summarized in Supp. Fig. 2. All
four DNN’s were converged to >99% accuracy. The training database was split into 80/20 for
training and verification, respectively. Overlayed histogram plots of predicted values and

corresponding test values of parameters are presented in Supp. Fig. 3.

Case Study: Crosslinking of Polyethylene

Polymer simulations require intensive computational resources due to the necessity of a
relatively large simulation box. ReaxFF has been previously utilized to investigate certain
chemical reactions in polymer systems.!3!” Here we present the dynamical simulation of
decane/peroxide chemical reactivity as a case study to demonstrate effectiveness of the newly
developed ML Assisted Hybrid simulation technique to model complex polymer systems (e.g.
polyethylene crosslinking). We build the system by randomly placing 80 decane (CioH22) and 50
dicumyl-peroxide (CisH2202, DCP) molecules in a simulation box of length 20 nm each
dimension. In total there were 4660 atoms in the system. We used Polybuild®®, an in-house tool,
to build the systems. Before starting the hybrid simulation cycle, we gradually compressed the

simulation box to 4.0 nm in each dimension over 100 ps to achieve final density of 0.65 g/cm®.
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Figure 7. Schematic diagram for the basic crosslinking reaction of decane (polyethylene) with dicumyl-peroxide. a)
Dicumyl peroxide extracts hydrogens from two CH2 monomers and b) forms two cumyl alcohols and PE chains with
radical sites. ¢) Two PE chains form a crosslink via radical sites.
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In a recent paper, Akbarian et al. studied the crosslinking of decane with dicumyl-peroxide using
ReaxFF.!” The crosslinking reaction starts with breaking up the O-O bond, then O atoms of the
peroxide radicals capture H atoms from two alkane molecules resulting radical sites on each PE,
followed by the formation of a crosslink between two decane molecules (Figure 7). This reaction
often involves intermediate steps, and its observation requires relatively long simulation times.
Thus, we setup the “tracking tool” mentioned earlier, to track molecules in order to identify
configurations of molecules that have the potential to be part of this reaction. Once the tracking
tool detects such a configuration described in Figure 7, it applies attractive forces between O
atoms, H atoms, and C atoms from each PE molecule, and repulsive force between O atoms of
the DCP molecule to drive the system into the crosslinking reaction. After completing this
reaction, ML Assisted Hybrid/Reax circles back to non-reactive MD simulation to relax the
system. For each cycle, typically 20,000 MD steps were run by ReaxFF with the tracking tool
whereas 1,000,000 MD steps were run by the non-reactive MD simulation. After 20 cycles with
ML Assisted Hybrid/Reax simulation, more than half of the initial 80 decane molecules had
undergone crosslinking reactions. During the simulations almost all the crosslinking agents, DCP
molecules, were consumed. At the end there were around 20 polymer molecules with more than
10 C atoms (Figure 8). In total, 20 million MD steps were simulated on a 16 core Intel Xeon ES
processor in 24 hours. This simulation would take approximately one month if it were run with

the ReaxFF technique on the same machine.
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Figure 8 a) Molecule composition of the system during ML Assisted Hybrid Reax Simulations. b) Snapshot of the
system and c) focus on the crosslinked decane after 20 million MD steps.

Conclusions

In this paper we developed a hybrid simulation method making use of non-reactive, Optimized
Potential for Liquid Simulations (OPLS) and reactive (ReaxFF) force fields. The method uses a
tandem approach, cycling back and forth between these two force fields with the help of Dense
Neural Networks (DNNs) trained to predict OPLS parameters and atomic charges after ReaxFF
simulations. Since the OPLS force field assigns parameters based on the local topology,
descriptors for each parameter were designed based on the topology to train DNNs. The

“tracking tool” was used during the ReaxFF simulations to accelerate chemical reactions. This

14



approach reduced the computation time significantly. Finally, we applied this method to a well-
known crosslinking reaction of dicumyl peroxide and decane to demonstrate the efficiency of our
hybrid approach. We expect that the developed method will be useful in areas where reactive

simulations of large systems with longer simulation times are needed.

Acknowledgement

We acknowledge funding from DOW, grant number UPI 225559AM and funding from NSF,
CDS&E grant no 1807622.

REFERENCES

1. Smit, D. F. a. B., Understanding Molecular Dynamics Simulation: From algorithms to
applications. Academic Press: 2001; Vol. 1.

2. Alder, B.J.; Wainwright, T. E., Studies in Molecular Dynamics .1. General Method. J.
Chem. Phys. 1959, 31 (2),459-466.

3. Rahman, A., Correlations in the Motion of Atoms in Liquid Argon

. Physical Review 1964, 136 (2A), 405.

4. Mattsson, T. R.; Lane, J. M. D.; Cochrane, K. R.; Desjarlais, M. P.; Thompson, A. P.;
Pierce, F.; Grest, G. S., First-principles and classical molecular dynamics simulation of shocked
polymers. Phys. Rev. B 2010, 81 (5), 9.

5. Abell, G. C., Emprical chemical pseudopotential theory of molecular and metallic
bonding. Phys. Rev. B 1985, 31 (10), 6184-6196.

6. Liang, T.; Shin, Y. K.; Cheng, Y. T.; Yilmaz, D. E.; Vishnu, K. G.; Verners, O.; Zou, C.
Y .; Phillpot, S. R.; Sinnott, S. B.; van Duin, A. C. T., Reactive Potentials for Advanced
Atomistic Simulations. In Annual Review of Materials Research, Vol 43, Clarke, D. R., Ed.
Annual Reviews: Palo Alto, 2013; Vol. 43, pp 109-129.

7. van Duin, A. C. T.; Dasgupta, S.; Lorant, F.; Goddard, W. A., ReaxFF: A reactive force
field for hydrocarbons. Journal of Physical Chemistry A 2001, 105 (41), 9396-9409.

8. Jorgensen, W. L.; Maxwell, D. S.; TiradoRives, J., Development and testing of the OPLS
all-atom force field on conformational energetics and properties of organic liquids. J Am Chem
Soc 1996, 118 (45), 11225-11236.

9. Hickey, D.R.; Yilmaz, D. E.; Chubarov, M.; Bachu, S.; Choudhury, T. H.; Miao, L. X ;
Qian, C. H.; Redwing, J. M.; van Duin, A. C. T.; Alem, N., Formation of metal vacancy arrays in
coalesced WS2 monolayer films. 2d Mater 2021, 8 (1).

10. Momeni, K.; Ji, Y. Z.; Wang, Y. X; Paul, S.; Neshani, S.; Yilmaz, D. E.; Shin, Y. K_;
Zhang, D. F.; Jiang, J. W.; Park, H. S.; Sinnott, S.; van Duin, A.; Crespi, V.; Chen, L. Q.,
Multiscale computational understanding and growth of 2D materials: a review. Npj Comput
Mater 2020, 6 (1).

11. Yilmaz, D. E.; Lotfi, R.; Ashraf, C.; Hong, S.; van Duin, A. C. T., Defect Design of Two-
Dimensional MoS2 Structures by Using a Graphene Layer and Potato Stamp Concept. Journal of
Physical Chemistry C 2018, 122 (22), 11911-11917.

15



12. Dasgupta, N.; Yilmaz, D. E.; van Duin, A., Simulations of the Biodegradation of Citrate-
Based Polymers for Artificial Scaffolds Using Accelerated Reactive Molecular Dynamics. J.
Phys. Chem. B 2020, 124 (25), 5311-5322.

13.  Yilmaz,D. E.; van Duin, A. C. T., Investigating structure property relations of poly (p-
phenylene terephthalamide) fibers via reactive molecular dynamics simulations. Polymer 2018,
154,172-181.

14.  Yilmaz, D. E., Modeling failure mechanisms of poly(p-phenylene terephthalamide) fiber
using reactive potentials. Comput. Mater. Sci. 2015, 109, 183-193.

15. Mao, Q.; Rajabpour, S.; Kowalik, M.; van Duin, A. C. T., Predicting cost-effective
carbon fiber precursors: Unraveling the functionalities of oxygen and nitrogen-containing groups
during carbonization from ReaxFF simulations. Carbon 2020, 159, 25-36.

16. Kowalik, M.; Ashraf, C.; Damirchi, B.; Akbarian, D.; Rajahpour, S.; van Duin, A.C. T.,
Atomistic Scale Analysis of the Carbonization Process for C/H/O/N-Based Polymers with the
ReaxFF Reactive Force Field. J. Phys. Chem. B 2019, 123 (25), 5357-5367.

17. Akbarian, D.; Hamedi, H.; Damirchi, B.; Yilmaz, D. E.; Penrod, K.; Woodward, W. H.
H.; Moore, J.; Lanagan, M. T.; van Duin, A. C. T., Atomistic-scale insights into the crosslinking
of polyethylene induced by peroxides. Polymer 2019, 183, 9.

18. Kelley, K. P.; Yilmaz, D. E.; Collins, L.; Sharma, Y.; Lee, H. N.; Akbarian, D.; van Duin,
A.C.T.; Ganesh, P; Vasudevan, R. K., Thickness and strain dependence of piezoelectric
coefficient in BaTiO3 thin films. Phys. Rev. Mater. 2020, 4 (2).

19. Akbarian, D.; Yilmaz, D. E.; Cao, Y.; Ganesh, P.; Dabo, I.; Munro, J.; Van Ginhoven, R ;
van Duin, A. C. T., Understanding the influence of defects and surface chemistry on ferroelectric
switching: a ReaxFF investigation of BaTiO3. Physical Chemistry Chemical Physics 2019, 21,
18240.

20. Verners, O.; Thijsse, B. J.; van Duin, A. C. T.; Simone, A., Salt concentration effects on
mechanical properties of LiPF6/poly(propylene glycol) diacrylate solid electrolyte: Insights from
reactive molecular dynamics simulations. Electrochimica Acta 2016,221,115-123.

21. Islam, M. M.; Kolesov, G.; Kaxiras, E.; Van Duin, A., Treatment of explicit electrons in
the ReaxFF reactive molecular dynamics and applications to battery interfaces. Abstr Pap Am
Chem S 2015, 250.

22. Raju, M.; Ganesh, P.; Kent, P. R. C.; van Duin, A. C. T., Reactive Force Field Study of
Li/C Systems for Electrical Energy Storage. J Chem Theory Comput 2015, 11 (5),2156-2166.
23. Bedrov, D.; Smith, G. D.; van Duin, A. C. T., Reactions of Singly-Reduced Ethylene
Carbonate in Lithium Battery Electrolytes: A Molecular Dynamics Simulation Study Using the
ReaxFF. Journal of Physical Chemistry A 2012, 116 (11),2978-2985.

24. El-Zein, A.; Mohamed, K.; Talaat, M., Water trees in polyethylene insulated power
cables: Approach to water trees initiation mechanism. Electr. Power Syst. Res. 2020, 180, 5.

25. Ashraf, C.; van Duin, A. C. T., Extension of the ReaxFF Combustion Force Field toward
Syngas Combustion and Initial Oxidation Kinetics. Journal of Physical Chemistry A 2017, 121
(5), 1051-1068.

26. Ostadhossein, A.; Rahnamoun, A.; Wang, Y. X.; Zhao, P.; Zhang, S. L.; Crespi, V. H.;
van Duin, A. C. T., ReaxFF Reactive Force-Field Study of Molybdenum Disulfide (MoS2). J
Phys Chem Lett 2017, 8 (3), 631-640.

27. Shin, Y. K.; Kwak, H.; Vasenkov, A. V.; Sengupta, D.; van Duin, A. C. T., Development
of a ReaxFF Reactive Force Field for Fe/Cr/O/S and Application to Oxidation of Butane over a
Pyrite-Covered Cr203 Catalyst. Acs Catalysis 2015, 5 (12), 7226-7236.

16



28.  Warshel, A., Computer simulations of enzyme catalysis: Methods, progress, and insights.
Annu. Rev. Biophys. Biomolec. Struct. 2003, 32, 425-443.

29. Weismiller, M. R.; van Duin, A. C. T.; Lee, J.; Yetter, R. A., ReaxFF Reactive Force
Field Development and Applications for Molecular Dynamics Simulations of Ammonia Borane
Dehydrogenation and Combustion. Journal of Physical Chemistry A 2010, 114 (17), 5485-5492.
30. Grimme, S., Exploration of Chemical Compound, Conformer, and Reaction Space with
Meta-Dynamics Simulations Based on Tight-Binding Quantum Chemical Calculations. J Chem
Theory Comput 2019, 15 (5), 2847-2862.

31. Hu, Q. K.; Wang,H. Y.; Wu, Q. H.; Ye, X. T.; Zhou, A. G.; Sun,D.D.; Wang,L.B ;
Liu,B.Z.; He,J. L., Two-dimensional Sc2C: A reversible and high-capacity hydrogen storage
material predicted by first-principles calculations. International Journal of Hydrogen Energy
2014, 39 (20), 10606-10612.

32. Lee, G.D.; Wang, C.Z.; Yoon, E.; Hwang, N. M.; Kim, D. Y .; Ho, K. M., D(i)ffusion,
coalescence, and reconstruction of vacancy defects in graphene layers. Phys. Rev. Lett. 2005, 95
(20), 4.

33. Hughey, S.; Alsnayyan, A.; Aktulga, H. M.; Gao, T.; Shanker, B., Fast and scalable
evaluation of pairwise potentials. Comput Phys Commun 2020, 255.

34. O'Hearn, K. A.; Alperen, A.; Aktulga, H. M., FAST SOLVERS FOR CHARGE
DISTRIBUTION MODELS ON SHARED MEMORY PLATFORMS. Siam Journal on
Scientific Computing 2020,42 (1), C1-C22.

35. Ganeshan, K.; Hossain, M. J.; van Duin, A. C. T., Multiply accelerated ReaxFF
molecular dynamics: coupling parallel replica dynamics with collective variable hyper dynamics.
Molecular Simulation 2019, 45 (14-15), 1265-1272.

36. Jing,Z. F.; Xin, L.; Sun, H., Replica exchange reactive molecular dynamics simulations
of initial reactions in zeolite synthesis. Physical Chemistry Chemical Physics 2015, 17 (38),
25421-25428.

37. Joshi, K. L.; Raman, S.; van Duin, A. C. T., Connectivity-Based Parallel Replica
Dynamics for Chemically Reactive Systems: From Femtoseconds to Microseconds. J Phys Chem
Lett 2013,4 (21), 3792-3797.

38. Jain, A. K.; Duin, R. P. W.; Mao, J. C., Statistical pattern recognition: A review. leee
Transactions on Pattern Analysis and Machine Intelligence 2000, 22 (1), 4-37.

39.  Schmidhuber, J., Deep learning in neural networks: An overview. Neural Networks 2015,
61,85-117.

40.  Behler, J., Perspective: Machine learning potentials for atomistic simulations. J. Chem.
Phys. 2016, 145 (17).

41.  Behler,J., Constructing high-dimensional neural network potentials: A tutorial review.
Int. J. Quantum Chem. 2015, 115 (16), 1032-1050.

42.  Deringer, V. L.; Csanyi, G., Machine learning based interatomic potential for amorphous

carbon. Phys. Rev. B 2017, 95 (9).

43. Hansen, K.; Biegler, F.; Ramakrishnan, R.; Pronobis, W.; von Lilienfeld, O. A.; Muller,
K.R.; Tkatchenko, A., Machine Learning Predictions of Molecular Properties: Accurate Many-
Body Potentials and Nonlocality in Chemical Space. J Phys Chem Lett 2015, 6 (12),2326-2331.
44.  Lahey, S.L.J.; Rowley, C. N., Simulating protein-ligand binding with neural network
potentials. Chem. Sci. 2020, 11 (9), 2362-2368.

45. Ramprasad, R.; Batra, R.; Pilania, G.; Mannodi-Kanakkithodi, A.; Kim, C., Machine
learning in materials informatics: recent applications and prospects. Npj Comput Mater 2017, 3.

17



46. Zuo, Y. X.; Chen, C.; Li, X. G.; Deng, Z.; Chen, Y. M.; Behler, J.; Csanyi, G.; Shapeev,
A.V.; Thompson, A. P.; Wood, M. A.; Ong, S. P., Performance and Cost Assessment of
Machine Learning Interatomic Potentials. Journal of Physical Chemistry A 2020, 124 (4),731-
745.

47.  Behler, J., Perspective: Machine learning potentials for atomistic simulations. J. Chem.
Phys. 2016, 145 (17), 9.

48. Vashisth, A.; Ashraf, C.; Zhang, W. W ; Bakis, C. E.; van Duin, A. C. T., Accelerated
ReaxFF Simulations for Describing the Reactive Cross-Linking of Polymers. Journal of Physical
Chemistry A 2018, 122 (32), 6633-6642.

49, Watkins, E. K.; Jorgensen, W. L., Perfluoroalkanes: Conformational analysis and liquid-
state properties from ab initio and Monte Carlo calculations. Journal of Physical Chemistry A
2001, /05 (16),4118-4125.

50. Martinez, J. A.; Yilmaz, D. E.; Liang, T.; Sinnott, S. B.; Phillpot, S. R., Fitting empirical
potentials: Challenges and methodologies. Curr Opin Solid St M 2013, 17 (6), 263-270.

51. Martinez, J. A.; Chernatynskiy, A.; Yilmaz, D. E.; Liang, T.; Sinnott, S. B.; Phillpot, S.
R., Potential Optimization Software for Materials (POSMat). Comput Phys Commun 2016, 203,
201-211.

52. Jorgensen, W. L.; Tirado-Rives, J., Molecular modeling of organic and biomolecular
systems using BOSS and MCPRO. Journal of Computational Chemistry 2005, 26 (16), 1689-
1700.

53. Pence, H. E.; Williams, A., ChemSpider: An Online Chemical Information Resource.
Journal of Chemical Education 2010,87 (11), 1123-1124.

54. Dodda, L. S.; Vilseck, J. Z.; Tirado-Rives, J.; Jorgensen, W. L., 1.14*CM1A-LBCC:
Localized Bond-Charge Corrected CM1A Charges for Condensed-Phase Simulations. J. Phys.
Chem. B 2017, 121 (15),3864-3870.

55. Martin Abadi, A. A., Paul Barham, Eugene Brevdo,; Zhifeng Chen, C. C., Greg S.
Corrado, Andy Davis,; Jeffrey Dean, M. D., Sanjay Ghemawat, lan Goodfellow,; Andrew Harp,
G. L., Michael Isard, Rafal Jozefowicz, Yangqing Jia,; Lukasz Kaiser, M. K., Josh Levenberg,
Dan Mané, Mike Schuster,; Rajat Monga, S. M., Derek Murray, Chris Olah, Jonathon Shlens,;
Benoit Steiner, I. S., Kunal Talwar, Paul Tucker,; Vincent Vanhoucke, V. V., Fernanda Viégas,;
Oriol Vinyals, P. W., Martin Wattenberg, Martin Wicke,; Yuan Yu, a. X. Z. TensorFlow: Large-
scale machine learning on heterogeneous systems.

56.  Yilmaz, D. E., PolyBuild: Building Polymer Ceramic Composites,. 2020.

18



