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Abstract

ReaxFF is a computationally efficient force field to simulate complex reactive dy-
namics in extended molecular models with diverse chemistries, if reliable force-field
parameters are available for the chemistry of interest. If not, they must be optimized
by minimizing the error ReaxFF makes on a relevant training set. Because this opti-
mization is far from trivial, many methods, in particular genetic algorithms (GAs), have
been developed to search for the global optimum in parameter space. Recently, two al-
ternative parameter calibration techniques were proposed, i.e. Monte-Carlo Force Field
optimizer (MCFF') and Covariance Matrix Adaptation Evolutionary Strategy (CMA-

ES). In this work, CMA-ES, MCFF and a GA method (OGOLEM) are systematically
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compared using three training sets from the literature. By repeating optimizations with
different random seeds and initial parameter guesses, it is shown that a single optimiza-
tion run with any of these methods should not be trusted blindly: non-reproducible,
poor or premature convergence are common deficiencies. GA shows the smallest risk
of getting trapped into a local minimum, whereas CMA-ES is capable of reaching the
lowest errors for two third of the cases, albeit not systematically. For each method, we
provide reasonable default settings and our analysis offers useful guidelines for their
usage in future work. An important side effect impairing the parameter optimization
is numerical noise. A detailed analysis reveals that it can be reduced, e.g. by using
exclusively unambiguous geometry optimizations in the training set. Even without this
noise, many distinct near-optimal parameter vectors can be found, which opens new

avenues for improving the training set and detecting overfitting artifacts.

1 Introduction

Molecular dynamics (MD) is a powerful tool to study the temporal evolution of various
atomistic models under realistic conditions. An essential ingredient in such simulations is a
computationally efficient method to compute reliable atomic forces at every time step of an
MD simulation. The quantum-mechanical (QM) treatment of the molecular electronic wave-
function allows one to compute these forces for any (reactive) chemical system, e.g. using
density functional theory (DFT) methods. However, for long molecular dynamics simula-
tions (nano- to microseconds) of extended atomistic models (up to millions of atoms), even
DFT approximations become computationally prohibitive. Only linear-scaling and massively
parallel (tight-binding) DFT implementations can handle such system sizes, by taking ad-
vantage of a large number of CPU or GPU cores, reducing the wall time of a single MD step
to the order of minutes or hours. ¢ Alternatively, one may use so-called force-field (FF) or
molecular mechanics approximations, where the electronic structure calculation is replaced

by a much cheaper and more approximate model to compute forces acting on atoms. Many



force fields (FFs) model chemical bonds by simple springs with empirical parameters in
Hooke’s law, which immediately reveals their major drawback, i.e. most force fields cannot
describe chemical reactions. Reactive FFs overcome this limitation with a more complex
mathematical expression that can describe reactive processes” '® and ReaxFF!'"'* is one
of the most popular models in this category. ReaxFF owes its popularity to a combina-
tion of unique advantages. It can be reparameterized for different combinations of chemical
elements, which makes ReaxFF broadly applicable. Furthermore, the superior computa-
tional efficiency of ReaxFF has been demonstrated in comparison to (tight-binding) DFT
approximations!® and neural-network potentials.'® As opposed to hybrid QM /MM methods,
ReaxFF can describe complex systems in which many reactive events occur simultaneously
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throughout the atomistic model, such as simulations of hydrocarbon oxidation or me-

chanical wear resistance of graphene.

Even though a detailed description of the complete mathematical form of ReaxFF goes
beyond the scope of this paper, it is instructive to review a few of its essential aspects.
The ReaxFF model is a potential energy expression for an atomistic model that ultimately
takes the Cartesian coordinates of atomic nuclei and a set of empirical ReaxFF parameters
as input. Analytic differentiation of this energy with respect to atomic positions yields the

forces needed in a molecular dynamics simulation. The ReaxFF energy is a sum of many

contributions,

EReaXFF - Ebond + Eover + Eunder + Eval + Etors + EVdW + Echarge + Especiﬁc (]-)

most of which are covalent terms responsible for describing local chemical phenomena: bond
breaking & formation (bond), over-coordination (over), under-coordination (under), valence
angle bending (val), bond torsion (tors). The next two terms describe non-covalent interac-
tions between all pairs of atoms within a cutoff distance, even when they are not chemically

bonded. The van der Waals (vdw) interaction is similar to the Morse potential and captures



any effects due to steric repulsion and dispersion interactions. The energy of the fluctu-
ating charge model (charge) includes the pairwise screened Coulomb interaction and the
polarization cost of the fluctuating charges. The local energy terms depend on bond orders,
calculated for every pair of nearby atoms from their interatomic distances. Because these
bond orders are recomputed for every atomic configuration, ReaxFF is capable of describ-
ing chemical phenomena. Finally, ReaxFF contains several optional terms, which are not

employed in all of the parameterizations:

Especiﬁc - Elp + Epen + Ecoa + Econj + Etrip + EH—bond + Elg + ... (2)

These terms can handle phenomena that are only of interest in specific cases: interaction
with a lone pair (Ip), penalty for valence angles between two double bonds (pen), conjugation
correction for valence angles (coa), conjugation correction for bond torsions (conj), triple-
bond stabilization (trip) and hydrogen bonding (H-bond). The low-gradient (lg) pairwise
R75 term was introduced to better describe long-range dispersion interactions?° but is rarely
used in recent parameterizations. More specific corrections exist, not listed explicitly in Eq.
(2) because they are irrelevant for this work, such as the C2 (carbon dimer) energy term?! or
the iron dimer term.?? Another recent extension developed by van Duin is eReaxFF, which
introduces explicit electron or hole particles that can interact with the atoms.?3

As a consequence of its wide adoption, several ReaxFF implementations were developed
next to the original “Standalone ReaxFF” by van Duin. %! The development of new
energy terms in ReaxFF were done in the original code and were later adopted in other
implementations. One of the earliest parallel versions was presented in LAMMPS.?* Other
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notable implementations of ReaxFF can be found in GULP,?® the code by Nomura
in PuReMD.?" The latter two strongly focus on efficient parallelization on high-performance
clusters. One concern with various implementations is that they are not fully compatible

with the code by van Duin, e.g. because some were re-implemented from scratch and intro-



duced modifications to make the potential energy surface smoother.?> This introduces the
risk that ReaxFF parameterizations from the literature, calibrated with one implementation,
may no longer yield sensible results in another one. All results in this work were obtained
with ReaxFF in ADF2018, unless noted otherwise. This implementation is directly based
on the original code by van Duin to assure that the functional form of the potential energy
closely follows the original, but has an improved efficiency and parallel scaling.?® This imple-
mentation intends to maintain a compatible potential energy with the standalone ReaxF'F,
but we did fix several bugs in the force evaluation to make geometry optimization more
robust, in the frame of this project. While such changes introduce a slight incompatibility,
we give preference to accurate forces.

The ReaxFF energy expression contains many empirical parameters, which need to be
optimized before ReaxFF can be used for production simulations. Even though a consid-

11,17,21,29-35 one must

erable number of tuned parameter sets are published in the literature,
extend this effort if no parameters are available yet for the chemistry of interest. To find the
new parameters, a training set must be constructed, which consists of reference properties,
Z; ret, Of molecules or crystals relevant to the chemistry of interest. The ReaxFF predictions
for these properties, z;cac({p;}), are determined by a parameter vector, p;, which can be
adjusted to minimize the deviation from the training data. To maintain compatibility with
previous works, many of these parameters are constrained to historical values and on the or-
der of 50 free parameters must be estimated. The quality of a parameter vector is quantified
by an objective function, hereafter referred to as the Error. We used the same least-squares

Error as in the original work by van Duin: 30

<xmlc<{pj}> - f) (3)

0;

Error({p;}) = )

=1

where the sum runs over all training data points. In each term, o; is an estimate of the

acceptable deviations between the ReaxFF calculation and the corresponding reference value.



In ADF2018, Error contributions take into account the periodicity of dihedral angles. For
example, a calculated dihedral angle of —170deg and a reference value of +170 deg results
in only a difference of 20 deg.

Finding the optimal parameters for a given training set is far from trivial. The tradi-
tional approach consisted of successive one-parameter parabolic extrapolations (SOPPE).3¢
Even though the Error is a simple sum of squares, it is in practice an ill-behaved function
of the parameters {p;}, with significant numerical noise and many local minima, such that
the SOPPE optimization becomes very laborious.3237 It seems more appropriate to employ
global optimization algorithms. Brute-force global optimizers, which perform a grid search in
the parameter space, are computationally not feasible because their cost scales exponentially
with the number of parameters. Instead, several groups have designed genetic algorithms
(GAs) specifically for ReaxFF parameterization, aiming at a good global-optimization effi-

34,3739 Tt was shown that GAs can minimize the objective function equally well or even

ciency.
further than the SOPPE method originally introduced by van Duin.3"%° Furthermore, these
GAs no longer require manual intervention and human judgment while minimizing the Error.
Next to GAs, many other techniques were proposed, such as a Multi-Objective Evolutionary
Strategy (MOES),! a parallel local search algorithm,*? Taguchi method based optimiza-
tion,*® Monte-Carlo force-field optimizer3** (MCFF) and Covariance Matrix Adaptation
Evolutionary Strategy (CMA-ES).%546 The goal of this work is to assess and comprehend
the efficiency of the MCFF and CMA-ES optimizers in comparison to a state-of-the-art GA.
The tendency of optimizers to get trapped in a local minimum will be tested by restarting
the fitting procedure from the same initial guess (with different random seeds) or from dif-
ferent random initial parameter vectors. Since GAs are also popular for the parametrization
of other force fields,*” 3 we expect that the comparison in this work is also useful beyond
the scope of ReaxFF.

Our comparison follows a relatively conservative approach to obtain representative test

results for the ReaxFF community. The training sets from previous GA studies of Hartke



37 except for minimal corrections to one set, as will be

were used without modifications,
explained below. Furthermore, reasonable default settings were used for all optimization
algorithms, without tuning them for each specific case. Further refinements for each com-
bination of training set and initial guess can improve the performance, for which ample
suggestions are provided through the analysis of our results.

When simply minimizing the Error in Eq. (3), there is a significant risk to overfit the
parameters. Overfitted parameters have a low Error for the training set but still produce
unphysical results in realistic ReaxFF molecular dynamics simulations. %> While we recog-
nize the importance of this problem, this work mainly focuses on testing and understanding
the strengths and weaknesses of the parameter optimization algorithms. Nevertheless, to
avoid overfitting, one may introduce a so-called test set, in addition to the training set. An
optimization can be interrupted when the Error on the test data increases, even though the
Error on the training data is still decreasing, a technique commonly referred to as “early
stopping”.?* Overfitting can also be observed by unrealistic values of optimized parameters
for which prior knowledge is available, e.g. an atomic radius. In such cases, it could be
beneficial to fix the parameter or to limit its interval of allowed values.

The remainder of this paper is structured as follows. In section 2, we describe training
sets, ReaxFF' geometry optimization details, parameter optimization algorithms with their
settings and the performance measures used to compare the performance of these algorithms.
The results of this comparison are described in section 3, where we also discuss guidelines
for an effective usage of the optimization algorithms and good practices for the design of a
new training set. Finally, section 4 summarizes the main conclusions and gives an outlook

on future work.



2 Methods

2.1 Training sets

Three training sets from the literature are used in this work: one for solid and liquid cobalt
and defects in cobalt crystals,3! one for silica clusters and (porous) crystals3” and one focusing
on disulfide mechanochemistry.3* Key properties of the three training sets are compared in
Table 1, highlighting fundamental differences in the types of information they contain. For
example, the Cobalt set only contains energy data, while the Disulfide set is the only one
containing atomic forces. Moreover, these training sets also differ in the number of free

parameters.

Table 1: Overview of ReaxFF training sets used in this work. The number of data points in
each training set is broken down into five categories: C (atomic charges), G (geometry, inter-
nal coordinates), F' (Cartesian atomic forces), P (cell parameters) and E (reaction energies).
Note that unused geometries in the geo files were not counted and similarly non-existing
geometries in the trainset.in file were ignored. The Error of the optimal parameters re-
ported in the literature is included, and Errors for the same parameters were recomputed
with ADF.

Number of data points Literature ADF Error
Label Npar | Ngeo .
C G F P E Total Error | Default Torsion2013
Cobalt 12 | 146 144 144 1444 1459 1459
Silica 671 302 5 26 13 265 309 3196 | 4607 " 6438 *
Disulfide | 87 | 231 255 4401 219 4875 1%3794% 19577 16271

* Computed with a development version of ADF2019.3 instead of ADF2018.
T The lower Error value could be reached by overfitting the paremeters.!

In the first place, a training set provides primary information to evaluate the Error,
see Eq. (3). This primary information consists of molecule or crystal geometries for which
reference data is provided, including atomic charges, equilibrium geometries (internal coor-
dinates), Cartesian atomic forces, cell parameters and reaction energies. The original papers
from which the training sets were taken, also contain secondary information: the final opti-

mal parameters and constraints that were imposed during the parameter optimization. The



first kind of constraint is the reuse of existing ReaxFF parameters without modification to
maintain backward compatibility. This also facilitates the generation of a new training set,
because it only needs to contain data to determine the new parameters. The second type of

min ,,max

constraint is the allowed interval, further denoted as [p™™, pi*@*], for each parameter p;. We
followed these constraints as closely as possible. However, for the Silica training set, some of
these intervals had to be modified, as explained in section S1 of the supporting information.

Despite the fact that we used training sets from the literature without modification to
their primary information, except for one typographical error described in section S1 of
the supporting information, we encountered difficulties reproducing literature values of the
Error for optimal parameters published with these training sets. Table 1 compares Errors
reported in the literature with the ones we computed with ADF (Default settings). While
the correspondence is acceptable for the Cobalt training set, the Error computed with ADF
for the Silica and Disulfide training sets is significantly larger. As will be explained in
section 3, the Error function for these two training sets is inherently non-robust because of
ill-behaved geometry optimizations. For a small number of molecules, the optimal geometry
is extremely sensitive to irrelevant details. For example, a change in parameters by less
than 0.5% can result in a different conformation, causing changes of the Error by 1000 units
or more. This high sensitivity makes it practically impossible to reproduce an Error value
from the literature. Note that we have computed the Error for the Silica training set with
a development version ADF2019.3, because older versions incorrectly parsed a negative van
der Waals well depth parameter. The newer version of ADF was only needed for these two
Errors because all other calculations employed positive parameters for the van der Waals

well depth.

2.2 Geometry optimization

Properties of the optimized geometries are used to evaluate the Error [see Eq. (3)], except

when energies or forces of non-equilibrium structures are specified in the training set. Hence,



many geometries need to be re-optimized for any new trial parameter vector during the
parameter optimization. This is a common practice in the development of ReaxFF force
fields, by which one can directly train a force field on energy differences between stationary
points, irrespective of the small differences in corresponding geometries.

We have taken several measures to improve the geometry convergence because it results in
a smoother Error function, which facilitates the parameter fitting. First of all, the line-search
algorithm in the L-BFGS optimizer was modified to handle cases with negative curvature
more gracefully. The original implementation performed a minimization of the norm of the
energy gradient along the search line, which resulted in an uphill step in case of negative
curvature. This was replaced by a proper minimization of the energy along the search
line. Secondly, we used relatively stringent convergence settings: the geometry optimization
continues until the maximum force on any of the atoms drops below 0.1 kecalmol~* A=, In
some problematic cases, 3000 optimization steps were not sufficient, after which the algorithm
stopped, and the last geometry was used instead of the optimal one. Such convergence issues
may appear when the optimal geometry is near a point with discontinuous ReaxFF forces or
an ill-conditioned Hessian matrix, representing the curvature of the potential energy surface.
Finally, the Torsion2013 option was implemented to reduce discontinuities in the interatomic
forces, as explained in section S2 of the Supporting Information. This option has only a small
effect on the potential energy landscape and ReaxF'F results in general. For example, the last
two columns of Table 1 show that the Torsion2013 correction has only a modest impact on
the Error value. (The error for Cobalt is not affected because this ReaxFF parameterization
does not use torsional terms.) Because this option improves geometry convergence with
minimal side effects, it was enabled in all parameter optimizations.

It is worth noting that the geometry optimizations dominate the computational cost of the
Error in Eq. (3). In general, it would be advantageous to develop alternatives to these costly
geometry optimizations. However, the goal of this work is to benchmark ReaxFF parameter

optimization algorithms with realistic training sets from the literature, without changing
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their contents. The training sets we tested require the optimization of many geometries, so
we carried them out to the best of our ability. Simple reductions in computational cost, such
as relaxing convergence criteria or reducing the maximum number of steps, were avoided

because they deteriorate the numerical noise in the Error.

2.3 Initial guess of the parameter vector

Initial guesses of different quality were generated to test the influence on the outcome of the
parameter optimization. In principle, the best possible initial guess is the optimal parameter
vector previously reported for a training set. However, the literature parameters for the
Silica training set were unsuitable as an initial guess because nine parameters exceeded
their allowed intervals. In this case, we used minimally corrected parameters as literature
guess instead. (See section S1 of the supporting information for details.) In general, the
literature guess may not be optimal in this work for two reasons: (i) the Error function has
reproducibility issues as explained above and (ii) the literature parameters for the Disulfide
training set were obtained with early stopping. Therefore, we use the neutral label ‘literature’
for this type of guess.

An ‘educated’ initial guess was constructed from a database of ReaxFF parameters main-
tained by SCM, % using only parameters published prior to the corresponding training set.

For every parameter, the following steps were taken:

1. All unique historical parameter values were looked up for the same type of parameter,
associated with the same combination of chemical elements. Only those lying in the
allowed interval for the training set, [p™®, p®X] were retained and their median was

used as a guess.

2. If in the previous step, no historical parameters were found in the allowed interval, the
search for unique historical parameters was extended and they only had to be of the

same type but they were allowed to be associated with other chemical elements. Of all
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these values, we took the median.

3. If again no historical values could be found in the previous step, we just took the center

of the allowed interval as initial guess.

In case of the Cobalt training set, there is only one parameterization predating the training
set?! and the result of the above procedure is that the educated guess for Cobalt coincides
with the parameters from Ref. 21.

Finally, 10 ‘random’ initial parameter vectors were constructed for each training set. For
every parameter, we sampled random values from a uniform distribution over the interval
[pinin 4 (pimax — pmin)) /4 pmax _ (pmax _pmin) /4] i e the central segment of the allowed interval
spanning half the width.

Other types of prior knowledge could be used to construct an initial guess, e.g. certain
ReaxFF parameters correspond to properties of chemical elements or bonds, for which exper-
imental or ab initio data is available. However, this approach is only applicable to parameters

with a physical interpretation and we have not attempted to construct such guesses in this

work.

2.4 Parameter optimization algorithms

The settings of the parameter optimization algorithms described in this section are not
excessively tuned for each combination of training set and initial guess. For every algorithm
in this section, it will be explained how the balance between global exploration and local
convergence can be changed. In this work, reasonable defaults setting were employed, with
an acceptable trade-off between global and local optimization performance within one run.
With this choice, we obtain results that a non-expert can expect. While case-by-case tuning
of optimization algorithm settings can be beneficial, subsequent tweaking of settings becomes
computationally infeasible when the cost of a single run is already high.

The first algorithm in our comparison, the Monte-Carlo Force Field (MCFF) optimizer, 32

12



is primarily inspired by a physical model. By sufficiently slowly cooling down a many-particle
system, it will eventually reach its ground state. By applying the same process to a simulated
system, one may obtain a good approximation of the global minimum of any high-dimensional
function, a technique commonly referred to as simulated annealing.** The two remaining op-
timization algorithms are Evolutionary Algorithms and are inspired by the biological model
of evolution: a population, where individuals are defined by their genes (parameter vectors),
is evaluated and only the fittest individuals (lowest Error) are retained (in a modified form) in
the next generation. Over many generations, the genes evolve towards optimal fitness. Evo-
lutionary Algorithms form a class of parameter optimization algorithms that simulate this
mechanism, with the same purpose of finding the minimum of a high-dimensional function.
Two algorithms from this class are considered in this work: the Covariance Matrix Adapta-
tion Evolutionary Strategy (CMA-ES)%>57 and a Genetic Algorithm (GA) implemented in
OGOLEM.?"

2.4.1 Monte-Carlo Force Field (MCFF) optimizer

MCFTF uses simulated annealing to optimize the parameters.3*%* Only in the limit of infinitely
slow cooling rates, it becomes a rigorous global optimization method. Finite cooling rates
may cause convergence into a higher local minimum. This difficulty is comparable to rapid
cooling of a liquid, which can result in a glass instead of a crystal with a lower energy.

At every iteration, MCFF makes a small change to the parameter vector and computes
the corresponding change in the Error function. In this work, the small step consisted of
a random change, of 10% of the parameters, sampled from a uniform distribution over the
interval [—(p®*—pMin)s /100, (p®* —pin) s /100], where s controls the magnitude of step size.
When the error decreases, the step is always accepted. In case of an increase, it is accepted
with a probability exp(—/,AError), where 3, is the inverse dimensionless temperature at

iteration n. The initial value of s was set to 1.0 and MCFF dynamically updates s to keep

the acceptance ratio within user-specified bounds, in our case [50%, 70%].
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For every combination of training set and initial guess of the parameters, we performed
three types of MCFF runs with 9k, 3x3k and 45k iterations. The length of the shortest
MCFF runs is inspired by previous works, %32 whereas the 45k run is included to test the
beneficial effect of more iterations and slower cooling rates. In case of 3x3k, 3 MCFF runs
of 3000 steps were done in series, where the second and the third run are restarts using the
optimal parameters from the previous run as initial guess.!® The initial inverse temperature
was always determined by

Npar 1

fo = 2 (O, Error,’ (4)

where N, is the number of optimized parameters, Error, is the Error of the initial param-
eters. In case of the second and third segment of a 3x3k run, Sy is derived from the initial
Error of the current restart instead of the Error of the initial guess. C is approximately
the initial magnitude of relative thermal fluctuations of the Error and was set to 1, allowing
MCFF can escape local minima easily. If one prefers MCFF to perform a more local search,
(1 should be reduced by one or two orders of magnitude. The final inverse temperature is

set to

Npar 1

where (5 is approximately the absolute fluctuation of the error at the final iterations and
was set to 5. Such a small value for Cy will let MCFF converge to the bottom of a (local)
minimum. The above relation between Error fluctuations and inverse temperature would be
exact if the Error were a quadratic function of the ReaxFF parameters and the sampling
were complete, as shown in section S3 of the supporting information. In practice, these
relations are approximate because the Error is a more intricate function and the number of
steps is too small for a complete sampling, especially when the Error is nearly flat in some

directions.® To obtain an annealing simulation, (3, is divided by a constant factor at every
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iteration of the MCFF algorithm:

ﬁn N 02
B+ B CErrorg (6)

where NV is the total number of iterations. The above configuration of the MCFF algorithm

can be implemented with the control parameters in Table 2.

Table 2: MCFF and CMA-ES settings used in the ReaxFF control file. Control parameters
not included in the table are left to their default value.

MCFF

mcffit N = 9000, 3000 or 45000 Number of MCFF iterations.

mcbeta Bo =1/ Ng“ ClEllrrom Initial inverse temperature.

nebsca 8, _ NI o Value by which the inverse temperature is
Bnt1 | CiErroro divided at every step.

The initial value for the step size s. The
mcstep 1.0 maximum change of a parameter in one MC

step is mcstep/mcrxdd.

Constant denominator in the expression for
mcrxdd 100 generating random steps. (In principle re-

dundant as it can be absorbed into s.)

The step size s is multiplied (divided) by this

mcscps 1.05 factor when the acceptance ratio is too high
(low).

mctart 50.0 The target (minimum) acceptance ratio

mcmart 70.0 The maximum acceptance ratio

Fraction of the parameters that is changed in

mcacpt 0.1 one MCFF step.
CMA-ES
mcffit N = 20000 Maximum number of CMA-ES iterations.

CMA-ES convergence criterion. (See text for
details.)

Controls the width of the initial normal dis-
tribution in parameter space.

ffotol TolX =10"% or 107°

mcrxdd N, =4
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2.4.2 Covariance Matrix Adaptation Evolutionary Strategy (CMA-ES)

CMA-ES is a stochastic gradient-free optimization algorithm proposed by Hansen et al*%57
and is occasionally used for force-field parametrizations. 4635859 Starting from a user-provided
initial guess, CMA-ES iteratively improves a multivariate normal distribution in the param-
eter space to find a distribution whose random samples minimize the objective function. In
essence, one iteration consists of the following steps and we refer to Ref. 45 for a detailed

description:

1. A population of A =4 + |31n N,,, | random points (trial parameter vectors) is drawn
from the normal distribution, where Np,, is the number of parameters being optimized.
The non-elitist version of the algorithm was used, denoted as (u/puw, A)-CMA-ES, im-

plying that no parameter vectors from previous iterations were added to the population.
2. The Error is computed for all of the trial parameter vectors.

3. The population is sorted by increasing Error and only the first A/2 points are retained
and assigned a weight, according to the default logarithmic weighting scheme from Ref.

45.

4. The mean (center) and covariance of the normal distribution are updated using the

weighted points, using heuristic rules explained in Ref. 45.

5. When o||p,|| and o max; v/Cy; drop below a threshold, TolX, convergence is reached and
the algorithm stops. In these criteria, o is a variable step size, C'is the current estimate
of the covariance matrix and p, is an average over previous steps with an exponential
window. More details on these quantities can be found in Ref. 45. Alternatively, one

may also stop after a maximum number of iterations.

The value of the objective function at each trial point is only used to rank the points, which

makes CMA-ES invariant to any rank-preserving (strictly increasing) transformation of the
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objective function. As the evaluation of each trial point is completely independent from the
rest of the population, this step of CMA-ES is trivially parallel.

Starting from the initial guess, the covariance matrix C' is incrementally improved by
the feedback from sampled points and tends to approximate the inverse Hessian matrix,
thus capturing the relative sensitivities of the parameters and also the correlations between
them. The covariance matrix is used to estimate the appropriate relative magnitude of
random displacements along each possible linear combination of parameters. The efficiency
of CMA-ES is attributed to this level of insight into the function being minimized,*>>7
whereas other methods tested in this work do not make use of a comparable model of the
covariance. The step length o (overall width of the sampled distribution) is automatically
controlled by the algorithm in every iteration, depending on the directions of previous steps.
If subsequent steps move in a similar direction, the step length is increased accordingly. If,
instead, subsequent steps tend to be in opposite directions, the algorithm is overshooting an
optimum and thus responds by scaling down the step length.

The initial mean of the normal distribution is set to the initial guess (see section 2.3)
and the initial covariance matrix is diagonal with each diagonal element set to ((pi®* —
pin) /N, )%, where N, = 4. With this value of N,, CMA-ES starts with a relatively broad
initial distribution, such that the algorithm explores a large portion of the parameter space
before converging. One may turn CMA-ES into a more local optimizer with higher values of
N,. We used tight convergence criteria: TolX = 10~ for the Cobalt training set and TolX =
10~° for the two other training sets. To facilitate the comparison with the longest MCFF
runs, the CMAES-runs are terminated after 45k Error evaluations, and only these results
are used to derive performance measures. Because a single CMA-ES iteration comprises
multiple Error evaluations, 45k evaluations corresponds to a maximum of 4.1k, 2.8k and
2.6k iterations for the Cobalt, Silica and Disulfide training sets, respectively. Solely to

check if significant improvements could be obtained with additional iterations, we have also

continued the CMA-ES runs up to a maximum of 20k iterations. Our configuration of the
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CMA-ES algorithm can be reproduced with the control parameters in Table 2.
The CMA-ES algorithm is implemented using the c-cma-es library.%° The upper and

min max

lower bounds on the parameters (pi™ and p}

) are imposed by setting the Error to the
maximum floating point value whenever parameters fall outside their allowed interval.
Because multiple Error evaluations are used in one CMA-ES iteration (A defined above),
one must be careful when comparing the efficiency with MCFF, in terms of number of
iterations needed to achieve a low Error. For the Cobalt, Silica and Disulfide training sets,
Ais 11, 16 and 17, respectively. In a serial calculation, this would be the relative cost of one
CMA-ES iteration compared to MCFF. However, in ADF, multiple Error evaluations can be
carried out in parallel within one CMA-ES iteration. To avoid ambiguities with differences in
computational cost of one iteration in different algorithms, the number of Error evaluations

(#evaluations) will be used to quantify the computational cost.

2.4.3 Genetic Algorithm (GA)

Compared to CMA-ES, a genetic algorithm follows Darwin’s theory of evolution more closely.
GAs mathematically model the crossover and mutation of genes upon reproduction and the
survival of the fittest species in each generation. In the context of ReaxFF, GAs have been
proposed as effective global parameter optimization strategies.3+3739 To remain consistent
with the previous GA studies for optimizing ReaxFF parameters, the OGOLEM implemen-
tation was selected for the current work. 3437

In a genetic algorithm, a parameter vector is denoted as a set of genes of an individual and
a population of such individuals is optimized by constructing child individuals from which
only the fittest are retained. In this work, a starting population of 500 individuals comprises
an initial guess (see section 2.3) and a set of uniformly distributed vectors within the allowed
parameter intervals. In OGOLEM'’s pool-based algorithm, two new children are generated
and evaluated in one iteration and the best one replaces a lesser-fit individual from the pool

as soon as the calculation of the fitness has completed. Any new child is derived from two
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parents, selected from the population, with a higher probability of selecting fitter ones. The
parents’ genes are exposed to either binary or unary genetic operations to produce genes
for the new individual. Because the genes of fitter parents contribute more to the following
generations, a genetic algorithm produces a fit population after many iterations. In our
work, fitter means a lower value of the Error in Eq. (3).

The complete input files used for OGOLEM are provided in section S4 of the supporting
information and only the most important settings are summarized below. The number
of iterations is set to 110k, 160k and 170k for the Cobalt, Silica and Disulfide training
sets, respectively. This way, the maximum number of Error evaluations is the same as
for 20k CMA-ES iterations. For the Cobalt and Silica training sets, we visually observed
convergence after 100k iterations and these runs were truncated accordingly prior to further
analysis. In the case of the Disulfide training set, a similar truncation was not possible and
we have retained all iterations. For the Disulfide training set with the literature guess, we
have continued the GA runs up to 4 million iterations. This extension was not used for the
comparison with MCFF or CMA-ES:; it was only used to investigate the convergence behavior
of the GA. The relatively large number of iterations, with two Error evaluations in each step,
already imply that a GA run is significantly more expensive than an MCFF or CMA-ES
run. Truncating the GA runs after 45k Error evaluations, to keep the computational cost
comparable to MCFF and CMA-ES, did not give sensible results and would deviate from
previous works, in which about 10° to 108 iterations were used.3*3"

In a single GA iteration, a child’s genes are derived using either a binary (recombination
or crossover) or a unary (mutation) operator, with probabilities of 80% and 20%, respec-
tively. Binary recombination implies an exchange of genetic information between parents’
genes and can be realized with different crossover flavors. In this work, we used (i) a mix-
ing recombination operator (20% probability), which determines child genes as a weighted
average of its parents’ values and (ii) a multipoint exchange (80%), which defines a random

number of cutting points in the parameter vector and switches between the two parents
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genes after each point. The unary mutation generates new child’s genes by making random
modifications to the genes of one parent. Either a subset of the parameters are taken from a
uniform distribution over the entire interval of allowed values (20%) or small perturbation to
some parameters are sampled from a Gaussian distribution (80%). OGOLEM also supports
niching, which defines equidistant bins for every parameter and imposes conditions on the
number of individuals that may occupy each bin. We used the niching setting from Ref.
37, but these had a relatively low impact on our calculations. The number of individuals
rejected by the niching conditions was marginal in all our calculations.

In addition to the basic settings described above, more details can be controlled through
the OGOLEM input file (see section S4 of the supporting information), which is both a weak-
ness and a strength of genetic algorithms. Ample settings allow one to tune the algorithm
to specific use cases, but they also make it far from trivial for casual users to control these
settings effectively. Just like MCFF and CMA-ES, the rate of convergence of OGOLEM’s
GA can be influenced, e.g. by increasing the pool size or by increasing the probability of
large mutations, it will explore a wider region of the parameter space. This increases the
probability of finding the global minimum but it also slows down the convergence.

A particular advantage of the pool-based GA implementation in OGOLEM is its parallel
efficiency. CMA-ES supports synchronous parallelization, which means that all Error calcu-
lations within one iteration have to be completed before a new iteration can be started. When
one Error calculation takes much longer than all others, some cores become idle until the
last calculation of an Error within one iteration has completed. The pool-based GA allows
for asynchronous parallelization, meaning that whenever an Error calculation has completed,
the algorithm can decide which parameter vector to process next, without having to wait for

the completion of other Error calculations, effectively avoiding idle CPU cores.
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2.5 Performance evaluation

The essential performance measure in this work is the lowest Error reached during an opti-
mization. Because the tested algorithms are stochastic and depend on an initial guess, 10
runs were performed for each combination of training set, ¢, initial guess, g, and optimizer
settings, s. The lowest Error obtained in each run is recorded, of which the best, the second
best and average in a set of 10 runs is denoted by Erroryesio(t, g, s), Errorseqio(t, g, s) and
Erroraeo(t, g, s), respectively. The best result over all 150 runs with the same training set
is

Errorpest1s0(t) = min Errorpesiio(t, g, $) (7)
g,s

and represents our closest estimate of the global minimum for training set t. With these

quantities we define reproducibility and reliability measures:

Error,yei0(t, g, s) — Errorpeseio(t, g, S)
Avere(t, g,8) = A L 100 8
P ( g 8) Errorbestl[)(ta 9, 8) 8 % ( )

Error,ye10(t, g, s) — Errorpesiiso(t)
Awilt, g,8) = 8101 9, % 100 9
i(t.9,5) Errorpestis0(t) 7 )

The reproducibility measure, A (%, g, s), shows the sensitivity of the outcome of a param-
eter optimization to the random seed (and the guess in case of random initial guesses). The
reliability measure, A, will only be small when a method consistently finds a good ap-
proximation of the lowest known Error. Unavoidably, this reliability measure may be too
optimistic, because it is not absolutely guaranteed that Errorpestis0(t) is close to the global
minimum.

To asses how much the parameters have changed during an optimization, we also compute

the distance (Euclidean norm) d; between the initial guess and the parameter vector of the
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lowest Error (for the best run) in reduced parameter units:

L Pi
Pi = —ax min
p

i Di (10)

Finally, we also compute the distance dy between the optimal parameters of the best and
second best run, to investigate parameter degeneracies. It was previously observed that
the Error is not sensitive to certain linear combinations of parameters, making the optimal

parameters degenerate. 3

3 Results and discussion

In total 45 sets, with 10 parameter optimizations each, were carried out in this study. There is
one set for every combination of (i) three different training sets (Cobalt, Silica and Disulfide),
(i) three optimizers (MCFF, CMA-ES and GA) with three different settings for MCFF
and (iii) three different qualities of the initial guess (literature, educated and random). A
summary of the numerical results for each set, in line with the performance evaluation
discussed above, is given in Table 3. In addition, Figure 1 shows the decrease of the error
as function of the number of Error evaluations for four out of 45 representative sets. Similar
plots for all 45 sets are included in section S5 of the supporting information. In case of
MCEFF, all Error values are plotted, for CMA-ES, only the lowest Error at each iteration is
shown and for GA, the lowest Error up to a given point is depicted.

The most important result in Table 3 is that for the Cobalt and Disulfide trainining
sets, the reliability measure, A, is large for all methods. For the Silica set, only the GA
systematically finds the lowest Errors with relatively little deviation. In a few cases, the poor
reliability can be traced back to reproducible (low A,,:) premature convergence to a high
Error value, observed most often in the short MCFF runs (9k or 3x3k) starting from the
literature or educated guess. Similarly reproducible but poor results are found when GA is

applied to the Disulfide set due to lack of converge: no saturation has been reached yet in Fig.
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Table 3: Overview of parameter optimization results. Each row shows the preformance
measures defined in section 2.5 for a set of 10 optimization runs carried out with identical
settings. The overall lowest Error for each training set, Errorpesis0, is printed in bold.

Algorithm

Tréli(iiillg (#evalua— Guess | Errorpegiig | Errorsenaio Arcp!‘ [(Z)] Arel [%} dy di2
tions)
lit 1386 1392 3 25 15 18
MCFF-9k
(igk) 9 edu 1737 2066 57 137 .81 .84
rand 1623 2430 109 195 1.05 1.25
lit 1362 1374 2 21 15 A7
MCFF-3x3k
C (gk)?)x?) edu 1711 1860 32 96 .63 37
rand 1708 1842 100 197 .34 .80
lit 1360 1363 3 22 .22 .25
MCFF-45k
Cobalt (45K) edu 1532 1806 46 94 1.04 1.32
rand 1422 1458 54 90 1.10 1.12
lit 1180 1199 64 69 1.45 43
MA-ES-4.1k
C (455) edu 1159 1172 47 49 1.47 .99
rand 1150 1171 65 65 1.01 b7
lit 1345 1357 19 39 .68 .78
A-100k
(}(200(11()) edu 1349 1375 26 48 1.10 .72
rand 1346 1470 42 66 1.19 .58
lit 5709 6096 23 96 2.38 2.89
MCFF-9k
CEE)k) 9 edu 5995 6755 22 104 2.48 2.82
rand 5882 6334 32 117 | 2.46 3.23
lit 4639 4724 9 41 2.34 2.58
MCFF-3x3k
C (gk)3x3 edu 4598 4678 13 46 1.29 2.11
rand 4574 6913 383 518 2.63 2.76
lit 4885 5034 24 70 2.66 2.83
MCFF-45k
Silica C(45k) 7 edu 5632 5695 31 106 2.56 2.93
rand 5059 5536 36 92 2.76 2.34
lit 3793 3890 27 34 2.14 2.21
MA-ES-2.8k
C (455) 8 edu 3747 3874 38 44 2.08 2.40
rand 3739 4098 30 36 2.68 2.75
lit 3593 3650 5 5 2.15 2.37
A-10k
6(}2001?) edu 3705 3713 4 8 1.86 2.06
rand 3577 3642 6 6 2.55 2.57
lit 11899 11981 8 60 1.80 2.49
MCFF-9k
(E9k) 9 edu 14852 15721 15 112 2.93 3.06
rand 11960 14332 47 119 2.75 2.77
lit 10914 11248 9 48 1.44 1.79
I\/IC]E\;{_)?)X:&k edu 13754 14595 24 112 2.65 2.79
rand 13886 14311 42 144 2.71 3.10
lit 10605 11719 25 64 2.83 3.18
MCFF-45k
Disulfide (45K) edu 9608 11828 47 75 327 333
rand 8507 9684 43 52 2.90 2.69
lit 9284 10698 25 44 2.34 2.96
MA-ES-2.6k
© (455) 6 edu 8727 9760 32 43 3.12 3.06
rand 8052 9712 45 45 3.10 2.47
lit 18524 19213 13 160 1.97 2.19
Géz)i(;k edu 18054 18478 11 148 2.44 2.46
rand 19285 19489 6 154 2.33 2.32
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Figure 1: Representative selection of plots of the Error as function of the number of Error
evaluations, for MCFF (a, b), CMA-ES (c¢) and GA (d). Training set and algorithm settings
are indicated inside every panel. Each plot displays the progress of the Error for 10 opti-
mizations using the same settings. Differences within one plot are caused by the stochastic
behavior of the optimization algorithms and in panel (b) also by the differences between the
random initial guesses. In panels (c¢) and (d), the plot on the right is a continuation of the
plot on the left, with different axes to depict the Error near convergence. In panel (c), the
black vertical line at 45k evaluations shows where the CMA-ES runs were truncated prior

to the analysis presented in Table 3.
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1d and related figures on pages S19 and S21 of the Supporting Information. For the Disulfide
training set with the literature guess, the GA was continued up to 4 million iterations, which
yielded a lowest Error in the best run of 9502, still without reaching a visible saturation of the
Error. We expect even more GA iterations would further decrease the Error, which we have
not tested due to limitations of our computational resources. In all other cases, we observe
non-reproducible behavior (high A,p, ), simply due to variations in random seed or differences
in initial guess. The least impressive results were obtained with the MCFF method: except
when using the literature guess, the outcome is never reproducible. Moreover, MCFF always
shows a worse reliability score, even when it is reproducible. In general, we cannot claim
that any of the tested methods is reliable for all training sets. The main implication is that
one should not trust a single optimization run. When just performing one run, i.e. with any
of the tested guesses and optimizer settings, the risk for obtaining a poor result is significant,
due poor reproducibility or convergence to a high Error.

A second important observation is that for the Cobalt and Disulfide training sets, the
lowest Error from the best (out of 10) CMA-ES runs, Errorpesio, is significantly lower than
that obtained with other methods. Moreover, for the Silica training set, the Error of the best
CMA-ES run with any of the guesses is at most 6% higher than the lowest known Error.
CMA-ES is certainly not an exhaustive global optimizer because of its limited reproducibility.
However, it demonstrates a remarkable local optimization efficiency, which is attributed to its
estimate and exploitation of the parameter covariance.*>®” This result suggests a relatively
simple strategy to systematically obtain a fair set of parameters: perform 10 independent
CMA-ES runs and take the best result.

The reproducibility of the GA runs is remarkably good for the Silica and Disulfide sets,
even with random initial guesses. Because the lack of reproducibility is a serious limitation of
MCFF and CMA-ES, this strength of GA is worth investigating in more detail. Throughout
a GA run, new trial parameter vectors are tested that differ significantly from the samples

present in the population, e.g. by replacing one or more parameters by random values. CMA-
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Table 4: Three lowest Errors and the average Error obtained by uniform random sampling
of parameter vectors.

Cobalt Silica.  Disulfide

#evaluations 220k 320k 340k
Lowest Error 2976 21309 95486
274 Jowest Error 3325 25143 100726
3' lowest Error 3439 27794 110169
Average Error | 4.46 x 108 3.06 x 105 1.68 x 107

ES may carry out such broad sampling only in the initial iterations and MCFF typically
takes relatively small steps. To show the beneficial effect of practically random trial vectors,
the Error was computed for a large number parameter vectors, sampled from a uniform
distribution over the allowed parameter intervals. The main results of these random samples
are summarized in Table 4. One average, a random parameter vector has a very high
Error, but some have a sufficiently low Error to serve as good guesses for interesting (local)
minima. Such random sampling is insensitive to barriers or noise in the Error, helping the
GA to escape local minima. The Error function for the Silica training set exhibits relatively
severe noise, see below, which correlates well with the outstanding performance of GA for
this training set.

The rate of convergence of the tested algorithms is also markedly different, as shown in
Figure 1. MCFF slowly cools down the parameters and the lowest Error is usually encoun-
tered close to the end. More MCFF iterations (45k steps) led to lower Errors, as one would
expect from any simulated annealing method. The restarts (3x3k steps) are in some cases
advantageous over one slower annealing of 9k steps,® compare e.g. the results for the Silica
training set with an educated initial guess in Table 3. However, significant improvements are
often made in the last restart, see e.g. Figure 1b, such that additional restarts could lead to
even lower Error values. CMA-ES first explores a wide region of the parameter space, result-
ing in very high initial Errors. Subsequently, it exhibits a rapid decrease of the Error over
the first few thousand Error calculations, after which the Error begins to saturate within 45k

Error evaluations. When performing additional CMA-ES iterations, 90% of the runs exhibit
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a decrease in Error of less than 4%. The remaining 10% of the runs show a lowering of the
Error of at most 17%. Therefore, when using CMA-ES, it could be promising to implement a
pruning scheme, ¢ where one first performs a series of short CMA-ES optimizations with dif-
ferent initial guesses or random seeds and then continues only the most promising ones with
additional CMA-ES iterations. The progress of the Error of the GA follows a similar pattern
as CMA-ES, starting with very high values, followed by a rapid decrease. In comparison,
CMA-ES reaches lower values earlier in most runs, with a few exceptions, confirming the
above observations, i.e. that CMA-ES can be more efficient but is not as reproducible. Note
that Fig. 1d and corresponding GA Error plots in section S5 of the supporting information
show the lowest Error up to a given iteration. The GA continuously attempts to escape
its current local minimum and many of these attempts result in a high Error, not shown in
these plots.

The quality of the initial guess may have some positive influence, but the effect is limited.
The best out of the 150 runs for every training set is obtained with random initial guesses
and there is no significant rank correlation between the Error of a random initial guess and
the resulting lowest Error. The literature guess has a particular effect on short MCFF-9k
runs: these show a reproducible convergence to a higher Error. The MCFF-3x3k runs do
not improve this situation and for the Cobalt set even the longer MCFF-45k runs cannot
overcome this premature convergence. In all other cases, the educated and even more the
random guesses, worsen the reproducibility of the MCFF runs. When only considering the
best of 10 runs, random guesses mostly have a minor beneficial effect because the whole
set of runs explores a larger region in parameter space, potentially leading to lower Errors.
The limited impact of the initial guess is consistent with our settings of MCFF, CMA-ES
and GA. The algorithms will explore a significant part of the parameter space in the first
iterations in an attempt to avoid convergence to a high local minimum. This also implies
that the parameter trajectories substantially depart from the initial guess. One may lower

the initial fluctuations in MCFF (lower C} in Eq. 4) or the initial width in CMA-ES (higher
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N, ) to let these algorithms stay closer to the initial guess. Obviously, this also increases the
risk of getting trapped into a local minimum with a high Error.

The performance of any of the selected parameter optimization algorithms, e.g. to find
a lower Error, can be improved by carefully tuning the algorithm settings or by performing
subsequent runs, as shown in this work for MCFF. It would go beyond the scope of this work
to perform such a tuning on each combination of training set, initial guess and optimization
algorithm. Instead, our comparison shows the typical differences in behavior of the selected
optimization algorithms, which a non-expert may expect using reasonable default settings.

Finally, we observed that two runs with the same initial guess and the same algorithm
may converge to significantly different parameters, yet having nearly equal Error values. An
illustrative example is the optimization of parameters for the Silica training set with CMA-
ES using the educated initial guess. In this case, the best and second-best runs have similar
Errors: 3742 and 3870, respectively. Yet, the distance between these two solutions (dy =
2.40) is of the same order as the distance from the initial guess to the optimal parameters of
the best run (d; = 2.04). This is a general pattern: comparable (low) Errors can be obtained
with significantly different parameter vectors. This is most likely due to the presence of
several local minima with a similar depth in the Error function. To shed some light on the
origin of distinct solutions with nearly the same Error, Figure 2 depicts the Error as function
of a linear interpolation (in 1000 steps) between the solution from the best and second-best
run (CMA-ES and educated guess), for the three training sets. These scans illustrate that
the Error is not a convex function and may thus have several local minima. Our findings
do not exclude the possibility that the Error is insensitive to certain linear combinations of
parameters, which could also result in multiple solutions with a similar Error.3®

The curves in Figure 2 also exhibit a significant degree of noise for the Disulfide and to
larger extent for the Silica training set, in line with previous works.324% To illustrate the
severity of the noise, the Error of neighboring points in Figure 2b can differ by 1000 units,

while the parameters change by less than 0.5%. Such levels of noise alone can create many

28



1 (a) Cobalt

25 s
%

Error
%

0.0 0.2 0.4 0.6 0.8 1.0
| (b) silica

Error

£ 00 02 04 06 08 10
(c) Disulfide

Error
27

Q . ; ; - ; :
~ 0.0 0.2 0.4 0.6 0.8 1.0

Figure 2: For the three training sets, a linear scan through parameter space is performed:
¢+ z(p? — p¢), where x € [0,1]. The two end points of the scan, p? and p?, are the solutions
of the best and second best run when optimizing the parameters with CMA-ES using the
educated initial guess. At 1000 equidistant grid points for x, the total Error is computed
and shown in the plots as a black curve. In case of the Silica and Disulfide training sets, the
red curve is the Error without those contributions that cause large discontinuous jumps in
the Error along the linear scan.
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local minima, most of which are irrelevant. This also explains why a recomputation of the
Error for the Silica and Disulfide training sets in Table 1, using force-field parameters from
the literature, can differ strongly from earlier publications. For these training sets, the Error
itself is not robust, i.e. small changes parameters may have a large impact on the Error.
Because this noise in the Error degrades the performance of any optimization algorithm, the
remainder of this section addresses its origins and explores mitigation strategies for future
work.

A detailed analysis revealed that the jumps in Figure 2 are caused by 8 out of 309 items
in the Silica training set and 11 out of 4875 items in the Disulfide training set. The Error
without these noisy items (red curve) is much smoother. We repeated some of the CMA-ES
runs after removing the problematic items from these training sets. While the lowest Error
for the worst run decreases notably, the results for the best run do not improve significantly.
This means that the problematic items in the training set mainly increase the risk that
CMA-ES converges to a higher local minimum. In other words, one can also improve the
reproducibility of a parameter optimization by designing training sets without noisy Error
contributions.

To understand the origin of the noise in Figure 2, we investigated every term in the Error
function, see Eq. (3), along the linear scan. Noise in a ReaxFF prediction, Ax;, relative to
a mean value (x;), adds a contribution to the noise in the Error (to first order) comprising

two factors:

2
7

2
AError; & — [(@;) — ®iref| Ax; (11)

factor 1 factor 2
When we observe significant noise in the Error, this can be either due to a large first or second
factor. This is consistent with earlier work of Larsson et al,*® where it was observed that
the Error function becomes smoother near the optimal parameters, which can be explained
by a decrease of the first factor.

For the Silica training set, apparently only 8 out of the 309 Error terms are responsible
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for the largest jumps in Figure 2. Several smaller discontinuities are also present for exactly
the same reasons as the larger jumps. Most of the problematic terms in the Error are related
to molecules for which at least two (but often many more) metastable conformations or
configurations exist. Two examples are shown in Figure 3. The 12-membered silica ring in
Figure 3a can have many slightly different conformations due to the high flexibility of the Si-
O-Si angles. Figure 3b represents the products of a silica condensation reaction. The water
molecule is weakly bound to the condensed silica cluster, with two possible configurations
differing in energy by 20 kcal mol™!. The end result of the geometry optimization (either
of the two states) depends erratically on the force field parameters, resulting in sudden
changes of the Error by approximately 300 units with only tiny changes in parameters. One
could reduce this sensitivity by (a) using more rigid molecules and (b) by including reaction
products separately in the training set instead of combining them into a single complex.
Another problematic case is the energy of a slightly expanded unit cell of quartz. The
training set specifies that this geometry should only be optimized for five steps, instead of
the usual 3000, without reaching convergence. Due to the large remaining atomic forces,
small changes in geometry cause large differences in energy. The exact configuration after
five steps depends unpredictably on force field parameters and algorithmic details of the
geometry optimizer, which is another source of noise. In this case, allowing for more geometry
iterations should resolve the issue, at the expense of an increased computational cost.

For the Disulfide training set, 11 out of 4875 Error terms are responsible for all the visible
noise in Figure 2. These 11 terms measure errors on dihedral angles (torsions about C-O
and C-S bonds) in the four molecules shown in 4. The geometry optimization of the four
molecules is usually not complete after 3000 steps. In case of convergence failure, the last
geometry is used as the best available approximation of a converged result. However, due to
the incomplete convergence, the internal coordinates contain a virtually random component,
which is yet another source of noise.

Remarkably, there is no visible noise in Figure 2 for the Cobalt training set, for which
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Figure 3: Two of the problematic molecules in the Silica training set responsible for discontin-
uous jumps in Figure 2b: (a) a 12-membered silica ring and (b) the product of a ring-closing
condensation reaction of a linear silica trimer. For both molecules, 100 optimized geometries
are shown in overlay, obtained with different ReaxFF parameters along the scan. In part
(b), the water molecule, which is a product from this condensation reaction, is part of this
geometry, for which ReaxFF predicts roughly two stable positions relative to the three-ring.

there could be two explanations. First, the Cobalt training set only contains energy dif-
ferences, which are not sensitive to small deviations in the geometry, because the nuclear
forces are nearly zero after the geometry optimization. A second possible explanation is that
the Cobalt Reactive force field uses exclusively two-body terms, thereby eliminating some
sources of noise present in three- and four-body energy terms.

The relation between geometry convergence and noise in the Error provides a second
explanation for the observation of Larsson et al. that the Error becomes smoother near the
optimal parameters. The geometries provided in the training set are normally the optimal
ones that ReaxFF should reproduce. Hence, with good ReaxFF parameters, fewer geometry
optimization steps are needed, resulting in a lower risk for geometry convergence failures and

corresponding discontinuities in the Error function.
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Figure 4: Four molecules in the Disulfide training set, whose Errors on the dihedral angles
are responsible for the noise in Figure 2c.
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4 Conclusions and outlook

Our systematic comparison of the MCFF, CMA-ES and GA optimizers reveals that none of
them are reliable in general, when just performing a single optimization run. More specifi-
cally, a single optimization run with any of these methods, with reasonable default settings,
holds a significant risk for obtaining parameters with relatively high errors. The main reason
are premature convergence, slow convergence and non-reproducible behavior of the stochastic
algorithms.

Different optimization algorithms have their strengths and weaknesses. For example,
CMA-ES is capable of finding the lowest Error for two out of three training sets, but does
not find them systematically. Depending on the initial guess or the random seed, it may also
converge to a higher local minimum. In contrast, GA is more reproducible, i.e. it exhibits
a smaller variation on the lowest Error from independent runs, but it can systematically
converge to higher Error values or exhibit impractically slow convergence. Our MCFF results
were overall unimpressive: even with significantly slower cooling rates and more iterations
than usual, it underperforms compared to CMA-ES for the same computational cost.

With any of the tested optimizers, further tuning of algorithm settings may improve
their performance. However, a more desirable solution would be to combine the strengths
of different algorithms to obtain a generally reliable method: CMA-ES efficiently optimizes
locally by modeling parameter covariances and GA easily escapes local minima by making
larger steps in parameter space. Also Monte-Carlo methods may still have their advantages,
e.g. when one is interested in sampling a posterior probability. In the simplest case, one
can switch between different algorithms in subsequent runs, e.g. to combine the robustness
of GA with the local optimization efficiency of CMA-ES. Alternatively, many independent
short runs, e.g. with CMA-ES, can compensate for its risk of getting trapped in high local
minima. Such advanced schemes will certainly be more effective than a single run with a
single method, yet they also exhibit more hyperparameters, which may require case-by-case

tuning.
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For all three training sets in this work, independent optimization runs result in clearly
different ReaxFF parameters with almost equally low Error values, which seems troublesome
at first glance but in fact provides useful information. Intuitively, one may simply select
the lowest minimum. However, different solutions of comparable quality can be used more
effectively, which will be explored in future work. For example, one could also select a
local minimum affected less by overfitting, with a low Error on a test set instead of the
training set, in analogy to to early stopping. Another use case is improving the reliability of
ReaxFF simulations with reinforcement learning. The spread on outcomes from production
runs using different near-optimal parameters is a lower bound for the uncertainty on the
prediction of interest. To reduce this uncertainty, we suggest to add properties of molecules
to the training set, for which ReaxFF results vary with different near-optimal parameters.
Including such reference data will narrow down the region in the parameter space where the
Error is low, potentially reducing overfitting artifacts. This method of enhancing training
sets should allow one to start even from an incomplete training set and continuously extend
it until consistent predictions for a production run are obtained.

Our assessment also highlighted the importance of a robust geometry optimization for the
calibration of ReaxFF parameters. When geometries converge poorly, the final ones contain
a random component, which propagates to the Error and impairs the parameter calibration.
In the course of this work, we have refined the geometry optimization algorithm used in
the ADF2018 implementation of ReaxFF, resulting in a smoother Error function. While
such improvements are clearly beneficial, discontinuities in the Error may still appear when
optimized geometries have a high sensitivity to the force field parameters, e.g. in case of very
flexible systems in the training set with different possible conformations. In future work,
convergence issues or multiple (meta)stable configurations could be detected automatically

through a high sensitivity of the geometries to small changes in ReaxFF parameters.
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