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Abstract

ReaxFF is a computationally efficient force field to simulate complex reactive dy-

namics in extended molecular models with diverse chemistries, if reliable force-field

parameters are available for the chemistry of interest. If not, they must be optimized

by minimizing the error ReaxFF makes on a relevant training set. Because this opti-

mization is far from trivial, many methods, in particular genetic algorithms (GAs), have

been developed to search for the global optimum in parameter space. Recently, two al-

ternative parameter calibration techniques were proposed, i.e. Monte-Carlo Force Field

optimizer (MCFF) and Covariance Matrix Adaptation Evolutionary Strategy (CMA-

ES). In this work, CMA-ES, MCFF and a GA method (OGOLEM) are systematically
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compared using three training sets from the literature. By repeating optimizations with

different random seeds and initial parameter guesses, it is shown that a single optimiza-

tion run with any of these methods should not be trusted blindly: non-reproducible,

poor or premature convergence are common deficiencies. GA shows the smallest risk

of getting trapped into a local minimum, whereas CMA-ES is capable of reaching the

lowest errors for two third of the cases, albeit not systematically. For each method, we

provide reasonable default settings and our analysis offers useful guidelines for their

usage in future work. An important side effect impairing the parameter optimization

is numerical noise. A detailed analysis reveals that it can be reduced, e.g. by using

exclusively unambiguous geometry optimizations in the training set. Even without this

noise, many distinct near-optimal parameter vectors can be found, which opens new

avenues for improving the training set and detecting overfitting artifacts.

1 Introduction

Molecular dynamics (MD) is a powerful tool to study the temporal evolution of various

atomistic models under realistic conditions. An essential ingredient in such simulations is a

computationally efficient method to compute reliable atomic forces at every time step of an

MD simulation. The quantum-mechanical (QM) treatment of the molecular electronic wave-

function allows one to compute these forces for any (reactive) chemical system, e.g. using

density functional theory (DFT) methods. However, for long molecular dynamics simula-

tions (nano- to microseconds) of extended atomistic models (up to millions of atoms), even

DFT approximations become computationally prohibitive. Only linear-scaling and massively

parallel (tight-binding) DFT implementations can handle such system sizes, by taking ad-

vantage of a large number of CPU or GPU cores, reducing the wall time of a single MD step

to the order of minutes or hours.1–6 Alternatively, one may use so-called force-field (FF) or

molecular mechanics approximations, where the electronic structure calculation is replaced

by a much cheaper and more approximate model to compute forces acting on atoms. Many
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force fields (FFs) model chemical bonds by simple springs with empirical parameters in

Hooke’s law, which immediately reveals their major drawback, i.e. most force fields cannot

describe chemical reactions. Reactive FFs overcome this limitation with a more complex

mathematical expression that can describe reactive processes7–10 and ReaxFF11–14 is one

of the most popular models in this category. ReaxFF owes its popularity to a combina-

tion of unique advantages. It can be reparameterized for different combinations of chemical

elements, which makes ReaxFF broadly applicable. Furthermore, the superior computa-

tional efficiency of ReaxFF has been demonstrated in comparison to (tight-binding) DFT

approximations15 and neural-network potentials.16 As opposed to hybrid QM/MM methods,

ReaxFF can describe complex systems in which many reactive events occur simultaneously

throughout the atomistic model, such as simulations of hydrocarbon oxidation17,18 or me-

chanical wear resistance of graphene.19

Even though a detailed description of the complete mathematical form of ReaxFF goes

beyond the scope of this paper, it is instructive to review a few of its essential aspects.

The ReaxFF model is a potential energy expression for an atomistic model that ultimately

takes the Cartesian coordinates of atomic nuclei and a set of empirical ReaxFF parameters

as input. Analytic differentiation of this energy with respect to atomic positions yields the

forces needed in a molecular dynamics simulation. The ReaxFF energy is a sum of many

contributions,

EReaxFF = Ebond + Eover + Eunder + Eval + Etors + EvdW + Echarge + Especific (1)

most of which are covalent terms responsible for describing local chemical phenomena: bond

breaking & formation (bond), over-coordination (over), under-coordination (under), valence

angle bending (val), bond torsion (tors). The next two terms describe non-covalent interac-

tions between all pairs of atoms within a cutoff distance, even when they are not chemically

bonded. The van der Waals (vdw) interaction is similar to the Morse potential and captures
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any effects due to steric repulsion and dispersion interactions. The energy of the fluctu-

ating charge model (charge) includes the pairwise screened Coulomb interaction and the

polarization cost of the fluctuating charges. The local energy terms depend on bond orders,

calculated for every pair of nearby atoms from their interatomic distances. Because these

bond orders are recomputed for every atomic configuration, ReaxFF is capable of describ-

ing chemical phenomena. Finally, ReaxFF contains several optional terms, which are not

employed in all of the parameterizations:

Especific = Elp + Epen + Ecoa + Econj + Etrip + EH-bond + Elg + . . . (2)

These terms can handle phenomena that are only of interest in specific cases: interaction

with a lone pair (lp), penalty for valence angles between two double bonds (pen), conjugation

correction for valence angles (coa), conjugation correction for bond torsions (conj), triple-

bond stabilization (trip) and hydrogen bonding (H-bond). The low-gradient (lg) pairwise

R−6 term was introduced to better describe long-range dispersion interactions20 but is rarely

used in recent parameterizations. More specific corrections exist, not listed explicitly in Eq.

(2) because they are irrelevant for this work, such as the C2 (carbon dimer) energy term 21 or

the iron dimer term.22 Another recent extension developed by van Duin is eReaxFF, which

introduces explicit electron or hole particles that can interact with the atoms. 23

As a consequence of its wide adoption, several ReaxFF implementations were developed

next to the original “Standalone ReaxFF” by van Duin.11,14,17 The development of new

energy terms in ReaxFF were done in the original code and were later adopted in other

implementations. One of the earliest parallel versions was presented in LAMMPS.24 Other

notable implementations of ReaxFF can be found in GULP,25 the code by Nomura26 and

in PuReMD.27 The latter two strongly focus on efficient parallelization on high-performance

clusters. One concern with various implementations is that they are not fully compatible

with the code by van Duin, e.g. because some were re-implemented from scratch and intro-
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duced modifications to make the potential energy surface smoother.25 This introduces the

risk that ReaxFF parameterizations from the literature, calibrated with one implementation,

may no longer yield sensible results in another one. All results in this work were obtained

with ReaxFF in ADF2018, unless noted otherwise. This implementation is directly based

on the original code by van Duin to assure that the functional form of the potential energy

closely follows the original, but has an improved efficiency and parallel scaling.28 This imple-

mentation intends to maintain a compatible potential energy with the standalone ReaxFF,

but we did fix several bugs in the force evaluation to make geometry optimization more

robust, in the frame of this project. While such changes introduce a slight incompatibility,

we give preference to accurate forces.

The ReaxFF energy expression contains many empirical parameters, which need to be

optimized before ReaxFF can be used for production simulations. Even though a consid-

erable number of tuned parameter sets are published in the literature,11,17,21,29–35 one must

extend this effort if no parameters are available yet for the chemistry of interest. To find the

new parameters, a training set must be constructed, which consists of reference properties,

xi,ref, of molecules or crystals relevant to the chemistry of interest. The ReaxFF predictions

for these properties, xi,calc({pj}), are determined by a parameter vector, pj, which can be

adjusted to minimize the deviation from the training data. To maintain compatibility with

previous works, many of these parameters are constrained to historical values and on the or-

der of 50 free parameters must be estimated. The quality of a parameter vector is quantified

by an objective function, hereafter referred to as the Error. We used the same least-squares

Error as in the original work by van Duin:36

Error({pj}) =
n∑
i=1

(
xi,calc({pj})− xi,ref

σi

)2

(3)

where the sum runs over all training data points. In each term, σi is an estimate of the

acceptable deviations between the ReaxFF calculation and the corresponding reference value.
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In ADF2018, Error contributions take into account the periodicity of dihedral angles. For

example, a calculated dihedral angle of −170 deg and a reference value of +170 deg results

in only a difference of 20 deg.

Finding the optimal parameters for a given training set is far from trivial. The tradi-

tional approach consisted of successive one-parameter parabolic extrapolations (SOPPE). 36

Even though the Error is a simple sum of squares, it is in practice an ill-behaved function

of the parameters {pj}, with significant numerical noise and many local minima, such that

the SOPPE optimization becomes very laborious.32,37 It seems more appropriate to employ

global optimization algorithms. Brute-force global optimizers, which perform a grid search in

the parameter space, are computationally not feasible because their cost scales exponentially

with the number of parameters. Instead, several groups have designed genetic algorithms

(GAs) specifically for ReaxFF parameterization, aiming at a good global-optimization effi-

ciency.34,37–39 It was shown that GAs can minimize the objective function equally well or even

further than the SOPPE method originally introduced by van Duin.37,40 Furthermore, these

GAs no longer require manual intervention and human judgment while minimizing the Error.

Next to GAs, many other techniques were proposed, such as a Multi-Objective Evolutionary

Strategy (MOES),41 a parallel local search algorithm,42 Taguchi method based optimiza-

tion,43 Monte-Carlo force-field optimizer32,44 (MCFF) and Covariance Matrix Adaptation

Evolutionary Strategy (CMA-ES).45,46 The goal of this work is to assess and comprehend

the efficiency of the MCFF and CMA-ES optimizers in comparison to a state-of-the-art GA.

The tendency of optimizers to get trapped in a local minimum will be tested by restarting

the fitting procedure from the same initial guess (with different random seeds) or from dif-

ferent random initial parameter vectors. Since GAs are also popular for the parametrization

of other force fields,47–53 we expect that the comparison in this work is also useful beyond

the scope of ReaxFF.

Our comparison follows a relatively conservative approach to obtain representative test

results for the ReaxFF community. The training sets from previous GA studies of Hartke
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were used without modifications,37 except for minimal corrections to one set, as will be

explained below. Furthermore, reasonable default settings were used for all optimization

algorithms, without tuning them for each specific case. Further refinements for each com-

bination of training set and initial guess can improve the performance, for which ample

suggestions are provided through the analysis of our results.

When simply minimizing the Error in Eq. (3), there is a significant risk to overfit the

parameters. Overfitted parameters have a low Error for the training set but still produce

unphysical results in realistic ReaxFF molecular dynamics simulations.54,55 While we recog-

nize the importance of this problem, this work mainly focuses on testing and understanding

the strengths and weaknesses of the parameter optimization algorithms. Nevertheless, to

avoid overfitting, one may introduce a so-called test set, in addition to the training set. An

optimization can be interrupted when the Error on the test data increases, even though the

Error on the training data is still decreasing, a technique commonly referred to as “early

stopping”.34 Overfitting can also be observed by unrealistic values of optimized parameters

for which prior knowledge is available, e.g. an atomic radius. In such cases, it could be

beneficial to fix the parameter or to limit its interval of allowed values.

The remainder of this paper is structured as follows. In section 2, we describe training

sets, ReaxFF geometry optimization details, parameter optimization algorithms with their

settings and the performance measures used to compare the performance of these algorithms.

The results of this comparison are described in section 3, where we also discuss guidelines

for an effective usage of the optimization algorithms and good practices for the design of a

new training set. Finally, section 4 summarizes the main conclusions and gives an outlook

on future work.
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2 Methods

2.1 Training sets

Three training sets from the literature are used in this work: one for solid and liquid cobalt

and defects in cobalt crystals,31 one for silica clusters and (porous) crystals30 and one focusing

on disulfide mechanochemistry.34 Key properties of the three training sets are compared in

Table 1, highlighting fundamental differences in the types of information they contain. For

example, the Cobalt set only contains energy data, while the Disulfide set is the only one

containing atomic forces. Moreover, these training sets also differ in the number of free

parameters.

Table 1: Overview of ReaxFF training sets used in this work. The number of data points in
each training set is broken down into five categories: C (atomic charges), G (geometry, inter-
nal coordinates), F (Cartesian atomic forces), P (cell parameters) and E (reaction energies).
Note that unused geometries in the geo files were not counted and similarly non-existing
geometries in the trainset.in file were ignored. The Error of the optimal parameters re-
ported in the literature is included, and Errors for the same parameters were recomputed
with ADF.

Label Npar Ngeo
Number of data points Literature

Error

ADF Error
C G F P E Total Default Torsion2013

Cobalt 12 146 144 144 1444 1459 1459

Silica 67 302 5 26 13 265 309 3196 4607 * 6438 *

Disulfide 87 231 255 4401 219 4875
12393 15577 16271

7574 †

* Computed with a development version of ADF2019.3 instead of ADF2018.
† The lower Error value could be reached by overfitting the paremeters.34

In the first place, a training set provides primary information to evaluate the Error,

see Eq. (3). This primary information consists of molecule or crystal geometries for which

reference data is provided, including atomic charges, equilibrium geometries (internal coor-

dinates), Cartesian atomic forces, cell parameters and reaction energies. The original papers

from which the training sets were taken, also contain secondary information: the final opti-

mal parameters and constraints that were imposed during the parameter optimization. The
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first kind of constraint is the reuse of existing ReaxFF parameters without modification to

maintain backward compatibility. This also facilitates the generation of a new training set,

because it only needs to contain data to determine the new parameters. The second type of

constraint is the allowed interval, further denoted as [pmin
i , pmax

i ], for each parameter pi. We

followed these constraints as closely as possible. However, for the Silica training set, some of

these intervals had to be modified, as explained in section S1 of the supporting information.

Despite the fact that we used training sets from the literature without modification to

their primary information, except for one typographical error described in section S1 of

the supporting information, we encountered difficulties reproducing literature values of the

Error for optimal parameters published with these training sets. Table 1 compares Errors

reported in the literature with the ones we computed with ADF (Default settings). While

the correspondence is acceptable for the Cobalt training set, the Error computed with ADF

for the Silica and Disulfide training sets is significantly larger. As will be explained in

section 3, the Error function for these two training sets is inherently non-robust because of

ill-behaved geometry optimizations. For a small number of molecules, the optimal geometry

is extremely sensitive to irrelevant details. For example, a change in parameters by less

than 0.5% can result in a different conformation, causing changes of the Error by 1000 units

or more. This high sensitivity makes it practically impossible to reproduce an Error value

from the literature. Note that we have computed the Error for the Silica training set with

a development version ADF2019.3, because older versions incorrectly parsed a negative van

der Waals well depth parameter. The newer version of ADF was only needed for these two

Errors because all other calculations employed positive parameters for the van der Waals

well depth.

2.2 Geometry optimization

Properties of the optimized geometries are used to evaluate the Error [see Eq. (3)], except

when energies or forces of non-equilibrium structures are specified in the training set. Hence,
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many geometries need to be re-optimized for any new trial parameter vector during the

parameter optimization. This is a common practice in the development of ReaxFF force

fields, by which one can directly train a force field on energy differences between stationary

points, irrespective of the small differences in corresponding geometries.

We have taken several measures to improve the geometry convergence because it results in

a smoother Error function, which facilitates the parameter fitting. First of all, the line-search

algorithm in the L-BFGS optimizer was modified to handle cases with negative curvature

more gracefully. The original implementation performed a minimization of the norm of the

energy gradient along the search line, which resulted in an uphill step in case of negative

curvature. This was replaced by a proper minimization of the energy along the search

line. Secondly, we used relatively stringent convergence settings: the geometry optimization

continues until the maximum force on any of the atoms drops below 0.1 kcal mol−1 Å−1. In

some problematic cases, 3000 optimization steps were not sufficient, after which the algorithm

stopped, and the last geometry was used instead of the optimal one. Such convergence issues

may appear when the optimal geometry is near a point with discontinuous ReaxFF forces or

an ill-conditioned Hessian matrix, representing the curvature of the potential energy surface.

Finally, the Torsion2013 option was implemented to reduce discontinuities in the interatomic

forces, as explained in section S2 of the Supporting Information. This option has only a small

effect on the potential energy landscape and ReaxFF results in general. For example, the last

two columns of Table 1 show that the Torsion2013 correction has only a modest impact on

the Error value. (The error for Cobalt is not affected because this ReaxFF parameterization

does not use torsional terms.) Because this option improves geometry convergence with

minimal side effects, it was enabled in all parameter optimizations.

It is worth noting that the geometry optimizations dominate the computational cost of the

Error in Eq. (3). In general, it would be advantageous to develop alternatives to these costly

geometry optimizations. However, the goal of this work is to benchmark ReaxFF parameter

optimization algorithms with realistic training sets from the literature, without changing
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their contents. The training sets we tested require the optimization of many geometries, so

we carried them out to the best of our ability. Simple reductions in computational cost, such

as relaxing convergence criteria or reducing the maximum number of steps, were avoided

because they deteriorate the numerical noise in the Error.

2.3 Initial guess of the parameter vector

Initial guesses of different quality were generated to test the influence on the outcome of the

parameter optimization. In principle, the best possible initial guess is the optimal parameter

vector previously reported for a training set. However, the literature parameters for the

Silica training set were unsuitable as an initial guess because nine parameters exceeded

their allowed intervals. In this case, we used minimally corrected parameters as literature

guess instead. (See section S1 of the supporting information for details.) In general, the

literature guess may not be optimal in this work for two reasons: (i) the Error function has

reproducibility issues as explained above and (ii) the literature parameters for the Disulfide

training set were obtained with early stopping. Therefore, we use the neutral label ‘literature’

for this type of guess.

An ‘educated’ initial guess was constructed from a database of ReaxFF parameters main-

tained by SCM,56 using only parameters published prior to the corresponding training set.

For every parameter, the following steps were taken:

1. All unique historical parameter values were looked up for the same type of parameter,

associated with the same combination of chemical elements. Only those lying in the

allowed interval for the training set, [pmin
i , pmax

i ], were retained and their median was

used as a guess.

2. If in the previous step, no historical parameters were found in the allowed interval, the

search for unique historical parameters was extended and they only had to be of the

same type but they were allowed to be associated with other chemical elements. Of all
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these values, we took the median.

3. If again no historical values could be found in the previous step, we just took the center

of the allowed interval as initial guess.

In case of the Cobalt training set, there is only one parameterization predating the training

set21 and the result of the above procedure is that the educated guess for Cobalt coincides

with the parameters from Ref. 21.

Finally, 10 ‘random’ initial parameter vectors were constructed for each training set. For

every parameter, we sampled random values from a uniform distribution over the interval

[pmin
i +(pmax

i −pmin
i )/4, pmax

i − (pmax
i −pmin

i )/4], i.e. the central segment of the allowed interval

spanning half the width.

Other types of prior knowledge could be used to construct an initial guess, e.g. certain

ReaxFF parameters correspond to properties of chemical elements or bonds, for which exper-

imental or ab initio data is available. However, this approach is only applicable to parameters

with a physical interpretation and we have not attempted to construct such guesses in this

work.

2.4 Parameter optimization algorithms

The settings of the parameter optimization algorithms described in this section are not

excessively tuned for each combination of training set and initial guess. For every algorithm

in this section, it will be explained how the balance between global exploration and local

convergence can be changed. In this work, reasonable defaults setting were employed, with

an acceptable trade-off between global and local optimization performance within one run.

With this choice, we obtain results that a non-expert can expect. While case-by-case tuning

of optimization algorithm settings can be beneficial, subsequent tweaking of settings becomes

computationally infeasible when the cost of a single run is already high.

The first algorithm in our comparison, the Monte-Carlo Force Field (MCFF) optimizer,32
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is primarily inspired by a physical model. By sufficiently slowly cooling down a many-particle

system, it will eventually reach its ground state. By applying the same process to a simulated

system, one may obtain a good approximation of the global minimum of any high-dimensional

function, a technique commonly referred to as simulated annealing.44 The two remaining op-

timization algorithms are Evolutionary Algorithms and are inspired by the biological model

of evolution: a population, where individuals are defined by their genes (parameter vectors),

is evaluated and only the fittest individuals (lowest Error) are retained (in a modified form) in

the next generation. Over many generations, the genes evolve towards optimal fitness. Evo-

lutionary Algorithms form a class of parameter optimization algorithms that simulate this

mechanism, with the same purpose of finding the minimum of a high-dimensional function.

Two algorithms from this class are considered in this work: the Covariance Matrix Adapta-

tion Evolutionary Strategy (CMA-ES)45,57 and a Genetic Algorithm (GA) implemented in

OGOLEM.37

2.4.1 Monte-Carlo Force Field (MCFF) optimizer

MCFF uses simulated annealing to optimize the parameters.32,44 Only in the limit of infinitely

slow cooling rates, it becomes a rigorous global optimization method. Finite cooling rates

may cause convergence into a higher local minimum. This difficulty is comparable to rapid

cooling of a liquid, which can result in a glass instead of a crystal with a lower energy.

At every iteration, MCFF makes a small change to the parameter vector and computes

the corresponding change in the Error function. In this work, the small step consisted of

a random change, of 10% of the parameters, sampled from a uniform distribution over the

interval [−(pmax
i −pmin

i )s/100, (pmax
i −pmin

i )s/100], where s controls the magnitude of step size.

When the error decreases, the step is always accepted. In case of an increase, it is accepted

with a probability exp(−βn∆Error), where βn is the inverse dimensionless temperature at

iteration n. The initial value of s was set to 1.0 and MCFF dynamically updates s to keep

the acceptance ratio within user-specified bounds, in our case [50%, 70%].
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For every combination of training set and initial guess of the parameters, we performed

three types of MCFF runs with 9k, 3x3k and 45k iterations. The length of the shortest

MCFF runs is inspired by previous works,16,32 whereas the 45k run is included to test the

beneficial effect of more iterations and slower cooling rates. In case of 3x3k, 3 MCFF runs

of 3000 steps were done in series, where the second and the third run are restarts using the

optimal parameters from the previous run as initial guess.16 The initial inverse temperature

was always determined by

β0 =

√
Npar

2

1

C1Error0

, (4)

where Npar is the number of optimized parameters, Error0 is the Error of the initial param-

eters. In case of the second and third segment of a 3x3k run, β0 is derived from the initial

Error of the current restart instead of the Error of the initial guess. C1 is approximately

the initial magnitude of relative thermal fluctuations of the Error and was set to 1, allowing

MCFF can escape local minima easily. If one prefers MCFF to perform a more local search,

C1 should be reduced by one or two orders of magnitude. The final inverse temperature is

set to

βN =

√
Npar

2

1

C2

, (5)

where C2 is approximately the absolute fluctuation of the error at the final iterations and

was set to 5. Such a small value for C2 will let MCFF converge to the bottom of a (local)

minimum. The above relation between Error fluctuations and inverse temperature would be

exact if the Error were a quadratic function of the ReaxFF parameters and the sampling

were complete, as shown in section S3 of the supporting information. In practice, these

relations are approximate because the Error is a more intricate function and the number of

steps is too small for a complete sampling, especially when the Error is nearly flat in some

directions.38 To obtain an annealing simulation, βn is divided by a constant factor at every
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iteration of the MCFF algorithm:

βn
βn+1

=
N

√
C2

C1Error0

(6)

where N is the total number of iterations. The above configuration of the MCFF algorithm

can be implemented with the control parameters in Table 2.

Table 2: MCFF and CMA-ES settings used in the ReaxFF control file. Control parameters
not included in the table are left to their default value.

MCFF

mcffit N = 9000, 3000 or 45000 Number of MCFF iterations.

mcbeta β0 =
√

Npar

2
1

C1Error0
Initial inverse temperature.

mcbsca βn
βn+1

= N
√

C2

C1Error0

Value by which the inverse temperature is
divided at every step.

mcstep 1.0
The initial value for the step size s. The
maximum change of a parameter in one MC
step is mcstep/mcrxdd.

mcrxdd 100
Constant denominator in the expression for
generating random steps. (In principle re-
dundant as it can be absorbed into s.)

mcscps 1.05
The step size s is multiplied (divided) by this
factor when the acceptance ratio is too high
(low).

mctart 50.0 The target (minimum) acceptance ratio

mcmart 70.0 The maximum acceptance ratio

mcacpf 0.1
Fraction of the parameters that is changed in
one MCFF step.

CMA-ES

mcffit N = 20000 Maximum number of CMA-ES iterations.

ffotol TolX = 10−6 or 10−5 CMA-ES convergence criterion. (See text for
details.)

mcrxdd Nσ = 4
Controls the width of the initial normal dis-
tribution in parameter space.
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2.4.2 Covariance Matrix Adaptation Evolutionary Strategy (CMA-ES)

CMA-ES is a stochastic gradient-free optimization algorithm proposed by Hansen et al 45,57

and is occasionally used for force-field parametrizations.46,53,58,59 Starting from a user-provided

initial guess, CMA-ES iteratively improves a multivariate normal distribution in the param-

eter space to find a distribution whose random samples minimize the objective function. In

essence, one iteration consists of the following steps and we refer to Ref. 45 for a detailed

description:

1. A population of λ = 4 + b3 lnNparc random points (trial parameter vectors) is drawn

from the normal distribution, where Npar is the number of parameters being optimized.

The non-elitist version of the algorithm was used, denoted as (µ/µW , λ)-CMA-ES, im-

plying that no parameter vectors from previous iterations were added to the population.

2. The Error is computed for all of the trial parameter vectors.

3. The population is sorted by increasing Error and only the first λ/2 points are retained

and assigned a weight, according to the default logarithmic weighting scheme from Ref.

45.

4. The mean (center) and covariance of the normal distribution are updated using the

weighted points, using heuristic rules explained in Ref. 45.

5. When σ‖pg‖ and σmaxi
√
Cii drop below a threshold, TolX, convergence is reached and

the algorithm stops. In these criteria, σ is a variable step size, C is the current estimate

of the covariance matrix and pg is an average over previous steps with an exponential

window. More details on these quantities can be found in Ref. 45. Alternatively, one

may also stop after a maximum number of iterations.

The value of the objective function at each trial point is only used to rank the points, which

makes CMA-ES invariant to any rank-preserving (strictly increasing) transformation of the
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objective function. As the evaluation of each trial point is completely independent from the

rest of the population, this step of CMA-ES is trivially parallel.

Starting from the initial guess, the covariance matrix C is incrementally improved by

the feedback from sampled points and tends to approximate the inverse Hessian matrix,

thus capturing the relative sensitivities of the parameters and also the correlations between

them. The covariance matrix is used to estimate the appropriate relative magnitude of

random displacements along each possible linear combination of parameters. The efficiency

of CMA-ES is attributed to this level of insight into the function being minimized,45,57

whereas other methods tested in this work do not make use of a comparable model of the

covariance. The step length σ (overall width of the sampled distribution) is automatically

controlled by the algorithm in every iteration, depending on the directions of previous steps.

If subsequent steps move in a similar direction, the step length is increased accordingly. If,

instead, subsequent steps tend to be in opposite directions, the algorithm is overshooting an

optimum and thus responds by scaling down the step length.

The initial mean of the normal distribution is set to the initial guess (see section 2.3)

and the initial covariance matrix is diagonal with each diagonal element set to ((pmax
i −

pmin
i )/Nσ)2, where Nσ = 4. With this value of Nσ, CMA-ES starts with a relatively broad

initial distribution, such that the algorithm explores a large portion of the parameter space

before converging. One may turn CMA-ES into a more local optimizer with higher values of

Nσ. We used tight convergence criteria: TolX = 10−6 for the Cobalt training set and TolX =

10−5 for the two other training sets. To facilitate the comparison with the longest MCFF

runs, the CMAES-runs are terminated after 45k Error evaluations, and only these results

are used to derive performance measures. Because a single CMA-ES iteration comprises

multiple Error evaluations, 45k evaluations corresponds to a maximum of 4.1k, 2.8k and

2.6k iterations for the Cobalt, Silica and Disulfide training sets, respectively. Solely to

check if significant improvements could be obtained with additional iterations, we have also

continued the CMA-ES runs up to a maximum of 20k iterations. Our configuration of the
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CMA-ES algorithm can be reproduced with the control parameters in Table 2.

The CMA-ES algorithm is implemented using the c-cma-es library.60 The upper and

lower bounds on the parameters (pmin
i and pmax

i ) are imposed by setting the Error to the

maximum floating point value whenever parameters fall outside their allowed interval.

Because multiple Error evaluations are used in one CMA-ES iteration (λ defined above),

one must be careful when comparing the efficiency with MCFF, in terms of number of

iterations needed to achieve a low Error. For the Cobalt, Silica and Disulfide training sets,

λ is 11, 16 and 17, respectively. In a serial calculation, this would be the relative cost of one

CMA-ES iteration compared to MCFF. However, in ADF, multiple Error evaluations can be

carried out in parallel within one CMA-ES iteration. To avoid ambiguities with differences in

computational cost of one iteration in different algorithms, the number of Error evaluations

(#evaluations) will be used to quantify the computational cost.

2.4.3 Genetic Algorithm (GA)

Compared to CMA-ES, a genetic algorithm follows Darwin’s theory of evolution more closely.

GAs mathematically model the crossover and mutation of genes upon reproduction and the

survival of the fittest species in each generation. In the context of ReaxFF, GAs have been

proposed as effective global parameter optimization strategies.34,37–39 To remain consistent

with the previous GA studies for optimizing ReaxFF parameters, the OGOLEM implemen-

tation was selected for the current work.34,37

In a genetic algorithm, a parameter vector is denoted as a set of genes of an individual and

a population of such individuals is optimized by constructing child individuals from which

only the fittest are retained. In this work, a starting population of 500 individuals comprises

an initial guess (see section 2.3) and a set of uniformly distributed vectors within the allowed

parameter intervals. In OGOLEM’s pool-based algorithm, two new children are generated

and evaluated in one iteration and the best one replaces a lesser-fit individual from the pool

as soon as the calculation of the fitness has completed. Any new child is derived from two
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parents, selected from the population, with a higher probability of selecting fitter ones. The

parents’ genes are exposed to either binary or unary genetic operations to produce genes

for the new individual. Because the genes of fitter parents contribute more to the following

generations, a genetic algorithm produces a fit population after many iterations. In our

work, fitter means a lower value of the Error in Eq. (3).

The complete input files used for OGOLEM are provided in section S4 of the supporting

information and only the most important settings are summarized below. The number

of iterations is set to 110k, 160k and 170k for the Cobalt, Silica and Disulfide training

sets, respectively. This way, the maximum number of Error evaluations is the same as

for 20k CMA-ES iterations. For the Cobalt and Silica training sets, we visually observed

convergence after 100k iterations and these runs were truncated accordingly prior to further

analysis. In the case of the Disulfide training set, a similar truncation was not possible and

we have retained all iterations. For the Disulfide training set with the literature guess, we

have continued the GA runs up to 4 million iterations. This extension was not used for the

comparison with MCFF or CMA-ES; it was only used to investigate the convergence behavior

of the GA. The relatively large number of iterations, with two Error evaluations in each step,

already imply that a GA run is significantly more expensive than an MCFF or CMA-ES

run. Truncating the GA runs after 45k Error evaluations, to keep the computational cost

comparable to MCFF and CMA-ES, did not give sensible results and would deviate from

previous works, in which about 105 to 106 iterations were used.34,37

In a single GA iteration, a child’s genes are derived using either a binary (recombination

or crossover) or a unary (mutation) operator, with probabilities of 80% and 20%, respec-

tively. Binary recombination implies an exchange of genetic information between parents’

genes and can be realized with different crossover flavors. In this work, we used (i) a mix-

ing recombination operator (20% probability), which determines child genes as a weighted

average of its parents’ values and (ii) a multipoint exchange (80%), which defines a random

number of cutting points in the parameter vector and switches between the two parents
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genes after each point. The unary mutation generates new child’s genes by making random

modifications to the genes of one parent. Either a subset of the parameters are taken from a

uniform distribution over the entire interval of allowed values (20%) or small perturbation to

some parameters are sampled from a Gaussian distribution (80%). OGOLEM also supports

niching, which defines equidistant bins for every parameter and imposes conditions on the

number of individuals that may occupy each bin. We used the niching setting from Ref.

37, but these had a relatively low impact on our calculations. The number of individuals

rejected by the niching conditions was marginal in all our calculations.

In addition to the basic settings described above, more details can be controlled through

the OGOLEM input file (see section S4 of the supporting information), which is both a weak-

ness and a strength of genetic algorithms. Ample settings allow one to tune the algorithm

to specific use cases, but they also make it far from trivial for casual users to control these

settings effectively. Just like MCFF and CMA-ES, the rate of convergence of OGOLEM’s

GA can be influenced, e.g. by increasing the pool size or by increasing the probability of

large mutations, it will explore a wider region of the parameter space. This increases the

probability of finding the global minimum but it also slows down the convergence.

A particular advantage of the pool-based GA implementation in OGOLEM is its parallel

efficiency. CMA-ES supports synchronous parallelization, which means that all Error calcu-

lations within one iteration have to be completed before a new iteration can be started. When

one Error calculation takes much longer than all others, some cores become idle until the

last calculation of an Error within one iteration has completed. The pool-based GA allows

for asynchronous parallelization, meaning that whenever an Error calculation has completed,

the algorithm can decide which parameter vector to process next, without having to wait for

the completion of other Error calculations, effectively avoiding idle CPU cores.
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2.5 Performance evaluation

The essential performance measure in this work is the lowest Error reached during an opti-

mization. Because the tested algorithms are stochastic and depend on an initial guess, 10

runs were performed for each combination of training set, t, initial guess, g, and optimizer

settings, s. The lowest Error obtained in each run is recorded, of which the best, the second

best and average in a set of 10 runs is denoted by Errorbest10(t, g, s), Errorscnd10(t, g, s) and

Erroravg10(t, g, s), respectively. The best result over all 150 runs with the same training set

is

Errorbest150(t) = min
g,s

Errorbest10(t, g, s) (7)

and represents our closest estimate of the global minimum for training set t. With these

quantities we define reproducibility and reliability measures:

∆repr(t, g, s) =
Erroravg10(t, g, s)− Errorbest10(t, g, s)

Errorbest10(t, g, s)
× 100% (8)

∆rel(t, g, s) =
Erroravg10(t, g, s)− Errorbest150(t)

Errorbest150(t)
× 100% (9)

The reproducibility measure, ∆repr(t, g, s), shows the sensitivity of the outcome of a param-

eter optimization to the random seed (and the guess in case of random initial guesses). The

reliability measure, ∆rel, will only be small when a method consistently finds a good ap-

proximation of the lowest known Error. Unavoidably, this reliability measure may be too

optimistic, because it is not absolutely guaranteed that Errorbest150(t) is close to the global

minimum.

To asses how much the parameters have changed during an optimization, we also compute

the distance (Euclidean norm) d1 between the initial guess and the parameter vector of the
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lowest Error (for the best run) in reduced parameter units:

p̃i =
pi

pmax
i − pmin

i

(10)

Finally, we also compute the distance d2 between the optimal parameters of the best and

second best run, to investigate parameter degeneracies. It was previously observed that

the Error is not sensitive to certain linear combinations of parameters, making the optimal

parameters degenerate.38

3 Results and discussion

In total 45 sets, with 10 parameter optimizations each, were carried out in this study. There is

one set for every combination of (i) three different training sets (Cobalt, Silica and Disulfide),

(ii) three optimizers (MCFF, CMA-ES and GA) with three different settings for MCFF

and (iii) three different qualities of the initial guess (literature, educated and random). A

summary of the numerical results for each set, in line with the performance evaluation

discussed above, is given in Table 3. In addition, Figure 1 shows the decrease of the error

as function of the number of Error evaluations for four out of 45 representative sets. Similar

plots for all 45 sets are included in section S5 of the supporting information. In case of

MCFF, all Error values are plotted, for CMA-ES, only the lowest Error at each iteration is

shown and for GA, the lowest Error up to a given point is depicted.

The most important result in Table 3 is that for the Cobalt and Disulfide trainining

sets, the reliability measure, ∆rel, is large for all methods. For the Silica set, only the GA

systematically finds the lowest Errors with relatively little deviation. In a few cases, the poor

reliability can be traced back to reproducible (low ∆repr) premature convergence to a high

Error value, observed most often in the short MCFF runs (9k or 3x3k) starting from the

literature or educated guess. Similarly reproducible but poor results are found when GA is

applied to the Disulfide set due to lack of converge: no saturation has been reached yet in Fig.
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Table 3: Overview of parameter optimization results. Each row shows the preformance
measures defined in section 2.5 for a set of 10 optimization runs carried out with identical
settings. The overall lowest Error for each training set, Errorbest150, is printed in bold.

Training
set

Algorithm
(#evalua-

tions)

Guess Errorbest10 Errorscnd10 ∆repr [%] ∆rel [%] di1 d12

Cobalt

MCFF-9k
(9k)

lit 1386 1392 3 25 .15 .18

edu 1737 2066 57 137 .81 .84

rand 1623 2430 109 195 1.05 1.25

MCFF-3x3k
(9k)

lit 1362 1374 2 21 .15 .17

edu 1711 1860 32 96 .63 .37

rand 1708 1842 100 197 .34 .80

MCFF-45k
(45k)

lit 1360 1363 3 22 .22 .25

edu 1532 1806 46 94 1.04 1.32

rand 1422 1458 54 90 1.10 1.12

CMA-ES-4.1k
(45k)

lit 1180 1199 64 69 1.45 .43

edu 1159 1172 47 49 1.47 .99

rand 1150 1171 65 65 1.01 .57

GA-100k
(200k)

lit 1345 1357 19 39 .68 .78

edu 1349 1375 26 48 1.10 .72

rand 1346 1470 42 66 1.19 .58

Silica

MCFF-9k
(9k)

lit 5709 6096 23 96 2.38 2.89

edu 5995 6755 22 104 2.48 2.82

rand 5882 6334 32 117 2.46 3.23

MCFF-3x3k
(9k)

lit 4639 4724 9 41 2.34 2.58

edu 4598 4678 13 46 1.29 2.11

rand 4574 6913 383 518 2.63 2.76

MCFF-45k
(45k)

lit 4885 5034 24 70 2.66 2.83

edu 5632 5695 31 106 2.56 2.93

rand 5059 5536 36 92 2.76 2.34

CMA-ES-2.8k
(45k)

lit 3793 3890 27 34 2.14 2.21

edu 3747 3874 38 44 2.08 2.40

rand 3739 4098 30 36 2.68 2.75

GA-10k
(200k)

lit 3593 3650 5 5 2.15 2.37

edu 3705 3713 4 8 1.86 2.06

rand 3577 3642 6 6 2.55 2.57

Disulfide

MCFF-9k
(9k)

lit 11899 11981 8 60 1.80 2.49

edu 14852 15721 15 112 2.93 3.06

rand 11960 14332 47 119 2.75 2.77

MCFF-3x3k
(9k)

lit 10914 11248 9 48 1.44 1.79

edu 13754 14595 24 112 2.65 2.79

rand 13886 14311 42 144 2.71 3.10

MCFF-45k
(45k)

lit 10605 11719 25 64 2.83 3.18

edu 9608 11828 47 75 3.27 3.33

rand 8507 9684 43 52 2.90 2.69

CMA-ES-2.6k
(45k)

lit 9284 10698 25 44 2.34 2.96

edu 8727 9760 32 43 3.12 3.06

rand 8052 9712 45 45 3.10 2.47

GA-170k
(340k)

lit 18524 19213 13 160 1.97 2.19

edu 18054 18478 11 148 2.44 2.46

rand 19285 19489 6 154 2.33 2.32
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Figure 1: Representative selection of plots of the Error as function of the number of Error
evaluations, for MCFF (a, b), CMA-ES (c) and GA (d). Training set and algorithm settings
are indicated inside every panel. Each plot displays the progress of the Error for 10 opti-
mizations using the same settings. Differences within one plot are caused by the stochastic
behavior of the optimization algorithms and in panel (b) also by the differences between the
random initial guesses. In panels (c) and (d), the plot on the right is a continuation of the
plot on the left, with different axes to depict the Error near convergence. In panel (c), the
black vertical line at 45k evaluations shows where the CMA-ES runs were truncated prior
to the analysis presented in Table 3.
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1d and related figures on pages S19 and S21 of the Supporting Information. For the Disulfide

training set with the literature guess, the GA was continued up to 4 million iterations, which

yielded a lowest Error in the best run of 9502, still without reaching a visible saturation of the

Error. We expect even more GA iterations would further decrease the Error, which we have

not tested due to limitations of our computational resources. In all other cases, we observe

non-reproducible behavior (high ∆repr), simply due to variations in random seed or differences

in initial guess. The least impressive results were obtained with the MCFF method: except

when using the literature guess, the outcome is never reproducible. Moreover, MCFF always

shows a worse reliability score, even when it is reproducible. In general, we cannot claim

that any of the tested methods is reliable for all training sets. The main implication is that

one should not trust a single optimization run. When just performing one run, i.e. with any

of the tested guesses and optimizer settings, the risk for obtaining a poor result is significant,

due poor reproducibility or convergence to a high Error.

A second important observation is that for the Cobalt and Disulfide training sets, the

lowest Error from the best (out of 10) CMA-ES runs, Errorbest10, is significantly lower than

that obtained with other methods. Moreover, for the Silica training set, the Error of the best

CMA-ES run with any of the guesses is at most 6% higher than the lowest known Error.

CMA-ES is certainly not an exhaustive global optimizer because of its limited reproducibility.

However, it demonstrates a remarkable local optimization efficiency, which is attributed to its

estimate and exploitation of the parameter covariance.45,57 This result suggests a relatively

simple strategy to systematically obtain a fair set of parameters: perform 10 independent

CMA-ES runs and take the best result.

The reproducibility of the GA runs is remarkably good for the Silica and Disulfide sets,

even with random initial guesses. Because the lack of reproducibility is a serious limitation of

MCFF and CMA-ES, this strength of GA is worth investigating in more detail. Throughout

a GA run, new trial parameter vectors are tested that differ significantly from the samples

present in the population, e.g. by replacing one or more parameters by random values. CMA-
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Table 4: Three lowest Errors and the average Error obtained by uniform random sampling
of parameter vectors.

Cobalt Silica Disulfide

#evaluations 220k 320k 340k

Lowest Error 2976 21309 95486

2nd lowest Error 3325 25143 100726

3rd lowest Error 3439 27794 110169

Average Error 4.46× 108 3.06× 106 1.68× 107

ES may carry out such broad sampling only in the initial iterations and MCFF typically

takes relatively small steps. To show the beneficial effect of practically random trial vectors,

the Error was computed for a large number parameter vectors, sampled from a uniform

distribution over the allowed parameter intervals. The main results of these random samples

are summarized in Table 4. One average, a random parameter vector has a very high

Error, but some have a sufficiently low Error to serve as good guesses for interesting (local)

minima. Such random sampling is insensitive to barriers or noise in the Error, helping the

GA to escape local minima. The Error function for the Silica training set exhibits relatively

severe noise, see below, which correlates well with the outstanding performance of GA for

this training set.

The rate of convergence of the tested algorithms is also markedly different, as shown in

Figure 1. MCFF slowly cools down the parameters and the lowest Error is usually encoun-

tered close to the end. More MCFF iterations (45k steps) led to lower Errors, as one would

expect from any simulated annealing method. The restarts (3x3k steps) are in some cases

advantageous over one slower annealing of 9k steps,16 compare e.g. the results for the Silica

training set with an educated initial guess in Table 3. However, significant improvements are

often made in the last restart, see e.g. Figure 1b, such that additional restarts could lead to

even lower Error values. CMA-ES first explores a wide region of the parameter space, result-

ing in very high initial Errors. Subsequently, it exhibits a rapid decrease of the Error over

the first few thousand Error calculations, after which the Error begins to saturate within 45k

Error evaluations. When performing additional CMA-ES iterations, 90% of the runs exhibit
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a decrease in Error of less than 4%. The remaining 10% of the runs show a lowering of the

Error of at most 17%. Therefore, when using CMA-ES, it could be promising to implement a

pruning scheme,46 where one first performs a series of short CMA-ES optimizations with dif-

ferent initial guesses or random seeds and then continues only the most promising ones with

additional CMA-ES iterations. The progress of the Error of the GA follows a similar pattern

as CMA-ES, starting with very high values, followed by a rapid decrease. In comparison,

CMA-ES reaches lower values earlier in most runs, with a few exceptions, confirming the

above observations, i.e. that CMA-ES can be more efficient but is not as reproducible. Note

that Fig. 1d and corresponding GA Error plots in section S5 of the supporting information

show the lowest Error up to a given iteration. The GA continuously attempts to escape

its current local minimum and many of these attempts result in a high Error, not shown in

these plots.

The quality of the initial guess may have some positive influence, but the effect is limited.

The best out of the 150 runs for every training set is obtained with random initial guesses

and there is no significant rank correlation between the Error of a random initial guess and

the resulting lowest Error. The literature guess has a particular effect on short MCFF-9k

runs: these show a reproducible convergence to a higher Error. The MCFF-3x3k runs do

not improve this situation and for the Cobalt set even the longer MCFF-45k runs cannot

overcome this premature convergence. In all other cases, the educated and even more the

random guesses, worsen the reproducibility of the MCFF runs. When only considering the

best of 10 runs, random guesses mostly have a minor beneficial effect because the whole

set of runs explores a larger region in parameter space, potentially leading to lower Errors.

The limited impact of the initial guess is consistent with our settings of MCFF, CMA-ES

and GA. The algorithms will explore a significant part of the parameter space in the first

iterations in an attempt to avoid convergence to a high local minimum. This also implies

that the parameter trajectories substantially depart from the initial guess. One may lower

the initial fluctuations in MCFF (lower C1 in Eq. 4) or the initial width in CMA-ES (higher
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Nσ) to let these algorithms stay closer to the initial guess. Obviously, this also increases the

risk of getting trapped into a local minimum with a high Error.

The performance of any of the selected parameter optimization algorithms, e.g. to find

a lower Error, can be improved by carefully tuning the algorithm settings or by performing

subsequent runs, as shown in this work for MCFF. It would go beyond the scope of this work

to perform such a tuning on each combination of training set, initial guess and optimization

algorithm. Instead, our comparison shows the typical differences in behavior of the selected

optimization algorithms, which a non-expert may expect using reasonable default settings.

Finally, we observed that two runs with the same initial guess and the same algorithm

may converge to significantly different parameters, yet having nearly equal Error values. An

illustrative example is the optimization of parameters for the Silica training set with CMA-

ES using the educated initial guess. In this case, the best and second-best runs have similar

Errors: 3742 and 3870, respectively. Yet, the distance between these two solutions (d2 =

2.40) is of the same order as the distance from the initial guess to the optimal parameters of

the best run (d1 = 2.04). This is a general pattern: comparable (low) Errors can be obtained

with significantly different parameter vectors. This is most likely due to the presence of

several local minima with a similar depth in the Error function. To shed some light on the

origin of distinct solutions with nearly the same Error, Figure 2 depicts the Error as function

of a linear interpolation (in 1000 steps) between the solution from the best and second-best

run (CMA-ES and educated guess), for the three training sets. These scans illustrate that

the Error is not a convex function and may thus have several local minima. Our findings

do not exclude the possibility that the Error is insensitive to certain linear combinations of

parameters, which could also result in multiple solutions with a similar Error.38

The curves in Figure 2 also exhibit a significant degree of noise for the Disulfide and to

larger extent for the Silica training set, in line with previous works.32,40 To illustrate the

severity of the noise, the Error of neighboring points in Figure 2b can differ by 1000 units,

while the parameters change by less than 0.5%. Such levels of noise alone can create many
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Figure 2: For the three training sets, a linear scan through parameter space is performed:
pai +x(pbi − pai ), where x ∈ [0, 1]. The two end points of the scan, pai and pbi , are the solutions
of the best and second best run when optimizing the parameters with CMA-ES using the
educated initial guess. At 1000 equidistant grid points for x, the total Error is computed
and shown in the plots as a black curve. In case of the Silica and Disulfide training sets, the
red curve is the Error without those contributions that cause large discontinuous jumps in
the Error along the linear scan.
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local minima, most of which are irrelevant. This also explains why a recomputation of the

Error for the Silica and Disulfide training sets in Table 1, using force-field parameters from

the literature, can differ strongly from earlier publications. For these training sets, the Error

itself is not robust, i.e. small changes parameters may have a large impact on the Error.

Because this noise in the Error degrades the performance of any optimization algorithm, the

remainder of this section addresses its origins and explores mitigation strategies for future

work.

A detailed analysis revealed that the jumps in Figure 2 are caused by 8 out of 309 items

in the Silica training set and 11 out of 4875 items in the Disulfide training set. The Error

without these noisy items (red curve) is much smoother. We repeated some of the CMA-ES

runs after removing the problematic items from these training sets. While the lowest Error

for the worst run decreases notably, the results for the best run do not improve significantly.

This means that the problematic items in the training set mainly increase the risk that

CMA-ES converges to a higher local minimum. In other words, one can also improve the

reproducibility of a parameter optimization by designing training sets without noisy Error

contributions.

To understand the origin of the noise in Figure 2, we investigated every term in the Error

function, see Eq. (3), along the linear scan. Noise in a ReaxFF prediction, ∆xi, relative to

a mean value 〈xi〉, adds a contribution to the noise in the Error (to first order) comprising

two factors:

∆Errori ≈
2

σ2
i

|〈xi〉 − xi,ref|︸ ︷︷ ︸
factor 1

∆xi︸︷︷︸
factor 2

(11)

When we observe significant noise in the Error, this can be either due to a large first or second

factor. This is consistent with earlier work of Larsson et al,40 where it was observed that

the Error function becomes smoother near the optimal parameters, which can be explained

by a decrease of the first factor.

For the Silica training set, apparently only 8 out of the 309 Error terms are responsible
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for the largest jumps in Figure 2. Several smaller discontinuities are also present for exactly

the same reasons as the larger jumps. Most of the problematic terms in the Error are related

to molecules for which at least two (but often many more) metastable conformations or

configurations exist. Two examples are shown in Figure 3. The 12-membered silica ring in

Figure 3a can have many slightly different conformations due to the high flexibility of the Si-

O-Si angles. Figure 3b represents the products of a silica condensation reaction. The water

molecule is weakly bound to the condensed silica cluster, with two possible configurations

differing in energy by 20 kcal mol−1. The end result of the geometry optimization (either

of the two states) depends erratically on the force field parameters, resulting in sudden

changes of the Error by approximately 300 units with only tiny changes in parameters. One

could reduce this sensitivity by (a) using more rigid molecules and (b) by including reaction

products separately in the training set instead of combining them into a single complex.

Another problematic case is the energy of a slightly expanded unit cell of quartz. The

training set specifies that this geometry should only be optimized for five steps, instead of

the usual 3000, without reaching convergence. Due to the large remaining atomic forces,

small changes in geometry cause large differences in energy. The exact configuration after

five steps depends unpredictably on force field parameters and algorithmic details of the

geometry optimizer, which is another source of noise. In this case, allowing for more geometry

iterations should resolve the issue, at the expense of an increased computational cost.

For the Disulfide training set, 11 out of 4875 Error terms are responsible for all the visible

noise in Figure 2. These 11 terms measure errors on dihedral angles (torsions about C-O

and C-S bonds) in the four molecules shown in 4. The geometry optimization of the four

molecules is usually not complete after 3000 steps. In case of convergence failure, the last

geometry is used as the best available approximation of a converged result. However, due to

the incomplete convergence, the internal coordinates contain a virtually random component,

which is yet another source of noise.

Remarkably, there is no visible noise in Figure 2 for the Cobalt training set, for which
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Figure 3: Two of the problematic molecules in the Silica training set responsible for discontin-
uous jumps in Figure 2b: (a) a 12-membered silica ring and (b) the product of a ring-closing
condensation reaction of a linear silica trimer. For both molecules, 100 optimized geometries
are shown in overlay, obtained with different ReaxFF parameters along the scan. In part
(b), the water molecule, which is a product from this condensation reaction, is part of this
geometry, for which ReaxFF predicts roughly two stable positions relative to the three-ring.

there could be two explanations. First, the Cobalt training set only contains energy dif-

ferences, which are not sensitive to small deviations in the geometry, because the nuclear

forces are nearly zero after the geometry optimization. A second possible explanation is that

the Cobalt Reactive force field uses exclusively two-body terms, thereby eliminating some

sources of noise present in three- and four-body energy terms.

The relation between geometry convergence and noise in the Error provides a second

explanation for the observation of Larsson et al. that the Error becomes smoother near the

optimal parameters. The geometries provided in the training set are normally the optimal

ones that ReaxFF should reproduce. Hence, with good ReaxFF parameters, fewer geometry

optimization steps are needed, resulting in a lower risk for geometry convergence failures and

corresponding discontinuities in the Error function.
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Figure 4: Four molecules in the Disulfide training set, whose Errors on the dihedral angles
are responsible for the noise in Figure 2c.
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4 Conclusions and outlook

Our systematic comparison of the MCFF, CMA-ES and GA optimizers reveals that none of

them are reliable in general, when just performing a single optimization run. More specifi-

cally, a single optimization run with any of these methods, with reasonable default settings,

holds a significant risk for obtaining parameters with relatively high errors. The main reason

are premature convergence, slow convergence and non-reproducible behavior of the stochastic

algorithms.

Different optimization algorithms have their strengths and weaknesses. For example,

CMA-ES is capable of finding the lowest Error for two out of three training sets, but does

not find them systematically. Depending on the initial guess or the random seed, it may also

converge to a higher local minimum. In contrast, GA is more reproducible, i.e. it exhibits

a smaller variation on the lowest Error from independent runs, but it can systematically

converge to higher Error values or exhibit impractically slow convergence. Our MCFF results

were overall unimpressive: even with significantly slower cooling rates and more iterations

than usual, it underperforms compared to CMA-ES for the same computational cost.

With any of the tested optimizers, further tuning of algorithm settings may improve

their performance. However, a more desirable solution would be to combine the strengths

of different algorithms to obtain a generally reliable method: CMA-ES efficiently optimizes

locally by modeling parameter covariances and GA easily escapes local minima by making

larger steps in parameter space. Also Monte-Carlo methods may still have their advantages,

e.g. when one is interested in sampling a posterior probability. In the simplest case, one

can switch between different algorithms in subsequent runs, e.g. to combine the robustness

of GA with the local optimization efficiency of CMA-ES. Alternatively, many independent

short runs, e.g. with CMA-ES, can compensate for its risk of getting trapped in high local

minima. Such advanced schemes will certainly be more effective than a single run with a

single method, yet they also exhibit more hyperparameters, which may require case-by-case

tuning.
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For all three training sets in this work, independent optimization runs result in clearly

different ReaxFF parameters with almost equally low Error values, which seems troublesome

at first glance but in fact provides useful information. Intuitively, one may simply select

the lowest minimum. However, different solutions of comparable quality can be used more

effectively, which will be explored in future work. For example, one could also select a

local minimum affected less by overfitting, with a low Error on a test set instead of the

training set, in analogy to to early stopping. Another use case is improving the reliability of

ReaxFF simulations with reinforcement learning. The spread on outcomes from production

runs using different near-optimal parameters is a lower bound for the uncertainty on the

prediction of interest. To reduce this uncertainty, we suggest to add properties of molecules

to the training set, for which ReaxFF results vary with different near-optimal parameters.

Including such reference data will narrow down the region in the parameter space where the

Error is low, potentially reducing overfitting artifacts. This method of enhancing training

sets should allow one to start even from an incomplete training set and continuously extend

it until consistent predictions for a production run are obtained.

Our assessment also highlighted the importance of a robust geometry optimization for the

calibration of ReaxFF parameters. When geometries converge poorly, the final ones contain

a random component, which propagates to the Error and impairs the parameter calibration.

In the course of this work, we have refined the geometry optimization algorithm used in

the ADF2018 implementation of ReaxFF, resulting in a smoother Error function. While

such improvements are clearly beneficial, discontinuities in the Error may still appear when

optimized geometries have a high sensitivity to the force field parameters, e.g. in case of very

flexible systems in the training set with different possible conformations. In future work,

convergence issues or multiple (meta)stable configurations could be detected automatically

through a high sensitivity of the geometries to small changes in ReaxFF parameters.
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(2) VandeVondele, J.; Borštnik, U.; Hutter, J. Linear Scaling Self-Consistent Field Cal-

culations with Millions of Atoms in the Condensed Phase. J. Chem. Theory Comput.

2012, 8, 3565–3573.
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