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Abstract

Molecular dynamics (MD) simulations facilitate the study of physical
and chemical processes of interest. Classical models that govern the in-
teractions between atoms lack reactivity, and quantum mechanics based
methods come at steep computational costs. ReaxFF fills the gap be-
tween these two ends of the spectrum by allowing bond formation and
breaking along with dynamic assignment of partial charges. To achieve
realistic simulations using ReaxFF, model parameters must be optimized
against the high fidelity training data that typically come from quan-
tum mechanics. Existing parameter optimization methods for ReaxFF
can be characterized as black-box techniques based on genetic algorithms
or Monte-Carlo methods. Due to the stochastic behavior of these meth-
ods, the optimization process can require hundreds of thousands of er-
ror evaluations for complex parameter fitting tasks, significantly hamper-
ing the rapid development of high quality ReaxFF parameter sets. In
this work, we present JAX-ReaxFF, a novel software tool that takes ad-
vantage of the modern machine learning cyber infrastructure to enable
extremely fast optimization of ReaxFF parameters. By calculating the
gradients of the loss function using the JAX library, we are able to uti-
lize highly effective local optimization methods such as the limited Broy-
den–Fletcher–Goldfarb–Shanno (LBFGS) and Sequential Least Squares
Programming (SLSQP) methods within a multi-start framework to en-
sure a good fit. Using the automated parallelization feature of JAX,
JAX-ReaxFF can be executed on multi-core CPUs, GPUs or TPUs in a
seamless way. By leveraging the gradient information and modern hard-
ware accelerators, we are able to decrease the typical ReaxFF parame-
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ter optimization time from days to mere minutes. Beyond enabling ex-
tremely fast parameter optimization, JAX-ReaxFF can also serve as a
sandbox tool for ReaxFF, allowing domain scientists to start modifiying
the ReaxFF functional form itself for even more accurate modeling.

1 Introduction

Molecular dynamics (MD) is a widely adopted method to study physical and
chemical processes at an atomistic level in a number of fields ranging from bio-
physics to chemistry to materials science [frenkelsmit, mdhistory1, mdhistory2].
Quantum mechanical (QM) simulations allow the geometries and energies to be
predicted accurately by solving the Schrödinger’s equation. However, the com-
putational complexity and cost of the QM based methods make them only viable
for simulating small systems for rather short periods of timeframes. Molecular
dynamics (MD) simulations, on the other hand, enable the study of large sys-
tems for relatively long timeframes through a number of approximations. In this
approach, atomic nucleus together with its electrons is treated as a unit par-
ticle and interactions between atoms are governed by a force field (FF), which
is essentially a set of parameterized mathematical equations aimd at captur-
ing well-known atomic interactions such as bonds, valence angles, torsion, van
der Waals, and Coulomb interactions. These simplifications greatly reduce the
overall computational cost, but an important measure of the predictive power
of force fields is their fidelity, i.e., how well they can reproduce the results of
QM calculations and experimental studies. Development of high fidelity force
fields relies heavily on optimization of various force field parameters based on
carefully selected quantum-chemical and experimental reference data. With the
help of these approximations and careful training, MD methods have proven to
be successful in atomistic simulations with billions of degrees of freedom [14].

Classical MD models as implemented in highly popular MD software such as
Amber [amber], LAMMPS [LAMMPS], GROMACS [gromacs4] and NAMD [namd]
are based on the assumption of static chemical bonds and, in general, static
charges. Therefore, they are not applicable to study phenomena where chem-
ical reactions and charge polarization effects play a significant role. To ad-
dress this gap, reactive force fields (e.g., ReaxFF [reaxff], REBO [rebo], Ter-
soff [tersoff1989modeling]) have been developed. These bond order potentials
allow bonds to form and break throughout the simulation and they can dynam-
ically assign partial charges to atoms using suitable charge models such as the
electronegativity equalization method (EEM) [19]. The functional forms for re-
active potentials are significantly more complex than their classical counterparts
due to the presence of dynamic bonds and charges. For instance, ReaxFF has
a formulation that contains more than 100 parameters for a simulation with
3 elements, and is about two orders of magnitude more expensive than a typ-
ical Lennard-Jones potential [lammps˙benchmarks]. Consequently, training
reactive force fields is an even more difficult task due to the need to capture
complex phenomena such as charge distributions and reactions, and due to the
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large number of parameters involved.
We focus on the ReaxFF method, which is one of the most impactful reactive

force fields, if not the most impactful one [reaxff, senftle]. If there is an existing
Reax force field with a similar purpose, it be sufficient to fine-tune that for
the new target domain. When a new force field needs to be developed from
scratch, multiple passes over the training data may be necessary, i.e., based on
the quality of the resulting force field, the training data itself may need to go
through revisions. In both scenarios, the training speed is crucial. As such,
development of high-quality and fast optimization methods for ReaxFF has
been an active research topic, first starting with the sequential one-parameter
parabolic interpolation method (SOPPI) by van Duin [6], and then continuing
with various global optimization methods such as genetic algorithms (GAs) [5,
13, 18], simulated annealing (SA) [11, 12], evolutionary algorithms (EAs) [29],
particle swarm optimization (PSO) [8]. More recently, machine learning based
search methods have been employed for this purpose [4, 10, 22].

Inspired by developments in machine learning, specifically in the field of
automatic differentiation, we present a new software called JAX-ReaxFF that
enables extremely fast optimization of Reax force field parameters. JAX is an
auto-differentitation software by Google for high performance machine learn-
ing research [3], it can automatically differentiate native Python and NumPy
functions. Leveraging this capability, JAX-ReaxFF automatically calculates
the derivative of a given fitness function, which essentially measures the root
mean squared deviation (RMSD) of a force field against a reference dataset,
from Python-based implementation of the ReaxFF potential energy terms with
respect to the set of force field parameters to be optimized. By learning the gra-
dient information of the high dimensional parameter optimization space (which
generally includes tens to over a hundred parameters), JAX-ReaxFF can employ
the highly effective local optimization methods such as the Limited Memory
Broyden–Fletcher–Goldfarb–Shanno (L-BFGS) algorithm [31] and Sequential
Least Squares Programming (SLSQP) [15] optimizer. The gradient information
alone is obviously not sufficient to prevent the local optimizers from getting
stuck in a local minima, but when combined with a multi-start approach, JAX-
ReaxFF can greatly improve the training efficiency (measured in terms of the
number of fitness function evaluations performed) and significantly reduce the
time spent on optimizing ReaxFF parameters. Another important advantage
of JAX is its architectural portability enabled by the XLA technology [XLA]
used under the hood. Hence, JAX-ReaxFF can run efficiently on various archi-
tectures, including graphics procesing units (GPU) and tensor processing units
(TPU), by using thread parallelism and vector processing in a seamless way. As
we demonstrate through extensive tests, JAX-ReaxFF can reduce the overall
training time by up to three orders of magnitude compared to the state-of-the-
art global optimization schemes, while achieving similar (or better) fitness scores
and yielding accurate simulation results.

Beyond speeding up force field optimization, the Python based JAX-ReaxFF
software a provides an ideal sandbox environment for domain scientists, as they
can go beyond parameter optimization and start experimenting with the func-
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tional forms of the ReaxFF interactions, or add/remove interactions as desired.
Since evaluating the gradient of the new functional forms with respect to atom
positions gives forces, scientists are freed from the burden of coding the lengthy
and bug-prone force calculation parts. Through automatic differentiation of the
fitness function as explained above, parameter optimization for the new set of
functional forms can be performed without any additional effort by the domain
scientists. After parameter optimization, they can readily start running MD
simulations to test the macro-scale properties predicted by the modified set of
functional forms as a further validation test before production-scale simulations,
or go back to editing the functional forms if desired results cannot be confirmed
in this sandbox evironment provided by JAX-ReaxFF. As such, we anticipate
JAX-ReaxFF to be an indispensible tool for reactive molecular modeling and
simulation.

2 Background and Related Work

Before going into the details of JAX-ReaxFF, we provide some background infor-
mation on ReaxFF, and existing software for ReaxFF parameter optimizations.

2.1 ReaxFF Overview

ReaxFF divides the total potential energy of the system into various parts, in-
cluding bonded and non-bonded interactions as shown in (1). The model takes
atom coordinates and required force field parameters for the set of elements
present in the system as input, and calculates all terms constituting the po-
tential energy together with the corresponding forces. The derivative of each
potential energy term with respect to atom coordinates gives the atomic forces
that are fundamental to the MD simulation. There is a number of ReaxFF
implementations with different features and architectural support such as the
original Fortran Reax code [30], PuReMD [1, 2, 16], GULP [9] and LAMMPS
[23].

Esystem = Ebond + Elone-pair + Eover + Eunder + Eval + Epen +
Etors + Econj + EHbond + EvdWaals + ECoulomb

(1)

An important aspect of ReaxFF that separates it from classical MD models
are the notions of bond orders and dynamic partial charges, which are actually
not shown in (1). Bond order is a core concept in ReaxFF, it is used to deter-
mine the bond strength between pairs of atoms given their element types and
distances. These pairwise bond orders are then subjected to corrections that
take into account the information about all atoms surrounding each atom to
obtain the predicted bonding information in a system. The corrected bond or-
der constitutes the main input for common potential energy terms such as bond
energy (Ebond), valence angle energy (Eval), and torsion angle energy (Etors).
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Figure 1: ReaxFF Model

However, in a dynamic bonding model, since atoms may not attain their opti-
mal coordinations, additional terms such as lone pair (Elone-pair), over/under-
coordination (Eover, Eunder), three-body penalty (Epen) and four-body conjuga-
tion (Econj) energies are needed. For systems with Hydrogen bonds, a special
energy term (EHbond) is used. The van der Waals energy (EvdWaals), which
is based on the Morse potential, and the electrostatic energy term (ECoulomb),
which uses shielded and range-limited interactions based on dynamic charges
calculated from charge models such as EEM [19], constitute the non-bonded
terms in ReaxFF. Typically, bonded interactions are truncated at 5Å, hydrogen
bonds are effective up to 7.5Å and non-bonded interactions are range limited
to 10-12Å depending on the parameterization. Figure 1 summarizes the calcu-
lations performed within a ReaxFF step.

2.2 ReaxFF Training

ReaxFF parameters are grouped by the number of atoms involved in the inter-
action such as single-body, two-body, three-body and four-body parameters in
addition to the system-wide global parameters. Based on the distances and an-
gles between the atoms and corresponding model parameters, bonded, 3-body,
4-body, hydrogen bond and non-bonded interaction lists are formed dynamically
at each timestep. For every interaction, corresponding parameters are selected
from the force field parameter set based on the interaction type and the ele-
ment types of the atoms involved to calculate Esystem. As described in detail
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Type Training Item Target Description
Charge ID1 1 0.5 Charge for atom 1

Energy
ID1 - ID2/2 - ID3/3 50 kcal/mol

Energy differenceID1 -150 kcal/mol
ID3/2 - ID1/3 30 kcal/mol

Geometry
ID1 1 2 1.25 Å Distance between atom 1 and 2
ID2 1 2 3 120◦ Valence angle between atom 1, 2 and 3
ID3 1 2 3 4 170◦ Torsion angle between atom 1, 2, 3 and 4

Force
ID1 1 0.5 0.5 0.5 Forces on atom 1
ID2 1.0 RMSG

Table 1: Training item types. Identifiers (Ex. ID1) are used as a reference to
the molecules.

in [senftle2016reaxff], there exist parameter sets for different kinds of sim-
ulations such as combustion, aqueous systems, metals and biological systems.
Even if there already is a parameter set for a simulation, it might require fur-
ther tuning if the existing parameter set is not performing well for the system
of interest. In some cases, the model needs to be trained from scratch which is
a quite complex process. In general, as the number of elements in a parameter
set increases, optimization of the force field becomes significantly harder due to
the increasing number of possible element pairs, triplets and quadruplets.

ReaxFF training procedure requires three different inputs: i) geometries,
a set of atom clusters crucial in describing the system of interest (e.g. bond
strecthing, angle and torsion scans, reaction transition states, crystal struc-
tures, etc.), ii) training data, properties of these atom clusters as calculated by
appropriate QM models such as energy minimized structures, relative energies
for bond/angle/torsion scans, partial charges or forces on atoms for a given
structure, etc., and iii) model parameters to be optimized along with a fitness
function that combines different types of training items in the following format

Error(m) =
N∑
i=1

(
xi − yi
σi

)2

(2)

where m is the model with a given set of force field parameters, xi is the pre-
diction by model m, yi is the ground truth as calculated by QM, and σ−1i is the
weight assigned to each training item.

Table 1 summarizes commonly used training data types and provides some
examples. An energy-based training data item is formed through a linear rela-
tionship of different molecules (using their identifiers) because relative potential
energies of different conformations rather than the exact potential energies are
used in MD, since the chemical and physical processes are driven by the former.
For structural items, molecules are expected to be energy minimized since it is
essential for the force field to predict the lowest energy states correctly. For the
other types, energy minimization is optional but usually preferred.
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2.3 Related Work

Existing force field optimization methods for ReaxFF employ gradient-free black-
box optimization methods such as Genetic Algorithms (GA) and Evolutionary
Algorithms (EA). These methods enable a global search in a high dimensional
parameter space, but at the expense of a high computational cost since they do
not calculate the gradient of the surface of the optimization space, but rather
rely on error evaluations at different points in the search space.

The earliest method Reax force field optimization is the sequential parabolic
parameter interpolation method (SOPPI) [6]. The algorithm uses a well known
one parameter-at-a-time approach where the consecutive single parameter searches
are done until a certain convergence criteria is met. The algorithm is preferred
for its simplicity but as the number of parameters increases, the number of
one-parameter optimization steps needed for convergence increases drastically
since only a small portion of the search space is explored at each round. Also
the performance of this method is very dependent on the initial guess and the
order of the parameters to be optimized in each step. Due to the drawbacks of
this approach and the need for a more efficient and global optimization scheme,
various global methods such as genetic algorithms (GAs) [5, 13, 18], simulated
annealing (SA) [11, 12], evolutionary algorithms (EAs) [29], particle swarm op-
timization (PSO) [8] and machine learning based search methods [4, 10, 22,
26] have been investigated for Reax force field optimization. Due to the large
number of methods reported, a thorough explanation and evaluation of these
methods are out of scope of this paper, and we refer readers to studies that
present a comparison of the most promising of these methods [27, 28]. At the
absence of any gradient information, these methods have been proven to be
successful for optimization of ReaxFF parameters. However, due to the nature
of the global search algorithms, they require a high number of error evaluations
and depending on the size of the problem, they could be very costly.

After the emergence of the highly optimized tools for machine learning to cal-
culate gradients of complex functions automatically, a method called Intelligent-
ReaxFF has been proposed to take advantage of these tools to train a force field
for ReaxFF [10]. They use the TensorFlow library to calculate the gradients
and optimize a force field. However, the method does not have the flexibility
of the previously mentioned methods in terms of the training data. The force
field only can be trained to match the ReaxFF potentials to the reference data.
The energy differences between different geometries or charges cannot be used
to train the force field which limits the usability. More general framework has
been developed to provide end-to-end differentiable MD simulations [25]. Unlike
this work, the main focus is to provide a unifying framework to study different
potential functions including machine learning potential.
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3 Proposed Method

3.1 Overview

JAX library performs auto-differentiation on native Python code, as such im-
plementation of the ReaxFF energy expressions (see Fig. 1) in Python forms the
core of JAX-ReaxFF. Once the individual energy expressions and the training
error function are provided, JAX can easily calculate the gradient of the train-
ing error function with respect to the ReaxFF parameters to be optimized using
its auto-diff functionality. As mentioned earlier, atomic forces can also be part
of the training dataset, these can be calculcated using the gradients of ReaxFF
energy expressions with respect to atom positions, too.

Molecular systems used for force field training tend to have a small number
of atoms compared to regular MD runs. Using a software designed for running
simulations with thousands of atoms to run multiple small scale simulations
introduces a lot of overhead. Optimizations such as iterative preconditioned
sparse solvers to calculate the atomic charges, fast neighbor list generation algo-
rithms and distributed computation etc. could potentially increase the run-time
and results in unnecessarily complex code when the number of atoms in each
geometry is small. Even though vanilla Python code tends to be slower than op-
timized Fortran or C code, when the auto-diff functionality, benefits of targeting
small geometries and the just-in-compiled XLA support (discussed in Sect˙ 3.3
are considered, the advantages of JAX-ReaxFF outweighs the performance loss
from not using Fortran or C.

While gradient-based optimization functionality is straight-forward to achieve
using JAX as described above, there are a number of important considerations
to realize an efficient (from a runtime point-of-view) and a scalable (from a mem-
ory utilization perspective) parameter optimization framework. Figure 2 gives
an overview of the task-flow in JAX-ReaxFF. After the neighbor list and inter-
actions lists are calculated based on the input geometries (Sect. 3.2, we cluster
the input geometries based on the size of their interaction lists and align them
properly in memory to ensure efficient single instruction multiple data (SIMD)
parallelization (Sect. 3.3). After these preparation steps, the main optimization
loop is executed until convergence or the maximum number of optimization
steps are reached (which typically takes only tens of iterations). [HMA: I agree
– some details about why energy minimization during training is important would
be nice to include here, or in a subsection if it is more appropriate] [MCK: I can try
but I think Ali knows more about the importance of energy minim.]. During the pa-
rameter optimization loop, some molecules might require energy minimization
before the final calculation to prevent overfitting and also to tune the parame-
ters based on more likely states of the atom clusters as the lower energy states
are more likely to be observed. Hence, the main optimization loop contains a
“gradient-based optimization” step followed by a “geometry optimization” step.
We discuss each step in more detail in the ensuing subsections.
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Figure 2: JAX-ReaxFF execution flow graph.

3.2 ReaxFF Model Implementation

In ReaxFF implementations for MD simulations, neighbor and interaction lists
are created based on the atom positions and the fixed force field parameters. Due
to the dynamic nature of interactions in ReaxFF, accurate and fast calculation of
energy terms (especially the higher order ones such as valence angle and torsion)
is critical. Differently from regular ReaxFF MD simulations, the force field is
also dynamic during parameter optimization, hence adding to the challenges of
developing an efficient implementation.

Pair-wise bonded interactions: We illustrate the challenges using bond
order calculations as an example. As shown in Figure 1, all bonded interactions
depend on the corrected bond order term. Initially, if the distance between two
atoms is less than a given cutoff, typically 5 Å, the uncorrected bond orders
(BO) are calculated according to Equation 3, where rij is the distance between
the atom pair i-j, and pbo1, pbo2, pbo3, pbo4, pbo5, pbo6, rσo , rπo , and rππo are the
corresponding parameters.

BO
′

ij = BOσij +BOπij +BOππij = exp

[
pbo1

(
rij
rσo

)pbo2]
+ exp

[
pbo3

(
rij
rπo

)pbo4]
+ exp

[
pbo5

(
rij
rππo

)pbo6]
(3)

Normally, if the uncorrected bond order is greater than a predetermined
threshold, it is added to the initial bond list and subsequently bond order cor-
rections are applied based on the neighborhood of the atoms forming the bond.
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In the context of parameter optimization though, whether the pair i-j will form
a bond above the given threshold also depends on the values of those parame-
ters. Furthermore, if a given molecular structure in the training dataset requires
geometry optimization (as is needed for most structural properties), atom posi-
tions change as well. JAX requires an expensive recompilation if the interaction
list sizes change, we create the interaction lists once before the optimization
starts and use masks to ignore the unwanted elements throughout the param-
eter and/or geometry optimization steps. For this purpose, for every unique
element pair, the maximum possible distance where a given pair can have a
valid bond order is found. If some BO related parameters are included in the
optimization, values which maximize the BO term are selected from the spec-
ified parameter ranges. Then through a distance scan, the maximum possible
distance is determined as the cutoff for inclusion of bond orders between that
pair of elements. For geometries that require minimization, the maximum cal-
culated distance is extended by a buffer distance to be able to accommodate
potential atom position changes.

Higher Order Bonded Interactions: Similar logic is applied for other types
of interactions. In a given molecule with N atoms, when there is no trim-
ming, there will be O(N3) 3-body and O(N4) 4-body interactions. Trimming
these interaction lists is required to decrease the computational and memory
costs. 3-body and 4-body interaction lists are built using the corrected BO
term. Another threshold is applied to the bonds forming the 3-body and 4-
body interaction lists. Since the higher order bonded interactions are built
using the corrected BO terms, the thresholds are also based on the previously
described maximum possible BO terms. Further trimming of the lists is possible
by scanning multiple distances and angles but due to the increased computa-
tional complexity, only BO term based trimming is employed.

Non-bonded Interactions: It is assumed that there is a non-bonded interac-
tion between every atom in the system since the non-bonded interaction cutoff
(which is typically 10 Å) is a lot larger than the molecular/crystal structures
used for training. Therefore, non-bonded interactions form an N ∗N matrix. If
the system has periodic boundary conditions, the box dimensions are a, b and c
Åand non-bonded interaction cutoff is r Å, then the size of the tensor for non-
bonded interactions will become N ∗N ∗(2∗

⌈
r
a

⌉
+1)∗(2∗

⌈
r
b

⌉
+1)∗(2∗

⌈
r
c

⌉
+1).

The later part is the number of periodic boxes.

Evaluation of the Potential Energy: Once interaction lists are created as
described above, they stay constant throughout the optimization; the unwanted
interactions in these lists are simply masked. Although this approach wastes
some computational power, it avoids the expensive reneighboring, interaction
list recreation and recompilation steps as force field parameters evolve. It also
leads to a simplified codebase, as the interaction list generation part can be sep-
arated from the force field optimization process. The interaction list creation is
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performed on the CPU using multiprocessing, regardless of whether a hardware
accelerator is used for the optimization part or not.

To calculate the potential energy, a similar approach to the standalone
ReaxFF code is followed with the exception of charge equilibration. The Elec-
tronegativity Equalization Method (EEM) used for distributing partial charges
requires the solution of a system of linear equations (for details see [19]). For
large MD simulation, the linear systems are solved using pre-conditioned iter-
ative solvers [ohearn2020fast]. However, since the number of atoms is small
for the training set structures, we use a direct LU factorization that is easier to
implement and auto-differentiate.

3.3 Clustering and Alignment for SIMD Parallelization

JAX uses Accelerated Linear Algebra (XLA), a domain specific compiler for
linear algebra, under the hood to achieve hardware portability. Using XLA,
JAX-ReaxFF can easily run on multi-core CPUs, GPUs or TPUs without any
code changes. JAX offers vectorization (vmap) and parallelization (pmap) sup-
port to take full advantage of the underlying architecture. To better utilize
processing units with high level of Single Instruction Multiple Data (SIMD)
parallelism, JAX offers vmap using which multiple small computations can be
merged into batches to achieve high device utilization; pmap targets Multiple
Instruction Multiple Data (MIMD) parallelism.

In this study, our target architecture has been GPUs as they provide signifi-
cant performance advantages over multi-core CPUs and have become the main-
stream hardware accelerators. However, attaining high performance on GPUs
requires some important considerations. Since parameter optimization requires
efficient execution of several small atomic structures as opposed to running one
big MD simulation in parallel, JAX-ReaxFF leverages the vmap support to ac-
celerate the energy and gradient calculations. The key for efficient vectorization
in JAX-ReaxFF are the pre-calculation of interaction lists that remain static
throughout optimization (as described in the previous subsection), clustering
of input geometries with similar computational demands together (explained
below) and alignment of the interaction lists of geometries in the same cluster
(by padding as necessary) for efficient memory accesses. As mentioned before,
unwanted/unnecessary interactions in these static lists are masked during the
energy and gradient calculations so that they do not affect the results.

To cluster the input geometries for efficient vectorization, a modified version
of the K-Means algorithm is used. The distance formula for geometry x and
cluster center y with size sy is shown below

Dist(x, y) = sy(c1max(n{2,x}, n{2,y}) + c2max(n{3,x}, n{3,y})+
c3max(n{4,x}, n{4,y}) + c4max(n{5,x}n

2
{1,x}, n{5,x}n

2
{1,y}))

(4)

where n1, n2, n3, n4 and n5 are the number of atoms, the number of 2-body
interactions, the number of 3-body interactions, the number of 4-body interac-
tions and the number of periodic boxes within long range cutoff, respectively.
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The coefficients c1 through c4 are indicators of the relative computational cost
of their corresponding ReaxFF kernels. They can be determined empirically to
accurately represent the computational costs in a given training set for a partic-
ular architecture. The cost of each cluster is determined by the computationally
most expensive geometry within the cluster, as such the max value between the
the current cluster center y and geometry x is chosen.

After initializing k cluster centers randomly, each geometry is assigned to
these clusters based on the unique distance metric where the distance is an indi-
cator of the change in computational load after assigning geometry x to cluster
center y as shown in (4). The new center for each cluster is determined by the
computationally most expensive geometry within the cluster; cluster centers de-
termine the amount of padding needed for memory alignment of interaction lists
for all geometries in their cluster. After centers are updated, a new iteration is
performed where each geometry is reassigned to the closest cluster. Unlike the
original K-Means algorithm, the order of geometries affects the result, therefore
input geometries are shuffled after each iteration for randomization. The pro-
cess continues until the cluster centers do not change anymore. Also to ensure
high performance, the clustering algorithm is executed multiple times starting
from different random initial cluster centers and the one where the total wasted
computation (which can be determined by the total amount of padding) is min-
imal is chosen as the final clustering of the geometries. Although the algorithm
does not guarantee optimality, empirical results are satisfactory.

Algorithm 1 Clustering Algorithm

1: Cbest ← Keep track of the best so far
2: for r = 1, 2, . . . R do
3: Ccur ← Initialize the cluster centers by selecting a random geometry as

the center for each cluster
4: for i = 1, 2, . . . I do
5: Cprev ← Ccur
6: Shuffle G
7: for each g ∈ G do
8: Assign g to ci where Dist(g, ci) is minimum
9: Update the cluster centers

10: end for
11: if Ccur == Cprev then
12: Break
13: end if
14: end for
15: if Cost(Ccur) < Cost(Cbest) then
16: Cbest ← Ccur
17: end if
18: end for

The total compilation time of JAX increases drastically with the number of
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clusters because JAX unrolls the loop that iterates through the clusters during
compilation. Also, if the wasted computation does not increase significantly, a
smaller number of clusters is more preferable for GPUs since improving SIMD
parallelism is easier within clusters. For these reasons, the number of clusters
is selected automatically based on algorithm 2. Unless the computational gain
from a higher number of cluster centers is not significant, smaller number of
clusters is chosen.

Algorithm 2 Clustering Algorithm 2

1: kmax ← Maximum number of clusters
2: R← Number of repetitions for the clustering algorithm
3: I ← Number of iterations for the clustering algorithm
4: Cselected ← Selected clustering of the geometries
5: for k = 1, 2, . . . kmax do
6: Costk, Ck ← Clustering(G, k, I, R)
7: if |Costk − Costk−1|/Costk−1 < tolerance or k == kmax then
8: Cselected ← Ck
9: Break

10: end if
11: end for

3.4 Gradient Based Local Optimization

After the final clusters are formed, parameter optimization is performed using
gradient based local optimizers with multi-start as depicted in Fig. 2. Vectoriza-
tion based parallelism is employed for both energy minimization and parameter
optimization steps shown in this figure.

For gradient based optimization to work, JAX traces the error function from
Eq. 2 and computes the gradients of the parameters. However, since typically
many geometries require geometry optimization, tracing the gradients through
the optimization step is more error prone due to the complex functional form of
the ReaxFF. To remedy this problem, we separate the geometry optimization
from the error minimization. The error function without the geometry optimiza-
tion can be thought as surrogate model since it is a fast way to approximate
the true error where the geometry optimization is done as well. The approach
accelerates the training and does not require tracing the gradients through the
geometry optimization step.

The optimization algorithm starts from the initial geometries (Geoinit) and
the initial force field (FFinit) then the force field is iteratively improved. For
each iteration of the training loop shown in Algorithm-3, two different local opti-
mizations are performed, one being local geometry optimization using the steep-
est descent method [steepest˙descent] and the main one being minimization of
the fitness error on the energy minimized geometries by updating the prescribed
force field parameters using various local optimization method such as L-BFGS-
B and SLSQP. Both of these methods are classified as quasi-Newton methods
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where the Hessian matrix is approximated by successive gradient calculations
[15, 31]. Error minimization step uses the Geomin and the optimized force field
(FFcur) from the last iteration and after applying the selected gradient-based
algorithm, FFcur gets updated with the newly trained force field. This step
uses the surrogate model where the error is calculated with only the single step
calculations. After that the geometry optimization step starts from Geoinit and
yields optimized geometries (Geomin) using FFcur. The true error is calculated
right after the geometry optimization, if there are any geometries that require
it. After each iteration, the true error (Ecur) for FFcur on the training data is
calculated. If Ecur is lower than the lowest error so far (Ebest), FFcur is saved
as the best force field (FFbest).

Algorithm 3 Gradient Based Local Optimization

1: FF cur ← FF init
2: for iteration = 1, 2, . . . do
3: FF cur ← Locally minimize the error through the selected gradient-based

algorithm using Geomin and starting from FFcur. Geomin is fixed.
4: Geomin ← Geometry optimize the structures starting from the initial

geometries Geoinit with the current model FFcur
5: Ecur ← Calculate the current error using Geomin and FFcur
6: if Ecur < Ebest then
7: Ebest ← Ecur
8: FFbest ← FFcur
9: end if

10: if |Ecur − Eprev|/Eprev < 0.001 then
11: FF cur ← Add small uniform noise to FF best
12: end if
13: Eprev ← Ecur
14: end for

The error on the surrogate gets closer to the true error as the parameters
converge because the changes in the parameters become minimal. One disad-
vantage of separating the energy minimization from the local optimization is
that the fitness score for the geometry items will be be ignored by the local
optimization since the atom positions will not change. It introduces a discrep-
ancy between the true error and the surrogate one. However, if the training
data has multiple items related to the geometry based items as a result of po-
tential energy surface scans (PES), the discrepancy could be minimized. As
it is demonstrated in the later sections, the surrogate approach works well in
practice for a variety of training tasks which have geometry based items.

4 Evaluation

In this section, we evaluate the optimization performance of JAX-ReaxFF, as
well as the quality of the resulting force fields using datasets with different
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characteristics.

4.1 Experimental Setup

Training Tasks For our evaluations, we identified three training tasks1 that
form a well-rounded test bench with their varying degrees of complexity. These
tasks include different system types (Cobalt, a metal; Silica, an amorphous
material; Disulfide, a molecular system), different types and numbers of items
in the training datasets, and different number of parameters to be optimized.
Also while the structures in the Cobalt and Silica training sets mostly require
energy minimization, those in the Disulfide case are mostly single step energy
evaluation based training items. Table 1 summarizes the specifications of the
chosen training tasks. JAX-ReaxFF currently does not support training items
with simulation cell optimization, as such these items are ignored. It only affects
the Silica dataset which has 5 of them (out of 296 cases).

Training Data Npar Nstrc Nminim C G F P E

Cobalt [17] 12 146 130 0 0 0 0 144
Silica [7] 67 302 221 5 26 0 6 265

Disulfide [21] 87 231 10 0 255 4401 0 219

Table 2: Datasets. Npar is the number of parameters to optimize, Nstrc is
the number of structures in the training dataset and Nminim is the number of
geometries to be energy minimized. C, G, F, P and E are the number of charge
based training items, geometry based items, force based items, cell parameter
based items and energy based items, respectively.

Hardware Setup All the CPU experiments reported here were conducted on
a computer with two Intel(R) Xeon(R) CPU E5-2680 v4 @ 2.40GHz (2x14 cores)
CPU processors, 128 GB 2133 MHz DDR4 Ram. The GPU experiments were
conducted on a computer with Intel(R) Core(TM) i7-9700K CPU @ 3.60GHz,
16 GB 3000 MHz DDR4 Ram and single 1080-TI GPU card (11 GB GDDR5X
memory). For the baseline methods, OGOLEM version [MCK: version] with
sPuReMD version [MCK: version] backend is used. The proposed method is
implemented in Python 3.7 and utilizes JAX version 0.1.76 and NumPy version
1.16.4.

Baseline Results We compare the performance and training accuracy of
JAX-ReaxFF to those of methods by Shchygol et al. [27], namely the Covariance
Matrix Adaptation Evolutionary Strategy (CMA-ES), Monte Carlo Force Field
(MCFF) optimizer and Genetic Algorithm (GA) techniques described therein.

1The datasets could be downloaded from the following link as it is provided in the supple-
mentary information of [27]: https://ndownloader.figstatic.com/files/18698201
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Monte Carlo Force Field (MCFF) optimizer and Genetic Algorithm (GA) tech-
niques described therein. MCFF optimizer utilizes simulated annealing ap-
proach to slowly modify the parameters and act based on the change in the
error value. The remaining two approaches are population based and inspired
by the basic principles of biological evolution. In GA, a population of candidate
solutions for a given optimization problem is evolved towards better solutions.
Typically, evolution happens through random mutations and cross-over between
selected candidate solutions. In CMA-ES, new solutions are sampled from a
multivariate normal distribution. The pairwise dependencies between the pa-
rameters are captured by the covariance matrix and as the search progresses,
CMA-ES updates the covariance matrix. All three approaches use ReaxFF
model as a black box and find the direction solely from the function evalua-
tions. The settings for the black-box optimizers are given in [27]. Shchygol et
al. [27] has compared these methods on different training tasks without focus-
ing on tuning them and repeated the experiments multiple times with different
starting conditions. Since they have provided an important test bench to com-
pare different optimizers for ReaxFF, we follow the same approach to present
our results.

Since the exact software and hardware from [27] are not accessible, the exe-
cution times for the baseline methods are approximated on the previously men-
tioned hardware. Only comparing the number of true and single step evalua-
tions miss the execution time difference between sPuReMD backend and JAX-
ReaxFF. Therefore, approximating the execution time for the baseline methods
present a more detailed picture. We have calculated the time per true error
evaluation using OGOLEM with sPuReMD backend and multiplied with the
total number of error evaluations presented in [27]. This approximation is a
lower bound for CMA-ES and MCFF since they have lower level of parallelism
unlike genetic algorithm where each evaluation is independent from each other
and OGOLEM uses GA for optimization.

The initial guess is an important factor which could change the results dras-
tically. It is especially important for gradient based optimizations because these
methods cannot move through the space freely as they need to follow the direc-
tion of the gradients. To show the capabilities of JAX-ReaxFF, we experimented
with all three initialization methods from Shchygol et al. [27], namely random,
educated and literature based initial guesses. For random initial guesses, initial
values are sampled from a uniform distribution based on the given parameter
ranges. To produce educated guesses, prior information from the previous re-
lated force fields is used as it is described further in [27]. For the literature based
initial guesses, the force fields developed previously using the same training data
are used. To give more reliable results, each initialization method is repeated
ten times. For the educated and literature based initial guesses, small amount
of uniform random noise is added to the parameters without violating the range
restrictions. For each parameter p, the noise value is sampled from [−1k10 ,

1k
10 ]

where k is the length of the given range for parameter p. For the random initial
guesses, uniform sampling is done ten times to produce the guesses.
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4.2 Runtime and Training Evaluation

In JAX-ReaxFF, as mentioned above, two different gradient based optimiza-
tion algorithms are available, L-BFGS-B and SLSQP. For both L-BFGS-B and
SLSQP, the maximum number iterations is set to 100. This iteration number
is for the step 3 of Algorithm 3. For L-BFGS-B, the maximum number of it-
erations for the line search is set to 20 and the maximum number of variable
matrix corrections to approximate the Hessian matrix is set to 20. For the rest
of the control parameters, the default values from the SciPy library are used.
The iteration count for the main optimization loop of Algorithm 3 is set to
20 where the local error minimization and the geometry optimization steps are
iteratively repeated this many times. Therefore, for all of the experiments for
Jax-ReaxFF, the true error calculation with geometry optimization is done 20
times since the local error minimization only uses single step calculations.

4.2.1 Cobalt

Cobalt testcase has only energ-based training items. About 90% of these items
require energy minimization, yet the training error does not fluctuate as shown
in Figure 3. This shows that the surrogate error is close to the true error for
this dataset. Otherwise, the error would fluctuate between iterations since the
surrogate error is used for the error minimization in each iteration. For some
of the random runs, SLSQP does not show any progress initially. One possible
explanation is that when the initial parameters are from a non-smooth part of
the optimization space that cause high gradients, the optimizer fails to escape
(Figure 6b). Small noise that is added when any stall in progress is detected
stimulates progress as expected.

In Table 3, we compare the convergence of JAX-ReaxFF against the the
black box approaches. We observe significantly faster convergence in terms
of both the number of evaluations required as well as the time taken, while
obtaining similar or better training errors as measured by best and median
scores. The entire optimization process takes slightly more than a minute on
the GPU.
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Figure 3: Convergence of the local optimizers for the Cobalt dataset

Method
Initial
Guess

Best
Score

Median
Score

Avg. #
Single

Step Eval.

# True
Eval.

Avg. CPU
Exec. Time

(min)

Avg. GPU
Exec. Time

(min)

L-BFGS-B
rand 1368 2334 480

20 23.5 1.2edu 1352 1499 418
lit 1366 1446 450

SLSQP
rand 1191 2253 513

20 24.8 1.3edu 1168 1188 618
lit 1187 1189 637

Genetic
Algorithm

rand 1346 1645
- 200k 3913 -edu 1349 1424

lit 1345 1483

CMA-ES
rand 1150 1894

- 45k 880 -edu 1159 1491
lit 1180 2320

MCFF
rand 1422 2104

- 45k 880 -edu 1532 2092
lit 1360 1405

Table 3: Cobalt training results.

4.2.2 Silica

The silica training set includes energy, charge and geometry matching based
items. 73% of the items require energy minimization. As shown in Fig. 4, unlike
the Cobalt case, the error fluctuates more between iterations, possibly because
of unstable geometries as parameters are converging (note that the number of
parameters to be optimized are significantly higher than the Cobalt case) and
the presence of geometry matching items in the training set. Although the single
point evaluation based surrogate model ignores the simulation cell optimization
items, the proposed method is able to minimize the error comparable to the
level of black box methods, while taking a fraction of their execution times.
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Figure 4: Convergence of the local optimizers for the Silica dataset

Method
Initial
Guess

Best
Score

Median
Score

Avg. #
Single

Step Eval.

# True
Eval.

Avg. CPU
Exec. Time

(min)

Avg. GPU
Exec. Time

(min)

L-BFGS-B
rand 3901 5214 1865

20 25.0 1.6edu 4143 4467 1385
lit 4315 5068 1929

SLSQP
rand 3870 4498 2962

20 31.9 2.0edu 3977 4540 2839
lit 3857 4534 2938

Genetic
Algorithm

rand 3577 3738
- 200k 1632 -edu 3705 3817

lit 3593 3721

CMA-ES
rand 3739 4753

- 45k 367 -edu 3747 4122
lit 3793 4298

MCFF
rand 5059 6584

- 45k 367 -edu 5632 7127
lit 4885 6126

Table 4: Silica training results.

4.2.3 Disulfide

The disulfide training data is drastically different from the previous one since it
uses force matching to fit the ReaxFF model to the data. As mentioned above,
forces are calculated by taking the derivative of the potential energy expressions
in JAX-ReaxFF with respect to atom positions.

Fx =
∂Ep
∂x

(5)

∂(Fx − Ft)2

∂p
=
∂(

∂Ep

∂x − Ft)
2

∂p
(6)
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where Fx is the 3-dimensional force vector for atom x, Ft is the target force
vector from the training dataset and p is the model parameter to be optimized.
∂(Ft−Fx)

2

∂p gives the gradients for the force matching items in the objective func-
tion. However, we have observed that the final gradients for parameters from
Equation 3 result in extremely high values, ∼ 1017, while the other gradients
are much lower. These high gradients stop the local optimizers from doing any
progress as seen in Figure 5. Since bond order parameters form the core of
the dynamic bond concept in ReaxFF and therefore affect all types of bonded
interactions, using relatively large parameter ranges and initial guesses being off
of their ideal values are likely responsible for this behaviour. While not ideal,
we excluded the bond order parameters from optimization and fixed their val-
ues to the literature ones. Among 87 parameters, 18 parameters are removed
and the optimization is performed again with the remaining 69 parameters. As
shown in Figure 6, this way results improve drastically, and JAX-ReaxFF can
attain better scores than the baseline methods in significantly shorter time, but
it should be noted that the comparison cases include all 87 parameters. This
situation shows that gradient-based optimization is prone to failures for pa-
rameters with a large influence on the objective function like the bond order
parameters. However, in practice training items for bond order optimization
are easy to construct and their optimization can be performed independently
prior to the actual optimization task. For this reason, we do not evaluate this
issue to be a major limitation for JAX-ReaxFF’s practical use.
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Figure 5: Convergence of the local optimizers for the Silica dataset before the
modification
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Figure 6: Convergence of the local optimizers for the Silica dataset after the
modification

Method
Initial
Guess

Best
Score

Median
Score

Avg. #
Single

Step Eval.

# True
Eval.

Avg. CPU
Exec. Time

(min)

Avg. GPU
Exec. Time

(min)

L-BFGS-B*
rand 10198 10920 1660

20 9.7 0.9edu 10313 10631 1600
lit 10438 10803 1503

SLSQP*
rand 6986 9488 1187

20 8.9 0.8edu 9306 9635 1234
lit 10304 10494 1901

Genetic
Algorithm

rand 19285 20384
- 340k 878 -edu 18054 20150

lit 18524 21206

CMA-ES
rand 8052 11371

- 45k 116 -edu 8727 11105
lit 9284 11120

MCFF
rand 8507 11893

- 45k 116 -edu 9608 13393
lit 10605 13625

Table 5: Disulfide training results. *The results are from the modified version
of the training.

4.3 Force Field Evaluation

Fitness scores of optimized parameters can be seen as proxies, but the quality of
the resulting force field parameter sets ultimately need to be validated through
actual MD simulations and comparisons against experimental and/or QM data,
as we do next. MD simulations in this work are performed using Large-scale
Atomic/Molecular Massively Parallel Simulator (LAMMPS) that is a molecular
dynamics program from Sandia National Laboratories [23]. A relatively short
time step of 0.5 fs was used in all the simulations. This is the recommended
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Figure 7: Variations in pure Cobalt single fcc crystal cohesive energy by varia-
tions of the lattice constant.

setting for ReaxFF simulations of systems that don’t include light atoms like
Hydrogen. All NVT ensemble (constant number of atoms, volume and tem-
perature) simulations were performed using Nose-Hoover thermostat to control
the temperature with a temperature damping parameter of 100 fs which de-
termines how rapidly the temperature is relaxed. All NPT ensemble (constant
number of atoms, pressure and temperature) simulations were performed using
Nose-Hoover thermostat to control the temperature with a temperature damp-
ing parameter of 100 fs and Nose-Hoover barostat to control the pressure with
a temperature damping parameter of 1000 fs.

4.3.1 Molecular dynamics simulations of pure Cobalt structure

We investigated the crystal lattice constant correlation with cohesive energy in
crystals of fcc Cobalt for validation. The lattice constant was changed from 3Å
to 5Å and the associated lattice cohesive energies were recorded (Figure 7). The
results of the fitted force field were compared to two previously trained ReaxFF
force fields for Cobalt [17, 27] and embedded atom method (EAM) force field
[24].

To validate the quality of the force field in capturing the dynamics behavior,
the annealing loop was generated for a pure Cobalt crystal structure and was
compared to the available force fields. A cubic simulation box of 5x5x5 ideal fcc
Cobalt unit cells was generated for annealing simulations using NPT ensemble
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between 1000K-3000K. After the NPT equilibration of the pure Cobalt crystal
at 1000K, the system was subjected to NPT ensemble annealing between 1000K-
3000K by 10 K/ps heating and cooling rate. A time step of 0.5 fs was used for
the simulations. The changes in the system energy during this annealing loop is
shown in Figure 8. Three ReaxFF force fields showed similar dynamic evolution
behavior for the pure Cobalt structure while the EAM force field showed a
different dynamic evolution (Figure 9).

Figure 8: Annealing loop of a 5x5x5 fcc Cobalt crystal including 500 atoms
using fitted ReaxFF force field with heating and cooling rate of 10 K/ps.

Figure 9: Annealing loop of a 5x5x5 fcc Cobalt crystal including 500 atoms
using EAM force field with heating and cooling rate of 10 K/ps.

After completion of the annealing loop, structural evaluation showed that
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using the ReaxFF force fields resulted a considerable recrystallization in the pure
Cobalt structure, while recrystallization was not observed when EAM force field
was utilized (Figure 10).

Figure 10: Final configurations of pure Co fcc crystals after annealing loop with
1000K-3000K temperature range.

4.3.2 Molecular dynamics simulations of pure Silica structure

To evaluate the quality of the optimized force field for the Si/O parameters,
the amorphous silica structure introduced in the Fogarty et al. [7] was recon-
structed. The amorphous silica system included 2000 SiO2 molecules with an
initial density of 2.2 g/cm3 (Figure 11).

The amorphous silica system was energy-minimized to eliminate initial bad
contacts. The system was then annealed twice between 300K and 4000K. The
first annealing loop was performed using NVT ensemble with heating and cool-
ing rate of 37 K/ps. The second annealing loop was performed in NPT ensem-
ble between 300K-4000K using Nose–Hoover thermostat and barostat 1.01325
bar pressure. Similar to the NVT annealing, the heating and cooling rate was
37 K/ps. Finally, the silica system was equilibrated in NPT ensemble using
T=300K and P=1.01325 bar for additional 200 ps as the production run. These
calculations were performed using our fitted force field and two previous ReaxFF
force fields introduced for such systems. The properties of the final configura-
tion of these silica structures are compared in Table 6. The radial distributions
of the final configuration of silica structure equilibrated using our fitted force
field for Si-O, O-O and Si-Si are shown in Figure 12. These results show good
force field quality for silica structure using JAX-ReaxFF.
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Figure 11: The amorphous silica structure including 2000 SiO2 molecules and
total of 6000 atoms. Silicon atoms are shown with yellow color and Oxygen
atoms are shown with red color.

Property 2010 FF [7] 2019 FF [27] New FF

Density (g/cm3) 2.19 2.31 2.23
Si coordination 3.99 3.94 3.97
O coordination 1.99 1.97 1.99

Table 6: Silica properties calculated using three different force fields. The ex-
perimental value reported for silica density is 2.2 g/cm3 [20]

4.3.3 Molecular dynamics simulations of molecules with Sulfur bonds

To test the validity of the force field containing Sulfur parameters updated using
our proposed training method, we performed minimum energy structure search
for single molecules with different restraints. The results of the fitted force
field were compared to two previously trained ReaxFF force fields[4, 7]. The
restraints are applied on S-S bond of dimethyl disulfide (DMDS), S-C bond of
dimethyl thioether (DMTE), H-S-H angle of Hydrogen sulfide (H2S) and H-S-
S-H torsion angle of Hydrogen disulfide (H2S2). These potential energy graphs
are shown in Figure 13.
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Figure 12: Radial distribution function of silicon-oxygen, oxygen-oxygen, and
silicon-silicon for silica structure at the end of annealing and equilibration.

Figure 13: Potential energy graphs of energy minimized molecules including
Sulfur bonds with different restraints, calculated with the updated force field
and previously trained force fields.
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5 Conclusion

Based on the experiments, we have seen that even if the starting force field is
bad, gradient based local optimizers are able to increase the fitness of the force
field drastically. Clustering similar geometries together to maximize the SIMD
parallelism while limiting the padding for alignment reveals high parallelism es-
pecially for single step evaluations. As it is described in Algorithm 3, by using
single step energy evaluation based approximations to the error function and
gradient information about the search space, we are able to decrease the con-
vergence time significantly with the help of GPU acceleration. This allows users
to generate the force fields in minutes. We have empirically showed that even
though the local optimizer is not fully aware of the geometry optimization, the
overall algorithm converges as the changes in parameter space becomes minimal
as the algorithm progresses. Besides that, auto-diff functionality enables the
study of the new functional forms for the various parts of the ReaxFF model
without explicitly implementing the force calculations and optimizer since both
forces and parameter gradients come for free.
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