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Abstract—This paper presents a three-dimensional (3D)
localization and attitude estimation system to track a
Unmanned Aerial Vehicle (UAV) using a single camera without
prior knowledge of the environment. The hardware system
consists of a Dynamic Vision Sensing (DVS) camera, a circle-
shaped blinking marker made by Light-Emitting Diodes
{LEDs), and a base station computer. The algorithm for spatial
localization and attitude estimation includes a temporal video
filter, triangulation-based location and attitude estimation,
and 3D real-time plotting with a graphical user interface (GUI). The temporal video filter processes the image stream from
the DVS camera to identify the frequency of the marker and removes the background image. The circle-shaped marker
creates an ellipse in the image, whose diameter length and angles are utilized for calculating the location and attitude
of the UAV, which offers a low-computing overhead. The proposed system has been evaluated in hardware flight testing.
The results are compared with the benchmark data from both the infrared motion capturing system for localization and
the on-board inertial measurement units of the UAV for attitude estimation. The accuracy and detection range surpasses
similar state-of-the-art systems. The proposed method provides a simple yet accurate solution for tracking the location

and attitude of a UAV.

Index Terms— Localization, attitude estimation, unmanned aerial vehicle, dynamic vision sensor.

l. INTRODUCTION

NMANNED Aerial Vehicles (UAVs) have been widely
U witnessed in applications that are either expensive or dan-
gerous for humans [1]. Examples of these applications include
but are not limited (o aerial photography, building safety
inspection, precision crop monitoring, weather surveillance,
and delivery [2]-[5]. In such applications, attitude estimation
and spatial localization of the UAVs are two critical tasks. Here
attitude estimation refers to obtaining the three-dimensional
(3D) orientation (i.e., roll, pitch, and vaw angles) of a UAV
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with respect to the local navigation coordinate system of the
UAV itself, while spatial localization is defined as the task of
acquiring the 3D location information relative to a reference
point, at which an observer or the base station is located.
These measurements are critical for UAV coordination and
control, especially in critical flight phases, such as take-off and
landing [6]. The system performing such tasks is expected (o
be operating in real-time while maintaining reasonable accu-
racy. Moreover, it should also be both reliable under various
scenarios and easy to operate by users or control interfaces.
Furthermore, since most mobile operations are supported by
batteries, low power consurnption is also an important require-
ment for quality system performance.

Conventional attitude estimation is usually achieved by the
inertial navigation system (INS) using on-board gyroscopes
and accelerometers [7], [8]. While INS provides a low com-
plexity solution, the integration of data from these sensors
is prone to drift due to error accumulation without external
corrections. In order to obtain long-term accuracy and stabil-
ity, attitude estimation is also obtained using the combined
solution of INS and the Global Positioning System (GPS).
Although the fused data from both INS and GPS can pro-
vide reliable and precise results for pose estimation, GPS
signals are not always available and its accuracy degrades
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in environments such as battle fields and urban canyons [9].
Moreover, the above methods are only for a UAV to obtain its
own attitude. If an observer or operator needs o estimate the
attitude of a UAV, it would rely on the wireless communication
link between the UAV and the observer, which is also not only
always reliable but also energy-consuming [10]. Therefore,
a direct attitude estimation method is preferred for an observer
to obtain the pose of a UAV without wireless communication.
Spatial localization of a UAV is also typically performed
using either onboard INS sensors or off-board sensing tech-
nologies, referred to as self-localization and cooperative local-
ization [I1]-[14]. Typical onboard sensors include GPS,
RF transceivers. and cameras, while off-board sensors usu-
ally rely on the infrastructure pre-installed in the working
environment, such as landmarks or motion capture systems,
The methods for spatial localization can also be categorized
into active and passive ones according to signal types and
communication directions [15]. In an active method, an UAV
generales signals, and an observer (base station) analyzes
and tracks the signal using certain sensing and processing
technologies, For example, the images or videos taken from a
UAV can be analyzed to find its location with the help from
known landmarks. In a passive method, an observer gener-
ates signals, such as images, videos, sonar signals, and radio
signals, to track the UAV location [16]-[18]. In applications
where a direct wircless data link between a UAV and its base
station is not available and reliable, it is expected to apply a
passive method to obtain the spatial location of the UAV.
Image-based localization and attitude estimation methods
have been attracting researchers due to the recent advancement
of image processing technologies. While an on-board image
sensor consumes significant power for image sensing, process-
ing, or transmitling, off-board vision-based localization and
attitude estimation methods have gained popularity in recent
years [19], [20]. This is because off-board sensing and process-
ing do not rely on the limited onboard power of a UAV. Typical
off-board vision systems in such applications use multilocular
sensors, i.e., sensors with more than one camera, which are
fixed at known locations. For example, a stereo vision system
uses two cameras [21] and certain localization methods would
need three cameras [22]. Monocular vision-based methods
have also been proposed, which use only one camera and
the known marker constellation on the UAV [23]-[25]. The
single-camera methods have a wider range of applications
such as using the follower UAV to track the leader AV,
In this paper, we focus on UAV spatial localization and attitude
estimation using a novel monocular vision-based method.
The main design considerations of the proposed monocular
vision-based UAV localization and attitude estimation systems
include detection range, detection accuracy, system power con-
sumption, system computing overhead, reliability, and com-
puting time [26], [27]. In typical design specifications [24],
[25], [28]. [29]. the accuracy of localization is on the level
of centimeters while the accuracy of attitude estimation is
usually about 5 degrees. In order to precisely analyze the
location and pose of the UAV using images and videos, the
sensor system should be able to operate within 30 meters.
Besides the above specifications, the hardware and software

methods should achieve real-time estimation. For example,
when a UAV is flying in slow motion at the level of around
I meter per second, the system latency should be less than
0.1 seconds to make sure the location accuracy is less than
10 em. This makes the challenge for the computing hardware
and processing algorithm since the input video data volume is
high. A simple algorithm is expected with lower computing
overhead to save the processing time as well as the computing
power,

In the application of optical localization and pose estima-
tion, one of the primary challenges is to locate the key com-
ponent of a UAV from the background image [30]. A typical
method is adding several Light-Emitting Diodes (LEDs) as the
markers on the UAV. The LED markers have unique colors and
form a constellation so that the image processing algorithm
can find them in the image. This paper applies a monocular
vision-based optical method for spatial localization and atti-
tude estimation using a circle-shaped blinking LED ring as
the marker on the UAV. The LED ring is blinking at a high
frequency to distinguish itsell from the background. We use
an event-based dynamic vision sensor (DVS) to capture only
the blinking marker from the image. The circle-shaped marker
helps in developing a low computing overhead (rigonometric
algorithm for localization and attitude estimation. Finally, the
system estimates the pose and the 3D location of the UAV
relative o the camera.

This paper extends from our prior work [23] of the
DV S-based optical localization system, which was validated
using still testing and short-range testing for localization.
The main unique contributions of this paper include (1) a
novel attitude estimation algorithm, (2) long-range localization
testing, and (3) improved optical image processing filters.
In specific, the attitude estimation algorithm uses the length
ratio between the major and minor axes of the ellipse in the
imape to calculate the roll and pitch angles, which is one of the
first algorithms proposed for monocular attitude estimation for
circle-shaped LED marker, to the best of our knowledge. Also,
the long-range testing of the localization method validates that
the proposed system can achieve reliable localization results
in a 25-meter range, which was not validated in our prior
publications. In addition, the optical filter algorithm has been
improved by using erosion-dilation filters to reduce random
noise from the background, which makes the systern more
reliable in the experimental environment. In summary, this
paper presents a comprehensive method and measurement
results for the proposed system that overcomes the problems
in our prior work.

The remaining of the paper is organized as follows.
Section IT introduces the related work of this paper, including
similar systems in the references and the sub-modules for
the system, as well as our prior publications. Section Ill
describes the related hardware implementation including the
sensor, the marker, and the computing device. Section IV
presents the software algorithm development including image
pre-processing methods and the algorithms for localization
and pose estimation. Section VI presents the experimental
results for both long-range localization and pose estimation.
Section VI1I discusses the advantages and shortcomings of this
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work as well as future work directions. Section VIIT concludes
this paper.

Il. RELATED WORK

The related work of the proposed system includes dynamic
vision sensors and monocular image processing algorithms for
UAV spatial localization and attimde estimation. A typical
optical method in such applications uses prior knowledge
of the markers attached to the UAV to obtain the attitnde
and location. The required prior knowledge includes the
shape, size, and color of the marker. The LEDs used on
the marker usually form a constellation with a special shape.
For instance, [25] presents an ultraviolet UV marker that
forms a hexagonal constellation for a UAV leader-follower
tracking application. Infrared markers are applied in [24] with
a pentagonal constellation. Nevertheless, the constellation of
the marker introduces ambiguity when solving the attimde of
the UAV, and it also increases the computing complexity since
lots of trigopnometric functions are involved. In addition, the
special color (UV/IR) chosen in these applications may be
interfered by environmental noise since it is possible that the
background also contains a similar UV/IR source. Therefore,
in our work, we focus on improving the sysiem performance
using new shapes and features of the markers for optical
localization and pose estimation,

Monocular vision-based UAV tracking systems have gained
popularity compared to multi-camera systems [19]. For
instance, a monocular vision sensor is combined with Radio
Frequency Identification (RFID) and to track 3D location
using 2D images with triangulation-based method in [31]. [32]
focuses on robot pose estimation using a high frame rate cam-
era and graphic processing units (GPU) running a monocular
vision algorithm. The primary challenge in these methods is
that they rely on image processing algorithms with a high com-
puting overhead since the input image data have large sizes.
One possible solution is to shift some computing tasks into the
image sensor, such as in DVSs. DVSs have been widely used
in high-speed real-time object tracking applications [33], [34].
A DVS directly records the location of the pixel that has its
value changed above a certain threshold without performing a
rolling shutter like in a regular camera [35], [36]. This provides
a unique feature of obtaining the temporal difference image
while saving comparing time and sensing cnergy. With this
feature, only moving objects are captured in the image while
the background image is removed, which provides an effective
means for UAY tracking with both spatial localization and
attitude estimation. In this paper, we apply a monocular DVS
for real-time UAV spatial localization and attitude estimation.

In our prior work [23], we have demonstrated the solu-
tion of using a circle-shaped LED ring to perform spatial
localization of a UAV. Temporal difference image processing
was applied to identify the blinking LED circle from the
background image. Since the diameter of the circle marker,
which has a known length, can always be seen as the major
axis of the ellipse in the image, the diameter of the circle
can be applied as a reference length to translate the physical
distance into the number of pixels in the image [28]. We also
proposed correction algorithms to improve the robustness of

the proposed method [29]. However, since the processing
speed of a regular image sensor is too slow, no dynamic flight
testing was performed in [28], [29]. The results of [24], [25]
were obtained from drone hovering using a webcam and offline
processing. For real-time dynamic flight tracking, there are sig-
nificant challenges to implementing the proposed localization
algorithm on hardware. These challenges come trom the image
sensor processing speed, the processing time of the localization
algorithm, and the time for plotting the trace. Although [23]
achieved low-speed flight testing, the UAV was flying within
a 5-m distance to the camera. No long-distance testing was
made and no algorithm for attitude estimation was presented.

Compared to other similar works [24], [25], our proposed
method avoids potential noise interference from other infrared
sources in the background image. This is because the proposed
system applies a temporal image filter to maitch the blinking
rate of the LED marker. Since the temporal filter is targeting
at a specific blinking frequency, in a natural environment,
it would be a much lower probability to have a noise source
with the same blinking rate of the LED marker, compared to
the chance of having a noise source with a similar spectrum
of the color-based marker such as UV/IR/RGB-based markers,
Another advantage of the proposed system is that the algo-
rithm for localizing the circle-shaped marker demands a lower
computing overhead than a marker constellation. Therefore,
in this work, we demonstrate a DVS-based monocular vision
system using blinking LED markers and temporal image filters
to achieve simultaneous UAV localization and attitude estima-
tion. The detailed methods that achieve reasonable accuracy
with low compuling overhead are presented in the following
sections.

Hl. SYSTEM IMPLEMENTATION

The sensing system consists of the circle-shaped blinking
LED marker attached to the UAY, the DVS camera, and a base
station computer connected to the DVS camera. The frequency
of the blinking LED marker is controlled by a microcontroller
on the UAV. The DVS camera tracks the targetl that blinks
at the frequency of the marker using the temporal image
fillers implemented in the base station computer. By locating
the marker LED ring, the spatial location and the attitude
estimation are then performed using trigonometric algorithms
in real-time.

A. Dynamic Vision Sensor

In this system, we applied a Celex4 dynamic vision sensor
developed by Hillhouse Technology [37] as the main image
sensor, illustrated in Fig. 1 (A). The DVS generates a stream
of pixel events using the address-event representation format.
A pixel event is recorded only when the same pixel has a
difference in the values of two consecutive readings and the
difference value is higher than a pre-defined threshold. This
is performed wsing a pixel-level circuit that always subiracts
the pixel valoes from their prior values and compares the
difference with the threshold. The DVS can achieve an event
rate of up to 500 frames/second that provides the map of
pixels with significant changes between every consecutive two
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Fig. 1. (A) Picture of the Celexd event camera, retrieved from celapixal
sdk manual [37], (B) Picture of 37 millimeter VAR cut filter placed in
front of the event-camera, (c) Camera Setup.

Fig. 2 Graphical User Interface of the Celex Dynamic Vision Sensor
showing both normal imadge and temporal difference imadge of the binking
LED Marker.

Fig 3 Picture of UAY with blinking LED marker ring.

trames. This feamwre is important for saving the computing
overhead for the following image processing algorithm. In our
implementation, an optical UV/IR cut filler is applied to
remove infrared noise from the background, as shown in
Fig. 1 (B). The DVS camera is connected to a Spartan-6
FPGA board XEM6301 developed by Opal Kelly Inc. through
a Universal Serial Bus (USB) 3.0 interface. The system setup
is shown in Fig. | (C) The system can display both normal
and temporal-difference images using the GUI as shown in
Fig. 2. In the experimental setup, the event frame time of the
DV5S camera is set at 4 ms.

B. Markers and Base Siation

The marker installed on the UAV is a circle-shaped LED
tube with a two-feet diameter, as shown in Fig. 3. The LED
marker is powered and controlled by an Arduino Nano Micro-
controller Board that can provide a current of 100 mA. The

pre-designed blinking frequency is set at 40 Hz. The blinking
frequency and the known diameter of the LED circle pro-
vide essential data for the image processing algorithms to
perform spatial localization and attitude estimation. There are
several important advantages of using this blinking LED ring
compared to the LED constellation using UV/IR. Firstly, the
DVS can easily remove the background image and identity
the LED ring using a counter-based temporal band-pass image
filter. It is more robust than UV/R because the background
imape is less possible to contain an object that has the same
blinking frequency. Secondly, the diameter of the ring can be
easily translated into the number of pixels in the image to
calculate the UAV altitude and the distance between the UAY
and the camera, which greatly reduces the computing overhead
compared with the methods using a marker constellation.
The blinking LED marker generates additional weight on the
UAV, which results in additional power consumption, like in
other active localization methods that use optical markers. The
weight of the LED ring plus the frequency control circuil in
our proposed system is only 80 grams, which is 6.6% of the
total weight of the UAV (1200 grams). Note that the weight
of such devices could be significantly reduced by using lighter
malerials and a refined design. In addition, the LED ring could
be powered oftf when not used for localization.

The base station in the proposed system is a desklop com-
puter running Ubuntu 16 LTS that implements the image filter
algorithms as well as the localization and pose estimation
algorithms. The base station also performs real-time plotting
of the 3D location of the UAV with the roll and pitch angles
in a GUL, which is written by C++. The base station runs
two threads: one is for the image filters and the other is for
calculating spatial localization and pose estimation parameters.
The measured latency of the base station processing is less
than 100 ms.

V. PROCESSING ALGORITHM

A. Image Filters

The image processing algorithm running on the base station
detects the LED ring from the input image of the dynamic
vision sensor and calculates the spatial location and attitude
of the UAV. Multiple image filters are applied to perceive
the blinking pattern of the LED ring while removing the
background image and noise pixels, which are elaborated in
the first subsection. The output of the image filters is an
ellipse that represents the LED marker. The most top, bottom,
left, and right points of the ellipse are applied to calculate
the location and attitude of the physical marker ring using a
trigonometric algorithm presented in the second subsection.
The image filters and geometry algorithms are running in
parallel in the system. The final output of the program is the
real-time 3D tracking and attitude angles that display on a
GUL The software system is programmed in C4+ running
on a Linux computer. The computation was performed on a
CPU since the current version of the Celex camera does not
compatible with the GPU on the base station,

The image filters include the temporal band-pass fil-
ter, the corrosion-dilation filter, and the output medinm filter.
The input of the image filters is the event-stream generated
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Fig. 4. Binary images obtained from temporal band-pass filter with
marked left, nght, and center points of target. (4) The UAY 15 about level
with the event camera. (B,C) The UAY is below the event camera and the
ring of LEDs is visible. (D) The LAY is at a slighthy higher alfitude above
the camera.

Optical Tempotal Filter Flaw Diagram |

Input Bufier Madian Filtar Dulation
~ Marker pixels
thaart fit im the
blinking =
frequency
range

Fip 5 Flow diagram of eveni-imags processing.

Event Image Pracassed Imege
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trom the DVS, which contains all the pixels whose temporal
difference value is beyond the preset threshold. The temporal
band-pass filter processes the event stream and identifies the
pixels that belong to the blinking LEDY marker. This is per-
formed using prior knowledge of the blinking rate of the LED
marker. In our design, if a pixel is consistently blinking in
a certain frequency range that covers the blinking frequency
of the LED marker, we then consider this pixel belongs to
the LED marker. Otherwise, the pixel is removed by the
image filter. The output image of the temporal band-pass filter
contains the image of the LED marker and some random
noise pixel values. The corrosion-dilation algorithm is used
to remove the random noises. After that, the key points of
the marker ellipse are obtained for calculating the location
and attitude of the UAV. The key points include the most top,
bottom, left, and right pixels of the ellipse. The medium filter
tracks the location of the key points. If some of the key points
move too fast, the result is considered as the wrong detection
and removed by the medium filter. This guarantees that the
image processing algorithm is robust o noise pixels from the
dynamic vision sensor. Example outputs of the image filters
are shown in Fig. 4.

The detailed structure and operation of the image filters
are shown in Fig. 5. Since the image filters are expected to
identify the frequency of the blinking I ED) marker, the image
sensor should have a higher sampling rate than the blinking
frequency. To identify each on and off phase of the LED
marker, the sampling rate should be twice the blinking tfre-
quency. Since the events are generated by subtraction between

consecutive frames in the DVS, the total sampling rate of the
DWVS is at least four times the blinking frequency. Moreover,
during flight testings, the moving UAV requires an even faster
sampling rate for real-time tracking. The input image frames
from the DVS camera are stored in a fixed-size buffer. The
buffer is a First-In-First-Out memory that works as a sliding
window. All the frames in the window are added together by
each pixel to form a combined frame. A pixel that blinks more
frequently in all the frames has a higher value in the combined
frame. The pixel value in the combined frames is compared
with upper and lower threshold values, which serves as the
blinking frequency selector or a temporal band-pass filter.
It only selects the pixels thal the blinking frequency is between
the two frequency thresholds. The background image and noise
pixels that do not meet the blinking frequency requirement are
fillered out by this temporal band-pass filler.

Algorithm 1 Temporal Band-Pass Algorithm

I: procedure TRILTER(bulTer, bulTerFull)

2:  if bufferFull then e If buffer is full, then threshold
L

3 img =2 iMZpuffer
0

- images are binary

4 if a_morum of events is within the threshold then
5 set given pixel to |

[ else

7 set given pixel to 0

: end if

9 end if

1k Post Processing on Image

11: img = medianBlur{img, kernelSize)

122 img =dilation(img, struct Element)
13:  return img e Image Forwarded to 3D localization
14: end procedure

The temporal band-pass filter has a set of design parameters
including the length of the sliding window and the frequency
threshold. These parameters can be adjusted by the sampling
rate of the DVS camera, the blinking frequency of the LED
marker, and the expectation of the system latency. For instance,
with an & frame/sec sampling rate of the DVS camera, if the
length of the sliding window is W frames, and a pixel in the
combined frame has a value of n, which means n events in W
frames, the estimated event rate is N # n/W events/sec, and
the blinking rate of the pixel is N&n/2W Hz. We note that the
clocks between the DVS camera and the LED marker are not
synchronized, the blinking measurement may vary between
different sliding windows. Therefore, we apply two frequency
thresholds to decide if the blinking rate is within the target
range. A longer length of the sliding window results in a higher
frequency resolution of the detected event rate but causes a
longer latency in the system. If the shorter window length may
introduce more noise pixels in the image, which may affect
the accuracy of the localization and attitude estimation.

In our design, the sampling rate of the DVS camera is set
at 250 frames/sec, while the blinking frequency of the LED
marker is set at 40 Hz. The window length is 20 frames to
assure that the total processing latency is less than 0.1 seconds.
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v LED ring Firstly, the center of the target circle in the image is obtained
XT VT s
Ve a XL X, Xo = (XL +Xg)/2 (1)
Al Y = & Yo = (YL + Yr)/2 (2)
= J
s LED ring Then the azimuth angle ¢¢ can be calculated using the follow-
ﬂ: g:t g pr — ing equations: .
Camera = tang = —= (3)
(a) (b) §
vk ) where [ is the focal distance of the image sensor, which may
r LEU g not be known exactly since we can apply another equation for
- bl papacus =4 the horizontal FOV @ and the width of the image in pixel L
5} = —
= g T L2
LED ri =
i Lens) < 8 . Using Equations (3) and (4), we can cancel f and have the
- L pixels ' £z tangent value of azximuth angle ¢
ic) (d} tan{$) = 2 - Xo - m (5)
X1 YT | Xo YT XR Similarly, the elevation angle & can be obtained as
i a8 . ol x yr tmn@) = 2. ¥ - TO/2 (6)
= b = H
;’ Xg Ya—2 —1 ;' y Xo, _!r"ﬂ Finally, the radial distance, p, which is the distance between
I | LED ring LED ring the centroid of the target ring and the lens of the camera is
; I obtained as
L pixel ixels
pixels pix p2=(E~L]2'(1+#) )
(&) {f) 2 |Xo—Xgl tan” g

Fig. 6. Caleulaion of localizaton and attitude angles. (a) Geometry for
localization and atiitude estimation, (b) Measurement of the key points,
() Estimation of the roll angle, (d) - (f) Estimation of the pitch angle.

The output of the image filters is sent to the trigonometry
algorithm module for calculating spatial localization and atti-
tude parameters, The program runs a two-threading process
s0 it can perform image filtering and geometry calculation
concurrently.

B. Spatial Localization

The geometry localization method has been proposed and
implemented in [28]. As shown in Fig. 6 (a), the camera takes
images of the LED marker circle located at a spherical coor-
dinate location (radial distance p, inclination angle!, azimuth
angle ). In a real application, key system parameters can be
measured and obtained, including the physical diameter of the
LED circle, D, the horizontal field of view (HFOV), @, and
the vertical field of view (VFOV) of the camera, ®&. In the
image of the LED circle as illustrated in Fig. 6 (b), assuming
the target has a horizontal attitude relative to the camera, the
image of the circle becomes a horizontal ellipse. The leftmost
pixel and the rightmost pixel locations are (X, ¥p) and (X g,
¥g). Assume that the image has L pixels in width and H pixels
in height, vusing the known parameters (@, @, D, [, H) and
the measured parameters (Xy, ¥p, Xg, Yg) from the image,
the location of the target circle {p, #, ¢¢) can be calculated as
tollows:

MNote that the above calculations actually do not include
computing triangulation functions since tan @ and tan & are
constants and can be obtained before computing, this greatly
saves computing overhead. However, in order to evaluate
errors and compare them with other references, we can convert
the spherical coordinates to Cartesian coordinates using the
following equations:

x = p#*sing =cosd
¥y =p*sind (8)

Z =p#*cos¢ % cosd

C. Aftitude Estimation

The attinde of the UAV is calculated using the image
of the circle-shaped marker implemented on the UAV. Since
the DVS obtains only the image of the blinking marker, the
circle-shaped marker projects an oblique ellipse in the image
as shown in Fig. 6 (a). When the UAV is flying or hovering
horizontally, the major axis of the ellipse is parallel to the
horizontal axis (x-axis) in the image. The pixel location of
the top (X7, ¥r), bottom (X g, ¥g), left (X, ¥r), and right
{(Xp, Yg) of the ellipse in the image can be easily obtained
as shown in Fig. 6 (b). These points are used to estimate the
attitude of the marker. The roll angle, r. can be calculated as
the ratio between the horizontal distance and vertical distance
of the two terminals on the major axis of the ellipse, as shown
in Fig. 6 (c) as:

Ypr—¥1

Xz — X1 (%)

an(r) =
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We note that with a roll angle, the most left and right pixels
of the ellipse in the image are nol exactly the terminals of the
major axis of the ellipse. However, when the roll angles are
not large, the most left and right pixels can still be applied for
approximation in order to reduce the processing power.

The pitch angle is measured using the ratio between the
major-axis radius and minor-axis radius of the ellipse in the
image. First, we consider a simple scenario that the UAV is
located on top of the camera and both roll and pitch angles are
zero. In such a case, the top pixel (X, ¥r), and the bottom
pixel (X g, ¥p) can be directly obtained from the image to
measure the radius along the y-axis b while the radius along
the x-axis a is obtained from the most left pixel (X, ¥ ) and
most right pixel (X p, ¥g) as shown in Fig. 6 (d). Since the
marker has a circle shape, the ratio between I and a is related
to the inclination angle # when the plane of the marker is
parallel to the ground. Based on Fig. 6 (d) and (e), we have:

b ¥Yr —¥p (10)

tan(f) = — = ———
©) e Xp— X1
since the inclination angle can also be obtained using the
center location X g, the vertical angle of view 8, and the total
number of pixels in the height H [28].
tan({@ /2
(©/2) -
H
Therefore, we can obtain the radius & when the pitch angle is
ZEID

lﬂ.ﬂ{ﬂ_} =2.¥g-

2.b=tan(@) - (Xg — X1) (12)

When the pitch angle is not zero, the radius b of the ellipse has
an additional value of &' as shown in Fig. 6 (d). & is related
to the pitch angle p. We have

2.0 =Yr—Yg—2-b (13)
from the above equations, we can obtain the pitch angle as:
Yr —VYp tan{&,2)
t =— —2.Yp - ——— 14
an(p) Xz _ X, o H (14)

The above pitch angle calculation is only valid when the roll
angle of the UAV is zero. When the UAV has both non-zero
pitch and roll angles, the axes of the ellipse in the image
are not parallel with either the x-axis or y-axis, as shown in
Fig. 6 (). In such a case, the roll angle is calculated using the
same method presented in the prior paragraph. The calculation
of the pitch angle is modified since the short radius £ can not
be directly obtained from the top and bottom pixels of the
ellipse. In such a case, we use the most left and right pixels
to obtain the center location of the ellipse in the x-axis (X o).
then we search the top and bottom pixels on the ellipse that
has the x-axis value of X o, which are noted as (Xp, ¥;) and
(Xo, }’L}. Then the short radius of the ellipse is obtained with
a small-angle approximation

tan’(r)
2

Yr - ¥s = cos(r) - (% — Yy = (1 - 2Dy oy vy

(135)

Then we can obtain the pitch angle using Equations (14)
and (15).

While the temporal image filter algorithm and the
triangulation-based algorithm are able to calculate the spatial
location and attitude of the UAV, several non-ideal effects
should be noted to avoid glitches in the system. Firstly,
although the background image has a low chance to have an
object that blinks at a similar frequency to the LED marker,
it is still possible that several noise pixels could appear, which
could be from the reflection of the LED light. Secondly, since
the UAV is moving, if the moving speed is too high, the DVS
camera may not be able to detect the blinking marker since the
pixels of the marker in the video stream changed its location
in the image. Thirdly, the finite resolution of the image limits
the detection accuracy, especially when the UAV is far away
from the camera. In that case, the diameter of the marker in the
image occupies fewer pixels, which may affect the calculation
of the triangulation functions. Also, the distortion of the object
near the edge of the image due to optical imperfectness may
also cause larger errors when the UAV is near the edge of
the image. To address the aforementioned issues, the Kalman
filter could be introduced in future work so that the noise pixels
from the background would not affect the calculation [38]. The
speed limit can be improved by using a DVS camera with a
higher sampling rale, such as Celex 5 [39]. A higher resolution
camera may alleviate the finite resolution problem to reduce
errors and extend the detection range. The distortion correction
method in [29] can be applied to correct edge distortions of
the camera.

Like similar recent work in UAV attitude detection [23], the
above attitude estimation algorithm only addresses the roll and
pitch calculation. The estimation of the yaw angles was not
addressed simply because the circle-shaped LED} can not be
applied to find the “nose™ of the UAV. In order to estimaie the
yaw angle, the marker can be modified so that the “nose™ LED
of the UAV could be distinct in the LED ring. There are several
methods that can be wsed to achieve this. For example, the
“nose” LED may be applied in a different color or blinking at a
different frequency. Another method would be adding a special
shape, for example, a radium stick pointing to the “nose™ pixel.
Each of these methods would need the modification of the
signal processing algorithm.

V. ERROR ANALYSIS

The localization and attitude estimation errors come from
various sources in the system. The first error source is the finite
resolution of the camera. Due to the finite resolution, the edge
pixel location of the LED ellipse in the image is not able to
precisely map the true location of the ellipse edge of an ideal
image, which creates errors for both localization and attitude
estimation. The relative errors increase when the UAV is far
away from the camera, which causes small total number of
pixels of the LED ellipse. The second error source comes from
the finite sampling speed of the camera and the moving speed
of the UAV. The finite sampling speed may introduce errors
when the UAV is moving too fast. This error also increases
when the UAV is far away from the camera while the relative
size of the LED ring is small in the image. In addition, the
errors from system parameters such as the error in O, HF OV,
and VFOV may also contribute to errors. These errors plus
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other environmental noise create a complicated problem for
estimating the errors of the system.

Theoretical error analysis can be performed by focusing
on the measurement errors due to the finite resolution of
the camera. Since the measured pixel location is not able to
precisely map the actual physical location of the LED ring,
we can model such an error as a “single-pixel™ error since the
error is within a one-pixel range in the image. In the worst
case, the mean squared error (MSE) of pixel readings is set
as 1" for Xy, Xpg, ¥, and ¥Yg. The MSE of the center pixel
location is then estimated as

B
*(Xo) = 3 [2X) +o2Xw| =1 (16)

a

1
o2(Yo) = 5 [02(0) + o2 ()| =1 a7

where a2(X 1), o2(Xg), a2(¥y), and o 2(Yg) are the MSE of
the pixel locations of Xy, Xp. ¥, and ¥p, respectively, which
are all estimated as “1" pixel. The MS5Es of the tan(f) and
tan{¢) are then estimated as

a{tamﬁ.}:z-m.a(xm:z-“‘"lﬂ (18)
d{lmﬂ}:z-w-affg}zl-w (19)

Theretfore, larger resolution (L and H) can reduce the error
of the measurements in the azimuth and elevation angles.
From (7), the MSE of the radial distance is estimaled as

D? % 1 2 o (sind)
2 o
’ @}_T[(x_ﬂ) +(xl'.—x£) i

sin’ @
When the UAV is far away from the camera, the diameter of
the LED ring in the image becomes small. A smaller | X —Xg|
resulls in a larger relative error. From (9), the MSE of the roll
angle can be estimated as

. 1 \? 1 2
a {tan{r}}:(yﬂ_n) +(XR—X;.) 21y

From (14), the MSE of the pitch angle can be estimated by
(22)

(20)

o2 (tan(p)) = &2 (tan(r)) + o * (tan(d))

While a theoretical error analysis could be performed,
we have performed a detailed error estimation and correction
methods and published the resolis in [29]. In this work,
we focus on the error from the experimental results, which
shows that the relative error is acceptable for localizing the
target application while estimating the attitude without using
Wi-Fi or a GPS network. The primary solutions to alleviate
the above errors include increasing the resolution of the cam-
era and using high-speed cameras. Moreover, the coordinate
system is referred to the location of the camera as the origin,
which is moveable. There could be drift during the tracking
process, therefore, applying the Kalman filter can improve the
reliability of the tracking system. Due to the limited space of
the paper, the experimental results of Kalman filters and the
Cramer-Rao bound of the estimators will be presented in our
future works.

Fia. 7. Experimental environment for real-time 30 localization testing,
where a fiying quadcopter was being fracked by both a motion-capture
system and a single dynamic vision sensor running the proposed tem-
poral 30 localizabon algorthm

ey ew Wik oLy 0

PFolion 0070 18T 139
Al 814 Pty 3480

Fio 8 The Graphical User Interface (GUI) developed for tracking
localization and attitude estimation.

VI. EXPERIMENTAL SETUP AND RESULTS

The proposed spatial localization and attitude estimation
system is first characterized in a motion-capturing (MOCAP)
lah. The results from the proposed system are compared with
the localization results obtained from the MOCAFP system that
uses 10 infrared cameras with reflection markers, as well as
the attitude data recorded by the onboard sensors of the UAV
as benchmarks. The MOCAP flight testing arena has a size
of 8 meters in length and 6 meters in width, as shown in
Fig. 7. Our developed GUI plots the 3D location and displays
the location coordinations and attitude angles in real-time as
shown in Fig. 8. Since the MOCAP system uses infrared,
which would interfere with the Celex DVS, an optical UV/IR
band-pass filter was applied to the Celex camera. During the
testing, the MOCAP system tracks the spatial location using
the infrared reflectors attached to the UAV and the Celex
Camera, 50 that the relative location can be referred to the
Celex DVS camera as the origin. The Celex DVS camera
tracks both the spatial location and attitude of the UAV using
the blinking LED marker. The onboard inertial measurement
units of the UAV are applied to track the attitude (roll and
pitch) in real-time and compared with the result from the
DV 5-based sensors,

To evaluate the error of the proposed system, the calcu-
lated spatial localization data from the single-camera system
were subtracted from the benchmark data from the MOCAP
system to obtain the error of spatial localization. Similarly,
the attitude data were compared between the results from the
single-camera system and the recorded data from the onboard
IMU as the benchmark. The errors were then divided by
the benchmark data to obtain the relative error. In spatial
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Fig. % Expenmental results of the localization system (&) 3D traces fracked by the proposed DVS system and the benchmark VICON system (unil
in meters). (B) The relative emor with respect to the coordinates. (C) The relative emor over distance. (D) The UAY welocity during the testing.

localization, the relative error was evaluated by the flight time,
the overall distance between the UAV and the Celex camera,
and the relative error for each axis. Here the x-axis refers to the
horizontal direction, while the y-axis is the vertical direction.
Since the Celex camera was mounted on a tripod above the
ground, a negative y value means the UAV is below the Celex
camera. In each axis, the average error was below 6% for
the trial. The highest error is on the x-axis when the UAV is
moving horizontally.

In Fig. 9 (A}, the proposed single-camera temporal filtering
localization 3D traces are plotted in correspondence with the
Mo-Cap traces. The 3D traces from the proposed method
align with the benchmark traces retrieved from the MOCAP
system. The proposed system can capture the UAV trajectory
and accurately identify the 3D location in real-time (100 ms
latency) relative to the camera’s position. Fig. 9 (B) presents
the errors. The error appears to be relatively larger when the
UAV was making a sharp turn or at a higher velocity. This
measurement depends on both the most X-axis and Y-axis
edge locations of the markers. The scatter plots in Fig. 9 (C)
show the relative error over distance. The distance between
the UAV and the camera (p) ranged between 2 and 5.5 m,
which is limited by the space size that the MOCAP system
covers. Fig. 9 (D) presents the 3D Aight speed over time in
the experiment. It has been experimentally shown that the
system can effectively detect or generate data when the UAV
is hovering and located at a distance of 30 m or less from
the sensor [28], [29]. It is worth noting thal when the UAV is
in motion, the temporal difference image processing method
is affected by both the blinking rate of the marker and the
moving speed of the object. Therefore, the sensor is prone to
miss a few frames randomly. In our experiments, a reliable

TABLE |
SYSTEM PARAMETERS AND EXPERIMENTAL PERFORMANCE OF THE
PROPOSED LOCALIZATION SYSTEM

Svstem Parameler Experimental Performancs
Sensor ) Localization
Resolution 768 > 640 picl Accuracy <6%
Sensor Detection
Dynamic Range a8 Range e 250m
Sensor 250 Flight
Frame Rate frames/sec Speed <2 mis
Deskiop AMD Ryoen 7 Deetection 10 Hz
CPU 2700 B-core Rate

localization was observed when the target is moving at a
speed of about 0.5 m/fs, and at a distance of 20 m from the
event-based sensor. This experimental result is presented in
Fig. 10. The attitude measurement results compared with the
benchmark data from IMUs are shown in Fig. 11,

Vil. DIscuUsSION

By comparing the experimental resulls obtained from the
proposed single camera system and the benchmark results
from the MOCAP system, we notice that the single-camera
system performs an accurate tracking of both spatial local-
ization and attitude of the UAV. The main advantages of
the proposed system include the usage of a single camera
and the low-complexity processing algorithm for simultaneous
localization and attitude estimation using pixel locations of the
imape and the prior measured physical parameters of the LED
ring and the camera system. This is achieved by the tempo-
ral image filter and the circle-shaped LED marker. Table 11
compares the proposed system in this paper and recently
published similar systems. The proposed system achieved a
longer range of detection and a lower relative error compared
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_—1re . — Number i P ;
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0 ,:;P Shape Constellation Consiellation
— 23 : Temporal Particle Filter & .
o - 2 m’m‘:t'lnrg Filter & Optical | Pose Estimation e metle
1 S gort Localization PFMPE Calculsumn
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Fig. 10, Expernimental results of long-distance real-time dynamic testing
around 20 m {z-direction} in three directions. Left: 3D frace of the LAY
and the benchmark,; Right: the velocity for the testing in each direction.
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Fig. 11. Experimental results attitude measurement compared with

benchmark data from IMUS.

with other methods. Since our system is using the temporal
image filter to match the blinking rate of the marker instead of
using a color filter, it reduces potential noise interference from
the background that contains a similar color to the marker.
The additional advantage of lower computing overhead is
obtained by the built-in pixel-wise computing feature of the
DVS imager.

The main challenges of the current system come from the
limited resolution of the DVS imager and the processing time

of the image filters. The finite resolution creates the restriction
of accuracy while the processing time determines the max-
imum speed of the UAV that the system can track. In the
future, we plan to apply a higher-speed DVS camera to solve
the above problem. Moreover, by modifying the circle-shaped
LED marker and the related algorithm, we are designing
the yaw-angle estimation method. Furthermore, we are going
to apply a Kalman filter to alleviate the motion effects for
tracking high-speed UAVs. Another option for performing
the localization and attitude is to perform ellipse detection
algorithms [40]-[42] in the processing unit, which can directly
capture the ellipse shape from the image. The computing
complexity, reliability, and processing time are currently under
our investigation.

VIll. ConcLusiOoN

In this paper, we presented a single camera method for
tracking the 3D location and attitude of a multi-copter
Unmanned Aerial Vehicle (UAV) based on a dynamic vision
sensing camera and a circle-shaped blinking LED marker.
The algorithm applies a temporal band-pass filter for image
processing and a triangulation-based method for localization
and attitude estimation. The signal processing system has a
low computing overhead thanks to the circle-shaped marker.
The fight-testing experiment results show that the proposed
system has a long detection range and high accuracy compared
with similar methods. Since the proposed system uses only one
camera, il has the potential to be applied to low-power mobile
applications for tracking UAVs without a direct wireless data
link. In the fumre, we plan to include the estimation of the
yaw angle using a modified circle-shaped marker and remove
motion effects on event noise using Kalman filters.
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