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We st u d y t h e  b e h a vi or  of err ors i n t h e  q u a nt u m si m ul ati o n  of s pi n s yst e ms   wit h l o n g-r a n g e   m ulti b o d y

i nt er a cti o ns r es ulti n g fr o m t h e   Tr ott er- S u z u ki  d e c o m p ositi o n  of t h e ti m e- e v ol uti o n  o p er at or.   We i d e ntif y

a r e gi m e   w h er e t h e  Fl o q u et  o p er at or  u n d erl yi n g t h e   Tr ott er  d e c o m p ositi o n  u n d er g o es s h ar p c h a n g es e v e n

f or s m all  v ari ati o ns i n t h e si m ul ati o n st e p si z e.   T his r es ults i n  a ti m e  e v ol uti o n  o p er at or t h at is  v er y  dif-

f er e nt fr o m t h e  d y n a mi cs  g e n er at e d  b y t h e t ar g et e d   H a milt o ni a n,   w hi c h l e a ds t o  a  pr olif er ati o n  of  err ors

i n t h e  q u a nt u m  si m ul ati o n.   T h es e r e gi o ns  of  s h ar p  c h a n g e i n t h e  Fl o q u et  o p er at or,  r ef err e d t o  as  str u c-

t ur al i nst a bilit y r e gi o ns,  a p p e ar t y pi c all y  at i nt er m e di at e   Tr ott er  st e p  si z es  a n d i n t h e   w e a kl y i nt er a cti n g

r e gi m e, a n d ar e t h us c o m pl e m e nt ar y t o r e c e ntl y r e v e al e d q u a nt u m c h a oti c r e gi m es of t h e   Tr ott eri z e d e v o-

l uti o n [ L.   M.  Si e b er er et  al. n pj   Q u a nt u m I nf.  5,  7 8 ( 2 0 1 9);   M.   H e yl,  P.   H a u k e, a n d  P.   Z oll er,  S ci.   A d v.  5,

e a a u 8 3 4 2 ( 2 0 1 9)].   We  c h ar a ct eri z e t h es e str u ct ur al i nst a bilit y r e gi m es i n p -s pi n   m o d els, tr a ns v ers e- fi el d

Isi n g   m o d els   wit h all-t o- all p - b o d y i nt er a cti o ns, a n d a n al yti c all y pr e di ct t h eir o c c urr e n c e b as e d o n u nit ar y

p ert ur b ati o n t h e or y.   We f urt h er s h o w t h at t h e e ff e cti v e   H a milt o ni a n ass o ci at e d   wit h t h e   Tr ott er  d e c o m p o-

siti o n  of t h e  u nit ar y ti m e- e v ol uti o n  o p er at or,   w h e n t h e   Tr ott er  st e p  si z e is  c h os e n t o  b e i n t h e  str u ct ur al

i nst a bilit y r e gi o n, is  v er y  di ff er e nt fr o m t h e t ar g et   H a milt o ni a n,   w hi c h  e x pl ai ns t h e l ar g e  err ors t h at  c a n

o c c ur  i n  t h e  si m ul ati o n  i n  t h e  r e gi o ns  of  i nst a bilit y.   T h es e  r es ults  h a v e  i m pli c ati o ns  f or  t h e  r eli a bilit y

of  n e ar-t er m  g at e- b as e d  q u a nt u m  si m ul at ors,  a n d  r e v e al  a n i m p ort a nt i nt er pl a y  b et w e e n  err ors  a n d t h e

p h ysi c al pr o p erti es of t h e s yst e m b ei n g si m ul at e d.

D OI: 1 0. 1 1 0 3/ P R X Q u a nt u m. 3. 0 1 0 3 5 1

I. I N T R O D U C TI O N

A  pri m ar y  a p pli c ati o n  of  q u a nt u m  c o m p ut ers  is  si m-
ul ati o n  of  q u a nt u m   m a n y- b o d y  s yst e ms  t h at  ar e  cl as-
si c all y  i ntr a ct a bl e.   Q u a nt u m  si m ul ati o n  h as  a p pli c ati o ns
i n  a   wi d e  v ari et y  of  fi el ds  s u c h  as  q u a nt u m  c h e mistr y
[3 ,4 ], hi g h- e n er g y p h ysi cs [5 ,6 ], c o n d e ns e d- m att er p h ysi cs
[7 ,8 ],  a n d  q u a nt u m   m a c hi n e l e ar ni n g  [9 ,1 0 ].   T h e  d e vi c es
of  t h e  c urr e nt  er a,  c h ar a ct eri z e d  b y  i nt er m e di at e  s yst e m
si z e  ( o n  t h e  or d er  of  1 0 0s  of  q u bits)  a n d  l a c k  of  f ull
f a ult-t ol er a nt  err or  c orr e cti o n,  ar e  r ef err e d  t o  as  n ois y
i nt er m e di at e  s c al e- q u a nt u m  ( NI S Q)  d e vi c es.   T h e  g o al  of
NI S Q- er a  d e vi c es is t o  p erf or m l ess- d e m a n di n g t as ks t h a n
r e q uir e d  f or  u ni v ers al  q u a nt u m  c o m p ut er,  b ut  o n es  t h at
c a n  still  s ur p ass t h e  c a p a bilit y  of t h e  cl assi c al  c o m p ut ers
[1 1 ,1 2 ].   R e c e ntl y,  t h er e  h a v e  b e e n  a  n u m b er  of  st u di es
a b o ut  a c hi e vi n g  q u a nt u m  a d v a nt a g e  i n   NI S Q  d e vi c es  i n

* k c hi n ni @ u n m. e d u

P u blis h e d  b y t h e   A m eri c a n   P h ysi c al  S o ci et y  u n d er t h e t er ms  of
t h e Cr e ati v e   C o m m o ns  Attri b uti o n 4. 0 I nt er n ati o n al li c e ns e.  F ur-
t h er  distri b uti o n  of  t his   w or k   m ust   m ai nt ai n  attri b uti o n  t o  t h e
a ut h or(s)  a n d t h e  p u blis h e d  arti cl e’s titl e, j o ur n al  cit ati o n,  a n d
D OI.

t h e c o nt e xt of q u a nt u m si m ul ati o n [7 ,1 3 – 1 6 ], o pti mi z ati o n
[1 7 ], a n d s a m pli n g [1 8 ].

T o  i m pl e m e nt  q u a nt u m  si m ul ati o n  i n  a  g at e- b as e d
ar c hit e ct ur e,  a  c o m m o n  a p pr o a c h  is  t o  a p pr o xi m at e  t h e
ti m e- e v ol uti o n  o p er at or  g e n er at e d  b y  t h e  t ar g et  si m ul a-
ti o n   H a milt o ni a n  usi n g t h e   Tr ott er- S u z u ki  d e c o m p ositi o n
[1 9 – 2 3 ].   C o nsi d er  t h e  t ar g et  ti m e-i n d e p e n d e nt   H a milt o-
ni a n, H t ar, gi v e n b y

H t ar = H 1 + H 2 , (1 )

a n d  s u p p os e  t h at  t h e  ti m e  e v ol uti o n  o p er at or  ass o ci at e d
wit h  e a c h  of  t h e  i n di vi d u al  t er ms  i n  t h e  t ar g et   H a milt o-
ni a n, {e − i H1 t, e − i H2 t}, c a n  b e i m pl e m e nt e d.   T h e n, t h e t ar g et
ti m e- e v ol uti o n o p er at or U t ar = e x p (− i Ht art) c a n b e i m pl e-
m e nt e d t hr o u g h t h e  first- or d er   Tr ott er- S u z u ki  d e c o m p osi-
ti o n gi v e n b y

U tr ot = (e − i H1 t/ n e − i H2 t/ n ) n ≡ [U δ ( τ )]
n , ( 2)

wit h  t h e   Tr ott er  st e p  si z e  gi v e n  b y τ = t/ n .  I n  t h e  li mit
n → ∞ , t h e   Tr ott eri z e d  u nit ar y i n   E q. ( 2) b e c o m es i d e n-
ti c al t o U t ar. I n  pr a cti c e, n is  a  fi nit e  n u m b er  a n d l e a ds t o
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err ors i n t h e o v er all si m ul ati o n,   w hi c h ar e b o u n d e d  b y

||U tr ot − U t ar||   ≤
t2

2 n
[H 1 , H 2 ] , ( 3)

w h er e || · || is t h e s p e ctr al  n or m.   H er e, n = O ( [H 1 , H 2 ]
t2 / ) is  c h os e n s o t h at t h e si m ul ati o n  h as  a n  o v er all  a c c u-
r a c y [2 1 ].   H e n c ef ort h,   w e  r ef er  t o  t h e  err ors  r es ulti n g
fr o m t h e   Tr ott er- S u z u ki  d e c o m p ositi o n as   Tr ott er err ors.

I n  r e c e nt   w or ks,  t h e  err ors  r es ulti n g  fr o m  t h e   Tr ot-
t er  a p pr o xi m ati o n  h a v e  b e e n  a n al y z e d  b y  ass o ci ati n g t h e
u nit ar y  r es ulti n g  fr o m  t h e   Tr ott er- S u z u ki  d e c o m p ositi o n
U tr ot wit h t h e  Fl o q u et  o p er at or  of  a ti m e- d e p e n d e nt  p eri-
o di c all y  “ ki c k e d ”   H a milt o ni a n H δ (t) [1 ,2 ].   T his  a n al ysis
r e v e al e d t h e  e xist e n c e  of  a  r e gi m e i n   w hi c h  d y n a mi cs  of
l o w- or d er  o bs er v a bl es  gi v e n  b y  t h e  ki c k e d   H a milt o ni a n
yi el ds a n a c c ur at e a p pr o xi m ati o n t o t h at of t h e t ar g et ti m e-
i n d e p e n d e nt   H a milt o ni a n.   H o w e v er,  t his  r e gi m e  br e a ks
d o w n f or l ar g e  e n o u g h   Tr ott er  st e p  si z e,   w h er e  err ors  ar e
n ot c o ntr oll e d a n y m or e, a n d t h e  Fl o q u et  d y n a mi cs si g ni fi-
c a ntl y d e vi at e fr o m t h e t ar g et d y n a mi cs.   T his u n c o ntr oll e d
err or r e gi m e   w as attri b ut e d t o t h e f a ct t h at t h e  ki c k e d s ys-
t e m  d e v el o ps  q u a nt u m- c h a oti c  f e at ur es t h at  ar e  a bs e nt i n
t h e t ar g et   H a milt o ni a n.

T h e e xist e n c e of s u c h n o ntri vi al cr oss o v er i n t h e   Tr ott er
err or  b e h a vi or  r e v e als  t h at  t h e  p h ysi c al  pr o p erti es  of  t h e
si m ul at e d   H a milt o ni a n  o bt ai n e d  vi a   m a p pi n g t o  a n  e ff e c-
ti v e ti m e- d e p e n d e nt  Fl o q u et s yst e m c a n  d et er mi n e  b e h a v-
i or  of  q u a nt u m-si m ul at or  err ors.   A  r el at e d  r e c e nt  st u d y,
i n v ol vi n g t h e si m ul ati o n  of a di a b ati c  d y n a mi cs, c h ar a ct er-
i z e d  t h e  e m er g e n c e  of  q u a nt u m  si m ul ati o n  err ors  t o  t h e
cl osi n g  of  t h e  s p e ctr al  g a p  i n  t h e  si m ul at e d   H a milt o ni a n
[2 2 ,2 3 ].   T h es e   w or ks  d e m o nstr at e t h at t h e  p h ysi cs  ass o ci-
at e d   wit h  Fl o q u et  d y n a mi cs c a n a ff e ct  h o w str o n gl y err ors
s at ur at e t h e   Tr ott er- err or  b o u n ds.

I n  t his   w or k   w e  i d e ntif y  a  n e w  p h ysi c al   m e c h a nis m
w h er e b y  t h e  Fl o q u et  d y n a mi cs  ass o ci at e d   wit h   Tr ott er-
S u z u ki  d e c o m p ositi o n  l e a d  t o  l ar g e  err ors  i n  q u a nt u m
si m ul ati o n.  S p e ci fi c all y,   w e  st u d y  q u a nt u m  si m ul ati o n  of
p -s pi n   m o d els  [2 4 – 2 8 ],   w hi c h  d es cri b e  l o n g-r a n g e  i nt er-
a cti n g s yst e ms   wit h   m ulti pl e- b o d y i nt er a cti o ns,  or,  e q ui v-
al e ntl y, t h e d y n a mi cs of a l ar g e c oll e cti v e s pi n   wit h n o nli n-
e ar e v ol uti o n t o t h e p t h p o w er. S u c h   m o d els ar e   m e a n- fi el d
m o d els,   w h er e t h e   m e a n- fi el d  d y n a mi cs  e x a ctl y  d es cri b es
t h e  t h er m o d y n a mi c  ( cl assi c al)  li mit  [2 7 ].   T h e  cl assi c al
d y n a mi cs  o n  t h e  p h as e  s p a c e  t h us  i nf or ms  us  a b o ut  t h e
p ot e nti al   m e c h a nis ms  f or  err ors  i n  a  q u a nt u m  si m ul at or.
W hil e  t h e  t ar g et   m e a n- fi el d  c oll e cti v e  s pi n   m o d els   w e
st u d y  h er e  ar e  cl assi c all y  si m ul a bl e,  t h e y  r e pr es e nt  us e-
f ul   m o d els  f or  b e n c h m ar ki n g  q u a nt u m  si m ul at ors.   T h at
is, t h es e   m o d els  c a n  b e  us e d t o  a n al y z e t h e  r eli a bilit y  of
t h e o ut p ut of a q u a nt u m si m ul at or b y c o m p ari n g its o ut p ut
wit h t h e cl assi c all y o bt ai n e d r es ult.

We  s h o w  t h at,  e v e n  i n  t h e  a bs e n c e  of  c h a os,  t h er e
ar e  p ar a m et er  r e gi m es   w h er e  bif ur c ati o ns  aris e  i n  t h e

m e a n- fi el d  d y n a mi cs  ass o ci at e d   wit h U tr ot t h at  c a n  c a us e
a  q u alit ati v e  c h a n g e i n t h e str u ct ur e  of t h e  cl assi c al  p h as e
s p a c e.   T h es e bif ur c ati o ns a p p e ar o nl y i n t h e cl assi c al li mit
of t h e  Fl o q u et   m a p  c orr es p o n di n g t o U tr ot a n d  ar e  a bs e nt
i n t h e i d e al t ar g et  u nit ar y U t ar,  si g n ali n g t h e  e xist e n c e  of
r e gi m es   w h er e t h e t ar g et a n d si m ul at e d  d y n a mi cs str o n gl y
di v er g e.   T h es e  d y n a mi c al  i nst a biliti es  c a n  l e a d  t o  l ar g e
err ors  i n  t h e  e x p e ct e d  v al u e  of  v ari o us  o bs er v a bl es.   We
n a m e t h es e  p ar a m et er  r e gi o ns  “str u ct ur al i nst a biliti es ”  of
t h e si m ul at e d  u nit ar y U tr ot, a n d c h ar a ct eri z e t h e m i n  d et ail
f or p -s pi n   m o d els.

As t h e   m e a n- fi el d  d y n a mi cs  ar e  e q ui v al e nt t o t h e  cl as-
si c al  d y n a mi cs  i n  t h e  t h er m o d y n a mi c  li mit,   w e  st u d y
t h e  str u ct ur e  of t h e  cl assi c al  p h as e  s p a c e  ass o ci at e d   wit h
U tr ot( τ ).   We s h o w t h at t h e str u ct ur e  of  p h as e s p a c e  u n d er-
g o es si g ni fi c a nt c h a n g es a c c o m m o d at e d b y   m ulti pl e bif ur-
c ati o ns i n all t h e i nst a bilit y r e gi o ns as τ is v ari e d b y a s m all
a m o u nt.   A  pr e c urs or  of t his  p h e n o m e n o n   w as  pr e vi o usl y
n ot e d  i n   R ef.  [ 2 9 ],   w h er e  t h e  r o ut e  fr o m  i nt e gr a bilit y  t o
c h a os   w as st u di e d f or  p eri o di c all y  ki c k e d p -s pi n s yst e ms.
H er e,   w e  s h o w  t h at  t his  p h e n o m e n o n  d o es  n ot  r e q uir e
us  t o  b e  i n  t h e  t h er m o d y n a mi c  li mit,  a n d  us e  u nit ar y
p ert ur b ati o n  t h e or y  t o  s h o w  t h at  i n  t h e  r e gi m e  of  str u c-
t ur al i nst a bilit y, t h e  ei g e nst at es  of t h e   Tr ott eri z e d  u nit ar y
s u bst a nti all y  d e vi at e  fr o m  t h os e  of  t ar g et- u nit ar y  ei g e n-
st at es, l e a di n g t o  a n  e ff e cti v e   H a milt o ni a n H e ff ass o ci at e d
wit h U tr ot = e − i He ff τ , t h at is  v er y  di ff er e nt  fr o m t h e t ar g et
H a milt o ni a n.   Cr u ci all y,  o ur  a n al ysis  s h o ws t h at str u ct ur al
i nst a biliti es  a p p e ar  at   Tr ott er  st e p  si z es t h at  ar e t y pi c all y
s m all er t h a n t h os e r e q uir e d f or t h e s yst e m t o tr a nsiti o n t o
c h a os,   m a ki n g  t his  n o v el  r e gi m e  p arti c ul arl y  r el e v a nt  t o
u n d erst a n di n g t h e b e h a vi or of err ors i n n e ar-t er m q u a nt u m
si m ul at ors.

T h e  r e m ai n d er  of  t h e   m a n us cri pt  is  or g a ni z e d  as  f ol-
l o ws. I n  S e c. II,   w e dis c uss t h e   m a p pi n g b et w e e n q u a nt u m
si m ul ati o n  vi a   Tr ott er- S u z u ki  d e c o m p ositi o n  a n d  Fl o q u et
d y n a mi cs,  a n d  dis c uss t h e i nt uiti o n  b e hi n d t h e  e m er g e n c e
of  q u a nt u m si m ul ati o n err ors fr o m a cl assi c al  p ers p e cti v e.
We t h e n i ntr o d u c e p -s pi n   m o d els a n d a n al y z e t w o di ff er e nt
r e gi o ns  of  t h e  p ar a m et er  s p a c e  t h at  r es ult  i n  l ar g e  err ors
as a r es ult  of   Tr ott eri z ati o n f or a  g e n er al   H a milt o ni a n: t h e
c h a oti c  r e gi o n  a n d  str u ct ur al i nst a bilit y  r e gi o n  c a us e d  b y
bif ur c ati o ns.   T h e n   w e  s p e ci fi c all y  a n al y z e  h o w t h e  str u c-
t ur al i nst a bilit y  r e gi o ns l e a d t o l ar g e  err ors i n t h e   Tr ott er
a p pr o xi m ati o n  of  t h e  ti m e- e v ol uti o n  o p er at or  f or p -s pi n
m o d els.  F oll o wi n g t his, i n  S e c. III,   w e  st u d y t h e  r e gi o ns
of  str u ct ur al  i nst a biliti es  t hr o u g h  t h e  us e  of  u nit ar y  p er-
t ur b ati o n  t h e or y,   w hi c h  all o ws  us  t o  a n al yti c all y  pr e di ct
t h e  b e h a vi or  of  err ors  i n  l o n g-ti m e- a v er a g e d   m a g n eti z a-
ti o n.  I n  S e c. I V,   w e  c o nstr u ct  t h e  e ff e cti v e   H a milt o ni a n
ass o ci at e d   wit h  a  g e n er al  str u ct ur al  i nst a bilit y  r e gi o n  i n
t h e p -s pi n   H a milt o ni a n,   w hi c h  e x pl ai ns  t h e  pr es e n c e  of
l ar g e  err ors  i n  v ari o us  o bs er v a bl es  a n d  t h e  si g ni fi c a nt
c h a n g es t a ki n g  pl a c e  o n t h e  cl assi c al  p h as e s p a c e i n t h es e
r e gi o ns.  Fi n all y,   w e  s h o w  t h at  t h e  e ff e cti v e   H a milt o ni a n
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c o nstr u cti o n a c c ur at el y  d es cri b es t h e a p p e ar a n c e  of  u nst a-
bl e  fi x e d  p oi nts,  a n d i n  p arti c ul ar  pr e di cts t h e  gr o wt h r at e
of t h e o ut- of-ti m e- or d er c orr el at or ( O T O C).

II.   T R O T T E R   E R R O R S I N   Q U A N T U M
SI M U L A TI O N   O F p - S PI N   M O D E L S

I n t his  s e cti o n   w e  d es cri b e t h e  c o n n e cti o n  b et w e e n t h e
Tr ott er- S u z u ki  d e c o m p ositi o n  of  t h e  t ar g et  u nit ar y  e v o-
l uti o n  o p er at or  a n d  Fl o q u et  d y n a mi cs,  a n d  dis c uss  t h e
i m pli c ati o ns of   Tr ott eri z ati o n i n t h e cl assi c al li mit i n t er ms
of   H a milt o ni a n  fl o ws  a n d  ar e a- pr es er vi n g   m a ps.   We t h e n
i ntr o d u c e p -s pi n   m o d els  a n d  t h eir  ki c k e d  c o u nt er p arts,
a n d  us e  t h es e   m o d els  t o  ill ustr at e  t h e  di ff er e nt  p ossi bl e
s c e n ari os  t h at  c o ul d  l e a d  t o  t h e  pr olif er ati o n  of   Tr ott er
err ors.

A.   T r ott e ri z e d e v ol uti o n a n d  ki c k e d s yst e ms:  q u a nt u m
a n d cl assi c al

I n  a  q u a nt u m  si m ul at or, t h e ti m e  e v ol uti o n   m a p  g e n er-
at e d  b y t h e  d esir e d t ar g et   H a milt o ni a n H t ar c a n  b e i m pl e-
m e nt e d  t hr o u g h  t h e  us e  of  t h e   Tr ott eri z e d  u nit ar y  gi v e n
i n   E q. ( 2).   T his  u nit ar y   m a p  c a n  b e  a n al y z e d  b y  i d e nti-
f yi n g U δ ( τ ) as  t h e  ti m e  e v ol uti o n  o p er at or  g e n er at e d  b y
a ti m e- d e p e n d e nt  p eri o di c   H a milt o ni a n H δ (t),   w hi c h t a k es
t h e f or m

H δ (t) = H 1 + τ fτ (t)H 2 ,   w h er e fτ (t) =

∞

n = − ∞

δ ( t − n τ ) .

( 4)

T h e c orr es p o n di n g u nit ar y e v ol uti o n f or o n e ti m e p eri o d is
gi v e n b y t h e  Fl o q u et o p er at or

U δ ( τ ) = T
τ

0

dt e x p[ − i Hδ (t )]

= e x p (− iτ H 1 ) e x p (− iτ H 2 ), ( 5)

w h er e T is  t h e  ti m e- or d eri n g  o p er at or.   B e c a us e  of  t h e
i m p uls eli k e  dri vi n g  pr es e nt  i n   E q. ( 4),  t h es e  ar e  s o m e-
ti m es  c all e d  “ ki c k e d ”  s yst e ms.  Si n c e H t ar a n d H δ ( τ ) ar e
di ff er e nt   H a milt o ni a ns e x c e pt i n t h e li mit τ → 0, t h e   Tr ot-
t eri z e d si m ul ati o n is e x p e ct e d t o b e di ff er e nt fr o m t h e i d e al
H a milt o ni a n e v ol uti o n, r es ulti n g i n si m ul ati o n err ors f or a
fi nit e-si z e d   Tr ott er st e p si z e τ , as s h o w n i n   E q. ( 3).

A   w a y  of  st u d yi n g  t h e  p h ysi c al   m e c h a nis ms  b e hi n d
t h es e err ors is t o r e writ e   E q. ( 4) as

H δ (t) = H 1 + H 2 + g τ (t)H 2 , ( 6)

w h er e g τ (t) = τ fτ (t) − 1.  Si n c e H t ar = H 1 + H 2 , t h e  e v o-
l uti o n  of H δ (t) c orr es p o n ds t o t h at  of H t ar u n d er t h e a cti o n
of a n a d diti o n al ti m e- d e p e n d e nt p ert ur b ati o n,   w h os e a cti o n
is   w e a k f or s m all τ , as c a n b e d e d u c e d fr o m   E q. ( 3). If H t ar

c orr es p o n ds t o a n i nt e gr a bl e   H a milt o ni a n, t h e i n cl usi o n  of
a  ti m e- d e p e n d e nt  p ert ur b ati o n  is  e x p e ct e d  t o  br e a k  s u c h
i nt e gr a bilit y.   T h e  pr olif er ati o n  of  err ors  i n  t h e  q u a nt u m
si m ul ati o n  of  a n  i nt e gr a bl e  s yst e m  t h at  b e c o m es  c h a oti c
as  a r es ult  of   Tr ott eri z ati o n   w as  dis c uss e d i n   R ef. [ 1 ] f or
t h e  c as e  of t h e  q u a nt u m  ki c k e d t o p.  F urt h er m or e,  a  si m-
il ar  b e h a vi or   w as  f o u n d  e v e n   w h e n  c o nsi d eri n g  q u a nt u m
H a milt o ni a ns   wit h   m a n y- b o d y  q u a nt u m  c h a os,   w h er e t h e
cl assi c al  li mit  is  n ot  cl e ar  c ut  [ 2 ].  Fr o m  t his  pi ct ur e,   w e
c a n  e x p e ct  t h e  tr a nsiti o n  fr o m  r e g ul arit y  t o  c h a os  i n  t h e
Tr ott eri z e d  u nit ar y t o b e a f airl y  g e n er al p h e n o m e n o n.

I n c o ntr ast, h er e   w e f o c us o n a r e gi m e   w h er e t h e p ert ur-
b ati o n is n ot str o n g e n o u g h t o   m a k e t h e s yst e m c h a oti c, b ut
n o n et h el ess h as t h e p ot e nti al t o   m a k e t h e p ert ur b e d d y n a m-
i cs  si g ni fi c a ntl y  di ff er e nt  fr o m  t h e  t ar g et  d y n a mi cs.  I n
cl assi c al   H a milt o ni a n  s yst e ms,  t h e   K ol m o g or o v- Ar n ol d-
M os er  ( K A M)  t h e or e m  g u ar a nt e es  t h at,  f or  s u ffi ci e ntl y
s m all τ , t h e r e g ul arit y  of t h e  ori gi n al   H a milt o ni a n is  pr e-
s er v e d [ 3 0 ], a n d t h us o n e e x p e cts t h at t h e p ert ur b e d e v ol u-
ti o n is  still  a  g o o d  a p pr o xi m ati o n f or t h e i d e al  d y n a mi cs.
H o w e v er, t h er e ar e sit u ati o ns, li k e t h e pr es e n c e of r es o n a nt
r e g ul ar  or bits,  t h at  f all  o utsi d e  t h e  v ali dit y  of  t h e   K A M
t h e or e m  [3 1 ]  a n d  i n   w hi c h  e v e n  s m all  p ert ur b ati o ns  c a n
h a v e  a  bi g  e ff e ct  o n  t h e  d y n a mi cs  of  t h e  s yst e m.   T h es e
c h a n g es ar e si g n al e d b y t h e e m er g e n c e of n e w  fi x e d p oi nts
t hr o u g h  bif ur c ati o ns,  a m o n g  ot h er   m e c h a nis ms.   As  t his
h a p p e ns,  t h e  e m er g e n c e  of  i nst a biliti es  a n d  t h e  d e v el o p-
m e nt  of  si g ni fi c a nt  c h a n g es i n t h e  p h as e-s p a c e  str u ct ur es
als o  h a v e t h e  p ot e nti al t o s u bst a nti all y   m o dif y t h e  d y n a m-
i cs  of t h e  e ff e cti v e s yst e m H δ fr o m t h at  of t h e i d e al t ar g et
H a milt o ni a n H t ar.

As   w e   will  s h o w,  f or  s o m e   m o d els, t h es e  f e at ur es  c a n
p ersist i n  q u a nt u m  d y n a mi cs  f ar  fr o m t h e  cl assi c al li mit,
a n d  t h es e  i nst a biliti es  d et er mi n e  p ar a m et er  r e gi m es  of
hi g h   Tr ott er  err ors.   M or e o v er, si n c e t h es e f e at ur es  a p p e ar
at  s m all er  p ert ur b ati o n  str e n gt hs  ( b ef or e  t h e  tr a nsiti o n
t o  c h a os),  t h e y   w o ul d  a ff e ct  t h e   Tr ott eri z e d  e v ol uti o n  at
s m all er  v al u es  of  t h e   Tr ott er  st e p  si z e τ ,   m a ki n g  t h e m
p arti c ul arl y  r el e v a nt  f or  q u a nt u m  si m ul ati o n.   A   w a y  t o
i d e ntif y  t h es e  hi g h   Tr ott er- err or  r e gi o ns  i n  t h e  q u a nt u m
r e gi m e is t o d et er mi n e t h e r e gi o ns   w h er e t h e ei g e nst at es of
U δ ar e  v er y  di ff er e nt fr o m U t ar.   T his f oll o ws fr o m t h e c or-
r es p o n d e n c e  pri n ci pl e.   T h e  q u asi pr o b a bilit y  distri b uti o n
( e. g.,   H usi mi  distri b uti o n)  of  t h e  ei g e nst at es  ass o ci at e d
wit h  t h e  ti m e- e v ol uti o n  o p er at or  is  e x p e ct e d  t o  h a v e  a
si g ni fi c a nt o v erl a p   wit h t h e c orr es p o n di n g p h as e-s p a c e tr a-
j e ct ori es,   w h e n  b ot h  of  t h e m  ar e  pl ott e d  o n  t h e  cl assi c al
p h as e  s p a c e  [ 3 2 ].   T h us,  t h e  ei g e nst at es  of U δ a n d U t ar

will  b e  v er y  di ff er e nt   w h e n e v er t h e  c orr es p o n di n g  cl assi-
c al tr aj e ct ori es  ar e  di ff er e nt.  I n t h e  f oll o wi n g   w e  e x pl or e
t his  p h e n o m e n o n i n t h e  q u a nt u m si m ul ati o n  of l o n g-r a n g e
i nt er a cti n g  s pi n   m o d els,   w h os e   m e a n- fi el d li mit is  e q ui v-
al e nt t o t h e t h er m o d y n a mi c ( cl assi c al) li mit,  b y  a n al y zi n g
t h e  ei g e nst at es  of U δ a n d U t ar. I n  a d diti o n,  as   w e   will  dis-
c uss, s o m e  of t h e  u n d erl yi n g  p h ysi c al   m e c h a nis ms  b e hi n d

0 1 0 3 5 1- 3



K A R T HI K   C HI N NI et al. P R X   Q U A N T U M 3, 0 1 0 3 5 1 ( 2 0 2 2)

t h es e p h e n o m e n a ar e   m u c h   m or e g e n er al, a n d ar e e x p e ct e d
t o a p p e ar i n ot h er t y p es of q u a nt u m   m a n y- b o d y s yst e ms.

B.   T h e p -s pi n   m o d els

T h e  f a mil y  of   m a g n eti c   m o d els  us u all y  r ef err e d  t o  as
p -s pi n   m o d els  d es cri b es  a  c oll e cti o n  of N s pi n- 1 / 2  p arti-
cl es o n a f ull y c o n n e ct e d gr a p h, i nt er a cti n g t hr o u g h p - b o d y
Isi n g-li k e  c o u pli n g  i n  t h e  pr es e n c e  of  a n  e xt er n al  tr a ns-
v ers e   m a g n eti c  fi el d.   T his  c oll e cti o n  of  p arti cl es  e x p eri-
e n c e t w o di ff er e nt or d eri n gs, a p ar a m a g n eti c p h as e i n d u c e d
b y  a n  e xt er n al  h o m o g e n e o us   m a g n eti c  fi el d,  a n d  a  f err o-
m a g n eti c p h as e i n d u c e d b y a p - b o d y Isi n g-li k e i nt er a cti o n.
T h e   H a milt o ni a n f or t his f a mil y of   m o d els is gi v e n b y

H = −
h

2

N

i= 1

σ (i)
z −

γ

2 p N p − 1

N

i1 ,i2 ,...,ip = 1

σ (i1 )
x σ (i2 )

x · · · σ
(ip )
x

= − h J z −
γ

p J p − 1
J p

x , (7 )

w h er e h is  t h e  str e n gt h  of  t h e  e xt er n al  fi el d, γ is  t h e
str e n gt h  of  t h e p - b o d y  Isi n g-li k e  i nt er a cti o n,  a n d J μ =
1
2

N
i= 1 σ (i)

μ wit h μ = x , y , z ar e  c oll e cti v e  s pi n  o p er at ors.
T h e i nt er a cti o n t er m  h as  b e e n  n or m ali z e d   wit h t his  p arti c-
ul ar  c h oi c e  of p a n d N t o   m a k e t h e  e q u ati o ns  of   m oti o n
h a v e a  u ni v ers al f or m f or all p i n t h e   m e a n- fi el d li mit a n d
e n er g y e xt e nsi v e [ 2 8 ]. I n t his   H a milt o ni a n, t h e t ot al a n g u-
l ar   m o m e nt u m is c o ns er v e d, [H , J 2 ] = 0, c o nstr ai ni n g t h e
d y n a mi cs  t o  t h e  s y m m etri c  s u bs p a c e,  a n d  t h e  s yst e m  is
als o i n v ari a nt  u n d er t h e a cti o n  of t h e  p arit y  o p er at or, =
e iπ J z ,  f or  e v e n p s pi n   m o d els.  F or  t h e  r e m ai n d er  of  t his
m a n us cri pt,   w e  c o nsi d er  t h e  f oll o wi n g  si n gl e- p ar a m et er
v ersi o n  of t h e p -s pi n   H a milt o ni a n:

H (s) = − (1 − s)J z −
s

p J p − 1
J p

x . ( 8)

T his is  e q ui v al e nt t o   E q. ( 7) u p o n r es c ali n g  of t h e  e n er g y,
a n d   w h er e s is  c o nstr ai n e d t o  b e i n t h e  r a n g e  0 ≤ s ≤ 1,
i nt er p ol ati n g  b et w e e n  p ur e  p ar a m a g n eti c  or d eri n g  a n d  a
p ur e f err o m a g n eti c  or d eri n g.  F or p = 2, t h e a b o v e   H a mil-
t o ni a n  r e d u c es  t o  t h e   C uri e- Weiss   m o d el  [3 3 ],   w hi c h  is
a  s p e ci al  i nst a n c e  of  t h e   Li p ki n- M es h o v- Gli c k  ( L M G)
m o d el [ 3 4 – 3 6 ].  T his f a mil y of   m o d els h as b e e n e xt e nsi v el y
st u di e d i n t h e c o nt e xt of q u a nt u m a n n e ali n g [ 2 4 ,2 5 ],   w h er e
a  cl assi fi c ati o n  b as e d  o n  t h e  pr o p erti es  of  t h e  gr o u n d-
st at e  q u a nt u m  p h as e tr a nsiti o n ( G S Q P T)   w as  c o nstr u ct e d
[2 6 ,2 7 ].  S u c h  cl assi fi c ati o n  s plits  t h e  f a mil y  of   m o d els
i nt o  t w o  cl ass es:  f or p = 2,  t h e   G S Q P T  is  c o nti n u o us
a n d  s e c o n d  or d er;  f or p > 2,  t h e   G S Q P T  is  first  or d er
a n d  dis c o nti n u o us.  F urt h er m or e, i n t h e  c o nt e xt  of  d y n a m-
i c al  criti c alit y,  t his  f a mil y  of   m o d els  e x hi bit  d y n a mi c al
q u a nt u m p h as e tr a nsiti o ns [ 2 8 ].

T h e  d y n a mi cs  of t h e p -s pi n   H a milt o ni a ns i n t h e   m e a n-
fi el d li mit  c a n  b e  o bt ai n e d  b y  n e gl e cti n g t h e  fl u ct u ati o ns

A B ≈ A B i n  t h e   H eis e n b er g  e q u ati o ns  of   m oti o n,
r es ulti n g i n t h e  c o u pl e d  di ff er e nti al  e q u ati o ns  of t h e f or m
[2 8 ,3 7 ]

d X

dt
= (1 − s)Y , ( 9 a)

d Y

dt
= − (1 − s)X + s X p − 1 Z ,  ( 9 b)

d Z

dt
= − s X p − 1 Y , ( 9 c)

wit h {X , Y , Z } = li mJ → ∞ (1 / J ){ J x , J y , J z } d es cri bi n g
t h e   m oti o n  of a cl assi c al “t o p. ”   T h e   m e a n- fi el d li mit c oi n-
ci d es   wit h t h e  cl assi c al li mit, e ff = N − 1 → 0  or,  e q ui v a-
l e ntl y, N → ∞ , i n t h e c as e of p -s pi n   m o d els [2 7 ].   B e c a us e
of  t h e  c o ns er v ati o n  of  a n g ul ar   m o m e nt u m,  t h e  r es ult-
i n g  d y n a mi cs  of  t h e  t o p  is  c o nstr ai n e d  t o  a  u nit  s p h er e
X 2 + Y 2 + Z 2 = 1.   T his i m pli es t h at  all t h e p -s pi n   m o d-
els  ar e i nt e gr a bl e i n t h e  cl assi c al li mit  as t h e y  c orr es p o n d
t o a ut o n o m o us s yst e ms   wit h o n e d e gr e e of fr e e d o m.

T h e  first- or d er   Tr ott eri z e d  u nit ar y   m a p U tr ot = [U δ ( τ )]
n

of t h e   H a milt o ni a n e v ol uti o n i n   E q. ( 8) is g e n er at e d b y t h e
ti m e e v ol uti o n  of t h e c orr es p o n di n g  ki c k e d   m o d el,

H δ (t) = − (1 − s)J z −
sτ

p J p − 1

∞

n = − ∞

δ t − n τ J p
x .  ( 1 0)

We  r ef er  t o  t his  f a mil y  of   m o d els  as  t h e  ki c k e d p -s pi n
m o d els [ 2 9 ],   w h os e  Fl o q u et o p er at or is gi v e n b y

U δ ( τ ) = e i(1 − s) τ J z e i(sτ / p J p − 1 )J
p
x ≡ F ( τ ).  ( 1 1)

T h e  e q u ati o ns  of   m oti o n  ar e t h e n  o bt ai n e d  usi n g t h e   m a p
J i+ 1 = F ( τ ) † J iF ( τ ).   N ot e t h at t h es e   m o d els als o c o ns er v e
t h e a n g ul ar   m o m e nt u m, [H δ , J

2 ] = 0, si mil ar t o t h e c as e of
H t ar, i m pl yi n g t h at t h e  d y n a mi cs  of H δ is  c o nstr ai n e d t o  a
u nit  s p h er e  d e fi n e d  b y X 2

i + Y 2
i + Z 2

i = 1 i n t h e  cl assi c al
li mit.   T h e  cl assi c al  e q u ati o ns  of   m oti o n  ar e  gi v e n  b y t h e
f oll o wi n g   m a p:

X m + 1 = X m c os α − Y m si n α , ( 1 2 a)

Y m + 1 = c os [ k (X m + 1 )
p − 1 ](X m si n α + Y m c os α )

− Z m si n [k (X m + 1 )
p − 1 ], ( 1 2 b)

Z m + 1 = si n [k (X m + 1 )
p − 1 ](X m si n α + Y m c os α )

+ Z m c os [ k (X m + 1 )
p − 1 ]. ( 1 2 c)

H er e α = − (1 − s) τ a n d k = − sτ .   A  c o m p aris o n  of t ar-
g et e d   H a milt o ni a n  fl o w,   E qs. ( 9),  at  p eri o di c  i nt er v als
wit h t h e ar e a- pr es er vi n g   m a p  g e n er at e d  b y t h e   Tr ott eri z e d
ki c k e d   H a milt o ni a n,   E q. ( 1 0), i n di c at es   w h er e  err ors   m a y
o c c ur i n t h e q u a nt u m si m ul ati o n.
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T h e ki c k e d   m o d els c a n e x hi bit c h a os si n c e t h e e n er g y of
t h e t o p is n o l o n g er c o ns er v e d.  F or s m all v al u es of τ , h o w-
e v er,   w h er e  t h e  ki c k e d-s yst e ms  i n   E q. ( 1 1) v er y  cl os el y
a p pr o xi m at e  t h e  e v ol uti o n  of  c orr es p o n di n g   H a milt o ni-
a ns  i n   E q. ( 8),  t h e  d y n a mi cs  is  r e g ul ar.   As  t h e  v al u e  of
τ is  i n cr e as e d,  all  ki c k e d p -s pi n   m o d els  b e c o m e  c h a oti c
pr o vi d e d s is  n ot  cl os e  t o  z er o  or  o n e;  t h e   m o d els   wit h
l ar g er  v al u e  of s d e v el o p c h a os at s m all er  v al u es  of τ . T h e
ki c k e d p = 2   m o d el  ( H a a k e’s  ki c k e d  t o p  [ 3 8 ])  d e v el o ps
c h a os  d u e t o t h e  p eri o d- d o u bli n g  c as c a d e  a n d r e a c h es t h e
r e gi m e  of  str o n g  c h a oti c tr aj e ct ori es  f ast er  ( as  a  f u n cti o n
of t h e c o e ffi ci e nt of t h e n o nli n e ar t er m i n t h e   H a milt o ni a n)
t h a n ot h er p -s pi n   m o d els [2 9 ].   Hi g h er- or d er ki c k e d p -s pi n
m o d els, o n t h e ot h er h a n d, d e v el o p c h a os d u e t o i nst a bilit y
of hi g h er- p eri o d  or bits  pr es e nt o n t h e X -Y pl a n e [ 2 9 ].

I n  or d er  t o  a n al y z e  t h e  e m er g e n c e  of  q u a nt u m  si m-
ul ati o n  err ors  i n  t h e  di ff er e nt  p ar a m et er  r e gi m es  of  t h e
Tr ott eri z e d  e v ol uti o n,   w e  p erf or m  a  s yst e m ati c  c o m p ar-
is o n  b et w e e n  t h e  b asis  of  ei g e nst at es  of U t ar a n d U tr ot.
I n  Fi gs. 1( a) a n d 1( b) ,   w e  pl ot  t h e  a v er a g e  dissi mil arit y
b et w e e n  b ot h s ets of ei g e nst at es f or t h e p -s pi n   m o d el   wit h
p = 2 a n d p = 4, r es p e cti v el y.   T his  q u a ntit y   m e as ur es t h e
di ff er e n c e  b et w e e n t w o s ets  of ei g e n v e ct ors a n d is  d e fi n e d
as

D (U t ar, U δ ) =
1 − ξ

1 − ξ C O E
, ( 1 3)

w h er e ξ is  t h e  a v er a g e  i n v ers e  p arti ci p ati o n  r ati o  (I P R)

of  t h e  ei g e nst at es  of U t ar,  d e n ot e d  b y {|φ
(j )
t ar },  i n  t h e

( a)

( b)

( c)

( d)

p 
  
= 
 2

p 
  
= 
 4

s
s

s
s

FI G.  1.  ( a),( b)   A v er a g e dissi mil arit y of t h e Fl o q u et ei g e nst at es
of H δ ( τ ) wit h r es p e ct t o t h e  ei g e nst at es  of t h e p -s pi n   H a milt o-
ni a n,   E q. ( 1 3). ( c),( d)   L ar g est   L y a p u n o v e x p o n e nt of t h e cl assi c al
str o b os c o pi c   m a p ass o ci at e d   wit h t h e  Fl o q u et   m a p of t h e si m ul a-
t or  as  a f u n cti o n  of ( τ , s). I n  b ot h  c as es   w e s h o w t h e r es ults f or
p = 2 (t o p)  a n d  4 ( b ott o m),  a n d N = 1 2 8.   T h e  d as h e d  a n d  d ot-
t e d li n es i n ( a)  a n d ( b)  h a v e t h e f or m s( τ ) = 1 − α / τ wit h α =
π , π / 2, r es p e cti v el y.   T h es e r e pr es e nt r e gi o ns  of str u ct ur al i nst a-
bilit y t h at ar e  n ot ass o ci at e d   wit h c h a os as t h e l ar g est   L y a p u n o v
e x p o n e nt c orr es p o n di n g t o t h es e r e gi o ns is z er o.

ei g e nst at es of U δ , {|φ
(i)
δ },   w hi c h is gi v e n b y

ξ =
1

d
i,j

| φ (i)
t ar|φ

(j )
δ |4 , ( 1 4)

w h er e d is  t h e  di m e nsi o n  of  t h e   Hil b ert  s p a c e.   Als o,
ξ C O E = 3 /( N + 3 ) is  t h e  a v er a g e  I P R  i n  t h e  cir c ul ar
ort h o g o n al  e ns e m bl e  ( C O E)  [ 1 ].   We  e x p e ct  t h e  a v er a g e
I P R  b et w e e n t h e  ei g e nst at es  of U t ar a n d U tr ot t o  b e  e q u al
t o ξ C O E w h e n t h e  d y n a mi cs  of U tr ot b e c o m es f ull y c h a oti c,
as   C O E is t h e a p pr o pri at e e ns e m bl e d u e t o t h e s y m m etri es
pr es e nt  i n  t h e  ki c k e d p -s pi n   H a milt o ni a n  [2 9 ].   T h e  dis-
si mil arit y  d e fi n e d i n   E q. ( 1 3) r a n g es  b et w e e n  0,   w h e n t h e
ei g e nst at es ar e i d e nti c al t o t h e r ef er e n c e b asis, a n d d − 1 / d
( u p t o n or m ali z ati o n) f or t h e c as e   w h e n t h e ei g e nst at es ar e
c o m pl et el y d el o c ali z e d i n t h e r ef er e n c e  b asis.

T h e dissi mil arit y of t h e ei g e n v e ct ors is s h o w n i n t h e h e at
m a p i n Fi gs. 1( a) a n d 1( b) .   At l ar g er v al u es of s, t h e dissi m-
il arit y aris es   m ai nl y  d u e t o t h e c h a os  pr es e nt i n t h e  ki c k e d
p -s pi n   m o d els.   T his is i n di c at e d  b y t h e r e gi o n  of  p ar a m e-
t er s p a c e   wit h a p ositi v e cl assi c al   L y a p u n o v e x p o n e nt [s e e
Fi gs. 1( c) a n d 1( d) f or p = 2 a n d p = 4,  r es p e cti v el y].
F or   m or e  d et ails  o n  t h e  c al c ul ati o n  of   L y a p u n o v  e x p o-
n e nts,  s e e   A p p e n di x A a n d   R efs. [ 2 9 ,3 9 ]. I n  c o ntr ast, t h e
l ar g e  dissi mil arit y  pr es e nt  at  s m all er  v al u es  of s o n  t h e
h e at   m a p c a n n ot b e attri b ut e d t o c h a os si n c e t h e ass o ci at e d
L y a p u n o v  e x p o n e nts  ar e  z er o.   We i d e ntif y t h es e  p ar a m e-
t er r e gi m es  as str u ct ur al i nst a biliti es of t h e  o p er at or U tr ot,
si n c e  s m all  c h a n g es  i n  t h e  p ar a m et er  s p a c e (s, τ ) i n d u c e
s u bst a nti al  c h a n g es i n t h e  n at ur e  of t h e  ei g e nst at es  of t h e
o p er at or.  I n  t h e  f oll o wi n g  s e cti o n,   w e  d eri v e  t h e  pr e cis e
l o c ati o n  of t h es e str u ct ur al i nst a biliti es, a n d r el at e t h e m t o
t h e pr olif er ati o n  of err ors i n q u a nt u m si m ul ati o n.

III.   T R O T T E R   E R R O R S I N   O B S E R V A B L E S   D U E
T O  S T R U C T U R A L I N S T A BI LI TI E S

I n  t his  s e cti o n   w e  pr e di ct  t h e  l o c ati o n  of  r e gi o ns  of
str u ct ur al i nst a bilit y i d e nti fi e d i n  Fi g. 1 a n d  a n al y z e t h eir
e ff e ct  o n  q u a nt u m  si m ul ati o n  err ors.  I n  or d er  t o  d o  t his,
w e  f o c us  o n t h e   w e a kl y i nt er a cti n g  r e gi m e  of t h e p -s pi n
H a milt o ni a n,  c orr es p o n di n g  t o  s m all  v al u es  of  t h e  c o u-
pli n g  p ar a m et er, s 1.   At  s m all  v al u es  of s, t h e  Fl o q u et
m a p i m pl e m e nts  pr e c essi o ns  ar o u n d t h e z a xis   wit h s m all

p ert ur b ati o n, U δ = e i(1 − s) τ J z e i J
p
x sτ /( p J p − 1 ) ≡ U (0 ) U .   H e n c e,

t h e ei g e n v e ct ors of t h e Fl o q u et o p er at or U δ ar e e x p e ct e d t o
b e cl os e t o t h e ei g e nst at es of J z wit h a s m all c orr e cti o n first
or d er i n s.   E m pl o yi n g  u nit ar y  p ert ur b ati o n t h e or y [4 0 ],   w e
fi n d t h at

U δ | − J + m + s|φ (1 )
m = e i(1 − s) τ (− J + m ) (1 + isφ (1 )

m )

× | − J + m + s|φ (1 )
m .

( 1 5)
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H er e | − J + m ≡ | J , m z = − J + m is  t h e  z er ot h  or d er
m t h  ei g e nst at e  of J z , φ (1 )

m is  t h e  first- or d er  ei g e n p h as e
c orr e cti o n,  a n d |φ (1 )

m is t h e  c orr es p o n di n g  first- or d er  c or-
r e cti o n t o t h e ei g e nst at e.   T his c a n b e e x pr ess e d as

− J + m |φ (1 )
m = (1 − δ m ,m )

iτ

p J p − 1

J
p
x m ,m

e i(1 − s) τ (m − m ) − 1
,

( 1 6)

w h er e (J
p
x ) m ,m ≡ − J + m |J

p
x | − J + m a n d m , m =

{0, 1, . . . , 2J }.
N ot e  t h at  t h e  i d e al  u nit ar y   m a p, U (0 ) ,  h as  d e g e n er at e

ei g e n v al u es   w h e n e i(1 − s) τ (m − m ) = 1  ( e q ui v al e ntl y,  at τ =
r2 π / [(1 − s)(m − m )] f or s o m e  p ositi v e  n o n z er o i nt e g er,
r).   We d e n ot e t h e d e g e n er at e p oi nts b y τ ∗

p ,m − m c orr es p o n d-

i n g t o t h e  ki c k e d p -s pi n   m o d el   wit h  a  p arti c ul ar  s ol uti o n
f or m − m .   T h e  n ei g h b or h o o d  of t h es e  d e g e n er at e  p oi nts
c a n  b e  di vi d e d  i nt o  t w o  s u br e gi o ns.  First,  i n  t h e  z o n e
s urr o u n di n g  t h e  d e g e n er at e  p oi nt,  t h e  first- or d er  c orr e c-
ti o n t o t h e  ei g e n p h as e is  of t h e  or d er  of  g a p  b et w e e n t h e
ei g e n p h as es, a n d t h e  n o n d e g e n er at e  p ert ur b ati o n t h e or y is
n ot  v ali d i n t his  s u br e gi o n.   We  r ef er t o t his  s u br e gi o n  as
t h e  “i m m e di at e  vi ci nit y ”  of  t h e  d e g e n er at e  p oi nt.  I n  t h e
s u br e gi o n  b e y o n d  t his  i m m e di at e  vi ci nit y  ( “ o ut er  vi ci n-
it y ”), t h e  n o n d e g e n er at e  p ert ur b ati o n t h e or y is  v ali d,  a n d
t h e  e x pr essi o n  i n   E q. ( 1 6) pr e di cts  a  l ar g e  c orr e cti o n  t o
t h e  ei g e nst at es   w h e n e v er (J

p
x ) m ,m = 0.   We  r ef er  t o  t h e

w h ol e  r e gi o n  c o nsisti n g  of  i m m e di at e  a n d  o ut er  vi ci nit y
s u br e gi o ns s urr o u n di n g t h e  d e g e n er at e  p oi nts as t h e str u c-
t ur al i nst a bilit y  r e gi o ns   w h e n e v er (J

p
x ) m ,m = 0.   We  r ef er

t o τ ∗
p ,m − m as t h e str u ct ur al i nst a bilit y  p oi nts,   w hi c h ar e t h e

c e ntr al p oi nts of t h es e r e gi o ns, a n d d e n ot e t h e   wi dt h of t h e
r e gi o ns  b y w .

F or  c o n cr et e n ess,  c o nsi d er  t h e  ar e a  ar o u n d τ = τ ∗
2, 2 =

rπ / [(1 − s)],  t h at  is,  c orr es p o n di n g  t o p = 2 a n d m −
m = 2.  I n  t his  c as e,   w e  h a v e (J 2

x ) m ,m = 0,   w hil e

e i(1 − s)(m − m ) τ − 1  a p pr o a c h es  0  i n  t h e  n ei g h b or h o o d  of
τ = τ ∗

2, 2 .   T h us,  b y  virt u e  of   E q. ( 1 6),   w e  o bt ai n  a  s u b-
st a nti al  c h a n g e i n t h e  ei g e nst at es  of t h e  u nit ar y  e v ol uti o n
o p er at or, i n di c ati n g t h e  e xist e n c e  of  a n i nst a bilit y r e gi o n.
At τ = τ ∗

2, 2 ,  t h e  Fl o q u et  o p er at or  is  gi v e n  b y U δ ( τ
∗
2, 2 ) =

e iπ J z e i J 2
x sτ ∗ /( 2 J ) ,   w h os e  ei g e nst at es  ar e {(1 /

√
2 )(|J , m x ±

|J , − m x )}.   T his  c a n  b e  u n d erst o o d fr o m t h e f a ct t h at t h e
t w o t er ms i n U δ ( τ

∗
2, 2 ) c o m m ut e a n d t h er ef or e  h a v e a c o m-

m o n  s et  of  ei g e n v e ct ors  gi v e n  b y  t h e  p arit y  r es p e cti n g
ei g e nst at es  of J 2

x .   H e n c e,  as  t h e   Tr ott er  st e p  si z e  is  v ar-
i e d i n t h e  vi ci nit y  of τ ∗

2, 2 = rπ /( 1 − s), t h e  ei g e nst at es  of
U δ c h a n g e r a pi dl y fr o m t h os e  of J z ei g e nst at es  at t h e l eft
e d g e  of  t h e  str u ct ur al  i nst a bilit y  r e gi o n  ( τ ∼ τ ∗

2, 2 − w / 2)

t o t h os e  of  p arit y r es p e cti n g  ei g e nst at es  of J 2
x at t h e  c e n-

tr al  p oi nt  of t h e i nst a bilit y r e gi o n  b ef or e c h a n gi n g  b a c k t o
t h os e  of J z ei g e nst at es  as τ is  i n cr e as e d  f urt h er  t o w ar ds
t h e  ot h er  e d g e  of  t h e  i nst a bilit y  r e gi o n  (τ ∼ τ ∗

2, 2 + w / 2).
T h e  a b o v e  ar g u m e nt  h ol ds f or  all  e v e n p -s pi n   m o d els,  s o

all t h es e   m o d els  h a v e  str u ct ur al i nst a bilit y  r e gi o ns i n t h e
vi ci nit y  of t h e c ur v e (1 − s) τ ∗

p , 2 = rπ .

I n  g e n er al,  f or  a  gi v e n p , J
p
x h as  n o n z er o   m atri x

el e m e nts  i n  t h e J z b asis  o nl y  i n  alt er n ati n g  di a g o-
n al  b a n ds  u p  t o  o ffs et p .   T his  r es ults  i n  str u ct ur al
i nst a biliti es  i n  t h e  vi ci nit y  of  t h e  c ur v es  gi v e n  b y
(1 − s) τ ∗

p ,m − m = [r/( m − m )] 2π wit h m − m = { p , p −

2, p − 4, . . . , 2(1 )} f or e v e n ( o d d)  v al u es  of p .   We c orr o b-
or at e t his i n  Fi gs. 1( a) a n d 1( c) ,   w h er e   w e s h o w t h e c ur v es
(1 − s) τ ∗ = π ( bl a c k  d as h e d  li n e)  a n d (1 − s) τ ∗ = π / 2
( bl a c k  d ott e d  li n e)  o v erl a p   wit h  t h e  dissi mil arit y  r e gi o n
pr es e nt  o n  t h e  h e at   m a p.   N ot e  t h at  t h e  n u m b er  of  str u c-
t ur al i nst a bilit y r e gi o ns i n cr e as es   wit h p i n  a  gi v e n r a n g e
of τ as t h e n u m b er of c h oi c es f or m − m i n cr e as e   wit h p .

T h e  si g ni fi c a nt  c h a n g e i n t h e  ei g e nst at es  of U δ t h at   w e
fi n d  i n  t h e  str u ct ur al  i nst a bilit y  r e gi o ns  i m pli es  t h at U δ

b e c o m es  v er y  di ff er e nt fr o m U t ar,   w hi c h  c a n l e a d t o l ar g e
err ors i n  a   Tr ott eri z e d  q u a nt u m si m ul ati o n  al g orit h m.  F or
c o n cr et e n ess,   w e f o c us  o n t h e si m ul ati o n  of t h e l o n g-ti m e
a v er a g e of t h e c oll e cti v e s pi n o bs er v a bl es J i , d e fi n e d b y

J i = li m
n → ∞

1

n

n

l= 1

J i(lτ ) ,  ( 1 7)

w h er e J i(lτ ) = (U † ) lJ i(U ) l,   wit h U b ei n g  t h e   m a p  ass o-
ci at e d   wit h t h e ti m e- e v ol uti o n  o p er at or f or t = τ a n d i =
{x , y , z }.   We a n al y z e t h e err or i n J z gi v e n b y

E ∞
z ( τ ) =

1

J
J z t ar − J z tr ot ,  ( 1 8)

w h er e J z t ar a n d J z tr ot ar e t h e ti m e- a v er a g e d   m a g n eti z a-
ti o ns  o bt ai n e d  u n d er t h e t ar g et  u nit ar y  a n d t h e   Tr ott eri z e d
u nit ar y, r es p e cti v el y.   As  st u di e d i n   R efs. [ 1 ,4 1 ],  q u a nt u m
si m ul ati o n is e x p e ct e d t o  b e r o b ust t o i m p erf e cti o ns i n t h e
n o n c h a oti c r e gi m e  of H δ f or  e x p e ct ati o n  v al u es  of   m a cr o-
s c o pi c  o bs er v a bl es  t h at  ar e  n ot  s e nsiti v el y  d e p e n d e nt  o n
t h e f ull st at e  of t h e s yst e m  c o m p ar e d t o  q u a ntiti es s u c h as
t h e  fi d elit y  of  pr e p ari n g  a t ar g et st at e.   H o w e v er, t h e   Tr ot-
t eri z ati o n of p -s pi n   m o d els l e a ds t o a l ar g e r e gi o n of err or,
e v e n i n t h e  si m ul ati o n  of  a   m a cr os c o pi c  q u a ntit y  s u c h  as
J z . I n  Fi g. 2 w e  pl ot t h e  err or E ∞

z ( τ ) f or  a n i niti al  s pi n
c o h er e nt st at e | 0 = π / 2, 0 = 0 at s = 0. 1 as a f u n cti o n
of t h e   Tr ott er st e p si z e f or p = 2, 3, a n d  4 i n  p arts ( a) –( c),
r es p e cti v el y.   As  e x p e ct e d, t h e  err ors i n cr e as e i n str u ct ur al
i nst a bilit y r e gi o ns i n t h e vi ci nit y of τ ∗

2, 2 = π / 1 − s f or p =
2, τ ∗

3, 3 = 2 π / [ 3(1 − s)], τ ∗
3, 1 = 2 π /( 1 − s) f or p = 3,  a n d

τ ∗
4, 4 = π / [ 2(1 − s)], τ ∗

4, 2 = π /( 1 − s) f or p = 4 ( all  c as es
s h o w n  b y  t h e  v erti c al  d as h e d  li n es).   N ot e  t h at  at  e v er y
str u ct ur al i nst a bilit y r e gi o n s h o w n i n  Fi g. 2 , t h e err ors  first
i n cr e as e r a pi dl y, t h e n d e cr e as e i n s o m e i nt er m e di at e r e gi o n
b ef or e  i n cr e asi n g  a g ai n,  r es ulti n g  i n  s e e mi n gl y  t w o  s e p-
ar at e  err or  p e a ks.   T h e  pr es e n c e  a n d l o c ati o n  of t h e  err or
di p  b et w e e n  t h e  err or  p e a ks  is  d e p e n d e nt  o n  t h e  i niti al
c o n diti o n, a n d   will b e a n al y z e d i n t h e n e xt s e cti o n.
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( a)

( b)

( c)

FI G.  2.   Err or  i n  t h e  l o n g-ti m e- a v er a g e d   m a g n eti z ati o n  al o n g
t h e z a xis,  d e n ot e d  b y E ∞

z a n d  d e fi n e d  i n   E q. ( 1 8), f or ( a)
p = 2, ( b) p = 3, a n d ( c) p = 4,   wit h N = 2 5 6.   T h e d ott e d li n es
r e pr es e nt ti m e- a v er a g e d   m a g n eti z ati o n  pr e di ct e d  fr o m t h e  n o n-
d e g e n er at e  first- or d er  u nit ar y  p ert ur b ati o n  t h e or y,   w hi c h  a gr e e
w ell   wit h  n u m eri c all y  o bt ai n e d  v al u es  e x c e pt i n t h e i m m e di at e
vi ci nit y  of  t h e  c e nt er  of  t h e  str u ct ur al  i nst a bilit y  r e gi o n   w h er e
t h e  n o n p ert ur b ati v e t er m e i(1 − s) τ J z b e c o m es  d e g e n er at e.   T h e  v er-
ti c al d as h e d li n es ar e l o c at e d at t h e c e nt er of str u ct ur al i nst a bilit y
r e gi o ns, as pr e di ct e d b y u nit ar y p ert ur b ati o n t h e or y.

A n  i m p ort a nt  c o ns e q u e n c e  of  t his  a n al ysis  is  t h at  t h e
str u ct ur al i nst a bilit y r e gi o ns ass o ci at e d   wit h  hi g h er  v al u es
of p o c c ur  at  s m all er  v al u es  of τ f or  a  gi v e n  v al u e  of s,
si n c e τ ∗

p ,m − m = r2 π / [(1 − s)(m − m )],   w h er e m − m =

{p , p − 2, . . . , 2(1 )}.   As t h e  ki c k e d p -s pi n   m o d els  b e c o m e
c h a oti c  at  l ar g er  v al u es  of s (f or   m o d er at e  v al u es  of τ ),
t h es e i nst a biliti es ar e t h e  o nl y s o ur c e  of err ors f or   Tr ott er-
i z e d  si m ul ati o n  at  s m all er  v al u es  of s,   w hi c h  c orr es p o n ds
t o a r e gi m e   w h er e t h e e xt er n al  fi el d i n   E q. ( 1 0) d o mi n at es
o v er t h e   m ultis pi n i nt er a cti o n.

T h e  s p e ctr al  g a p  gi v e n  b y  t h e  d e n o mi n at or  t er m  i n
E q. ( 1 6) d et er mi n es t h e   wi dt h  of t h e  err or  r e gi o ns.  Fr o m
t h e   T a yl or  e x p a nsi o n  of  t h e  i n v ers e  s p e ctr al  g a p  ar o u n d
t h e str u ct ur al i nst a bilit y  p oi nts τ = τ ∗ ,   w e h a v e

1

e i(1 − s) τ (m − n ) − 1
≈

e − i(1 − s) τ (m − n ) − 1

(m − n ) 2 (1 − s) 2 ( τ − τ ∗ ) 2
.  ( 1 9)

T h e p ar a b oli c f or m of t h e d e n o mi n at or c e nt er e d at τ ∗ wit h
t h e   wi dt h gi v e n b y 1/ [(m − n ) 2 (1 − s) 2 ] i m pli es t h at err or
r e gi o ns  b e c o m e  n arr o w er  f or l ar g er  v al u es  of m − m (=
{p , p − 2, . . .}) a n d  s m all er  v al u es  of s.   T his  e x pl ai ns t h e
f a ct  t h at  t h e  err or  r e gi o ns  ar o u n d τ = τ ∗

p ,m − m wit h m −

m = 2  ( or  1  f or  o d d p -s pi n   m o d els)  ar e  t h e   wi d est  a n d
b e c o m e n arr o w er as m − m c orr es p o n ds t o hi g h er v al u es.

T h e  err or  i n  t h e  l o n g-ti m e- a v er a g e d   m a g n eti z ati o n
al o n g t h e z a xis t o  first  or d er i n s f or i niti al s pi n- c o h er e nt
st at es | (0 ) = | , c a n  b e  e x pr ess e d  a n al yti c all y.   We

fi n d t h at

E ∞
z ( τ ) =

q ={ p ,p − 2, ..., 2(1 )}

s q

p J p − 1
c os (q )

2

q (1 − s)

− τ c ot
q (1 − s)

2
τ + τ si n(q )

×

2 J − q

m = 0

|ρ (0 )
m + q ,m ( )| (J p

x ) m ,m + q ,  ( 2 0)

w h er e A r 1 ,r 2 = − J + r 1 |A | − J + r 2 f or  a n  o p er at or A .
T h e  err or  e x pr essi o n f or  a n  ar bitr ar y i niti al st at e is s h o w n
i n   A p p e n di x B .   E q u ati o n ( 2 0) pr e di cts  a n  err or  p e a k,  c a p-
t ur e d  b y t h e c ot a n g e nt t er m i n t h e  o ut er  vi ci nit y r e gi o n f or
e a c h  v al u e  of q i n t h e  s u m m ati o n,   w hi c h  c orr es p o n ds  t o
h a vi n g  a n  err or  p e a k  at  e v er y str u ct ur al i nst a bilit y r e gi o n.
T his r es ult fr o m  p ert ur b ati o n t h e or y  als o  a gr e es  v er y   w ell
wit h t h e n u m eri c all y o bt ai n e d c ur v es, as s h o w n b y t h e d ot-
t e d  li n es  i n  Fi g. 2 f or  t h e  s pi n- c o h er e nt  st at es  c e nt er e d
at | = π / 2, = 0 e x c e pt i n t h e i m m e di at e  vi ci nit y  of
t h e  d e g e n er at e  p oi nt,   w h er e  t h e  err ors  h a v e  a n  i n v ert e d-
tri a n g ul ar  s h a p e  (t h e  a n al yti c  pr e di cti o n  i n  t his  r e gi o n  is
n ot s h o w n i n Fi g. 2 b e c a us e t h es e pr e di cti o ns di v er g e h er e,
a n d   w e e x p e ct t his b e c a us e t h e n o n d e g e n er at e p ert ur b ati o n
t h e or y is  n ot  v ali d i n t his r e gi o n).   T his  b e h a vi or  h ol ds f or
m ost of t h e ot h er s pi n- c o h er e nt st at es at s m all v al u es of s.

I V.   E F F E C TI V E   H A MI L T O NI A N   A N D
E M E R G E N T  S Y M M E T RI E S

As  s e e n  i n  t h e  pr e vi o us  s e cti o n,   Tr ott eri z ati o n  of  t h e
p -s pi n   m o d els l e a ds t o l ar g e err ors i n t h e vi ci nit y of c ert ai n
p ar a m et er  r e gi m es  c orr es p o n di n g  t o  s o- c all e d  str u ct ur al
i nst a biliti es.   T his   w as  u n d erst o o d i n t h e  cl assi c al li mit t o
b e  a  c o ns e q u e n c e  of  bif ur c ati o ns  o c c urri n g  i n  t h e  ar e a-
pr es er vi n g   m a p of t h e   Tr ott eri z e d   m o d el t h at r a di c all y s hift
t h e  str u ct ur e  of  p h as e  s p a c e,  a n d   w hi c h   m a nif ests  at  t h e
q u a nt u m l e v el i n a  Fl o q u et  o p er at or   w h os e ei g e nst at es ar e
v er y  di ff er e nt fr o m t h os e  of t h e t ar g et p -s pi n   H a milt o ni a n.
T his  di ff er e n c e i n t h e  str u ct ur e  of  ei g e nst at es  c a n  b e  f ur-
t h er  el u ci d at e d  t hr o u g h  t h e  c o nstr u cti o n  of  a n  e ff e cti v e
H a milt o ni a n  ass o ci at e d   wit h  t h e   Tr ott eri z e d  u nit ar y.  F or
s m all  v al u es  of s,   w e  h a v e U t ar ∼ e iκ J z ,  a n d t h e  e v ol uti o n
is  ess e nti all y  pr e c essi o n  of st at es  ar o u n d t h e z a xis.   T h es e
pr e c essi o ns ar e   w ell a p pr o xi m at e d  b y t h e   Tr ott eri z e d e v o-
l uti o n U tr ot = U δ ( τ )

n a w a y fr o m t h e  str u ct ur al  st a biliti es.
H o w e v er,  n e ar  t h es e  i nst a biliti es,  t h e  p h as e  s p a c e  of  t h e
Tr ott eri z e d  e v ol uti o n  u n d er g o es   m aj or str u ct ur al  c h a n g es,
l e a di n g t o  a n  e v ol uti o n  v er y  di ff er e nt fr o m  pr e c essi o ns  of
t h e st at e ar o u n d t h e z a xis.

F or  i nst a n c e,  c o nsi d er p = 2,  t h e   L M G   C urri e   m o d el,
w h os e  p h as e  s p a c e  i n  t h e  cl assi c al  li mit  ass o ci at e d
wit h U t ar is  s h o w n  i n  Fi g. 3( a) .   We  s h o w U δ ( τ ) i n
Fi gs. 3( b) – 3( d) at s = 0. 1  i n  t h e  n ei g h b or h o o d  of  t h e
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( a) ( b)  ( c) ( d) ( e)

(f) ( g) ( h) (i) (j)

FI G.  3.  ( a)   Cl assi c al  p h as e-s p a c e tr aj e ct ori es  ass o ci at e d   wit h t h e   m e a n- fi el d  d y n a mi cs  of t h e t ar g et  u nit ar y   m a p f or p = 2 ( L M G
m o d el)  at s = 0. 1. ( b) –( d)   Cl assi c al  p h as e s p a c e  ass o ci at e d   wit h t h e   Tr ott eri z e d  u nit ar y f or p = 2 at s = 0. 1 f or  v ari o us   Tr ott er st e p
si z es l o c at e d i n t h e str u ct ur al i nst a bilit y r e gi o n, c e nt er e d at τ = τ ∗

2, 2 = π / 0. 9.   T h e p h as e-s p a c e tr aj e ct ori es i n ( b) t hr o u g h ( d) s h o w t h at
t h e t ar g et e d si m ul ati o n  of t h e  p ar a m a g n eti c p h as e d y n a mi cs t hr o u g h   Tr ott eri z ati o n r es ults i n si m ul ati o n  of t h e f err o m a g n eti c  p h as e  of
t h e   L M G   m o d el   w h e n t h e   Tr ott er st e p si z es  ar e  c h os e n  ar o u n d τ ∗

2, 2 .   T his  pr o c ess is  a c c o m m o d at e d  b y  a  1-t o- 2  bif ur c ati o n  at Z = 1.
( e) I d e nti c al t o t h e p h as e s p a c e s h o w n i n p art ( c) b ut pl ott e d as a f u n cti o n of t h e p ol ar a n d a zi m ut h al a n gl es.  P arit y- br o k e n tr aj e ct ori es
ar e  c ol or e d r e d  a n d  p ur pl e t o ill ustr at e t h at  st at es i niti ali z e d i n t h e l o b e d r e gi o n j u m p  b et w e e n t h e r e d  c ol or e d  c ur v e  a n d t h e  c orr e-
s p o n di n g p ur pl e c ol or e d c ur v e, tr a ci n g o ut t w o tr aj e ct ori es at t h e s a m e ti m e.   O n t h e ot h er h a n d, p arit y- br o k e n tr aj e ct ori es ( bl a c k c ol or)
tr a c e  o ut t h e a ct u al   L M G tr aj e ct ori es. (f)  S a m e as i n  p art ( a) e x c e pt t his is f or p = 4. ( g) –(i)   T h e si m ul at e d   H a milt o ni a n is  n o w  gi v e n

b y H (4, 4 )
e ff = − (1 − s)J z τ /( τ + τ ∗ ) − (s/ 8 J 3 )(J 4

x + J 4
y ), a n d t h e  p oi nt Z = 1  h as t w o s e p ar at e  1-t o- 4  bif ur c ati o ns i n t h e i nst a bilit y

r e gi o n f or τ   > 0. (j)  P h as e s p a c e s h o w n i n  p art ( h) is  pl ott e d  as  a f u n cti o n  of t h e  p ol ar  a n d  a zi m ut h al  a n gl es.   As  a r es ult  of  1-t o- 4
bif ur c ati o ns,  a  st at e i niti ali z e d i n  o n e  of t h e l o b es j u m ps  b et w e e n  di ff er e nt l o b es  c ol or e d r e d,  p ur pl e,  bl u e,  a n d  gr e e n  a n d tr a c es  o ut
f o ur di ff er e nt tr aj e ct ori es ( o n e i n e a c h l o b e).

i nst a bilit y  t h at  is  pr es e nt  at τ ∗
2, 2 = π /( 1 − s) ≈ 3. 4 9.   We

u n d erst a n d t his  str u ct ur e  of  p h as e  s p a c e  b y  a n al y zi n g t h e
f or m  of U 2

δ ,

[U δ ( τ
∗
2, 2 + τ ) ]2 = (e iπ J z e i(1 − s) τ J z e i(s/ 2 J )( τ ∗

2, 2 + τ ) J 2
x ) 2

= e i2 π J z (e i(1 − s) τ J z e i(s/ 2 J )( τ ∗
2, 2 + τ ) J 2

x ) 2 .
( 2 1)

F or s, τ /( τ ∗
2, 2 + τ ) 1, t h e u nit ar y   m a p c a n b e   writt e n

as [ U δ ( τ
∗
2, 2 + τ ) ]2 = ± e − i2 ( τ ∗

2, 2 + τ ) H
(2, 2 )
e ff wit h

H (2, 2 )
e ff (s) = − (1 − s)

τ

τ ∗
2, 2 + τ

J z −
s

2 J
J 2

x ,  ( 2 2)

m e a ni n g  t h at  t h e  d y n a mi cs  f or p = 2  e v er y  t w o  ti m e

st e ps c a n  b e  d es cri b e d  b y t h e e ff e cti v e   H a milt o ni a n H (2, 2 )
e ff .

F or τ   > 0,  t h e  e ff e cti v e   H a milt o ni a n  is  i n  f a ct  t h e
L M G   H a milt o ni a n  of t h e  f or m  s h o w n i n   E q. ( 8) wit h  a n
a d diti o n al  o v er all   m ulti pli c ati v e  f a ct or  a n d  a n  e ff e cti v e s

p ar a m et er gi v e n b y

1 − s e ff

s e ff
≡

(1 − s) τ /( τ ∗
2, 2 + τ )

s
,  ( 2 3)

l e a di n g t o

s e ff = 1 1 +
1 − s

s

τ

τ ∗
2, 2 + τ

.  ( 2 4)

H er e s e ff is  al w a ys  gr e at er  t h a n  0. 5  i n  t h e  r e gi o n  of  t h e
str u ct ur al i nst a bilit y.   T his i m pli es t h at t h e   Tr ott er a p pr o xi-
m ati o n  of t h e  u nit ar y   m a p   wit h t h e  ori gi n al   H a milt o ni a n
h a vi n g  a s m all  s v al u e  (i. e.,  b ei n g  i n  t h e  p ar a m a g n eti c
p h as e)  l e a ds  t o  si m ul ati o n  of  t h e  d y n a mi cs  of  t h e  s a m e
m o d el  b ut   wit h  a l ar g e v al u e  of s (i. e.,  c orr es p o n di n g
t o  t h e  f err o m a g n eti c  p h as e,  u p  t o  e v er y  alt er n at e  st e p).
T his  p ar a d o xi c al  e ff e ct  c a n  als o  b e  s e e n  i n  t h e  cl assi c al
p h as e  s p a c e  s h o w n i n  Fi gs. 3( b) – 3( d) f or τ   > 0,   w h er e
t h e tr aj e ct ori es  c h a n g e fr o m  pr e c essi o ns  ar o u n d t h e z a xis
f or τ > [π /( 1 − s)][ 1 + s/( 1 − 2 s)] (s e ff > 0. 5 ) t o pr e c es-
si o ns  ar o u n d t h e x a xis  at τ = τ ∗

2, 2 = π /( 1 − s) (s e ff = 1 )
as τ is d e cr e as e d (fr o m ri g ht t o l eft i n  Fi g. 3 ).   N ot e t h at t h e

0 1 0 3 5 1- 8



T R O T T E R   E R R O R S  F R O M   D Y N A MI C A L  S T R U C T U R A L. . . P R X   Q U A N T U M 3, 0 1 0 3 5 1 ( 2 0 2 2)

ti m e i nt er v al r e q uir e d t o tr a c e  o ut t h e f err o m a g n eti c  p h as e
d y n a mi cs  usi n g  t h e   Tr ott eri z e d  u nit ar y  ( e ff e cti v e   H a mil-
t o ni a n) is  1/ s e ff sl o w er  c o m p ar e d t o t h e ti m e r e q uir e d f or
i d e al   L M G   H a milt o ni a n  [p = 2 i n E q. ( 8)]   wit h s = s e ff

t o f oll o w t h e s a m e  e ff e cti v e  d y n a mi cs.   T his  c a n  b e tr a c e d
b a c k t o t h e  di ff er e n c e i n t h e  o v er all   m ulti pli c ati v e f a ct or,

H (2, 2 )
e ff (s) = H (s e ff ) /s e ff ,   w h er e H (s) is t h e   H a milt o ni a n i n

E q. ( 8).
I n t h e   m e a n- fi el d  pi ct ur e, t his  pr o c ess is a c c o m m o d at e d

b y  a  p eri o d- d o u bli n g  bif ur c ati o n  at τ = [π /( 1 − s)][ 1 +
s/( 1 − 2 s)] ( c orr es p o n di n g t o s e ff = 0. 5),   w h er e t h e st a bl e
fi x e d  p oi nt  at Z = 1  b e c o m es  u nst a bl e  as τ is  d e cr e as e d
a n d  a  p eri o d- 2  or bit  is  cr e at e d.   As  a  r es ult,  e v e n  t h o u g h
t h e   Tr ott eri z e d  p h as e  s p a c e  l o o ks  i d e nti c al  t o  t h e  p h as e
s p a c e f or t h e   L M G   H a milt o ni a n   wit h s e ff gi v e n i n   E q. ( 2 4),
t h e  i n di vi d u al  tr aj e ct ori es  o n  t h e  ass o ci at e d   Tr ott eri z e d
p h as e  s p a c e  tr a c e  o ut  t h e   L M G   H a milt o ni a n  tr aj e ct o-
ri es  o nl y   w h e n  o n e  c o nsi d ers  e v er y  alt er n at e  st e p  of  t h e
Tr ott eri z e d  e v ol uti o n.  F or  e x a m pl e,  at s = 0. 8,  t h e  i d e al
L M G   H a milt o ni a n  d es cri b e d  b y   E q. ( 8) wit h p = 2 tr a c es
o ut  b ot h  p arit y- br o k e n  tr aj e ct ori es  (r ot ati o ns),   w hi c h  ar e
b o u n d e d  b y t h e s e p ar atri x, a n d  p arit y- c o ns er vi n g tr aj e ct o-
ri es (li br ati o ns), a n d  h as a  p h as e s p a c e t h at l o o ks i d e nti c al
t o  t h at  ass o ci at e d   wit h  t h e   Tr ott eri z e d  d y n a mi cs  at τ =
τ ∗ + 0. 1 ≈ 3. 5 9 a n d s = 0. 1, as s h o w n i n  Fi g. 3( c) .   H o w-
e v er,  t h e   Tr ott eri z e d  d y n a mi cs  tr a c e  o ut  t h e  t w o  p arit y-
br o k e n tr aj e ct ori es,  si m ult a n e o usl y  as  s h o w n i n  Fi g. 3( e) ,
w h er e t h e p h as e-s p a c e tr aj e ct ori es ar e pl ott e d as a f u n cti o n
of  a n g ul ar  c o or di n at es θ a n d φ .  F or  a  gi v e n  i niti al  c o n-
diti o n,  t h e   Tr ott eri z e d  d y n a mi cs  tr a c e  o ut  o n e  l o b e  (r e d
c ol or e d tr aj e ct ori es) i n  all t h e  o d d  st e ps  of t h e  e v ol uti o n
a n d  t h e  ot h er  l o b e  i n  all  t h e  e v e n  st e ps  ( p ur pl e  c ol or e d
tr aj e ct ori es)  of t h e  e v ol uti o n.  I n t his   w a y, t h e   Tr ott eri z e d
tr aj e ct or y j u m ps  b et w e e n t w o  s e p ar at e  p arit y- br o k e n tr a-
j e ct ori es  of  t h e   L M G   H a milt o ni a n,  tr a ci n g  o ut  t h e  i d e al
L M G  d y n a mi cs   wit h s = s e ff o nl y e v er y alt er n at e st e p.   O n
t h e  ot h er  h a n d,  f or  t h e  i niti al  c o n diti o ns  ass o ci at e d   wit h
t h e  p arit y- c o ns er vi n g tr aj e ct or y  of t h e   L M G   H a milt o ni a n,
e v er y  st e p  of  t h e   Tr ott eri z e d  u nit ar y  tr a c es  o ut  t h e  i d e al
L M G tr aj e ct or y   wit h s = s e ff ( bl a c k  c ol or e d tr aj e ct ori es).
A si mil ar p h e n o m e n o n t a k es pl a c e i n t h e i nst a bilit y r e gi o n
f or τ   < 0, e x c e pt t h at t h e  bif ur c ati o n  n o w t a k es  pl a c e i n
t h e Z < 0 h e mis p h er e. P erf or mi n g a si mil ar a n al ysis of t h e
str u ct ur al i nst a bilit y r e gi o n  pr es e nt at τ ∗

p , 2 = π /( 1 − s) f or
t h e  e v e n p -s pi n   m o d els  s h o ws t h at t h e   Tr ott eri z e d  e v ol u-
ti o n als o r es ults i n si m ul ati o n of t h e f err o m a g n eti c p h as e of
t h e c orr es p o n di n g p -s pi n   H a milt o ni a n ( or t h e   H a milt o ni a n
wit h a r el ati v e  n e g ati v e si g n f or τ   < 0) e v e n t h o u g h t h e
t ar g et e v ol uti o n is ass o ci at e d   wit h t h e  p ar a m a g n eti c- p h as e
d y n a mi cs.

T h e   Tr ott eri z e d u nit ar y d y n a mi cs i n t h e vi ci nit y of ot h er
i nst a biliti es c a n di ff er e v e n   m or e s u bst a nti all y fr o m t h e t ar-
g et, i d e al  d y n a mi cs.  F or  e x a m pl e,  c o nsi d er t h e i nst a bilit y
at τ ∗

4, 4 = π / [ 2(1 − s)] f or p = 4.   T h e  e ff e cti v e   H a milt o-
ni a n c a n b e d eri v e d i n a si mil ar   m a n n er as d es cri b e d a b o v e,

yi el di n g

H (4, 4 )
e ff = − (1 − s)

τ

τ + τ ∗
J z −

s

8 J 3
(J 4

x + J 4
y ),  ( 2 5)

w h os e  p h as e-s p a c e  tr aj e ct ori es  u n d er g o  t w o  di ff er e nt
1-t o- 4  bif ur c ati o ns,  as  c a n  b e s e e n i n  Fi gs. 3( g) – 3(i) . T h e
c h a n g e i n t h e  p h as e-s p a c e  str u ct ur e  r es ults i n tr aj e ct ori es
t h at ar e v er y di ff er e nt fr o m t h os e ass o ci at e d   wit h t h e t ar g et
d y n a mi cs s h o w n i n  Fi g. 3(f) .  Si mil ar t o t h e c as e  of p = 2,

t h e p arit y- br o k e n tr aj e ct ori es of H (4, 4 )
e ff l o c at e d o n t h e p h as e

s p a c e  ar e  tr a c e d  o ut  b y  t h e   Tr ott eri z e d  d y n a mi cs  o nl y
e v er y f o urt h st e p. I n t h e i nt er m e di at e st e ps, t h e   Tr ott eri z e d
d y n a mi cs  l e a ds  t o  j u m ps  b et w e e n  v ari o us  p arit y- br o k e n
l o b es  pr es e nt  o n  t h e  p h as e  s p a c e,  as  s h o w n  i n  Fi g. 3(j) ,
w h er e  t h e  r e d,  p ur pl e,  bl u e,  a n d  gr e e n  c ol or e d  tr aj e ct o-
ri es  r e pr es e nt  e v er y  first,  s e c o n d,  t hir d,  a n d  f o urt h  st e p,
r es p e cti v el y.

M or e  g e n er all y, t h e  d y n a mi cs i n t h e  vi ci nit y  of i nst a bil-
it y at (1 − s) τ ∗

p ,q = r2 π / q h as a  1-t o- q bif ur c ati o n  pr es e nt
o n t h e cl assi c al p h as e of t h e   Tr ott eri z e d u nit ar y a n d c a n b e
u n d erst o o d  b y a n al y zi n g [ U δ ( τ + τ ) ]q .   We s e e t h at

[U δ ( τ + τ ) ]q = e i(2 π / q )J z e i(1 − s) τ J z e i(s/ p J p − 1 )( τ ∗
p ,q + τ ) J

p
x q

= ± W (2 q − 2 ) π /q · · · W 4 π / q W 2 π / q W ,  ( 2 6)

w h er e

W ≡ e i(1 − s) τ J z e i(s/ p J p − 1 )( τ ∗
p ,q + τ ) J

p
x ( 2 7)

a n d

W θ ≡ e − iθ J z We iθ J z

= e i(1 − s) τ J z e i(s/ p J p − 1 )( τ ∗
p ,q + τ )( J x c os θ + J y si n θ ) p

.  ( 2 8)

F or s, τ /( τ ∗ + τ ) ≈ τ / τ ∗ 1, t h e   Tr ott eri z e d  u ni-

t ar y c a n b e e x pr ess e d as [U δ ( τ + τ ) ]q = e − i q( τ ∗
p ,q + τ ) H

(p ,q )
e ff

wit h t h e e ff e cti v e   H a milt o ni a n  gi v e n b y

H
(p ,q )
e ff = − (1 − s)

τ

τ ∗ + τ
J z −

s

p q J p − 1

q

m = 1

× J x c os
2 π ( m − 1 )

q
+ J y si n

2 π ( m − 1 )

q

p

.

( 2 9)

T h e   H a milt o ni a n  i n   E q. ( 2 9) si m pli fi es  f urt h er   w h e n  t h e
H a milt o ni a n  h as p arit y s y m m etr y,   w hi c h is t h e c as e f or all
e v e n p -s pi n   m o d els, as t h e (q / 2 + k )t h t er m i n t h e s u m m a-
ti o n b e c o m es i d e nti c al t o t h e k t h t er m, r e d u ci n g t h e n u m b er
of  t er ms  i n  t h e  s u m m ati o n  fr o m q t o q / 2.   T his  e ff e cti v e
H a milt o ni a n c a pt ur es t h e d y n a mi cs of e v er y q t h st e p of t h e
Tr ott eri z e d u nit ar y i n t h e vi ci nit y of t h e 1-t o- q bif ur c ati o n.

0 1 0 3 5 1- 9



K A R T HI K   C HI N NI et al. P R X   Q U A N T U M 3, 0 1 0 3 5 1 ( 2 0 2 2)

T h e  ass o ci at e d  p h as e  s p a c e  of  t h e  e ff e cti v e   H a milt o ni a n
is  i n v ari a nt  ar o u n d  t h e z a xis  u n d er  2 π / q r ot ati o n  si n c e

it  c o m m ut es   wit h e i(2 π / q )J z : [H
(p ,q )
e ff , e i(2 π / q )J z ] = 0.   T his is

a n e m er g e nt s y m m etr y t h at a p p e ars i n t h e str u ct ur al i nst a-
bilit y r e gi o n.   We  als o   w a nt t o  p oi nt  o ut t h at,  e v e n t h o u g h
bif ur c ati o ns f a cilit at e t h e str u ct ur al c h a n g es i n t h e i nst a bil-
it y r e gi o ns,  n ot all  bif ur c ati o ns l e a d t o s u c h s h ar p c h a n g es
i n p h as e s p a c e.   O nl y t h e s u bs et of bif ur c ati o n p oi nts, i d e n-
ti fi e d  h er e  as  “si g ni fi c a nt ”  bif ur c ati o ns, l e a d t o  e xt e nsi v e
c h a n g es  i n  t h e  str u ct ur e  of  t h e  ei g e nst at es  a n d  r es ult  i n
l ar g e   Tr ott er  err ors.   T h es e  si g ni fi c a nt  bif ur c ati o ns  a p p e ar
o nl y i n t h e str u ct ur al i nst a bilit y r e gi o ns.

I n  s u m m ar y,  t h e  e ff e cti v e   H a milt o ni a n  f or m ul ati o n
e x pl ai ns  t h e  pr es e n c e  of  l ar g e  err or  p e a ks  i n  t h e  si m u-
l at e d ti m e- a v er a g e d   m a g n eti z ati o n.   At c ert ai n   Tr ott er st e p
si z es t h at c orr es p o n d t o str u ct ur al i nst a biliti es, t h e   Tr ott er-
i z e d  u nit ar y  e v ol uti o n  o p er at or  si m ul at es  a  v er y  di ff er e nt
H a milt o ni a n  fr o m  t h e  t ar g et   H a milt o ni a n.  Fr o m  a   m e a n-
fi el d  p ers p e cti v e,  t h e   m aj or  str u ct ur al  c h a n g es  t h at  t a k e
pl a c e i nsi d e t h e r e gi o ns of str u ct ur al i nst a bilit y al w a ys c or-
r es p o n d   wit h si g ni fi c a nt bif ur c ati o ns o n t h e cl assi c al p h as e
s p a c e,   w hi c h l e a d t o cr e ati o n of p eri o di c h y p er b oli c p oi nts
( h y p er b oli c fi x e d p oi nts of hi g h er p eri o d),   w hi c h ar e a bs e nt
o n t h e  p h as e s p a c e ass o ci at e d   wit h t h e t ar g et   H a milt o ni a n
H t ar ∼ κ J z .

V. I N F O R M A TI O N  S C R A M B LI N G I N SI D E
S T R U C T U R A L I N S T A BI LI T Y   R E GI O N S

As   m e nti o n e d  i n  t h e  pr e vi o us  s e cti o n,  o n e  of  t h e  si g-
n at ur es  of t h e  str u ct ur al i nst a bilit y r e gi o ns i n t h e   Tr ott er-
i z e d  u nit ar y is t h e  e m er g e n c e  of  or  u nst a bl e  ( h y p er b oli c)
p eri o di c  fi x e d  p oi nts.   T h us, i n t h e  cl assi c al li mit, t h e tr a-
j e ct ori es i n t h e  vi ci nit y  of t his  p oi nt  ar e  e x p e ct e d t o s h o w
e x p o n e nti al  di v er g e n c e   w h e n t h e  d y n a mi cs is  o bs er v e d  at
t h e a p pr o pri at e str o b os c o pi c ti m es, i. e., e v er y q st e ps i n t h e
r e gi o n ar o u n d τ ∗

p ,q .
R e c e ntl y, it  h as  b e e n s h o w n t h at t h e  pr es e n c e  of  h y p er-

b oli c p oi nts c a n l e a d t o i nf or m ati o n s cr a m bli n g d e e p i nsi d e
t h e  q u a nt u m  r e gi m e,  a  p h e n o m e n o n  t h at   w as  d u b b e d
s a d dl e- p oi nt  s cr a m bli n g  [ 4 2 ,4 3 ].   N ot e  t h at  t his  s a d dl e-
p oi nt  s cr a m bli n g  is  n ot i n di c ati v e  of  c h a oti c  b e h a vi or  as
m e nti o n e d i n   R ef. [ 4 2 ,4 3 ], r at h er its ori gi n li es i n t h e e x p o-
n e nti al  di v er g e n c e  of t h e tr aj e ct ori es t h at  h a p p e ns  o nl y i n
t h e l o c ali z e d r e gi o n  ar o u n d t h e s e p ar atri x,   w hi c h i n cl u d es
t h e h y p er b oli c fi x e d p oi nt.   H er e,   w e s h o w t h at t h e e ff e cti v e
H a milt o ni a n  c o nstr u ct e d i n t h e  pr e vi o us  s e cti o n  c orr e ctl y
i d e nti fi es t h e  pr es e n c e  of  u nst a bl e  fi x e d  p oi nts  a n d  all o ws
us t o c h ar a ct eri z e t h e s a d dl e- p oi nt s cr a m bli n g e m er gi n g i n
t h e  si m ul at or.   N ot e  t h at  s u c h  s cr a m bli n g  e xists  n at ur all y
i n t h e  d y n a mi cs  of t h e f err o m a g n eti c  p h as e  of t h e i d e al p -
s pi n   m o d els,  as t h e  e xist e n c e  of  a  criti c al (f or p = 2)  or  a
bif ur c ati o n (f or p > 2) p oi nt is al w a ys a c c o m p a ni e d b y t h e
e m er g e n c e  of a n s a d dl e  p oi nt.   T his is e asil y  u n d erst o o d as

a pit c hf or k or a s a d dl e- n o d e bif ur c ati o n of t h e c orr es p o n d-
i n g  cl assi c al  e q u ati o ns  of   m oti o n.   H o w e v er,  t his  t y p e  of
s cr a m bli n g is  a bs e nt i n t h e  p ar a m a g n eti c  p h as e,   w hi c h is
t h e t ar g et d y n a mi cs b ei n g si m ul at e d.

T h e  s m o ki n g  g u n  of  s cr a m bli n g  b e h a vi or  is  t h e  e x p o-
n e nti al  o p er at or  gr o wt h  of  c ert ai n  c orr el ati o n  f u n cti o ns
[4 4 ]. I n p arti c ul ar,   w e c h ar a ct eri z e t h e s a d dl e- p oi nt s cr a m-
bli n g  i n  t h e  q u a nt u m  si m ul ati o n  usi n g  t h e  s h ort  ti m e
gr o wt h  of t h e “i n fi nit e t e m p er at ur e ” s q u ar e c o m m ut at or

c (t) =
1

d
Tr {[V (t), W (0 )][V (t), W (0 )]† },  ( 3 0)

w h er e d is t h e di m e nsi o n of t h e   Hil b ert s p a c e, t h e o p er at ors
V (t) a n d W (0 ) ar e c h os e n s o t h at t h e y c o m m ut e at t h e i ni-
ti al ti m e,  a n d V (t) is t h e   H eis e n b er g  e v ol uti o n  of V (0 ). I n
t his   w or k,   w e  c h o os e V (0 ) = W = J z ,  a n d st u d y t h e s h ort
ti m e gr o wt h  of t h e s q u ar e c o m m ut at or

c (t) =
1

N + 1
Tr {|[J z (t), J z (0 )]|

2 }.  ( 3 1)

I n t h e  pr es e n c e  of  a n i nst a bilit y,  b e it  a  s a d dl e  p oi nt  or  a
h y p er b oli c  p eri o di c  p oi nt, t h e  a b o v e  q u a ntit y is  e x p e ct e d
t o  gr o w li k e c (t) ∼ e λ s a d dl e t,   w h er e λ s a d dl e is t h e  ass o ci at e d
gr o wt h  r at e  at  t h e  s a d dl e  p oi nt.   T h e  e x p o n e nti al  gr o wt h
of t h e   O T O C is  s e e n i n  Fi gs. 4( a) a n d 4( c) f or t h e p = 2
s yst e m   wit h   Tr ott er st e p si z e i n t h e  vi ci nit y  of τ ∗

2, 2 a n d t h e

( a) ( c)

( b) ( d)

S t e p s

S t e p s

FI G.  4.  ( a),( b)   E x a m pl es  of ti m e e v ol uti o n  of t h e  o ut- of-ti m e-
or d er  c orr el ati o n  ( O T O C)  f u n cti o n, c (t), i n E q. ( 3 1) f or  s o m e
v al u es of τ i nsi d e t h e str u ct ur al i nst a bilit y r e gi o n f or t h e p = 2
( a)  a n d p = 4  ( b),  a n d  f or  t h e τ ∗

2, 2 a n d τ ∗
4, 4 str u ct ur al  i nst a bili-

ti es, r es p e cti v el y. ( c),( d)   E x p o n e nt of t h e s a d dl e p oi nt c o ntr olli n g
t h e r at e  of  gr o wt h  of t h e s q u ar e  c o m m ut at or  at s h ort ti m es.   T h e
s oli d  li n e  is  t h e  a n al yti c al  pr e di cti o n  o bt ai n e d  fr o m  t h e  cl assi-
c al  fl o w  ass o ci at e d   wit h t h e  e ff e cti v e   H a milt o ni a n  a n d t h e  st ars
pl us  d as h e d li n e  ar e t h e  e x p o n e nts  o bt ai n e d  n u m eri c all y  b y li n-
e ar  fit t o t h e s e cti o n of t h e d at a t h at gr o ws e x p o n e nti all y.  F or t his
c al c ul ati o ns,   w e us e d N = 1 2 8, s = 0. 1.
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p = 4  s yst e m   wit h   Tr ott er  st e p  si z e  ar o u n d τ ∗
4, 4 ,  r es p e c-

ti v el y.   T h e  e x p o n e nts  ass o ci at e d   wit h  t h e  s a d dl e  p oi nt
d eri v e d  fr o m  t h es e  n u m eri cs  ar e  pl ott e d  i n  Fi gs. 4( b)
a n d 4( d) as  a  f u n cti o n  of t h e   Tr ott er  st e p  si z e   wit h  a  r e d
d ott e d li n e.

T h e  a n al yti c  e x pr essi o ns  f or λ
(p ,q )
s a d dl e ass o ci at e d   wit h  a

gi v e n p a n d  1-t o- q bif ur c ati o n  c a n  b e  o bt ai n e d  b y  s ol v-
i n g f or t h e  ei g e n v al u es  of t h e  J a c o bi a n   m atri x  ass o ci at e d
wit h  t h e  li n e ari z e d  cl assi c al  fl o w  ar o u n d  t h e  a p pr o pri at e
u nst a bl e fi x e d p oi nt of t h e e ff e cti v e   H a milt o ni a n,   w hi c h ar e
l a b el e d b y bl u e s oli d li n es i n Fi gs. 4( b) a n d 4( d) . I n t h e s ys-
t e m   wit h p = 2 ar o u n d τ ∗

2, 2 , i. e., t h e 1-t o- 2 bif ur c ati o n, o n e

fi n ds t h at

λ (2, 2 )
s a d dl e = ( τ ∗

2, 2 + τ )
s(1 − s)| τ |

τ ∗
2, 2 + τ

−
(1 − s) τ

τ ∗
2, 2 + τ

2

,

( 3 2)

a n d  t h e  e x pr essi o n  f or λ s a d dl e i n  t h e  s yst e m   wit h p = 4
ar o u n d τ ∗

4, 4 , i. e., t h e 1-t o- 4  bif ur c ati o n, is gi v e n b y

λ (4, 4 )
s a d dl e = M (4, 4 )

+ , ( 3 3)

w h er e M (4, 4 )
+ is t h e l ar g est ei g e n v al u e  of

M (4, 4 ) =

⎛

⎜
⎝

0 2 (1 − s) τ /( τ ∗
4, 4 + τ ) s Y 3

s a d dl e / 2

− 2 (1 − s) τ /( τ ∗
4, 4 + τ ) 0 − s X 3

s a d dl e / 2

s Y 3
s a d dl e − s X 3

s a d dl e 0

⎞

⎟
⎠ , ( 3 4)

w h er e X s a d dl e = 1 − Z 2
s a d dl e /

√
2 a n d X 2

s a d dl e = Y 2
s a d dl e ar e

t h e   C art esi a n c o or di n at es  of t h e  u nst a bl e  p oi nt  of t h e cl as-
si c al  fl o w  ass o ci at e d   wit h  t h e  e ff e cti v e   H a milt o ni a n  at
t his i nst a bilit y f or t h e p = 4  s yst e m.   We  gi v e t h e  e x pli cit
e x pr essi o n  of Z s a d dl e al o n g   wit h  d et ails  o n  t h e  d eri v ati o n
of  t h e  e x p o n e nts  i n   A p p e n di x C .  I n  Fi gs. 4( b) a n d 4( d)
w e  c o m p ar e  t h e  e x p o n e nts  e xtr a ct e d  fr o m  t h e  n u m eri c al
c al c ul ati o n  of  t h e   O T O C  (r e d  st ars)  f or  a  s yst e m  si z e  of
N = 1 2 8,   wit h  t h e  a n al yti c al  e x pr essi o ns  o bt ai n e d   wit h
t h e   m e a n- fil e d  li mit  of  t h e  e ff e cti v e   H a milt o ni a n  (s oli d
bl u e li n e).   N ot e t h e  g o o d a gr e e m e nt  d es pit e t h e s m all s ys-
t e m si z e  us e d i n t h e si m ul ati o n.   T h us,  as  first  o bs er v e d i n
R ef. [ 4 2 ], t h e s h ort ti m e gr o wt h of t h e   O T O C h as t h e f or m
e λ s a d dl e t.

VI.   C O N C L U SI O N S   A N D   O U T L O O K

I n  t his   w or k   w e  h a v e  i d e nti fi e d  a  n e w   m e c h a nis m
l e a di n g  t o  t h e  pr olif er ati o n  of  err ors  i n  a  q u a nt u m  si m-
ul at or   w h e n  t h e  al g orit h m  e m pl o ys  t h e   Tr ott er- S u z u ki
d e c o m p ositi o n.  I n  t h e   m e a n- fi el d  li mit,  t h es e  r e gi o ns  of
str u ct ur al  i nst a bilit y  ar e  c h ar a ct eri z e d  b y   m ulti pl e  bif ur-
c ati o ns  l e a di n g  t o  r a pi d  gl o b al  c h a n g es  i n  t h e  str u ct ur e
of  t h e  p h as e  s p a c e  as  t h e   Tr ott er  st e p  si z e  is  v ari e d
sli g htl y.

T h e  e ff e cts  of t h es e  bif ur c ati o ns  c a n  b e s e e n i n s m all er
s yst e ms,   wit h N f ar  fr o m  t h e  t h er m o d y n a mi c  li mit.   A
m et h o d t o i d e ntif y t h e str u ct ur al i nst a bilit y r e gi o ns i n t h es e
s m all er  s yst e ms  is  t o  s e e k  t h e  r e gi o ns   w h er e  t h e  ei g e n-
st at es of t h e   Tr ott eri z e d u nit ar y di ff er si g ni fi c a ntl y fr o m t h e
ei g e nst at es  of t h e t ar g et  u nit ar y.  Fr o m t h e c orr es p o n d e n c e

pri n ci pl e,  t h e  q u asi pr o b a bilit y  distri b uti o n  is  e x p e ct e d  t o
o v erl a p   wit h  t h e  tr aj e ct ori es  of  t h e  p h as e  s p a c e  i n  t h e
cl assi c al  li mit,  s o  r a pi d  c h a n g es  i n  t h e  str u ct ur e  of  t h e
p h as e s p a c e ar e r e fl e ct e d i n t h e   m o di fi c ati o ns of t h e ei g e n-
st at es  ass o ci at e d   wit h t h e   Tr ott eri z e d  u nit ar y.   T h e  s u d d e n
c h a n g es  i n  t h e  str u ct ur e  of  t h e  ei g e nst at es  of  t h e   Tr ot-
t eri z e d  u nit ar y  r es ult  i n  Fl o q u et  d y n a mi cs  t h at  is  v er y
di ff er e nt fr o m t h e t ar g et e d e v ol uti o n of a gi v e n st at e, r es ult-
i n g i n l ar g e err ors i n  v ari o us  o bs er v a bl es. I n t his   w or k,   w e
pr o vi d e  a n al yti c  e x pr essi o ns  f or  t h es e  hi g h- err or  r e gi o ns
c o m p ut e d  usi n g  u nit ar y  p ert ur b ati o n  t h e or y,  f or  t h e  c as e
of p -s pi n   m o d els.   We  s h o w e d  t h at  i nsi d e  t h e  str u ct ur al
i nst a bilit y r e gi o ns t h e  e ff e cti v e   H a milt o ni a n,   w hi c h is t h e
g e n er at or  of  t h e   Tr ott eri z e d  e v ol uti o n,  is  v er y  di ff er e nt
fr o m t h e t ar g et   H a milt o ni a n, pr o vi di n g f urt h er j usti fi c ati o n
f or t h e pr es e n c e of l ar g e err ors i n t h es e r e gi o ns.   T h e e ff e c-
ti v e   H a milt o ni a n  r e v e als  t h e  e m er g e n c e  of  n e w  u nst a bl e
fi x e d  p oi nts i n t h e str u ct ur al i nst a bilit y r e gi o ns, i n di c ati n g
t h e  pr es e n c e  of  s a d dl e- p oi nt  s cr a m bli n g i n t h e  si m ul at or,
as   m a nif est e d  b y t h e e x p o n e nti al  gr o wt h  of t h e   O T O Cs i n
t h es e r e gi o ns.

A n i m p ort a nt c o n cl usi o n of t h e p ert ur b ati o n t h e or y a n al-
ysis  of  S e c. III is  t h at  str u ct ur al  i nst a bilit y  r e gi o ns   will
a p p e ar  at  s m all er  v al u es  of t h e   Tr ott er  st e p  si z e τ as t h e
v al u e  of p i n cr e as es.   T his i n di c at es t h at, i n  g e n er al,  g at e-
b as e d q u a nt u m si m ul ati o ns of p - b o d y i nt er a cti o ns ( b e y o n d
t h e  us u al  t w o- b o d y  c as e  of p = 2)  is  li k el y  t o  l e a d  t o
m or e  p ar a m et er  r e gi m es   w h er e   Tr ott er  err ors  pr olif er at e.
W hil e t his is c ert ai nl y tr u e i n t h e c as e  of all-t o- all i nt er a c-
ti o ns  a n al y z e d  h er e, t h e  st u d y  of its   m a nif est ati o n i n  s ys-
t e ms   wit h  di ff er e nt i nt er a cti o ns (i. e.,   wit h l o n g,  b ut  fi nit e,
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i nt er a cti o n r a n g e)   will r e q uir e f urt h er st u d y.   We c o nj e ct ur e
t h at  t h e  str u ct ur al  i nst a biliti es  st u di e d  h er e  i n  t h e   m e a n-
fi el d  c as e  ar e   m or e  u ni v ers al,  a n d  c arr y  o v er  t o  Fl o q u et
st at es   wit h   m or e g e n er al   m a n y- b o d y i nt er a cti o ns.   N ot e t h at
m o d els   wit h  all-t o- all i nt er a cti o n  gr a p hs  ar e  oft e n  s e e n t o
c orr e ctl y  c a pt ur e t h e  p h ysi cs  of  s yst e ms   wit h   m or e  c o m-
pl e x  b ut  still  l o n g-r a n g e  i nt er a cti o ns.  F or  e x a m pl e,  f or
t h e  c as e  of p = 2, t h e   m e a n- fi el d  p h e n o m e n ol o g y  ass o ci-
at e d   wit h t h e   L M G   m o d el i nf or ms t h e d y n a mi c al q u a nt u m
p h as e  tr a nsiti o n  b e h a vi or  of  fi nit e-r a n g e  i nt er a cti n g  s ys-

t e ms  d es cri b e d  b y H = B J z + i,j J 0 σ
(i)
x σ

(j )
x / |i − j |α f or

α 2 ( α = 0  c orr es p o n ds  t o  t h e   L M G   m o d el)  [ 1 4 ,4 5 ].
T h es e r es ults str o n gl y s u g g est t h at   m e a n- fi el d   m o d els  c a n
gi v e  i nsi g ht  i nt o   m a n y- b o d y  b e h a vi or  ( p arti c ul arl y,  t h e
n o n e q uili bri u m d y n a mi cs of p h ysi c al o bs er v a bl es), a n d t h e
n oti o n  of str u ct ur al i nst a biliti es   will  v er y li k el y  b e  pr es e nt
i n fi nit e-r a n g e   m o d els   wit h n o n z er o v al u es of α f or t h e p =
2 c as e.  F urt h er st u d y of t h e str u ct ur al i nst a bilit y r e gi o ns i n
t h e  fi nit e-r a n g e i nt er a cti o n c as e, a n d t h e e xt e nsi o n of t h es e
m o d els f or p ≥ 3 is l eft f or f ut ur e   w or k.

B e y o n d t h eir i m pli c ati o n i n t h e pr olif er ati o n of err ors i n
q u a nt u m  si m ul ati o n, t h e r e gi o ns  of  str u ct ur al i nst a biliti es
ar e  a   m a nif est ati o n  of f u n d a m e nt al  e ff e cts i n t h e  n o n e q ui-
li bri u m  d y n a mi cs  of t h e  Fl o q u et s yst e m. I n  p arti c ul ar,   w e
fi n d  t h at  t h e  d y n a mi cs  of  t h e  dri v e n  s yst e m  i n   E q. ( 1 1),
w h os e   H a milt o ni a n is  p eri o di c   wit h  p eri o d T , H (t + T ) =
H (t),  s h o ws  si g n at ur es  of  Fl o q u et  ti m e  cr yst al  b e h a vi or
i n  a  r e gi o n  of  str u ct ur al i nst a bilit y.   A  Fl o q u et ti m e  cr ys-
t al  is  a n  o ut- of- e q uili bri u m  p h as e  of   m att er  t h at  br e a ks
dis cr et e  ti m e-tr a nsl ati o n  s y m m etr y  [ 4 6 – 4 9 ].   T h es e  ti m e-
cr yst al  p h as es i n t h e  ki c k e d p -s pi n   m o d els  c a n  b e st u di e d
wit h t h e  h el p  of  ar e a- pr es er vi n g   m a ps  ass o ci at e d   wit h t h e
m e a n- fi el d  li mit  of  t h e  Fl o q u et  s yst e m.  I n  p arti c ul ar,  t h e
e xist e n c e of p eri o di c elli pti c p oi nts,   w hi c h c a n b e o bs er v e d
cl e arl y i n t h e  p h as e-s p a c e  p ortr aits  of  Fi g. 3 ,   will l e a d t o
t h e d y n a mi cs   w h er e t h e i niti al st at e, pr e p ar e d cl os e e n o u g h
t o elli pti c  p oi nts,   will  p eri o di c all y r et ur n t o t h e i niti al c o n-
fi g ur ati o n  aft er q ti m e  st e ps,   wit h q ≥ 2.  P h ysi c all y,  t his
m e a ns t h at t h e r es p o ns e  of t h e s yst e m   will  h a v e  a  p eri o d-
i cit y  of q T , i nst e a d  of T , t h us  br e a ki n g t h e  dis cr et e ti m e-
tr a nsl ati o n  s y m m etr y  of  t h e   H a milt o ni a n.   T h e  c o n n e c-
ti o n  b et w e e n  str u ct ur al  i nst a biliti es  a n d  t h e  s u b h ar m o ni c
r es p o ns e   w as als o s e e n i n   R ef. [5 0 ],   w h er e t h e a ut h or st u d-
i e d t h e e m er g e n c e of t h e r o b ust s u b h ar m o ni c r es p o ns e i n a
s pi n  c h ai n   wit h  s h ort-r a n g e  ( n e ar est- n ei g h b or)  t w o- b o d y
i nt er a cti o ns  i n  a  r e gi m e  t h at  r o u g hl y  c oi n ci d es   wit h  t h e
c h oi c e of τ = τ ∗

2, 2 i n t h e p ar a m etri z ati o n us e d i n o ur   w or k.
T his  r es ult,  t o g et h er   wit h  t h e  g e n er al  c o n n e cti o n  of  t h e
str u ct ur al  i nst a bilit y  r e gi o ns   wit h  dis cr et e  ti m e  cr yst als,
i n di c at es t h at t his s o ur c e of   Tr ott er err ors is n ot a n is ol at e d
p h e n o m e n o n h a p p e ni n g o nl y i n l o n g-r a n g e i nt er a cti n g s pi n
m o d els.   A  c o m pr e h e nsi v e  st u d y  of  all  t h e  Fl o q u et  ti m e
cr yst al  p h as es  pr es e nt i n t h e  ki c k e d p -s pi n  s yst e m is  p art
of a n o n g oi n g   w or k a n d   will b e pr es e nt e d i n a f ort h c o mi n g
p u bli c ati o n [ 5 1 ].

A C K N O W L E D G M E N T S

We   w o ul d li k e t o t h a n k  P o ul  J ess e n  a n d   K e vi n   K u p er
f or i nsi g htf ul dis c ussi o ns, a n d   C h a n g h a o   Yi f or his i nsi g hts
i n   Tr ott er f or m ul as  a n d  q u a nt u m si m ul ati o n.   T his   w or k is
s u p p ort e d  b y t h e   U. S.   N ati o n al  S ci e n c e  F o u n d ati o n  u n d er
Gr a nts   N o.  P H Y- 1 8 2 0 6 7 9  a n d   N o.  P H Y- 2 0 1 1 5 8 2.   T his
m at eri al is b as e d u p o n   w or k s u p p ort e d b y t h e   U. S.   D e p art-
m e nt  of   E n er g y,   O ffi c e  of  S ci e n c e,   N ati o n al   Q u a nt u m
I nf or m ati o n  S ci e n c e   R es e ar c h   C e nt ers,   Q u a nt u m  S yst e ms
A c c el er at or.

A P P E N DI X   A:   C A L C U L A TI O N   O F   L Y A P U N O V
E X P O N E N T S

T hr o u g h o ut  t h e   m ai n  t e xt,   w e  us e  t h e  t er m   L y a p u n o v
e x p o n e nt t o  d es cri b e t h e  r at e  of  e x p o n e nti al  gr o wt h  of  a
cl assi c al  v ari a bl e X .   T h at  is,  u p  t o  s o m e  t hr es h ol d  ti m e
tt h,  t his  cl assi c al  v ari a bl e  e v ol v es  a c c or di n g  t o X (t) =
X (0 )e t,   wit h b ei n g t h e   L y a p u n o v e x p o n e nt.

We  h a v e  pr es e nt e d  r es ults  i n  t his   w or k  f or  t w o  di ff er-
e nt s c e n ari os   w h er e s o m e c o m p o n e nts  of t h e   m e a n s pi n i n
t h e  t h er m o d y n a mi c  li mit  e v ol v e  f oll o wi n g  t h e  d y n a mi cs
d es cri b e d i n t h e pr e vi o us p ar a gr a p h.  First,   w e a n al y z e d t h e
c h a oti c i nst a bilit y  of t h e  d elt a- ki c k e d p s pi n  as ill ustr at e d
i n  Fi gs. 1( c) a n d 1( d) .   T h e n,   w e  a n al y z e d t h e  s h ort ti m e
e v ol uti o n of t h e s q u ar e c o m m ut at or i n S e c. V ,   w h os e p h ys-
i c al  ori gi n  c a n  b e tr a c e d t o t h e  e x p o n e nti al  gr o wt h  of t h e
u nst a bl e s e p ar atri x  br a n c h es  of s a d dl e  p oi nts  of t h e  p h as e-
s p a c e  fl o w.   N ot e t h at   w e  pr o vi d e a   m or e i n- d e pt h a n al ysis
of t h e i nst a bilit y ar o u n d t h e s a d dl e p oi nt i n   A p p e n di x C .

Alt h o u g h b ot h s c e n ari os r e pr es e nt e x p o n e nti al i nst a bili-
ti es, t h e y c orr es p o n d t o p h ysi c all y di ff er e nt sit u ati o ns.   T h e
c h a oti c i nst a bilit y is gl o b al, s o a n y p air of p oi nts i nsi d e t h e
c h a oti c r e gi o n  of t h e  p h as e s p a c e   will  dis pl a y  e x p o n e nti al
di v er g e n c e of t h eir dist a n c e at a r at e gi v e n b y t h e e x p o n e nt.
T h e  u bi q uit y  of t his i nst a bilit y  all  o v er t h e  c h a oti c r e gi o n
l e a ds  t o  t h e  f ol di n g  of  tr aj e ct ori es  at  l o n g  ti m es  a n d  t h e
d e c a y  of  c orr el ati o ns,   wit h t h e l att er  k n o w n  as   mi xi n g. I n
f a ct, at l o n g ti m es a n d l e n gt h s c al es, t h e   m oti o n i nsi d e t h e
c h a oti c r e gi o n r es e m bl es  a  di ff usi o n  pr o c ess.   T his i m pli es
t h at  t h e  c h a oti c  d y n a mi cs  h as  a  p ositi v e  v al u e  of   m et-
ri c  e ntr o p y,  or   K ol m o g or o v- Si n ai  e ntr o p y,   w hi c h  c a n  b e
c o m p ut e d  vi a  P esi n’s t h e or e m [ 5 2 ].  F or t h e i nst a bilit y  of
t h e  s a d dl e  p oi nt,  all  of t h e  a b o v e m e nti o n e d  p h ysi c al  pr o-
c ess es ar e a bs e nt. F urt h er m or e, t h e e x p o n e nti al di v er g e n c e
of tr aj e ct ori es  o nl y  o c c urs i n  a  hi g hl y l o c ali z e d r e gi o n  of
p h as e s p a c e i n cl u di n g t h e i m m e di at e vi ci nit y of t h e s a d dl e
p oi nt a n d t h e s e p ar atri x.  F or i nst a n c e, s e e   R ef. [ 4 2 ] f or a n
i n- d e pt h  dis c ussi o n o n t his   m att er.

T h e   m oti v ati o n  b e hi n d  Fi g. 1 is  t w of ol d.   O n  t h e  o n e
h a n d,   w e   w a nt  t o  i ntr o d u c e  t h e  dissi mil arit y,  a n d  r e c o g-
ni z e t h at t his  q u a ntit y i d e nti fi es  b ot h t y p es  of i nst a biliti es.
O n t h e ot h er h a n d,   w e als o   w a nt t o pr es e nt a dir e ct c o m p ar-
is o n   wit h t h e   L y a p u n o v e x p o n e nt of t h e c h a oti c i nst a bilit y,
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all o wi n g us t o i d e ntif y t h e r e gi o n of p ar a m et er s p a c e ( τ , s)
i n t h e si mil arit y h e at   m a p   w h os e ori gi n is c h a os.

I n t h e f oll o wi n g,   w e e x pl ai n t h e d et ails of c al c ul ati n g t h e
L y a p u n o v e x p o n e nt ass o ci at e d   wit h t h e c h a oti c i nst a bilit y,
as s h o w n i n  Fi g. 1 . I n t h e t h er m o d y n a mi c li mit, t h e   m e a n
s pi n  e v ol v es  str o b os c o pi c all y  a c c or di n g t o   E qs. ( 1 2). F or
a n y  p oi nt  i n  p h as e  s p a c e,  t h e  l o c al  d y n a mi cs  of  s m all
i n cr e m e nts i n its vi ci nit y is g o v er n e d  b y t h e J a c o bi   m atri x

M (X m ) =
∂ X m + 1

∂ X m
. ( A 1)

F or a p oi nt i nsi d e t h e c h a oti c r e gi o n, t h e e x p o n e nti al i nst a-
bilit y i m pli es t h at t h e  n ei g h b or h o o d  of t h e  p oi nt is  g etti n g
e x p o n e nti all y str et c h e d i n s o m e  of t h e  pri n ci p al  dir e cti o ns
of  t h e  J a c o bi   m atri x  a n d  e x p o n e nti all y  s hri n ki n g  i n  t h e
ot h er  pri n ci p al  dir e cti o ns.   T his t a k es  pl a c e  as  o n e  e v ol v es
t h e J a c o bi   m atri x  al o n g t h e  c h a oti c tr aj e ct or y  c orr es p o n d-
i n g  t o  t h e  s el e ct e d  p oi nt.   As  s u c h,  t h e  l ar g est   L y a p u n o v
e x p o n e nt c a n  b e c o m p ut e d as t h e l ar g est ei g e n v al u e  of t h e
J a c o bi   m atri x e v al u at e d al o n g t h e tr aj e ct or y,   w hi c h f oll o ws
fr o m t h e c el e br at e d er g o di c t h e or e m  of   Os el e d ets [5 3 ,5 4 ].

F or  a   m a p  as  t h at  i n   E qs. ( 1 2),   Os el e d et’s  er g o di c
t h e or e m all o ws  us t o c o m p ut e t h e l ar g est   L y a p u n o v e x p o-
n e nt gi v e n b y

+ ( τ , s; p ) = li m
n → ∞

[λ + ( τ , s; p )]1 / 2 n ,  ( A 2)

w h er e n is t h e n u m b er of ti m e st e ps, λ + is t h e l ar g est ei g e n-
v al u e  of t h e   m atri x N

m = 1 M T (X m )M (X m ), a n d M (X m ) is
t h e t a n g e nt   m a p i ntr o d u c e d  b ef or e.

N at ur all y, t h e  e x p o n e nti al  gr o wt h  of  o n e  of t h e  ei g e n-
v al u es l e a ds t o iss u es   wit h t h e  n u m eri c al  c o m p ut ati o n  of
E q. ( A 2).   T his  c a n  b e  a v oi d e d  b y l o o ki n g  at   E q. ( A 2) i n
a  di ff er e nt  b asis  ot h er  t h a n  t h e  ei g e n b asis  of  t h e  J a c o bi
m atri x.   T his  c a n  b e  a c hi e v e d  vi a  a   Q R  d e c o m p ositi o n
(s e e, f or i nst a n c e,   R ef. [5 5 ]),   w hi c h  p er mits t h e  n u m eri c al
a p pr o xi m ati o n  of t h e as y m pt oti c ti m e li mit i n   E q. ( A 2).

A  si n gl e  p oi nt i n t h e  h e at   m a ps  of  Fi gs. 1( c) a n d 1( d)
is  o bt ai n e d  b y a p pr o xi m ati n g   E q. ( A 2) vi a t h e   Q R   m et h o d
u p t o n = 1 0 6 ti m e st e ps.   T his  v al u e is t h e n a v er a g e d  o v er
5 0  di ff er e nt  i niti al  p oi nts  i nsi d e  t h e  c h a oti c  r e gi o n.   T his
pr o c e d ur e is t h e n r e p e at e d f or a  gri d  of  p oi nts i n t h e ( τ , s)
pl a n e.

A P P E N DI X   B:   L O N G- TI M E   A V E R A G E   O F J z

T h e l o n g-ti m e  a v er a g e  of  a n  o p er at or A ,  ass u mi n g t h at
t h e ti m e- e v ol uti o n o p er at or c orr es p o n di n g t o o n e ti m e-st e p
h as n o n d e g e n er at e ei g e n p h as es, is gi v e n b y

A ∞ =

d

r= 1

φ r |ρ
(0 ) |φ r φ r |A |φ r , ( B 1)

w h er e ρ (0 ) is  t h e  i niti al  st at e  a n d |φ r is  t h e rt h  ei g e n-
st at e  of  t h e  s yst e m.   T h e  err or  i n  t his  o bs er v a bl e  d u e  t o

Tr ott eri z ati o n is gi v e n b y

E ∞
A ( τ ) =

1

J
| A ∞ ,i d − A ∞ ,τ |, ( B 2)

w h er e A ∞ ,i d is t h e l o n g-ti m e a v er a g e of A u n d er t h e i d e al

H a milt o ni a n e v ol uti o n a n d A ∞ ,τ is t h e l o n g-ti m e a v er a g e
u n d er   Tr ott eri z e d e v ol uti o n.   Ass u mi n g t h at t h e ei g e nst at es
of t h e s yst e m c h a n g e u n d er a p ert ur b ati o n |φ r → | φ (0 )

r +
λ |φ (1 )

r , t h e e x pr essi o n f or t h e l o n g-ti m e a v er a g e t o t h e first
or d er is gi v e n b y

A ∞ ,λ =

2 J

m = 0

ρ (0 )
m ,m A m ,m + 2 λ

2 J

m ,n = m

× R e A m ,m ρ (0 )
n ,m + ρ (0 )

m ,m A n ,m φ (1 )
m |φ (0 )

n .

( B 3)

T h e  a b o v e  e x pr essi o n  c a n  b e  e v al u at e d  f or  i d e al   H a mil-
t o ni a n  e v ol uti o n  t o  o bt ai n A ∞ ,i d u p  t o  first  or d er
i n s usi n g   H a milt o ni a n  p ert ur b ati o n  t h e or y   wit h H 0 =
− (1 − s)J z b ei n g t h e  u n p ert ur b e d   H a milt o ni a n  a n d H 1 =
− s J

p
x /( p J p − 1 ) b ei n g t h e p ert ur b e d   H a milt o ni a n

A ∞ ,i d =

2 J

m = 0

ρ (0 )
m ,m A m ,m +

2 s

p J p − 1 (1 − s)

2 J

m ,n = m

× R e (A m ,m ρ (0 )
n ,m + ρ (0 )

m ,m A n ,m )
(J

p
x ) m ,n

m − n
. ( B 4)

Li k e wis e,   E q. ( B 3) c a n  b e  e v al u at e d t o  o bt ai n A ∞ ,τ u p
t o  first  or d er  i n s usi n g  u nit ar y  p ert ur b ati o n  t h e or y   wit h
u n p ert ur b e d  u nit ar y, U 0 = e i(1 − s) τ J y ,  a n d  t h e  p ert ur b e d

u nit ar y U p = e isτ J
p
z /( p J p − 1 ) :

A ∞ ,τ =

2 J

m = 0

ρ (0 )
m ,m A m ,m +

2 sτ

p J p − 1

2 J

m ,n = m

× R e ( ρ (0 )
n ,m A m ,m + A n ,m ρ (0 )

m ,m )
− i(J

p
x ) m ,n

e − i(1 − s) τ (m − n ) − 1
.

( B 5)

T h e err or is t h e n gi v e n b y

E ∞
A ( τ ) =

2 s

p J p − 1

2 J

m ,n = m

R e (A m ,m ρ (0 )
n ,m + ρ (0 )

m ,m A n ,m )(J p
x ) m ,n

×
1

(1 − s)(m − n )
+

iτ

e − i(1 − s) τ (m − n ) − 1
.

( B 6)
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T h e a b o v e e x pr essi o n c a n  b e f urt h er si m pli fi e d  b y e x p a n di n g t h e s u m m ati o n i n n a n d  n oti n g t h at t h e   m atri x el e m e nts  of
(J

p
x ) m ,n ar e  n o n z er o f or n = m ± p , m ± p − 2, . . . , m ± 0 (1 ).  F o c usi n g  o n t w o  p arti c ul ar t er ms   wit h n = m ± p − q w e

o bt ai n

E ∞
A ( τ )

n = m ± q
=

2 s

p J p − 1

2 J − (p − q )

m = 0

R e ρ (0 )
m + p − q ,m A m ,m + A m + p − q ,m ρ (0 )

m ,m (J p
x ) m ,m + p − q

iτ

e i(p − q )(1 − s) τ − 1
−

1

(p − q )(1 − s)

+
2 s

p J p − 1

2 J

m = p − q

R e ρ (0 )
m − (p − q ),m A m ,m + A m − (p − q ),m ρ (0 )

m ,m (J p
x ) m ,m − (p − q )

×
1

(p − q )(1 − s)
+

iτ

e − i(p − q )(1 − s) τ − 1
. ( B 7)

M a ni p ul ati n g t h e  s e c o n d t er m i n  a b o v e  e x pr essi o n  b y  first  s hifti n g t h e i n d e x  of t h e  s e c o n d t er m i n t h e  a b o v e  e q u ati o n,
m → m − (p − q ), a n d t h e n s etti n g   R e[z ] = R e[ z ∗ ] i n t h e s e c o n d t er m r es ults i n t h e f oll o wi n g e x pr essi o n f or t h e err or:

E ∞
A ( τ ) =

2 s

p J p − 1
q ={ 0, 2, ...,p − 1 (p )}

2 J − (p − q )

m = 0

R e ρ (0 )
m + p − q ,m (A m + p − q ,m + p − q − A m ,m ) + A m + p − q ,m ρ (0 )

m + p − q ,m + p − q − ρ (0 )
m ,m

× (J p
x ) m ,m + p − q

1

(p − q )(1 − s)
−

iτ

e i(p − q )(1 − s) τ − 1
. ( B 8)

F o c usi n g o n t h e err or i n J z , t h e a b o v e e x pr essi o n f urt h er si m pli fi es t o

E ∞
z ( τ ) =

2 s

p J p − 1
q ={ 0, 2, ...,p − 1 (p )}

2 J − (p − q )

m = 0

R e p − q ρ (0 )
m + p − q ,m (J p

x ) m ,m + p − q
1

(p − q )(1 − s)
−

iτ

e i(p − q )(1 − s) τ − 1
. ( B 9)

R el a b eli n g t h e i n d e x q → p − q r es ults i n t h e  fi n al e x pr essi o n

E ∞
z ( τ ) =

2 s

p J p − 1
q ={ p ,p − 2, ..., 0(1 )}

2 J − q

m = 0

R e q ρ (0 )
m + q ,m (J p

x ) m ,m + q
1

q (1 − s)
−

iτ

e i q(1 − s) τ − 1
.  ( B 1 0)

A P P E N DI X   C:   D E T AI L S   O N   T H E   D E RI V A TI O N
O F   T H E   G R O W T H   R A T E   O F   T H E  S Q U A R E

C O M M U T A T O R

As   m e nti o n e d  i n  S e c. I V,  t h e  e x p o n e nt  g o v er ni n g  t h e
gr o wt h r at e  of t h e s q u ar e  c o m m ut at or  c a n  b e  o bt ai n e d  b y
e x a mi ni n g  t h e  s a d dl e  p oi nts  of t h e  cl assi c al  fl o w  ass o ci-
at e d   wit h t h e e ff e cti v e   H a milt o ni a n c o nstr u ct e d f or a gi v e n
p o w er  of t h e  Fl o q u et  o p er at or.   R e c all t h at,  gi v e n t h at   w e
ar e i n v esti g ati n g t h e q t h p o w er of t h e  Fl o q u et o p er at or, t h e
e ff e cti v e   H a milt o ni a n is gi v e n b y

U δ ( τ )
q = e − i q( τ ∗

p ,q + τ ) H e ff . ( C 1)

O n c e t h e f or m of H e ff is k n o w n, t h e pr o c e d ur e is as f oll o ws.
First,   w e  c o nstr u ct t h e  e q u ati o ns  of   m oti o n f or t h e  cl assi-
c al  fl o w  a n d i d e ntif y its st ati o n ar y  p oi nts,  p arti c ul arl y t h e
u nst a bl e o n es.   T h e n,   w e e v al u at e t h e t a n g e nt   m a p o n t h es e

u nst a bl e  p oi nts  a n d  c o m p ut e  its  ei g e n v al u es.   T h e  l ar g est
ei g e n v al u e is t h e n t h e e x p o n e nt   w e ar e l o o ki n g f or.

1.  St r u ct u r al i nst a biliti es a r o u n d τ = τ ∗
p , 2

a.  St r u ct u r al i nst a bilit y  a r o u n d τ ∗
2, 2

We c o nsi d er  first t h e err or  p e a k arisi n g  d u e t o t h e str u c-
t ur al i nst a bilit y  ar o u n d τ ∗

2, 2 .  F or t his  s yst e m, t h e  e ff e cti v e
H a milt o ni a n is gi v e n b y

H (2, 2 )
e ff =

(1 − s) 2

π
δ τ J z +

s

2 J
J 2

x

= (1 − s)
τ

τ ∗
2, 2 + τ

J z +
s

2 J
J 2

x . ( C 2)
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T h e  e q u ati o ns  of   m oti o n  of  t h e  c orr es p o n di n g  cl assi c al
fl o w ar e gi v e n b y

d X

dt
= −

(1 − s) 2

π
τ Y , ( C 3 a)

d Y

dt
=

(1 − s) 2

π
τ X − s X Z ,  ( C 3 b)

d Z

dt
= s X Y . ( C 3 c)

T his  cl assi c al  fl o w  h as t w o  fi x e d  p oi nts  at t h e  p ol es, X =
Y = 0 a n d Z = ± 1.   Ot h er  fi x e d p oi nts s atisf y Y = 0 a n d

Z =
(1 − s) 2 τ

π s
=

1 − s

s

τ

τ ∗
2, 2 + τ

a n d

X = 1 − Z 2 . (C 4 )

T h e r a n g e of v al u es of τ f or   w hi c h t h es e n e w fi x e d p oi nts
ar e r e al gi v es us t h e e xt e nt of t h e r e gi o n of str u ct ur al i nst a-
bilit y;  fr o m t h e  a b o v e  e x pr essi o n  f or X , it is  e as y t o  s e e
t h at

τ ≤
sτ ∗

2, 2

1 − 2 s
( C 5)

d et er mi n es t h e   wi dt h  of t h e str u ct ur al i nst a bilit y r e gi o n.
F urt h er m or e, it is  n ot  h ar d t o s e e t h at t h e  u nst a bl e  p oi nt

e m er g es  as  a  c o ns e q u e n c e  of t h e  c h a n g e i n i nst a bilit y  of
o n e of t h e  fi x e d p oi nts  o n t h e p ol es, d e p e n di n g  o n t h e si g n
of τ .   H e n c e, t o  c o m p ut e t h e  e x p o n e nt,   w e  e v al u at e t h e
J a c o bi   m atri x  o n t h e  p ol es  a n d  di a g o n ali z e it,  fi n di n g t h at
t h e t w o n o n z er o ei g e n v al u es ar e gi v e n b y

M ± = ± (1 − s)τ si g n( τ )
s

(1 − s)τ
− 1,  ( C 6)

w h er e τ = τ /( τ ∗
2, 2 + τ ) .  Fr o m  t h e  l ar g est  ei g e n v al u e

w e  o bt ai n  t h e  e x pr essi o n  f or  t h e  v al u e  of  t h e  e x p o n e nt
λ s a d dl e :

λ (2, 2 )
s a d dl e ( τ ) = τ ( 1 − s) si g n( τ )

s

(1 − s)τ
− 1.  ( C 7)

H er e   w e  h a v e i n cl u d e d t h e  a p pr o pri at e  pr ef a ct or  a c c o u nt-
i n g f or t h e d e fi niti o n  of t h e e ff e cti v e   H a milt o ni a n.

b.  St r u ct u r al i nst a bilit y  a r o u n d τ ∗
4, 2

I n  S e c. I V w e   m e nti o n e d t h at all t h e e v e n  ki c k e d p -s pi n
m o d els  h a v e  a  str u ct ur al  i nst a bilit y  c e nt er e d  at  t h e  s a m e
v al u e  as t h e p = 2   m o d el,  a n d t h at t h e  c e ntr al  v al u e  c or-
r es p o n ds t o t h e  v al u es  of τ at   w hi c h t h e  p eri o d- d o u bli n g
bif ur c ati o n  t a k es  pl a c e.   We  n o w  c o nsi d er  t his  str u ct ur al

i nst a bilit y r e gi o n f or t h e s yst e m   wit h p = 4.   T h e e ff e cti v e
H a milt o ni a n is gi v e n b y

H (4, 2 )
e ff = (1 − s)

τ

τ ∗
4, 2 + τ

J z +
s

4 J
J 4

x . ( C 8)

Wit h t h e  e q u ati o ns  of   m oti o n  f or t h e  ass o ci at e d  cl assi c al
fl o w gi v e n b y

d X

dt
= − (1 − s)τ Y , ( C 9 a)

d Y

dt
= (1 − s)τ X − s X 3 Z ,  ( C 9 b)

d Z

dt
= s X 3 Y , ( C 9 c)

w h er e τ = τ /( τ ∗
4, 2 + τ ) .   T his fl o w h as t w o fi x e d p oi nts

o n t h e  p ol es, X = Y = 0 a n d Z = ± 1,   w hi c h  ar e  al w a ys
st a bl e.   N e w  fi x e d  p oi nts  c a n  b e  f o u n d  as  t h e  s ol uti o n  t o
d X / dt = 0.   Of  p arti c ul ar  i nt er est  t o  us  ar e  t h os e   w h os e
c o or di n at es  s atisf y Y = 0  a n d  t h e x , z c o or di n at es  ar e
r el at e d vi a

(1 − s)τ − s X 2 Z = 0,  ( C 1 0 a)

X 2 + Z 2 = 1,  ( C 1 0 b)

w hi c h l e a ds t o t h e c u bi c e q u ati o n

Z 3 − Z +
1 − s

s
τ = 0.  ( C 1 1)

Fr o m t h e  s ol uti o ns  of t his  c u bi c  e q u ati o n   w e i d e ntif y t h e
o n e  c orr es p o n di n g t o t h e z c o or di n at e  of t h e  s a d dl e  p oi nt
t o b e

Z s a d dl e =
(2 / 3 ) 1 / 3

h ( τ )
+

h ( τ )

2 1 / 3 3 2 / 3
,   w h er e

h ( τ ) = si g n( τ ) 9 A +
√

3 2 7 A 2 − 4
1 / 3

,  ( C 1 2)

wit h  t h e  f a ct or A = [(1 − s) /s]τ .  Fr o m  t h e  a b o v e  r el a-
ti o n  b et w e e n t h e x a n d z c o or di n at es   w e s e e t h at X s a d dl e =

± 1 − Z 2
s a d dl e ; t h e n   w e c a n c o nstr u ct t h e t a n g e nt   m a p a n d

e v al u at e it i n t h e s a d dl e  p oi nt.   Aft er  d oi n g s o,   w e  fi n d t h at
t h e e x p o n e nt g o v er ni n g t h e e x p o n e nti al gr o wt h is gi v e n b y

λ (4, 2 )
s a d dl e ( τ )

= s( τ ∗
4, 2 + τ ) 2

1 − s

s

2 τ

τ ∗
4, 2 + τ

2

− X 6
s a d dl e ,

( C 1 3)

w h er e  a g ai n   w e  h a v e  i n cl u d e d  t h e  a p pr o pri at e  pr ef-
a ct or  t h at  a c c o u nts  f or  t h e  d e fi niti o n  of  t h e  e ff e cti v e
H a milt o ni a n.
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c.   T h e c as e of a r bit r a r y e v e n p

N o w t h at   w e  h a v e  pr es e nt e d i n  d et ail t h e  c al c ul ati o n  of
t h e  e x p o n e nts  f or  t h e  t w o   m o d els   w h er e  e x pli cit  e x pr es-
si o ns  c a n  b e  o bt ai n e d,  l et  us  bri e fl y  s h o w  s o m e  f urt h er
i nsi g hts  t h at  c a n  b e  e xtr a ct e d  fr o m  t his  a p pr o a c h,   w h e n
w e  c o nsi d er  t h e  c as es  of  a n  ar bitr ar y  e v e n p at  t h e τ ∗

p , 2
str u ct ur al i nst a bilit y r e gi o n.

L et us st art   wit h t h e e q u ati o ns of   m oti o n f or t h e cl assi c al
fl o w:

d X

dt
= − (1 − s)τ Y , ( C 1 4 a)

d Y

dt
= (1 − s)τ X − s X p − 1 Z ,  ( C 1 4 b)

d Z

dt
= s X p − 1 Y . ( C 1 4 c)

H er e   w e  n o w  h a v e τ = δ τ /( τ ∗
p , 2 + τ ) .   T his s et  of  e q u a-

ti o ns  h as  t w o  fi x e d  p oi nts  at  t h e  p ol es, X = Y = 0 a n d
Z = ± 1.   T h e ot h er fi x e d p oi nts s atisf y Y = 0 a n d t h e x a n d
z c o or di n at es ar e r el at e d  vi a

Z =
(1 − s)τ

s X p − 2
a n d Z 2 = 1 − X 2 .  ( C 1 5)

T h es e t w o  e q u ati o ns  gi v e ris e t o  a  al g e br ai c  e q u ati o ns  of
d e gr e e  2 p − 2 f or  b ot h  c o or di n at es.  F or i nst a n c e, t h e  o n e
f or t h e x c o or di n at e is gi v e n b y

X 2 p − 2 − X 2 p − 4 +
1 − s

s

2

τ 2 = 0.  ( C 1 6)

Alt h o u g h  a  g e n er al  s ol uti o n  t o  t his  al g e br ai c  e q u ati o ns
is  n ot  a v ail a bl e,   w e  c a n  us e  it  t o  esti m at e  t h e  si z e
of  t h e  str u ct ur al  i nst a bilit y  r e gi o n.   L et  us  d e fi n e  t h e
f u n cti o n S (X ) = X 2 p − 2 − X 2 p − 4 + [(1 − s) /s]2 τ 2 ;  t his
f u n cti o n  h as  e xtr e m e  p oi nts  at X = 0 a n d X ± =
± (2 p − 4 ) /(2 p − 2 );  a d diti o n all y,   w e  n ot e t h at S (1 ) =

S (0 ) = [(1 − s) /s]2 τ 2 > 0  ar e  al w a ys  p ositi v e.   T h e n, t h e
f u n cti o n S (X ) will  h a v e  at  l e ast  o n e  r o ot  i n  t h e  i nt er v al
X ∈ [ 0, 1]  if  t h er e  is  a   mi ni m u m  i n  t his  i nt er v al  a n d  t h e
f u n cti o n e v al u at e d at t his   mi ni m u m is n e g ati v e.

It  is  n ot  di ffi c ult  t o  s e e  t h at X + is  i n  f a ct  a   mi ni m u m
of S (X ).   T h us   w e   w a nt c o n diti o ns  o n t h e  p ar a m et ers s u c h
t h at t h e i n e q u alit y S (X + ) < 0 is s atis fi e d. S ol vi n g f or t h os e
c o n diti o ns   w e  fi n d t h at

τ ≤
sτ ∗

p , 2F (p )

1 − s − sF (p )
wit h

F (p ) =
(p − 1 )(p − 2 ) p − 2 − (p − 2 ) p − 1

(p − 1 ) p − 1
.  ( C 1 7)

T h us   w e s e e t h at t h e si z e of t h e str u ct ur al i nst a bilit y r e gi o n
ar o u n d τ ∗

p , 2 d e cr e as es   wit h  i n cr e asi n g p ,   wit h  t h e   m o d el
wit h p = 2 h a vi n g t h e   m ost pr o mi n e nt  o n e.

2.  St r u ct u r al i nst a bilit y  a r o u n d τ ∗
4, 4

We   m o v e  n o w  t o  c o nsi d er  t h e  str u ct ur al  i nst a bilit y
r e gi o n  ar o u n d τ ∗

p , 4,  a n d i n  p arti c ul ar  f o c us  o n t h e  c as e  of
t h e   m o d el   wit h p = 4.  I nsi d e  t his  i nst a bilit y  r e gi o n  t h e
e ff e cti v e   H a milt o ni a n is gi v e n b y

H (4, 4 )
e ff = − (1 − s)τ J z −

s

8 J 3
(J 4

x + J 4
y ),  ( C 1 8)

w h er e τ = τ /( τ ∗
4, 4 + τ ) .   T h e  e q u ati o ns  of   m oti o n  f or

t h e ass o ci at e d cl assi c al  fl o w ar e

d X

dt
=

s

2
Y 3 Z − (1 − s)τ Y ,  ( C 1 9 a)

d Y

dt
= (1 − s)τ X −

s

2
X 3 Z ,  ( C 1 9 b)

d Z

dt
=

s

2
X Y (X 2 − Y 2 ). ( C 1 9 c)

T his  s et  of  e q u ati o ns  h as  fi x e d  p oi nts  o n t h e  p ol es, X =
Y = 0 a n d Z = ± 1.   Ot h er  fi x e d  p oi nts  c a n  b e  f o u n d  as
s ol uti o ns t o d X / dt = 0; fr o m t h e t hir d  of t h os e  e q u ati o ns
w e  pi c k t h e  c o n diti o n X = 0 a n d Y = 0, l e a di n g t o X 2 =
Y 2 .   B y  s u bstit uti n g  t h at  c o n diti o n  i nt o  t h e  first  e q u ati o n
of t h e s et   w e  o bt ai n t h e r el ati o n Y 2 = 2 (1 − s)τ /( s Z ), a n d
usi n g t his r el ati o n,   w e  o bt ai n t h e f oll o wi n g c u bi c e q u ati o n
f or t h e z c o or di n at e  of t h e  fi x e d p oi nt:

Z 3 − Z +
1 − s

s
τ = 0.  ( C 2 0)

T h e s ol uti o n of t his e q u ati o n t h at c orr es p o n ds t o t h e s a d dl e
p oi nt is gi v e n b y

Z s a d dl e =
1 − i

√
3

2 3 1 / 3 (− 1 8 A +
√

3
√

− 1 + 1 0 8 A 2 ) 1 / 3

−
(1 + i

√
3 )(− 1 8 A +

√
3
√

− 1 + 1 0 8 A 2 ) 1 / 3

2 3 2 / 3
,

( C 2 1)

w h er e

A =
1 − s

s

τ

τ ∗
4, 4 + τ

.

Usi n g t his l ast  e x pr essi o n,   w e  c a n  c o m p ut e t h e  e x p o n e nt
of t h e s a d dl e p oi nt as t h e l ar g est ei g e n v al u e of
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M (4, 4 ) =

⎛

⎝
0 2 (1 − s) τ /( τ ∗

4, 4 + τ ) s Y 3
s a d dl e / 2

− 2 (1 − s) τ /( τ ∗
4, 4 + τ ) 0 − s X 3

s a d dl e / 2

s Y 3
s a d dl e − s X 3

s a d dl e 0

⎞

⎠ , ( C 2 2)

w h er e X s a d dl e = ± 1 − Z 2
s a d dl e /

√
2.

I n t h e c as e  of a s yst e m   wit h ar bitr ar y e v e n p ≥ 4 at t his
s a m e  i nst a bilit y,  alt h o u g h   w e  c a n n ot  e x pli citl y  c o m p ut e
t h e  e x p o n e nt,   w e  c a n  esti m at e t h e   wi dt h  of t h e  str u ct ur al
i nst a bilit y r e gi o n.

T h e e ff e cti v e   H a milt o ni a n is

H
(p , 4)
e ff = − (1 − s)τ J z −

s

2 p J p − 1
(J p

x + J p
y ).  ( C 2 3)

T h e  e q u ati o ns  of   m oti o n  of  t h e  ass o ci at e d  cl assi c al  fl o w
ar e

d X

dt
=

s

2
Y p − 1 Z − (1 − s)τ Y ,  ( C 2 4 a)

d Y

dt
= (1 − s)τ X −

s

2
X p − 1 Z ,  ( C 2 4 b)

d Z

dt
=

s

2
X Y (X p − 2 − Y p − 2 ). ( C 2 4 c)

It  is  n ot  di ffi c ult  t o  s e e  t h at  t h e  s a d dl es  ar e  at X = 0,
Y = 0  a n d  t h at  t h e y  s atisf y X p − 2 = Y p − 2 ;  f urt h er m or e,
Z = 2 (1 − s)τ /( s X p − 2 ).   Usi n g  t h es e  c o n diti o ns,   w e  c a n
d eri v e t h e f oll o wi n g al g e br ai c e q u ati o n f or t h e x c o or di n at e
of t h e s a d dl e p ositi o n:

2 X 2 p − 2 − X 2 p − 4 + 4
1 − s

s

2

τ 2 = 0.  ( C 2 5)

T o  i n v esti g at e  t h e   wi dt h  of  t h e  str u ct ur al  i nst a bilit y
r e gi o n,   w e  l o o k  f or  t h e  r a n g e  of  p ar a m et ers  s u c h  t h at
t h e  a b o v e  e q u ati o ns  h a v e  n o ntri vi al  r e al  s ol uti o ns.   T o  d o
t his,   w e c o nsi d er t h e f u n cti o n G (X ) = 2 X 2 p − 2 − X 2 p − 4 +
4[ (1 − s) /s]2 τ 2 ;  t h e  e xtr e m e  p oi nts  of  t his  f u n cti o n  ar e
at X = 0 a n d X ± = (p − 2 ) /[ 2(p − 1 )].  Si n c e G (0 ) a n d
G (1 ) ar e  p ositi v e, t h e n if t h er e is  a   mi ni m u m i n t h e r a n g e
X ∈ [ 0, 1]  s u c h  t h at G (X ) at  t his   mi ni m u m  is  n e g ati v e,
t h e n t h e al g e br ai c e q u ati o n h as at l e ast o n e n o ntri vi al s ol u-
ti o n. I n f a ct, X + is a   mi ni m u m; t h us,   w e   w a nt c o n diti o ns o n
t h e f u n cti o n p ar a m et ers s u c h t h at t h e i n e q u alit y G (X + ) < 0
is tr u e.   Aft er s ol vi n g f or t h os e c o n diti o ns   w e  fi n d t h at

τ ≤
sτ ∗

p , 4G (p )

1 − s − sG (p )
wit h

G (p ) =
(p − 1 )(p − 2 ) p − 2 − (p − 2 ) p − 1

2 p (p − 1 ) p − 1
=

1

2 p
F (p );

( C 2 6)

t h us,  t his  r e gi o n  of  str u ct ur al  i nst a bilit y  s hri n ks   wit h
i n cr e asi n g p a n d is e x p o n e nti all y  n arr o w er t h a n t h e r e gi o n
of str u ct ur al i nst a bilit y ar o u n d τ ∗

p , 2.
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