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We study the behavior of errors in the quantum simulation of spin systems with long-range multibody
interactions resulting from the Trotter-Suzuki decomposition of the time-evolution operator. We identify
a regime where the Floquet operator underlying the Trotter decomposition undergoes sharp changes even
for small variations in the simulation step size. This results in a time evolution operator that is very dif-
ferent from the dynamics generated by the targeted Hamiltonian, which leads to a proliferation of errors
in the quantum simulation. These regions of sharp change in the Floquet operator, referred to as struc-
tural instability regions, appear typically at intermediate Trotter step sizes and in the weakly interacting
regime, and are thus complementary to recently revealed quantum chaotic regimes of the Trotterized evo-
lution [L. M. Sieberer et al. npj Quantum Inf. 5, 78 (2019); M. Heyl, P. Hauke, and P. Zoller, Sci. Adv. 5,
eaau8342 (2019)]. We characterize these structural instability regimes in p-spin models, transverse-field
Ising models with all-to-all p-body interactions, and analytically predict their occurrence based on unitary
perturbation theory. We further show that the effective Hamiltonian associated with the Trotter decompo-
sition of the unitary time-evolution operator, when the Trotter step size is chosen to be in the structural
instability region, is very different from the target Hamiltonian, which explains the large errors that can
occur in the simulation in the regions of instability. These results have implications for the reliability
of near-term gate-based quantum simulators, and reveal an important interplay between errors and the

physical properties of the system being simulated.
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L. INTRODUCTION

A primary application of quantum computers is sim-
ulation of quantum many-body systems that are clas-
sically intractable. Quantum simulation has applications
in a wide variety of fields such as quantum chemistry
[3.4], high-energy physics [3,6], condensed-matter physics
[7,8], and quantum machine learning [9,10]. The devices
of the current era, characterized by intermediate system
size (on the order of 100s of qubits) and lack of full
fault-tolerant error correction, are referred to as noisy
intermediate scale-quantum (NISQ) devices. The goal of
NISQ-era devices is to perform less-demanding tasks than
required for universal quantum computer, but ones that
can still surpass the capability of the classical computers
[11,12]. Recently, there have been a number of studies
about achieving quantum advantage in NISQ devices in
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the context of quantum simulation [7,13—16], optimization
[17], and sampling [18].

To implement quantum simulation in a gate-based
architecture, a common approach is to approximate the
time-evolution operator generated by the target simula-
tion Hamiltonian using the Trotter-Suzuki decomposition
[19-23]. Consider the target time-independent Hamilto-
nian, Hy,, given by

Hyr = Hy + Ha, (1)

and suppose that the time evolution operator associated
with each of the individual terms in the target Hamilto-
nian, {e~"1?, ¢=2'} can be implemented. Then, the target
time-evolution operator Uy, = exp (—iH,f) can be imple-
mented through the first-order Trotter-Suzuki decomposi-
tion given by

Upot = (€™ = U@, (@)

with the Trotter step size given by v = #/n. In the limit
n — 00, the Trotterized unitary in Eq. (2) becomes iden-
tical to Ul,,. In practice, n is a finite number and leads to
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errors in the overall simulation, which are bounded by

i
Ukt — Urarl| = 7 IILH1, ]I, 3)

where || - || is the spectral norm. Here, n = O(||[H;, H;]||
£2/€) is chosen so that the simulation has an overall accu-
racy € [21]. Henceforth, we refer to the errors resulting
from the Trotter-Suzuki decomposition as Trotter errors.

In recent works, the errors resulting from the Trot-
ter approximation have been analyzed by associating the
unitary resulting from the Trotter-Suzuki decomposition
Utot with the Floquet operator of a time-dependent peri-
odically “kicked” Hamiltonian Hs(¢) [1,2]. This analysis
revealed the existence of a regime in which dynamics of
low-order observables given by the kicked Hamiltonian
yields an accurate approximation to that of the target time-
independent Hamiltonian. However, this regime breaks
down for large enough Trotter step size, where errors are
not controlled anymore, and the Floquet dynamics signifi-
cantly deviate from the target dynamics. This uncontrolled
error regime was attributed to the fact that the kicked sys-
tem develops quantum-chaotic features that are absent in
the target Hamiltonian.

The existence of such nontrivial crossover in the Trotter
error behavior reveals that the physical properties of the
simulated Hamiltonian obtained via mapping to an effec-
tive time-dependent Floquet system can determine behav-
ior of quantum-simulator errors. A related recent study,
involving the simulation of adiabatic dynamics, character-
ized the emergence of quantum simulation errors to the
closing of the spectral gap in the simulated Hamiltonian
[22,23]. These works demonstrate that the physics associ-
ated with Floquet dynamics can affect how strongly errors
saturate the Trotter-error bounds.

In this work we identify a new physical mechanism
whereby the Floquet dynamics associated with Trotter-
Suzuki decomposition lead to large errors in quantum
simulation. Specifically, we study quantum simulation of
p-spin models [24-28], which describe long-range inter-
acting systems with multiple-body interactions, or, equiv-
alently, the dynamics of a large collective spin with nonlin-
ear evolution to the pth power. Such models are mean-field
models, where the mean-field dynamics exactly describes
the thermodynamic (classical) limit [27]. The classical
dynamics on the phase space thus informs us about the
potential mechanisms for errors in a quantum simulator.
While the target mean-field collective spin models we
study here are classically simulable, they represent use-
ful models for benchmarking quantum simulators. That
is, these models can be used to analyze the reliability of
the output of a quantum simulator by comparing its output
with the classically obtained result.

We show that, even in the absence of chaos, there
are parameter regimes where bifurcations arise in the

mean-field dynamics associated with Uy that can cause
a qualitative change in the structure of the classical phase
space. These bifurcations appear only in the classical limit
of the Floquet map corresponding to Uy and are absent
in the ideal target unitary U, signaling the existence of
regimes where the target and simulated dynamics strongly
diverge. These dynamical instabilities can lead to large
errors in the expected value of various observables. We
name these parameter regions “structural instabilities” of
the simulated unitary U, and characterize them in detail
for p-spin models.

As the mean-field dynamics are equivalent to the clas-
sical dynamics in the thermodynamic limit, we study
the structure of the classical phase space associated with
Uirot(t). We show that the structure of phase space under-
goes significant changes accommodated by multiple bifur-
cations in all the instability regions as 7 is varied by a small
amount. A precursor of this phenomenon was previously
noted in Ref. [29], where the route from integrability to
chaos was studied for periodically kicked p-spin systems.
Here, we show that this phenomenon does not require
us to be in the thermodynamic limit, and use unitary
perturbation theory to show that in the regime of struc-
tural instability, the eigenstates of the Trotterized unitary
substantially deviate from those of target-unitary eigen-
states, leading to an effective Hamiltonian H.g associated
with Uyt = e~Pei™ | that is very different from the target
Hamiltonian. Crucially, our analysis shows that structural
instabilities appear at Trotter step sizes that are typically
smaller than those required for the system to transition to
chaos, making this novel regime particularly relevant to
understanding the behavior of errors in near-term quantum
simulators.

The remainder of the manuscript is organized as fol-
lows. In Sec. 11, we discuss the mapping between quantum
simulation via Trotter-Suzuki decomposition and Floquet
dynamics, and discuss the intuition behind the emergence
of quantum simulation errors from a classical perspective.
We then introduce p-spin models and analyze two different
regions of the parameter space that result in large errors
as a result of Trotterization for a general Hamiltonian: the
chaotic region and structural instability region caused by
bifurcations. Then we specifically analyze how the struc-
tural instability regions lead to large errors in the Trotter
approximation of the time-evolution operator for p-spin
models. Following this, in Sec. IlII, we study the regions
of structural instabilities through the use of unitary per-
turbation theory, which allows us to analytically predict
the behavior of errors in long-time-averaged magnetiza-
tion. In Sec. IV, we construct the effective Hamiltonian
associated with a general structural instability region in
the p-spin Hamiltonian, which explains the presence of
large errors in various observables and the significant
changes taking place on the classical phase space in these
regions. Finally, we show that the effective Hamiltonian
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construction accurately describes the appearance of unsta-
ble fixed points, and in particular predicts the growth rate
of the out-of-time-order correlator (OTOC).

II. TROTTER ERRORS IN QUANTUM
SIMULATION OF p-SPIN MODELS

In this section we describe the connection between the
Trotter-Suzuki decomposition of the target unitary evo-
lution operator and Floquet dynamics, and discuss the
implications of Trotterization in the classical limit in terms
of Hamiltonian flows and area-preserving maps. We then
introduce p-spin models and their kicked counterparts,
and use these models to illustrate the different possible
scenarios that could lead to the proliferation of Trotter
errors.

A. Trotterized evolution and kicked systems: quantum
and classical

In a quantum simulator, the time evolution map gener-
ated by the desired target Hamiltonian H,,, can be imple-
mented through the use of the Trotterized unitary given
in Eq. (2). This unitary map can be analyzed by identi-
fying Us(t) as the time evolution operator generated by
a time-dependent periodic Hamiltonian Hy(#), which takes
the form

oo

Hs(t) = Hy + tfe: (DH2, where fi(f) = Z 8(t — nt).

n=—00

(4)

The corresponding unitary evolution for one time period is
given by the Floquet operator

Us(t) = T[ f! ar exp[wa‘;(t')]]
0
= exp(—itH) exp(—itHy), (5)

where 7 is the time-ordering operator. Because of the
impulselike driving present in Eq. (4), these are some-
times called “kicked” systems. Since Hi,, and Hs(t) are
different Hamiltonians except in the limit T — 0, the Trot-
terized simulation is expected to be different from the ideal
Hamiltonian evolution, resulting in simulation errors for a
finite-sized Trotter step size 1, as shown in Eq. (3).

A way of studying the physical mechanisms behind
these errors is to rewrite Eq. (4) as

Hj (t) =H +H+ Zr (I)Hg, (6}

where g (f) = tf:(f) — 1. Since Hy, = Hi + Ha, the evo-
lution of Hj(f) corresponds to that of H,, under the action
of an additional time-dependent perturbation, whose action
is weak for small z, as can be deduced from Eq. (3). If Hir

corresponds to an integrable Hamiltonian, the inclusion of
a time-dependent perturbation is expected to break such
integrability. The proliferation of errors in the quantum
simulation of an integrable system that becomes chaotic
as a result of Trotterization was discussed in Ref. [1] for
the case of the quantum kicked top. Furthermore, a sim-
ilar behavior was found even when considering quantum
Hamiltonians with many-body quantum chaos, where the
classical limit is not clear cut [2]. From this picture, we
can expect the transition from regularity to chaos in the
Trotterized unitary to be a fairly general phenomenon.

In contrast, here we focus on a regime where the pertur-
bation is not strong enough to make the system chaotic, but
nonetheless has the potential to make the perturbed dynam-
ics significantly different from the target dynamics. In
classical Hamiltonian systems, the Kolmogorov-Arnold-
Moser (KAM) theorem guarantees that, for sufficiently
small 7, the regularity of the original Hamiltonian is pre-
served [30], and thus one expects that the perturbed evolu-
tion is still a good approximation for the ideal dynamics.
However, there are situations, like the presence of resonant
regular orbits, that fall outside the validity of the KAM
theorem [31] and in which even small perturbations can
have a big effect on the dynamics of the system. These
changes are signaled by the emergence of new fixed points
through bifurcations, among other mechanisms. As this
happens, the emergence of instabilities and the develop-
ment of significant changes in the phase-space structures
also have the potential to substantially modify the dynam-
ics of the effective system H; from that of the ideal target
Hamiltonian H,,.

As we will show, for some models, these features can
persist in quantum dynamics far from the classical limit,
and these instabilities determine parameter regimes of
high Trotter errors. Moreover, since these features appear
at smaller perturbation strengths (before the transition
to chaos), they would affect the Trotterized evolution at
smaller values of the Trotter step size T, making them
particularly relevant for quantum simulation. A way to
identify these high Trotter-error regions in the quantum
regime is to determine the regions where the eigenstates of
Us are very different from Ul,,. This follows from the cor-
respondence principle. The quasiprobability distribution
(e.g., Husimi distribution) of the eigenstates associated
with the time-evolution operator is expected to have a
significant overlap with the corresponding phase-space tra-
jectories, when both of them are plotted on the classical
phase space [32]. Thus, the eigenstates of U; and Uy
will be very different whenever the corresponding classi-
cal trajectories are different. In the following we explore
this phenomenon in the quantum simulation of long-range
interacting spin models, whose mean-field limit is equiv-
alent to the thermodynamic (classical) limit, by analyzing
the eigenstates of Us and Ul,,. In addition, as we will dis-
cuss, some of the underlying physical mechanisms behind
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these phenomena are much more general, and are expected
to appear in other types of quantum many-body systems.

B. The p-spin models

The family of magnetic models usually referred to as
p-spin models describes a collection of N spin-1/2 parti-
cles on a fully connected graph, interacting through p-body
Ising-like coupling in the presence of an external trans-
verse magnetic field. This collection of particles experi-
ence two different orderings, a paramagnetic phase induced
by an external homogeneous magnetic field, and a ferro-
magnetic phase induced by a p-body Ising-like interaction.
The Hamiltonian for this family of models is given by

N

— @ _ (i1)  (i2) (ip)

T
i= 1,02, mip=1

_ 4 v

=M e (7)

where A is the strength of the external field, y is the
strength of the p-body Ising-like interaction, and J, =
3 Ly, o) with u = x,y,z are collective spin operators.
The 1nteract10n term has been normalized with this partic-
ular choice of p and N to make the equations of motion
have a universal form for all p in the mean-field limit and
energy extensive [28]. In this Hamiltonian, the total angu-
lar momentum is conserved, [H,J 2] = 0, constraining the
dynamics to the symmetric subspace, and the system is
also invariant under the action of the parity operator, I1 =
€™z for even p spin models. For the remainder of this
manuscript, we consider the following single-parameter
version of the p-spin Hamiltonian:

H(s) = —(1 —s)J, — JP. (8)

s
pIrT
This is equivalent to Eq. (7) upon rescaling of the energy,
and where s is constrained to be in the range 0 < s < 1,
interpolating between pure paramagnetic ordering and a
pure ferromagnetic ordering. For p = 2, the above Hamil-
tonian reduces to the Curie-Weiss model [33], which is
a special instance of the Lipkin-Meshov-Glick (LMG)
model [34-36]. This family of models has been extensively
studied in the context of quantum annealing [24,25], where
a classification based on the properties of the ground-
state quantum phase transition (GSQPT) was constructed
[26,27]. Such classification splits the family of models
into two classes: for p = 2, the GSQPT is continuous
and second order; for p > 2, the GSQPT is first order
and discontinuous. Furthermore, in the context of dynam-
ical criticality, this family of models exhibit dynamical
quantum phase transitions [28].

The dynamics of the p-spin Hamiltonians in the mean-
field limit can be obtained by neglecting the fluctuations

(AB) ~ (A)(B) in the Heisenberg equations of motion,
resulting in the coupled differential equations of the form
[28,37]

dx
7 =(-97, (9a)
dy r _
— =~ =X +5x77'Z, (9b)
dz
— = —sX?Ply, (9¢)

with {X, Y, Z} = lim;_ o (1/J){{(J;}, {J}), (J-}} describing
the motion of a classical “top.” The mean-field limit coin-
cides with the classical limit, g = N~! — 0 or, equiva-
lently, N — 00, in the case of p-spin models [27]. Because
of the conservation of angular momentum, the result-
ing dynamics of the top is constrained to a unit sphere
X? 4 Y?* + 7% = 1. This implies that all the p-spin mod-
els are integrable in the classical limit as they correspond
to autonomous systems with one degree of freedom.

The first-order Trotterized unitary map Uy, = [Us(7)]"
of the Hamiltonian evolution in Eq. (8) is generated by the
time evolution of the corresponding kicked model,

oo
ST

T 3 8(t—nt)r. (10)

n=—0C

Hs(t) = —(1 —5)J;

We refer to this family of models as the kicked p-spin
models [29], whose Floquet operator is given by

Us(x) = 0 e ™D — Py (1)

The equations of motion are then obtained using the map
Jiji=F (v)1J:F (). Note that these models also conserve
the angular momentum, [Hg,Jz] = 0, similar to the case of
H,,., implying that the dynamics of Hj is constrained to a
unit sphere defined by X 4+ Y2 4+ Z? = 1 in the classical
limit. The classical equations of motion are given by the
following map:

X1

Ymi1 = €08 [k(Xms1) 1K sina + ¥, cos @)
— Zysin [k(Xpmy1 )71,

Zms1 = sin [k(Xps1)’ "X sina + Y, cos )
+ Zpn €0 [k(Xma1 P 1.

= X, cosax — Yy sina, (12a)

(12b)

(12)

Here @« = —(1 — s)t and k = —st. A comparison of tar-
geted Hamiltonian flow, Eqs. (9), at periodic intervals
with the area-preserving map generated by the Trotterized
kicked Hamiltonian, Eq. (10), indicates where errors may
occur in the quantum simulation.
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The kicked models can exhibit chaos since the energy of
the top is no longer conserved. For small values of 7, how-
ever, where the kicked-systems in Eq. (11) very closely
approximate the evolution of corresponding Hamiltoni-
ans in Eq. (8), the dynamics is regular. As the value of
T is increased, all kicked p-spin models become chaotic
provided s is not close to zero or one; the models with
larger value of s develop chaos at smaller values of 7. The
kicked p = 2 model (Haake’s kicked top [38]) develops
chaos due to the period-doubling cascade and reaches the
regime of strong chaotic trajectories faster (as a function
of the coefficient of the nonlinear term in the Hamiltonian)
than other p-spin models [29]. Higher-order kicked p-spin
models, on the other hand, develop chaos due to instability
of higher-period orbits present on the X -Y plane [29].

In order to analyze the emergence of quantum sim-
ulation errors in the different parameter regimes of the
Trotterized evolution, we perform a systematic compar-
ison between the basis of eigenstates of U, and Upgr.
In Figs. 1(a) and 1(b), we plot the average dissimilarity
between both sets of eigenstates for the p-spin model with
p = 2 and p = 4, respectively. This quantity measures the
difference between two sets of eigenvectors and is defined
as

1=

Bty = 1 —&co’

(13)

where § is the average inverse participation ratio (IPR)
of the eigenstates of U, denoted by {|¢,‘;3 }}, in the

(a) Average dissimilarity (c)

Lyapunov exponent

0.8 0. 0.8
N gg : 0.6
o @

Q 04 ] 0.4

0.2

(d)

0.6
0.4

0.2

FIG. 1. (a),(b) Average dissimilarity of the Floquet eigenstates
of Hj(t) with respect to the eigenstates of the p-spin Hamilto-
nian, Eq. (13). (c),(d) Largest Lyapunov exponent of the classical
stroboscopic map associated with the Floquet map of the simula-
tor as a function of (t,s). In both cases we show the results for
p = 2 (top) and 4 (bottom), and N = 128. The dashed and dot-
ted lines in (a) and (b) have the form s(t) = 1 — o/t witha =
7,7 /2, respectively. These represent regions of structural insta-
bility that are not associated with chaos as the largest Lyapunov
exponent corresponding to these regions is zero.

eigenstates of Us, {|¢§j))}, which is given by

1 et :
== 2l (14)
if

where d is the dimension of the Hilbert space. Also,
Ecor = 3/(N + 3) is the average IPR in the circular
orthogonal ensemble (COE) [1]. We expect the average
IPR between the eigenstates of Uy, and Uy to be equal
to écoe when the dynamics of Uy becomes fully chaotic,
as COE is the appropriate ensemble due to the symmetries
present in the kicked p-spin Hamiltonian [29]. The dis-
similarity defined in Eq. (13) ranges between 0, when the
eigenstates are identical to the reference basis, andd — 1/d
(up to normalization) for the case when the eigenstates are
completely delocalized in the reference basis.

The dissimilarity of the eigenvectors is shown in the heat
map in Figs. 1(a) and 1(b). At larger values of s, the dissim-
ilarity arises mainly due to the chaos present in the kicked
p-spin models. This is indicated by the region of parame-
ter space with a positive classical Lyapunov exponent [see
Figs. 1(c) and 1(d) for p =2 and p = 4, respectively].
For more details on the calculation of Lyapunov expo-
nents, see Appendix A and Refs. [29,39]. In contrast, the
large dissimilarity present at smaller values of s on the
heat map cannot be attributed to chaos since the associated
Lyapunov exponents are zero. We identify these parame-
ter regimes as structural instabilities of the operator U,
since small changes in the parameter space (s, ) induce
substantial changes in the nature of the eigenstates of the
operator. In the following section, we derive the precise
location of these structural instabilities, and relate them to
the proliferation of errors in quantum simulation.

III. TROTTER ERRORS IN OBSERVABLES DUE
TO STRUCTURAL INSTABILITIES

In this section we predict the location of regions of
structural instability identified in Fig. 1 and analyze their
effect on quantum simulation errors. In order to do this,
we focus on the weakly interacting regime of the p-spin
Hamiltonian, corresponding to small values of the cou-
pling parameter, s < 1. At small values of s, the Floquet
map implements precessions around the z axis with small
perturbation, Us = 1=k gl st /@IPY) = O Hence,
the eigenvectors of the Floquet operator Us are expected to
be close to the eigenstates of J, with a small correction first
order in s. Employing unitary perturbation theory [40], we
find that

Us(1 = J +m) +s|¢)) = =97 T+m (1 4 ispD))

x (| = J +m) +sl)).
(15)

010351-5



KARTHIK CHINNI et al.

PRX QUANTUM 3, 010351 (2022)

Here | —J +m) = |J,m, = —J + m) is the zeroth order
mth eigenstate of J,, ¢V is the first-order eigenphase
correction, and |¢,("1)) is the corresponding first-order cor-
rection to the eigenstate. This can be expressed as

i JP)
» MMy — (1 — 8. i (% m'm
( J + m |¢m ) n (]- 3m ,m)pJ—p_l er’(l—s)r(m—m’) . 1 £l

(16)

where (H)wm={(—J +m|JF|—J +m) and mm' =
{0,1,...,27}

Note that the ideal unitary map, U®, has degenerate
eigenvalues when &(1=)7 ") — 1 (equivalently, at T =
r2m /[(1 — s)(m — m')] for some positive nonzero integer,
r). We denote the degenerate points by r;,m_m, correspond-
ing to the kicked p-spin model with a particular solution
for m — m’. The neighborhood of these degenerate points
can be divided into two subregions. First, in the zone
surrounding the degenerate point, the first-order correc-
tion to the eigenphase is of the order of gap between the
eigenphases, and the nondegenerate perturbation theory is
not valid in this subregion. We refer to this subregion as
the “immediate vicinity” of the degenerate point. In the
subregion beyond this immediate vicinity (“outer vicin-
ity”), the nondegenerate perturbation theory is valid, and
the expression in Eq. (16) predicts a large correction to
the eigenstates whenever N m # 0. We refer to the
whole region consisting of immediate and outer vicinity
subregions surrounding the degenerate points as the struc-
tural instability regions whenever (.)‘f,‘gJ Ym'.m # 0. We refer
to 'C;:m_m, as the structural instability points, which are the
central points of these regions, and denote the width of the
regions by w.

For concreteness, consider the area around 1 = rﬁz =
rr/[(1 — s)], that is, corresponding to p =2 and m —
m' =2. In this case, we have (Jf)m:‘m # 0, while
g1=9m=m)r _ 1 approaches 0 in the neighborhood of
T = 1'2*.2- Thus, by virtue of Eq. (16), we obtain a sub-
stantial change in the eigenstates of the unitary evolution
operator, indicating the existence of an instability region.
At T = 13,, the Floquet operator is given by Us(z;,) =

ez g2t /@) \whose eigenstates are {(1/+/2)(|J,m,) +
|/, —my))}. This can be understood from the fact that the
two terms in Uj (72*,2) commute and therefore have a com-
mon set of eigenvectors given by the parity respecting
eigenstates of J2. Hence, as the Trotter step size is var-
ied in the vicinity of 1:2"°‘2 =ra /(1 — s), the eigenstates of
Us change rapidly from those of J; eigenstates at the left
edge of the structural instability region (t ~ 137, — w/2)
to those of parity respecting eigenstates of J?2 at the cen-
tral point of the instability region before changing back to
those of J, eigenstates as t is increased further towards
the other edge of the instability region (v ~ 73, + w/2).
The above argument holds for all even p-spin models, so

all these models have structural instability regions in the
vicinity of the curve (1 — s)r};':2 =rr.

In general, for a given p, J¥ has nonzero matrix
elements in the J, basis only in alternating diago-
nal bands up to offset p. This results in structural
instabilities in the vicinity of the curves given by
(1— .S‘)‘l.':‘m_m, =[r/(m —m")]2r with m —m' = {p,p —
2,p —4,...,2(1)} for even (odd) values of p. We corrob-
orate this in Figs. 1(a) and 1(c), where we show the curves
(1 —s)T* = (black dashed line) and (1 — s5)t* = 7/2
(black dotted line) overlap with the dissimilarity region
present on the heat map. Note that the number of struc-
tural instability regions increases with p in a given range
of 1 as the number of choices for m — m' increase with p.

The significant change in the eigenstates of U that we
find in the structural instability regions implies that Uj
becomes very different from Uy, which can lead to large
errors in a Trotterized quantum simulation algorithm. For
concreteness, we focus on the simulation of the long-time
average of the collective spin observables (J;), defined by

n

T3 = lim = Y W00,
n—00 0

=1

(17)

where J;(It) = (U")J(U)!, with U being the map asso-
ciated with the time-evolution operator fort=tandi =

{x,y,z}. We analyze the error in {J;) given by

[ — —

£2() = 5 [(Ehar — Wi (18)
where (J;),,, and (), are the time-averaged magnetiza-
tions obtained under the target unitary and the Trotterized
unitary, respectively. As studied in Refs. [1,41], quantum
simulation is expected to be robust to imperfections in the
nonchaotic regime of H; for expectation values of macro-
scopic observables that are not sensitively dependent on
the full state of the system compared to quantities such as
the fidelity of preparing a target state. However, the Trot-
terization of p-spin models leads to a large region of error,
even in the simulation of a macroscopic quantity such as
(). In Fig. 2 we plot the error £2(t) for an initial spin
coherent state |®@y = /2, &3 = 0) ats = 0.1 as a function
of the Trotter step size for p = 2, 3, and 4 in parts (a)(c),
respectively. As expected, the errors increase in structural
instability regions in the vicinity of 7y = /1 — s forp =
2, ¥y =2 /[3(1 —8)], 73y =27 /(1 — ) for p =3, and
T4y =7/[2(1 = 9)], 15, = /(1 —s) for p = 4 (all cases
shown by the vertical dashed lines). Note that at every
structural instability region shown in Fig. 2, the errors first
increase rapidly, then decrease in some intermediate region
before increasing again, resulting in seemingly two sep-
arate error peaks. The presence and location of the error
dip between the error peaks is dependent on the initial
condition, and will be analyzed in the next section.
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FIG. 2. Error in the long-time-averaged magnetization along
the z axis, denoted by £ and defined in Eq. (18), for (a)
p=2,(b)p =3,and (c) p = 4, with N = 256. The dotted lines
represent time-averaged magnetization predicted from the non-
degenerate first-order unitary perturbation theory, which agree
well with numerically obtained values except in the immediate
vicinity of the center of the structural instability region where
the nonperturbative term ¢'' ™™ becomes degenerate. The ver-
tical dashed lines are located at the center of structural instability
regions, as predicted by unitary perturbation theory.

An important consequence of this analysis is that the
structural instability regions associated with higher values
of p occur at smaller values of 7 for a given value of s,
since r;m_m, =2 /[(1 —s)(m —m')], where m —m' =
{p,p —2,...,2(1)}. As the kicked p-spin models become
chaotic at larger values of s (for moderate values of 1),
these instabilities are the only source of errors for Trotter-
ized simulation at smaller values of s, which corresponds
to a regime where the external field in Eq. (10) dominates
over the multispin interaction.

The spectral gap given by the denominator term in
Eq. (16) determines the width of the error regions. From
the Taylor expansion of the inverse spectral gap around
the structural instability points T = t*, we have

1 e—i(l—s)r(m—n) —1

el—s)t(m—n) _ | (m—n)2(1 —s5)2(r — )2

(19)

The parabolic form of the denominator centered at T* with
the width given by 1/[(m — n)*(1 — s5)?] implies that error
regions become narrower for larger values of m — m’ (=
{p.p —2....}) and smaller values of 5. This explains the
fact that the error regions around 7 = r};",m_m, with m —
m’ =2 (or 1 for odd p-spin models) are the widest and
become narrower as m — m’ corresponds to higher values.

The error in the long-time-averaged magnetization
along the z axis to first order in s for initial spin-coherent
states | W @) = |®, ®) can be expressed analytically. We

find that
E2(r) = % =8 {cos(q‘b)[;
g={pp—2....,2(1)} pJr q(1 —s)
= Cof(@r)] % sin(qcb)}
2—q
% Y 15825000 B)smral, (20)
m=0

where 4, ,, = (—=J +ri|4| —J + r;) for an operator 4.
The error expression for an arbitrary initial state is shown
in Appendix B. Equation (20) predicts an error peak, cap-
tured by the cotangent term in the outer vicinity region for
each value of ¢ in the summation, which corresponds to
having an error peak at every structural instability region.
This result from perturbation theory also agrees very well
with the numerically obtained curves, as shown by the dot-
ted lines in Fig. 2 for the spin-coherent states centered
at |® =m/2,d = 0) except in the immediate vicinity of
the degenerate point, where the errors have an inverted-
triangular shape (the analytic prediction in this region is
not shown in Fig. 2 because these predictions diverge here,
and we expect this because the nondegenerate perturbation
theory is not valid in this region). This behavior holds for
most of the other spin-coherent states at small values of s.

IV. EFFECTIVE HAMILTONIAN AND
EMERGENT SYMMETRIES

As seen in the previous section, Trotterization of the
p-spin models leads to large errors in the vicinity of certain
parameter regimes corresponding to so-called structural
instabilities. This was understood in the classical limit to
be a consequence of bifurcations occurring in the area-
preserving map of the Trotterized model that radically shift
the structure of phase space, and which manifests at the
quantum level in a Floquet operator whose eigenstates are
very different from those of the target p-spin Hamiltonian.
This difference in the structure of eigenstates can be fur-
ther elucidated through the construction of an effective
Hamiltonian associated with the Trotterized unitary. For
small values of 5, we have Uy, ~ &%= and the evolution
is essentially precession of states around the z axis. These
precessions are well approximated by the Trotterized evo-
lution Uy = Us(7)" away from the structural stabilities.
However, near these instabilities, the phase space of the
Trotterized evolution undergoes major structural changes,
leading to an evolution very different from precessions of
the state around the z axis.

For instance, consider p = 2, the LMG Currie model,
whose phase space in the classical limit associated
with Ul is shown in Fig. 3(a). We show Us(tr) in
Figs. 3(b)-3(d) at s = 0.1 in the neighborhood of the
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FIG. 3. (a) Classical phase-space trajectories associated with the mean-field dynamics of the target unitary map for p = 2 (LMG
model) at s = 0.1. (b)(d) Classical phase space associated with the Trotterized unitary for p = 2 at s = 0.1 for various Trotter step
sizes located in the structural instability region, centered at t = 75, = 7/0.9. The phase-space trajectories in (b) through (d) show that
the targeted simulation of the paramagnetic phase dynamics through Trotterization results in simulation of the ferromagnetic phase of
the LMG model when the Trotter step sizes are chosen around tiz. This process is accommodated by a 1-to-2 bifurcation at Z = 1.
(e) Identical to the phase space shown in part (c) but plotted as a function of the polar and azimuthal angles. Parity-broken trajectories
are colored red and purple to illustrate that states initialized in the lobed region jump between the red colored curve and the corre-
sponding purple colored curve, tracing out two trajectories at the same time. On the other hand, parity-broken trajectories (black color)
trace out the actual LMG trajectories. (f) Same as in part (a) except this is for p = 4. (g)(i) The simulated Hamiltonian is now given
by H3" = —(1 — )L At /(AT + %) — (s/87°)J} + J}}), and the point Z = 1 has two separate 1-to-4 bifurcations in the instability
region for At > 0. (j) Phase space shown in part (h) is plotted as a function of the polar and azimuthal angles. As a result of 1-to-4
bifurcations, a state initialized in one of the lobes jumps between different lobes colored red, purple, blue, and green and traces out
four different trajectories (one in each lobe).

instability that is present at rﬁ"’z =m/(l —s5)~3.49. We
understand this structure of phase space by analyzing the

parameter given by

form of U2, 1—sr _ (1 —8)AT/(z5, + A1) -
Ser s ’ (23)
i 1 i(s 5 T)J2
[[)(5(1,3:2 + AT)]z = (el?rJzeI(l—SJﬁrJze ( /?-’r)( 2,2+A )Jx )2 leading tO
_ pi2mly ¢ i(l—s)Avt; Li(s/2T)(xF +AT)ME 2
=75 e 22 22_1} : - l1—-s At 4
= s Tﬁk,z + At ) )

Fors, Ar/(tz"‘,z + A1) « 1, the unitary map can be written

* (2,2)
as [Us(t3, + A7) = £ e 222408 with

D il

At
2,2)
HP @) = -0 -9 e

_—J; 22
T, + At (22)

meaning that the dynamics for p = 2 every two time
steps can be described by the effective Hamiltonian He(ff‘z) :
For At > 0, the effective Hamiltonian is in fact the
LMG Hamiltonian of the form shown in Eq. (8) with an

additional overall multiplicative factor and an effective s

Here s.g is always greater than 0.5 in the region of the
structural instability. This implies that the Trotter approxi-
mation of the unitary map with the original Hamiltonian
having a small s value (i.e., being in the paramagnetic
phase) leads to simulation of the dynamics of the same
model but with a large value of s (i.e., corresponding
to the ferromagnetic phase, up to every alternate step).
This paradoxical effect can also be seen in the classical
phase space shown in Figs. 3(b)}-3(d) for At > 0, where
the trajectories change from precessions around the z axis
fort > [/(1 —9)][1 + /(1 — 28)] (s > 0.5) to preces-
sions around the x axis at T = 15y = /(1 — 5) (seg = 1)
as 7 is decreased (from right to left in Fig. 3). Note that the
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time interval required to trace out the ferromagnetic phase
dynamics using the Trotterized unitary (effective Hamil-
tonian) is 1/s.g slower compared to the time required for
ideal LMG Hamiltonian [p = 2 in Eq. (8)] with § = s
to follow the same effective dynamics. This can be traced
back to the difference in the overall multiplicative factor,
H2?(s) = H(seg) /Ser, Where H(s) is the Hamiltonian in
Eq. (8).

In the mean-field picture, this process is accommodated
by a period-doubling bifurcation at v =[x /(1 — s)][1 +
s/(1 — 25)] (corresponding to sex = 0.5), where the stable
fixed point at Z = 1 becomes unstable as t is decreased
and a period-2 orbit is created. As a result, even though
the Trotterized phase space looks identical to the phase
space for the LMG Hamiltonian with s given in Eq. (24),
the individual trajectories on the associated Trotterized
phase space trace out the LMG Hamiltonian trajecto-
ries only when one considers every alternate step of the
Trotterized evolution. For example, at s = 0.8, the ideal
LMG Hamiltonian described by Eq. (8) with p = 2 traces
out both parity-broken trajectories (rotations), which are
bounded by the separatrix, and parity-conserving trajecto-
ries (librations), and has a phase space that looks identical
to that associated with the Trotterized dynamics at T =
™ + 0.1 &~ 3.59 and s = 0.1, as shown in Fig. 3(c). How-
ever, the Trotterized dynamics trace out the two parity-
broken trajectories, simultaneously as shown in Fig. 3(e),
where the phase-space trajectories are plotted as a function
of angular coordinates # and ¢. For a given initial con-
dition, the Trotterized dynamics trace out one lobe (red
colored trajectories) in all the odd steps of the evolution
and the other lobe in all the even steps (purple colored
trajectories) of the evolution. In this way, the Trotterized
trajectory jumps between two separate parity-broken tra-
jectories of the LMG Hamiltonian, tracing out the ideal
LMG dynamics with s = sef only every alternate step. On
the other hand, for the initial conditions associated with
the parity-conserving trajectory of the LMG Hamiltonian,
every step of the Trotterized unitary traces out the ideal
LMG trajectory with s = se (black colored trajectories).
A similar phenomenon takes place in the instability region
for At < 0, except that the bifurcation now takes place in
the Z < 0 hemisphere. Performing a similar analysis of the
structural instability region present at T:,z =mn/(l —s) for
the even p-spin models shows that the Trotterized evolu-
tion also results in simulation of the ferromagnetic phase of
the corresponding p-spin Hamiltonian (or the Hamiltonian
with a relative negative sign for At < 0) even though the
target evolution is associated with the paramagnetic-phase
dynamics.

The Trotterized unitary dynamics in the vicinity of other
instabilities can differ even more substantially from the tar-
get, ideal dynamics. For example, consider the instability
at IIA =n/[2(1 — )] for p = 4. The effective Hamilto-
nian can be derived in a similar manner as described above,

yielding

At s
HGY = - _S)Ar——l—r"‘JZ - @(Jf +J),  (25)

whose phase-space trajectories undergo two different
1-to-4 bifurcations, as can be seen in Figs. 3(g)-3(i). The
change in the phase-space structure results in trajectories
that are very different from those associated with the target
dynamics shown in Fig. 3(f). Similar to the case of p = 2,
the parity-broken trajectories of HS}A) located on the phase
space are traced out by the Trotterized dynamics only
every fourth step. In the intermediate steps, the Trotterized
dynamics leads to jumps between various parity-broken
lobes present on the phase space, as shown in Fig. 3(j),
where the red, purple, blue, and green colored trajecto-
ries represent every first, second, third, and fourth step,
respectively.

More generally, the dynamics in the vicinity of instabil-
ity at (1 — s)7,, = r2m /q has a 1-to-q bifurcation present
on the classical phase of the Trotterized unitary and can be
understood by analyzing [Us(t + At)]?. We see that

[Us(t 4+ AT)]? = (/@D 18T gits/pI" )55 g+ AT )

= EWog-2n/q - WangWornigW,  (26)
where
W= ei(l—s).ﬂr.fzei(s/pdp_1)(r_:,q+ﬁr).ff (27)
and
Wy = e~ Wt
— ei(]—s)ﬁrjzei(sfpjp—l)(rscﬁ-}-ﬁr)(.fxoosﬂ—‘,-.fy sin )P ) (28}

Fors, At/(t* + A1) &~ At /t* « 1, the Trotterized uni-
ia(r* P
tary can be expressed as [Us(t + A1)]? = e HADH "

with the effective Hamiltonian given by

A q
™+ At pgJr—! —~

x (Jx COS[M] +J, sin[m] )p'
q q

(29)

HE?D = (1 —5)

The Hamiltonian in Eq. (29) simplifies further when the
Hamiltonian has parity symmetry, which is the case for all
even p-spin models, as the (g/2 + k)th term in the summa-
tion becomes identical to the kth term, reducing the number
of terms in the summation from g to g/2. This effective
Hamiltonian captures the dynamics of every gth step of the
Trotterized unitary in the vicinity of the 1-to-gq bifurcation.
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The associated phase space of the effective Hamiltonian
is invariant around the z axis under 27 /g rotation since
it commutes with e/@7/9/z: [Héga“?),e"(z”f 921 = 0. This is
an emergent symmetry that appears in the structural insta-
bility region. We also want to point out that, even though
bifurcations facilitate the structural changes in the instabil-
ity regions, not all bifurcations lead to such sharp changes
in phase space. Only the subset of bifurcation points, iden-
tified here as “significant” bifurcations, lead to extensive
changes in the structure of the eigenstates and result in
large Trotter errors. These significant bifurcations appear
only in the structural instability regions.

In summary, the effective Hamiltonian formulation
explains the presence of large error peaks in the simu-
lated time-averaged magnetization. At certain Trotter step
sizes that correspond to structural instabilities, the Trotter-
ized unitary evolution operator simulates a very different
Hamiltonian from the target Hamiltonian. From a mean-
field perspective, the major structural changes that take
place inside the regions of structural instability always cor-
respond with significant bifurcations on the classical phase
space, which lead to creation of periodic hyperbolic points
(hyperbolic fixed points of higher period), which are absent
on the phase space associated with the target Hamiltonian
H, ~ kJ,.

V. INFORMATION SCRAMBLING INSIDE
STRUCTURAL INSTABILITY REGIONS

As mentioned in the previous section, one of the sig-
natures of the structural instability regions in the Trotter-
ized unitary is the emergence of or unstable (hyperbolic)
periodic fixed points. Thus, in the classical limit, the tra-
jectories in the vicinity of this point are expected to show
exponential divergence when the dynamics is observed at
the appropriate stroboscopic times, i.e., every g steps in the
region around T, .

Recently, it has been shown that the presence of hyper-
bolic points can lead to information scrambling deep inside
the quantum regime, a phenomenon that was dubbed
saddle-point scrambling [42,43]. Note that this saddle-
point scrambling is not indicative of chaotic behavior as
mentioned in Ref. [42,43], rather its origin lies in the expo-
nential divergence of the trajectories that happens only in
the localized region around the separatrix, which includes
the hyperbolic fixed point. Here, we show that the effective
Hamiltonian constructed in the previous section correctly
identifies the presence of unstable fixed points and allows
us to characterize the saddle-point scrambling emerging in
the simulator. Note that such scrambling exists naturally
in the dynamics of the ferromagnetic phase of the ideal p-
spin models, as the existence of a critical (for p =2) or a
bifurcation (for p > 2) point is always accompanied by the
emergence of an saddle point. This is easily understood as

a pitchfork or a saddle-node bifurcation of the correspond-
ing classical equations of motion. However, this type of
scrambling is absent in the paramagnetic phase, which is
the target dynamics being simulated.

The smoking gun of scrambling behavior is the expo-
nential operator growth of certain correlation functions
[44]. In particular, we characterize the saddle-point scram-
bling in the quantum simulation using the short time
growth of the “infinite temperature” square commutator

1
e(®) = TV, WOV, wo)1", (30)

where d is the dimension of the Hilbert space, the operators
¥(t) and W(0) are chosen so that they commute at the ini-
tial time, and V() is the Heisenberg evolution of ¥(0). In
this work, we choose V(0) = W = J,, and study the short
time growth of the square commutator

c() = Te{|[ (1), 2 (O]} (1)

N+1

In the presence of an instability, be it a saddle point or a
hyperbolic periodic point, the above quantity is expected
to grow like c(f) ~ e*saddie? where Agqale iS the associated
growth rate at the saddle point. The exponential growth
of the OTOC is seen in Figs. 4(a) and 4(c) for the p =2
system with Trotter step size in the vicinity of 73, and the

108 i
@_ © |
] i
g’ Ham0s)) So i
L T3~ 02 ~N3 !
102 1,+005 | S8
T;3+03
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10°
®
‘ . 5
= 10 / — T4~ 0.02 =
T — T,,-0.0075 | ¥F
Ml —— Ti.0005 | R
10578 T4 o 40,0175
0 100 200 ’ 1.74 1.76
Steps Tsa+AT
FIG. 4. (a),(b) Examples of time evolution of the out-of-time-

order correlation (OTOC) function, ¢(f), in Eq. (31) for some
values of At inside the structural instability region for the p = 2
(a) and p = 4 (b), and for the 7}, and 7j, structural instabili-
ties, respectively. (c),(d) Exponent of the saddle point controlling
the rate of growth of the square commutator at short times. The
solid line is the analytical prediction obtained from the classi-
cal flow associated with the effective Hamiltonian and the stars
plus dashed line are the exponents obtained numerically by lin-
ear fit to the section of the data that grows exponentially. For this
calculations, we used N = 128, s = 0.1.
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p =4 system with Trotter step size around 7,,, respec-
tively. The exponents associated with the saddle point
derived from these numerics are plotted in Figs. 4(b)
and 4(d) as a function of the Trotter step size with a red
dotted line.

The analytic expressions for lg&?ie associated with a
given p and 1-to-g bifurcation can be obtained by solv-
ing for the eigenvalues of the Jacobian matrix associated
with the linearized classical flow around the appropriate
unstable fixed point of the effective Hamiltonian, which are
labeled by blue solid lines in Figs. 4(b) and 4(d). In the sys-
tem with p = 2 around riz, i.e., the 1-to-2 bifurcation, one

where MS_"J’) is the largest eigenvalue of

0
M*D = | _2(1 — s)At/(z}, + A7)

3
A Ysaddie

where Xgddie = /1 —Zsaddie/ﬁ and Xsiddle = Yzadd]e are

the Cartesian coordinates of the unstable point of the clas-
sical flow associated with the effective Hamiltonian at
this instability for the p = 4 system. We give the explicit
expression of Zgggie along with details on the derivation
of the exponents in Appendix C. In Figs. 4(b) and 4(d)
we compare the exponents extracted from the numerical
calculation of the OTOC (red stars) for a system size of
N = 128, with the analytical expressions obtained with
the mean-filed limit of the effective Hamiltonian (solid
blue line). Note the good agreement despite the small sys-
tem size used in the simulation. Thus, as first observed in
Ref. [42], the short time growth of the OTOC has the form
ghsaddle!

VI. CONCLUSIONS AND OUTLOOK

In this work we have identified a new mechanism
leading to the proliferation of errors in a quantum sim-
ulator when the algorithm employs the Trotter-Suzuki
decomposition. In the mean-field limit, these regions of
structural instability are characterized by multiple bifur-
cations leading to rapid global changes in the structure
of the phase space as the Trotter step size is varied
slightly.

The effects of these bifurcations can be seen in smaller
systems, with N far from the thermodynamic limit. A
method to identify the structural instability regions in these
smaller systems is to seek the regions where the eigen-
states of the Trotterized unitary differ significantly from the
eigenstates of the target unitary. From the correspondence

finds that

1—s)|A7|] [(1 —s)AT)’
l(2,2) = (7} At i, = ( 5
narldle (t_'Z,Z + ) 1'2*’2 + Al’ Tﬁ:z + AT

32)

and the expression for Agddle in the system with p =4
around 74, i.e., the 1-to-4 bifurcation, is given by

44) _ pq(44
M = MY, G3)
200 —=)AT/(tfs + A1) sYouq/2
0 ~SX /2 | 69
'—SXsiddle 0

principle, the quasiprobability distribution is expected to
overlap with the trajectories of the phase space in the
classical limit, so rapid changes in the structure of the
phase space are reflected in the modifications of the eigen-
states associated with the Trotterized unitary. The sudden
changes in the structure of the eigenstates of the Trot-
terized unitary result in Floquet dynamics that is very
different from the targeted evolution of a given state, result-
ing in large errors in various observables. In this work, we
provide analytic expressions for these high-error regions
computed using unitary perturbation theory, for the case
of p-spin models. We showed that inside the structural
instability regions the effective Hamiltonian, which is the
generator of the Trotterized evolution, is very different
from the target Hamiltonian, providing further justification
for the presence of large errors in these regions. The effec-
tive Hamiltonian reveals the emergence of new unstable
fixed points in the structural instability regions, indicating
the presence of saddle-point scrambling in the simulator,
as manifested by the exponential growth of the OTOCs in
these regions.

An important conclusion of the perturbation theory anal-
ysis of Sec. IlI is that structural instability regions will
appear at smaller values of the Trotter step size t as the
value of p increases. This indicates that, in general, gate-
based quantum simulations of p-body interactions (beyond
the usual two-body case of p = 2) is likely to lead to
more parameter regimes where Trotter errors proliferate.
While this is certainly true in the case of all-to-all interac-
tions analyzed here, the study of its manifestation in sys-
tems with different interactions (i.e., with long, but finite,
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interaction range) will require further study. We conjecture
that the structural instabilities studied here in the mean-
field case are more universal, and carry over to Floquet
states with more general many-body interactions. Note that
models with all-to-all interaction graphs are often seen to
correctly capture the physics of systems with more com-
plex but still long-range interactions. For example, for
the case of p = 2, the mean-field phenomenology associ-
ated with the LMG model informs the dynamical quantum
phase transition behavior of finite-range interacting sys-
tems described by H = BJ, + 3, Joo P i — j|* for
a < 2 (@ =0 corresponds to the LMG model) [14,45].
These results strongly suggest that mean-field models can
give insight into many-body behavior (particularly, the
nonequilibrium dynamics of physical observables), and the
notion of structural instabilities will very likely be present
in finite-range models with nonzero values of o for the p =
2 case. Further study of the structural instability regions in
the finite-range interaction case, and the extension of these
models for p > 3 is left for future work.

Beyond their implication in the proliferation of errors in
quantum simulation, the regions of structural instabilities
are a manifestation of fundamental effects in the nonequi-
librium dynamics of the Floquet system. In particular, we
find that the dynamics of the driven system in Eq. (11),
whose Hamiltonian is periodic with period T, H(t 4+ T) =
H (1), shows signatures of Floquet time crystal behavior
in a region of structural instability. A Floquet time crys-
tal is an out-of-equilibrium phase of matter that breaks
discrete time-translation symmetry [46-49]. These time-
crystal phases in the kicked p-spin models can be studied
with the help of area-preserving maps associated with the
mean-field limit of the Floquet system. In particular, the
existence of periodic elliptic points, which can be observed
clearly in the phase-space portraits of Fig. 3, will lead to
the dynamics where the initial state, prepared close enough
to elliptic points, will periodically return to the initial con-
figuration after g time steps, with ¢ = 2. Physically, this
means that the response of the system will have a period-
icity of g7, instead of T, thus breaking the discrete time-
translation symmetry of the Hamiltonian. The connec-
tion between structural instabilities and the subharmonic
response was also seen in Ref. [50], where the author stud-
ied the emergence of the robust subharmonic response in a
spin chain with short-range (nearest-neighbor) two-body
interactions in a regime that roughly coincides with the
choice of T = 73, in the parametrization used in our work.
This result, together with the general connection of the
structural instability regions with discrete time crystals,
indicates that this source of Trotter errors is not an isolated
phenomenon happening only in long-range interacting spin
models. A comprehensive study of all the Floquet time
crystal phases present in the kicked p-spin system is part
of an ongoing work and will be presented in a forthcoming
publication [51].
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APPENDIX A: CALCULATION OF LYAPUNOV
EXPONENTS

Throughout the main text, we use the term Lyapunov
exponent to describe the rate of exponential growth of a
classical variable X. That is, up to some threshold time
Ly, this classical variable evolves according to X (f) =
X (0)e, with A being the Lyapunov exponent.

We have presented results in this work for two differ-
ent scenarios where some components of the mean spin in
the thermodynamic limit evolve following the dynamics
described in the previous paragraph. First, we analyzed the
chaotic instability of the delta-kicked p spin as illustrated
in Figs. 1(c) and 1(d). Then, we analyzed the short time
evolution of the square commutator in Sec. V, whose phys-
ical origin can be traced to the exponential growth of the
unstable separatrix branches of saddle points of the phase-
space flow. Note that we provide a more in-depth analysis
of the instability around the saddle point in Appendix C.

Although both scenarios represent exponential instabili-
ties, they correspond to physically different situations. The
chaotic instability is global, so any pair of points inside the
chaotic region of the phase space will display exponential
divergence of their distance at a rate given by the exponent.
The ubiquity of this instability all over the chaotic region
leads to the folding of trajectories at long times and the
decay of correlations, with the latter known as mixing. In
fact, at long times and length scales, the motion inside the
chaotic region resembles a diffusion process. This implies
that the chaotic dynamics has a positive value of met-
ric entropy, or Kolmogorov-Sinai entropy, which can be
computed via Pesin’s theorem [52]. For the instability of
the saddle point, all of the abovementioned physical pro-
cesses are absent. Furthermore, the exponential divergence
of trajectories only occurs in a highly localized region of
phase space including the immediate vicinity of the saddle
point and the separatrix. For instance, see Ref. [42] for an
in-depth discussion on this matter.

The motivation behind Fig. 1 is twofold. On the one
hand, we want to introduce the dissimilarity, and recog-
nize that this quantity identifies both types of instabilities.
On the other hand, we also want to present a direct compar-
ison with the Lyapunov exponent of the chaotic instability,
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allowing us to identify the region of parameter space (7, s)
in the similarity heat map whose origin is chaos.

In the following, we explain the details of calculating the
Lyapunov exponent associated with the chaotic instability,
as shown in Fig. 1. In the thermodynamic limit, the mean
spin evolves stroboscopically according to Egs. (12). For
any point in phase space, the local dynamics of small
increments in its vicinity is governed by the Jacobi matrix

3xm+i

M(Xy) = —2

(A1)
For a point inside the chaotic region, the exponential insta-
bility implies that the neighborhood of the point is getting
exponentially stretched in some of the principal directions
of the Jacobi matrix and exponentially shrinking in the
other principal directions. This takes place as one evolves
the Jacobi matrix along the chaotic trajectory correspond-
ing to the selected point. As such, the largest Lyapunov
exponent can be computed as the largest eigenvalue of the
Jacobi matrix evaluated along the trajectory, which follows
from the celebrated ergodic theorem of Oseledets [53,54].

For a map as that in Eqgs. (12), Oseledet’s ergodic
theorem allows us to compute the largest Lyapunov expo-
nent given by

A, (z,s;p) = Iingo[lJr(r,s;p)]”z", (A2)
where n is the number oftlme steps, A is the largest eigen-
value of the matrix r[ MT(X,,,)M(X,,,), and M(X,,) is
the tangent map 1ntr0ducecl before.

Naturally, the exponential growth of one of the eigen-
values leads to issues with the numerical computation of
Eq. (A2). This can be avoided by looking at Eq. (A2) in
a different basis other than the eigenbasis of the Jacobi
matrix. This can be achieved via a QR decomposition
(see, for instance, Ref. [55]), which permits the numerical
approximation of the asymptotic time limit in Eq. (A2).

A single point in the heat maps of Figs. 1(c) and 1(d)
is obtained by approximating Eq. (A2) via the QR method
up to n = 10° time steps. This value is then averaged over
50 different initial points inside the chaotic region. This
procedure is then repeated for a grid of points in the (7,s)
plane.

APPENDIX B: LONG-TIME AVERAGE OF (J;)

The long-time average of an operator 4, assuming that
the time-evolution operator corresponding to one time-step
has nondegenerate eigenphases, is given by

d
@)oo =Y _ (@10 18,) (¢, 1410,),

r=1

(B1)

where p® is the initial state and |¢,) is the rth eigen-
state of the system. The error in this observable due to

Trotterization is given by

T —

EF () = F1) oo = Ao, (B2)

where moo,id is the long-time average of 4 under the ideal
Hamiltonian evolution and Em‘r is the long-time average
under Trotterized evolution. Assuming that the eigenstates
of the system change under a perturbation |¢,) — |¢?) +
Alp), the expression for the long-time average to the first
order is given by

2
Ep((]) m,m +2x Z

mpEm

x Re[(Amm pi, + Py Anm) (@4 1657)].
(B3)

The above expression can be evaluated for ideal Hamil-
tonian evolution to obtain mm‘id up to first order
in s using Hamiltonian perturbation theory with Hy =
—(1 — 5)J; being the unperturbed Hamiltonian and H; =
—sJ? /(pJP~") being the perturbed Hamiltonian

2
Wooia = D_ Puwmm + 57— pIr- 1(1 —s) Z

m=0 m.nm

Jp mmn
% Re((Am mo + o0, Am)( ) ) (B4)

Likewise, Eq. (B3) can be evaluated to obtain mm,, up
to first order in s using unitary perturbation theory with
unperturbed unitary, Up = & !=9%%_ and the perturbed
unitary U, = &7 /@7 7):

moor ZP(GJAMJH+ p 1 Z

mnEm

_i(pr)m,rx
)

—i(l—syr(m—n) _

x Re((p,g?> mon ~+ Anmj) >

(B5)

The error is then given by

2% 2
E8®) = o X Re[(Am 2P + oD A5 )PV
mn#Em
1 & it
*NT—n—n) © e mD =1 ||

(B6)
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The above expression can be further simplified by expanding the summation in » and noting that the matrix elements of

(Jf)m,,, are nonzero forn=mEtp mtp —2,...
obtain

g MGt 0 it
] 0
_1 Z |:(pm+p —q,m m Jm + Am+p —q, mpmm) (Jf )mJﬂ+p—q (ei(p_q)( 1-s)t _ 1

,m £ 0(1). Focusing on two particular terms withn =m £ p — g we

1
-9 —s))]

2
61400(?)|n=m:|:g = PJP
m=0
27
2s 0 0
* p—1 Z Re[(pr(nl(p—q),mAmam +AM—(p—q),mprgs,zn)(Jf)m,m—(p—q)
PP WS

(B7)

x( ‘
@ -0 —9)

it
+ e—ip—(l-sr _1 /)|

Manipulating the second term in above expression by first shifting the index of the second term in the above equation,

m — m — (p — q), and then setting Re[z] =

EO="%7 D D Re|lomipanUmip—gming =4

g={0.2,..p—1(p)} m=0

1 it

Re[z*] in the second term results in the following expression for the error:

(0) 0

X (-)(_f)m.m+.0—'? ( P—-—q1—ys)

= ellp—g)(1—s)t _ 1)] (BS)

Focusing on the error in J;, the above expression further simplifies to

&°(7)
g={02,..p—1(p)} m=0

Relabeling the index ¢ — p — g results in the final expression

27—q F
28 1 it
z : P _
P 2, He [q"mﬂ"’ U )”"’””(q(l —5) a9t ] )]

&) =

g={p.p—2,..,0(1)} m=0

APPENDIX C: DETAILS ON THE DERIVATION
OF THE GROWTH RATE OF THE SQUARE
COMMUTATOR

As mentioned in Sec. 1V, the exponent governing the
growth rate of the square commutator can be obtained by
examining the saddle points of the classical flow associ-
ated with the effective Hamiltonian constructed for a given
power of the Floquet operator. Recall that, given that we
are investigating the gth power of the Floquet operator, the
effective Hamiltonian is given by

Ua(f)q — e—iq(r_:,q-i-ﬁr)Heﬁ‘. (C]}

Once the form of H g is known, the procedure is as follows.
First, we construct the equations of motion for the classi-
cal flow and identify its stationary points, particularly the
unstable ones. Then, we evaluate the tangent map on these

28 2/ —(p—q) .
- @)
=D MR DAL (R P

(Jp )m,m+p—q (

1 it

(p _Q)(l _S) . e"(P—q)(l—s)r - 1)] (ng

(B10)

unstable points and compute its eigenvalues. The largest
eigenvalue is then the exponent we are looking for.

1. Structural instabilities around 7 = 7,

a. Structural instability around 73,
We consider first the error peak arising due to the struc-
tural instability around z;,. For this system, the effective
Hamiltonian is given by
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The equations of motion of the corresponding classical
flow are given by

dx 1 —5)?

ax _ 09 ey (C3a)
dt T

dY 1 —5)?

a¥ = ok (C3b)
dt T

dz

—_— SXY, (C3C}
d

This classical flow has two fixed points at the poles, X =
Y =0 and Z = =%1. Other fixed points satisfy ¥ = 0 and

-5 At
= and
75, + At

_ (1—s)*Ar
o s §

X =vy1-22

The range of values of At for which these new fixed points
are real gives us the extent of the region of structural insta-
bility; from the above expression for X, it is easy to see
that

VA

(C4)

(C5)

determines the width of the structural instability region.

Furthermore, it is not hard to see that the unstable point
emerges as a consequence of the change in instability of
one of the fixed points on the poles, depending on the sign
of At. Hence, to compute the exponent, we evaluate the
Jacobi matrix on the poles and diagonalize it, finding that
the two nonzero eigenvalues are given by

Mip==k (T — s)?\/sign(Ar) ~1, (C6)

s
(1—-97T
where T = Ar/(ﬂ.::,;*‘2 + Art). From the largest eigenvalue
we obtain the expression for the value of the exponent
Asaddle:

22 ) §
28D (At) = At(1 —5) [sign(AT) e

—1. (C7)

Here we have included the appropriate prefactor account-
ing for the definition of the effective Hamiltonian.

b. Structural instability around zJ,

In Sec. IV we mentioned that all the even kicked p-spin
models have a structural instability centered at the same
value as the p = 2 model, and that the central value cor-
responds to the values of T at which the period-doubling
bifurcation takes place. We now consider this structural

instability region for the system with p = 4. The effective
Hamiltonian is given by

5

AT
HP —(i—-s) —— L Jx
eff ( S) TA:Z—FAT “+4J b

With the equations of motion for the associated classical
flow given by

(C8)

dX

— = —(1 - $)TY, (C9a)
dy _ 5

— =1 —9)TX —sX°Z, (C9b)
dz

= sX3y, (C9c)

where T = A'r/(ﬂ:zf‘2 + Art). This flow has two fixed points
on the poles, X = ¥ =0 and Z = %1, which are always
stable. New fixed points can be found as the solution to
dX/dt = 0. Of particular interest to us are those whose
coordinates satisfy ¥ =0 and the x,z coordinates are
related via

(1—9T—sX?*Z=0, (C10a)
Xy, (C10b)
which leads to the cubic equation
3 I—s\_
-7+ T=0. (C11)
s

From the solutions of this cubic equation we identify the
one corresponding to the z coordinate of the saddle point
to be

2/3)' | h(A7)
h(At) — 213323
h(At) = [sign(A1)94 + ﬁm]lﬂg

with the factor 4 = [(1 — 5)/s]T. From the above rela-
tion between the x and z coordinates we see that Xgqqie =

+./1— Zfaddle; then we can construct the tangent map and

evaluate it in the saddle point. After doing so, we find that
the exponent governing the exponential growth is given by

where

Zsaddle ==

(C12)

42
*ide(AT)

1 =ah2d A N®
— S(r‘:Z + A‘E)\/z( - ) (1" + Al’) _XS?ldd]E‘
42

(C13)

where again we have included the appropriate pref-
actor that accounts for the definition of the effective
Hamiltonian.
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c. The case of arbitrary even p

Now that we have presented in detail the calculation of
the exponents for the two models where explicit expres-
sions can be obtained, let us briefly show some further
insights that can be extracted from this approach, when
we consider the cases of an arbifrary even p at the T;,z
structural instability region.

Let us start with the equations of motion for the classical
flow:

X -
=—(1 —-35T7Y,

dy
= = (1 —9)TX —sX?7'Z, (C14b)
dz
— = sXP-y. (Cl4c)

Here we now have T = Sr/(r + Art). This set of equa-
tions has two fixed points at the poles, X = ¥ =0 and
Z = *1. The other fixed points satisfy ¥ = 0 and the x and
z coordinates are related via

(1—-s57

Z=-——> and Z'=1-X~

— (C15)

These two equations give rise to a algebraic equations of
degree 2p — 2 for both coordinates. For instance, the one
for the x coordinate is given by

1— 2
S) T2 =0.
5

Although a general solution to this algebraic equations
is not available, we can use it to estimate the size
of the structural instability region. Let us define the
function S(X)=X%"2_ X% 4 [(1 —s)/s]*T?; this
function has extreme points at X =0 and Xy =
:t\/(2p 4)/(2p — 2); additionally, we note that S(1) =
S0)=[(1 — S)/S]Z_2 > 0 are always positive. Then, the
function S(X) will have at least one root in the interval
X €[0,1] if there is a minimum in this interval and the
function evaluated at this minimum is negative.

It is not difficult to see that X is in fact a minimum
of S(X'). Thus we want conditions on the parameters such
that the inequality S(X;) < 0 is satisfied. Solving for those
conditions we find that

X2 —X2p_4+( (C16)

st F(p) }
ATETM with
—Dp—2P2—(p—2p"
ﬂp):‘/@ )(p(pipl)p_:(p e

Thus we see that the size of the structural instability region
around t*, decreases with increasing p, with the model
with p = 2 having the most prominent one.

2. Structural instability around 7},

We move now to consider the structural instability
region around 7,7, and in particular focus on the case of
the model w1t11 p = 4. Inside this instability region the
effective Hamiltonian is given by

—(1 =87 —

HSY = (C18)

5 14 4
s+

where T = At/(z], + At). The equations of motion for
the associated classical flow are

dX
& f}ﬁz — (1 —95)TY, (C19a)
dt
dy
— =1 —9TX - E,\'32 (C19b)
dzZ
2 - Ixvixr - ). Cl19c¢
7% ( ) (C19¢)

This set of equations has fixed points on the poles, X =
Y =0 and Z = £1. Other fixed points can be found as
solutions to dX/dt = 0; from the third of those equations
we pick the condition X # 0 and Y # 0, leading to X? =
¥2. By substituting that condition into the first equation
of the set we obtain the relation ¥? = 2(1 — 5)T/(sZ), and
using this relation, we obtain the following cubic equation
for the z coordinate of the fixed point:

B 1—s e,
L —Z7Z+ T =A)
s

The solution of this equation that corresponds to the saddle
point is given by

(C20)

1—iV3

Zsadd]e =
2 313(—184 + +/3/—1 + 1084%) 13
(1 4iV3) (=184 + V3V =T+ 10&4?)1/3
2323
(c21)
where

A:(]——s)( i At )
s 1:4,4—|—Ar

Using this last expression, we can compute the exponent
of the saddle point as the largest eigenvalue of
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0
—2(1 —s)At/(z54 + A7)
Y uadie

where Xaadie = +,/1 — Z2 491/ V2.

In the case of a system with arbitrary even p > 4 at this
same instability, although we cannot explicitly compute
the exponent, we can estimate the width of the structural
instability region.

The effective Hamiltonian is

- 5
He(;“‘) == —(I — .S')I'Jz — W(Jf +d{f)-

The equations of motion of the associated classical flow
are

(C23)

dx
& _Ipz_a-gry, (C24a)
a2

A —syzx — Sxr-1z C24b
dt —( —S)‘L' - 2 ] ( - }
dz

2 _ Zxyr-?— yd, (C24c¢)
a2

It is not difficult to see that the saddles are at X £ 0,
Y # 0 and that they satisfy X?~2 = ¥7—2; furthermore,
Z =201 —5T/(sX?2). Using these conditions, we can
derive the following algebraic equation for the x coordinate
of the saddle position:

2
IXP2_ x4y 4(1 - S) 72 =0,
8

(C25)

To investigate the width of the structural instability
region, we look for the range of parameters such that
the above equations have nontrivial real solutions. To do
this, we consider the function G(X) = 2X%# 2 — x4 4
4(1 —s) /5]2?2; the extreme points of this function are
atX = 0and Xz = ,/(p — 2)/[2(p — 1)]. Since G(0) and
G(1) are positive, then if there is a minimum in the range
X €[0,1] such that G(X) at this minimum is negative,
then the algebraic equation has at least one nontrivial solu-
tion. In fact, X is a minimum; thus, we want conditions on
the function parameters such that the inequality G(X,) < 0
is true. After solving for those conditions we find that

ST;AQ(P) ;
AT < ng(p) with
_ |e—=Dp-2p2-p-—2p! 1 _
G(p) = \/ e — = 2 F @),
(C26)

201 —)AT/(Tfy+ AT)  sY34./2
0 _S‘Xsiddle/z ) (C22)
—SXsiddle 0

thus, this region of structural instability shrinks with
increasing p and is exponentially narrower than the region
of structural instability around f;z-
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