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Abstract—Due to their capacity achieving performance with
sliding window decoding (SWD), spatially coupled LDPC (SC-
LDPC) codes are emerging as candidates for next generation
channel coding applications. In this paper we present a general
model of SWD of SC-LDPC codes and develop an analysis
that allows us to estimate error probability performance under
decoder error propagation conditions that can occur when low
latency operation is desired. We also show how the model
parameters can be estimated and indicate how the model can
be used to predict the performance of code doping techniques
used to mitigate the effects of decoder error propagation.

Index Terms—SC-LDPC codes, sliding window decoding, code
doping, decoder error propagation

I. INTRODUCTION

Low-density parity-check (LDPC) convolutional codes [1],

[2], also known as spatially coupled LDPC (SC-LDPC) codes

[3], [4], have been shown to have two advantages com-

pared to LDPC block codes (LDPC-BCs): (1) they exhibit

threshold saturation, i. e., the suboptimal belief propagation
(BP) iterative decoding threshold of spatially coupled code

ensembles over memoryless binary-input symmetric-output

channels coincides with the optimal MAP threshold of their

underlying block code ensembles [2]–[4], and (2) sliding
window decoding (SWD) can be employed to reduce decoding

latency, memory, and complexity [5]. For SC-LDPC codes to

achieve near optimal performance at moderate-to-high signal-
to-noise ratios (SNRs), the decoder window size W should

satisfy W ≥ 6v, where v is the decoding constraint length.

However, due to the fact that low-latency operation is desirable

in practice, a smaller window size is often required. Under

such low latency operating conditions, infrequent but severe

decoder error propagation can sometimes occur. During the

decoding process, error propagation is triggered when, after a

decoding error occurs, the decoding of subsequent bits is also

affected. This in turn can cause a continuous string of errors,

resulting in an unacceptable performance loss. This effect is

particularly harmful for large frame lengths or a continuous

(streaming) transmission scenario.

The effect of SWD error propagation on the performance

of SC-LDPC codes was studied in [6], where the authors

proposed adapting the number of decoder iterations and/or

shifting the window position in order to limit the effects of

error propagation. As an alternative to modifying the design

of the decoder, check node (CN) doped [7] and variable node

(VN) doped [8] SC-LDPC codes were proposed to limit error

propagation by altering the encoder design. In this approach,

doped CNs or VNs inserted periodically into the encoded

sequence allow the decoder to recover from error propagation.

In [9], a scaling law to predict the performance of periodically-

doped SC-LDPC code ensembles streamed over the binary

erasure channel (BEC) was presented, and [10] proposed a

model characterizing the BEC performance of SWD as a

function of W .

To help understand the error propagation problem in SWD

of SC-LDPC codes, a simplified two-state decoder models

was proposed in [7]. In this paper, we extend and generalize

this concept in a way that allows us to estimate decoder

performance for a wide variety of error conditions. While the

simplified model is primarily useful for studying situations

where most decoding errors are due to error propagation,

the multi-state models developed here allow us to analyze

decoders that can produce error bursts of various lengths.

This added capability gives us the flexibility of analyzing the

performance of different code designs over a broad range of

encoder/decoder parameters and channel conditions.

II. MODELING AND ANALYSIS OF SWD

We consider SC-LDPC codes constructed by coupling to-

gether a sequence of L disjoint (J,K)-regular LDPC-BC

protographs into a single coupled chain, where infinite L
results in an unterminated code and finite L results in a

terminated code. Without loss of generality, we consider (3,6)-

regular SC-LDPC codes as shown in Fig. 1. As an example,

we begin with an independent (uncoupled) sequence of (3,6)-

regular LDPC-BC protographs with base matrix B = [3 3]
(see Fig. 1(a)). The unterminated (3,6)-regular SC-LDPC code

chain is obtained by applying the edge-spreading technique

of [4] to the uncoupled protographs. In this case, the edge

spreading is defined by a set of component base matrices

B0 = B1 = B2 = [1 1] that satisfy B = B0+B1+B2 (see

Fig. 1(b)). In general, an arbitrary edge spreading must satisfy

B =
∑ω

i=0 Bi, where ω is the coupling width. Applying the

lifting factor M to the SC-LDPC protograph of Fig. 1(b)

results in an unterminated ensemble of (3,6)-regular SC-LDPC

codes in which each time unit represents a block of 2M
coded bits (VNs). SWD, first proposed in [5], was applied

to SC-LDPC codes to reduce decoding latency, memory,
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Fig. 1. (a) A sequence of independent (uncoupled) protographs; (b) spreading
edges to the ω = 2 nearest neighbors.

Fig. 2. The state diagram of a general decoder model for SWD.

and complexity. As shown in Fig. 1(b), the rectangular box

represents a decoding window of size W blocks. To decode

on a binary-input additive white Gaussian noise (AWGN)

channel, (1) a BP flooding schedule is applied to all the nodes

in the window until some stopping criterion is met, up to some

maximum number of iterations I , (2) the target block of 2M
symbols in the first window position is decoded according to

the signs of their log-likelihood ratios (LLRs), and (3) the

window shifts one time unit (block) to the right. Decoding

continues in the same fashion until the entire chain is decoded,

where the decoding latency in bits is given by 2MW .

In order to describe the behavior of SWD under low latency

(small W ) operating conditions, we introduce a generalization

of the simplified decoder model of [7] that includes a random
error state for normal decoder behavior, some number of

intermediate states that account for finite-length error bursts,

and a burst error state that allows for the possibility of

unlimited decoder error propagation. The corresponding state

transition diagram is shown in Fig. 2, where S0 represents

the random error state, {Si}, i = 1, 2, . . . , J − 1, represents

the intermediate states, and SJ represents the burst error state.

We let q0 denote the block error rate (BLER) in state S0,

qi, i = 1, 2, . . . , J − 1, denote the BLER in state Si, and qJ
denote the BLER in state SJ .

Referring to Fig. 2, the decoder starts in the random error

state S0, transitions to intermediate state S1 with probability

q0 when the first block error occurs, and then either makes a

second block error and transitions to state S2 with probability

q1 or decodes correctly and returns to state S0 with probability

1 − q1, resulting in a single block decoding error. Generally,

q1 ≥ q0 since one block decoded in error means that there

are some incorrectly decoded symbols still connected to the

window (see Fig. 1(b)) that influence the decoding of the

next block. If, with probability q2, a third block error occurs

and the decoder transitions to state S3, the decoding window

now contains incorrectly decoded symbols from the past two

blocks, which, using the same reasoning as above, implies

that q2 ≥ q1 ≥ q0, while the decoder returns to state S0

with probability 1 − q2, resulting in a double burst error.

Extending the same argument and noting that there are in

general ω previously decoded blocks still connected to the

window during the decoding of a target block, we have that

qJ−1 ≥ qJ−2 ≥ . . . ≥ q1 ≥ q0, and a correctly decoded block

in intermediate state Si causes the decoder to return to state

S0 and results in a length i burst error, i = 1, 2, . . . , J − 1.

If J consecutive block errors occur, the decoder transitions

to the burst error state SJ and remains there with probability

qJ ≥ qJ−1 as long as decoding errors continue, returning to

state S0 with probability 1 − qJ, resulting in a burst error of

length J or more.1 If the influence of the ω previously decoded

incorrect blocks is strong enough, such that qJ → 1, unlimited

error propagation can result, i.e., the decoder will typically not

be able to escape the burst error state.

For a given spatially coupled protograph with coupling

width ω, the channel parameter SNR, the decoder parameter
W , and the code parameter M will all influence the values

of q0, q1, . . . , qJ . Generally, these probabilities are decreasing

functions of all three of these parameters. However, as M
increases, the larger number of decoded symbols still connect-

ed to the window has a stronger influence on future decoded

blocks. As a result, strong codes (large M ), although they

have smaller values of q0 and thus are less likely to reach

state SJ , once in the burst state they have a high probability of

staying there, i.e., a high probability of unlimited decoder error

propagation. Typically, they suffer only a very few short burst

errors, and their BLER performance is dominated by error

propagation. Weak codes (small M ), on the other hand, have

larger values of q0, and thus reach state SJ more often, but are

less likely to suffer from unlimited decoder error propagation.

Instead, their BLER performance is typically dominated by

larger numbers of burst errors of varying lengths.2 We now

proceed to derive expressions for the BLER, as functions of

q0, q1, . . . , qJ , of SC-LDPC codes based on this model for both

unterminated (L → ∞) and terminated (finite L) transmission.

1We note here that, when the decoder returns to state S0 after one or
more blocks errors, there are up to w − 1 incorrectly decoded blocks still
connected to the window, which could effect the value of q0. The fact that
the most recent block was decoded correctly, however, suggests that this effect
is minor, and for simplicity we choose to ignore it in the model.

2The relative strength of a code increases with ω as well as with M ,
while decoder strength increases with both W and I .

Authorized licensed use limited to: New Mexico State University. Downloaded on February 19,2022 at 06:14:48 UTC from IEEE Xplore.  Restrictions apply. 



A. Asymptotic (L → ∞) Analysis
Case I: No intermediate states (J = 1), L → ∞.3

Let pi be the probability of being in state Si, i = 0, 1, . . . , J .

Then p0 = p0 (1− q0) + p1 (1− q1), and hence,

p1 =
p0 − p0 (1− q0)

1− q1
=

p0q0
1− q1

. (1)

Now the average BLER can be written as

P
(∞)
BL = p0q0 + p1q1 = p0q0 + p0q1

(
q0

1− q1

)
= p0

(
q0

1− q1

)
.

(2)

Since p0 + p1 = p0 + p0

(
q0

1−q1

)
= p0

(
1−q1+q0
1−q1

)
= 1,

p0 =
1− q1

1− q1 + q0
, (3)

and using (3) in (2) it follows that

P
(∞)
BL =

q0
1− q1 + q0

=
r1

1− q1 + r1
, (4)

where r1
Δ
= q0. Note that when q1 → 1, lim

q1→1
P

(∞)
BL = 1,

which corresponds to unlimited error propagation.

Example 1: Choose q0 = 0.01, q1 = 0.99.4 Then P
(∞)
BL =

0.5.
Case II: One intermediate state (J = 2), L → ∞.
In this case, we have{

p0 = p0 (1− q0) + p1 (1− q1) + p2 (1− q2)
p1 = p0q0, p2 = p1q1 + p2q2,

(5)

where p2 can also be written as p2 = p1
q1

1−q2
= p0

q0q1
1−q2

. Since

p0 + p1 + p2 = p0 + p0q0 + p0
q0q1
1−q2

= 1, it follows that

p0 =
1

1 + q0 +
q0q1
1−q2

=
1− q2

1− q2 + q0 − q0q2 + q0q1
. (6)

Now the average BLER can be written as

P
(∞)
BL = p0q0 + p1q1 + p2q2 =

q0 − q0q2 + q0q1
1− q2 + q0 − q0q2 + q0q1

.

(7)

Defining r2
Δ
= q0 (1− q2 + q1), (7) can be written as

P
(∞)
BL =

r2
1− q2 + r2

, (8)

and we see that lim
q2→1

P
(∞)
BL = 1 (unlimited error propagation).

Example 2: Choose q0 = 0.01, q1 = 0.1, q2 = 0.99. It

follows that r2 = 0.0011 and P
(∞)
BL = 0.099.

Case III: Two intermediate states (J = 3), L → ∞.
In this case, we have⎧⎨

⎩
p0 = p0 (1− q0) + p1 (1− q1) + p2 (1− q2) + p3 (1− q3) ,
p1 = p0q0, p2 = p1q1,
p3 = p2q2 + p3q3 = p1q1q2 + p3q3 = p0q0q1q2 + p3q3,

from which it follows that

p3 = p0
q0q1q2
1− q3

.

3J = 1 is the “pure” error propagation case, where a single error puts
SWD in the burst state SJ .

4The parameter values here and in subsequent examples were chosen to
be representative of those encountered in practice.

Now, since p0 + p1 + p2 + p3 = 1, we have

p0 =
1

1 + q0 + q0q1 +
q0q1q2
1−q3

=
1− q3

1− q3 + q0 − q0q3 + q0q1 − q0q1q3 + q0q1q2
.

Defining r3
Δ
= q0 (1− q3 + q1 − q1q3 + q1q2), it follows that

p0 = 1−q3
1−q3+r3

, and the average BLER can be expressed as

P
(∞)
BL = p0q0 + p1q1 + p2q2 + p3q3

= p0q0 + p0q0q1 + p0q0q1q2 + p0
q0q1q2q3
1− q3

= p0
r3

1− q3
=

r3
1− q3 + r3

,

(9)

and lim
q3→1

P
(∞)
BL = 1 (unlimited error propagation).

Example 3: Choose q0 = 0.01, q1 = 0.1, q2 = 0.5, and

q3 = 0.9999. Then r3 = 5.011× 10−4 and P
(∞)
BL = 0.834.5

Case IV: J ≥ 4, L → ∞.

Starting with J = 4, we have⎧⎪⎪⎨
⎪⎪⎩

p0 = p0 (1− q0) + p1 (1− q1) + p2 (1− q2)
+ p3 (1− q3) + p4 (1− q4)

p1 = p0q0, p2 = p1q1, p3 = p2q2,
p4 = p3q3 + p4q4 = p0q0q1q2q3 + p4q4,

(10)

from which it follows that p4 = p0
q0q1q2q3
1−q4

. Since p0 + p1 +
p2 + p3 + p4 = 1, we have

p0 =
1

1 + q0 + q0q1 + q0q1q2 +
q0q1q2q3
1−q4

=
1− q4

1− q4 + r4
, (11)

where r4
Δ
= q0 (1− q4 + q1 − q1q4 + q1q2 − q1q2q4 + q1q2q3).

Then, using the same approach as in (9), the average BLER

can be expressed as P
(∞)
BL = r4/(1− q4 + r4), and

lim
q4→1

P
(∞)
BL = 1 (unlimited error propagation).

Example 4: Choose q0 = 0.01, q1 = 0.1, q2 = 0.5, q3 =
0.9, q4 = 0.999. Then r4 = 4.6×10−4 and P

(∞)
BL = 0.316.

For J > 4, the general expression for rJ is:

rJ =q0{1− qJ + q1{1− qJ+

q2 [1− qJ + · · ·+ qJ−2 (1− qJ + qJ−1)]}}
(12)

and the general expression for the average BLER is given by

P
(∞)
BL =

rJ
1− qJ + rJ

. (13)

B. Finite L Analysis

Case V: No intermediate states (J = 1), finite L.3

Let d0 = 1/q0 denote the average dwell time in state S0,

i.e., the average number of time units the decoder stays in

the random error state, and let d1 = 1/ (1− q1) denote the

average dwell time in state S1. In this case, there is one cycle
in the graph, the average cycle time is given by

x = d0 + d1 =
1

q0
+

1

1− q1
=

1− q1 + q0
q0 (1− q1)

=
1− q1 + r1
q0 (1− q1)

,

(14)

5Note that the large value of q3 in this case leads to significant decoder
error propagation, which severely degrades performance.
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and the average number of cycles is y = L/x.6

Now we write y = �y� + z, where z < 1. Let U0 = d0

x =
d0

d0+d1
be the average fraction of a cycle spent in S0, U1 =

1 − U0 = d1

d0+d1
be the average fraction of a cycle spent in

S1, n̄0 be the average number of block errors in state S0, and

n̄1 be the average number of block errors in state S1. Since

the decoder makes an error each time it leaves state S0, we

have

n̄0 =

{ �y� d0q0 = �y� , for z < U0 (since d0q0 = 1)
(�y�+ 1) d0q0 = �y�+ 1, for z ≥ U0,

(15)

n̄1 =

{ �y� d1q1 = �y� q1
1−q1

, for z < U0(
�y�+ (z−U0)

U1

)
q1

1−q1
, for z ≥ U0,

(16)

and the average BLER can be expressed as

P
(L)
BL =

n̄0 + n̄1

L
. (17)

Example 5: Choose L = 1000, q0 = 0.01, and q1 = 0.99.

Hence we have d0 = 100, d1 = 100, x = 200, y = 5, z = 0,

and U0 = U1 = 0.5. Substituting these values into (15) and

(16), we obtain n̄0 = 5, n̄1 = 495, and the average BLER is

given by P
(1000)
BL = 5+495

1000 = 0.5.
In this case, for any L > d0 = 100, if q1 → 1, we have

d1 → ∞, x → ∞, y = z = L
x > U0 = d0

x , and �y� = 0.

Then n̄0 = 1, n̄1 = z−U0

U1
d1q1 = (L− d0) q1 = L− 100, and

lim
L→∞

P
(L)
BL = 1+(L−100)

L = 1. Finally, we note that, for any

L such that z = 0, i.e., when the decoder traverses an integer

number of cycles, P
(L)
BL = P

(∞)
BL .

Case VI: One intermediate state (J = 2), finite L.
For the case of one intermediate state, there are two possible

cycles: S0S1S0 and S0S1S2S0, called type 1 (denoted C(1))

and type 2 (denoted C(2)), respectively. We denote the average

dwell times in each cycle as d
(k)
i , i = 0, 1, 2, k = 1, 2, where

we see that d
(1)
0 = d

(2)
0 = 1

q0
, d

(1)
1 = d

(2)
1 = 1, and d

(1)
2 = 0,

d
(2)
2 = 1

1−q2
, reflecting the facts that the dwell time in the

intermediate state is always 1 time unit and state S2 is never

reached in cycle C(1).
Now let x(1) = d0

(1) + d1
(1) = 1

q0
+ 1 be the aver-

age cycle time for C(1), x(2) = d0
(2) + d1

(2) + d2
(2) =

1
q0

+ 1 + 1
1−q2

be the average cycle time for C(2), and

x = x(1)P
(
C(1)

)
+x(2)P

(
C(2)

)
be the overall average cycle

time, where P
(
C(k)

)
is the probability that a cycle is of type

k, k = 1, 2. Then, since P
(
C(1)

)
= 1 − q1, P

(
C(2)

)
= q1,

and P
(
C(1)

)
+ P

(
C(2)

)
= 1, we have

x =
1 + q0
q0

(1− q1) +
q0 + (1 + q0) (1− q2)

q0 (1− q2)
q1

=
1− q2 + q0 (1− q2 + q1)

q0 (1− q2)
=

1− q2 + r2
q0 (1− q2)

.

(18)

Next let y = L
x = �y� + z, z < 1, be the average number

of cycles, d̄0 = d
(1)
0 = d

(2)
0 = 1

q0
, d̄1 = d

(1)
1 = d

(2)
1 = 1,

6Unlike the asymptotic analysis, the finite L analysis must introduce the
concepts of average dwell time and average cycle time to account for the fact
that frames typically end somewhere in the middle of a cycle.

and d2 = d
(1)
2 · P (

C(1)
)
+ d2

(2) · P (
C(2)

)
= q1

1−q2
be the

overall average dwell time in state S2. Then U0 = d̄0

x = 1
q0x

is the average fraction of a cycle spent in S0, U1 = d̄1

x = 1
x

is the average fraction of a cycle spent in S1, and U2 = d2

x =
q1

(1−q2)x
is the average fraction of a cycle spent in S2, where

U0 + U1 + U2 =
1

q0x
+

1

x
+

q1
(1− q2)x

=
(1− q2) + q0 (1− q2) + q0q1

q0 (1− q2)x

=
1− q2 + r2
q0 (1− q2)x

= 1.

Letting n̄i be the average number of block errors in state

Si, i = 0, 1, 2, we then have7

n0 =

{ �y� d̄0q0 = �y� for z < U0

(�y�+ 1) d̄0q0 = �y�+ 1 for z ≥ U0
(19)

n1 =

{ �y� d̄1q1 = �y� q1 for z < U0 + U1

(�y�+ 1) d̄1q1 = (�y�+ 1) q1 for z ≥ U0 + U1
(20)

n2 =

{ �y� d̄2q2 = �y� q1q2
1−q2

for z < U0 + U1(
�y�+ z−U0−U1

U2

)
q1q2
1−q2

for z ≥ U0 + U1,
(21)

and the average BLER can be written as

P
(L)
BL =

n0 + n1 + n2

L
. (22)

Example 6: Choose L = 1000, q0 = 0.01, q1 = 0.1, and

q2 = 0.99. Then we have r1 = 0.0011, d̄0 = 100, d̄1 = 1,

d̄2 = 10, x = 111, y = 9.009, �y� = 9, z = 0.009, U0 =
0.9009, U1 = 0.009, and U2 = 0.0901 (z < U0 < U0 + U1).
Now using (19), (20), and (21), we obtain n0 = 9, n1 = 0.9,

n2 = 89.1, and P
(1000)
BL = 99

1000 = 0.099. In this case, we see

that P
(1000)
BL ≈ P

(∞)
BL (from Ex. 2), since the last cycle never

reaches state S2 on the average (z < U0 + U1).

Case VII:J ≥ 3, finite L.

From (14) and (18), it follows that

x =
1− qJ + rJ
q0 (1− qJ )

(23)

is the general expression for the average cycle time and

Ui =
d̄i
x
, i = 0, 1, . . . , J. (24)

Letting C(k) represent cycle S0S1S2 . . . SkS0, k =
1, 2, . . . , J , we can write⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

P
(
C(1)

)
= 1− q1

P
(
C(k)

)
= q1q2 · · · qk−1 (1− qk) , k = 2, 3, . . . , J − 1

P
(
C(J)

)
= q1q2 · · · qJ−1,

(25)

7We note that (1) the decoder makes exactly one error in state S0 per
cycle, (2) the decoder makes an error in state S1 with probability q1 per
cycle, and (3) during cycle C(2), the decoder makes errors in state S2 with
probability q2.
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where we note that each graph contains exactly J cycles. Now

it follows that the overall average dwell times are⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

d̄0 =
1

q0
, d̄1 = 1,

d̄i = 1−
i−1∑
k=1

P
(
C(k)

)
= q1q2 · · · qi−1, i = 2, 3, . . . , J − 1

d̄J =
q1q2 · · · qJ−1

1− qJ
,

(26)

where the average dwell times di
(k) = 1, k = J − i− 1, J −

i, . . . , J , for each intermediate state i = 1, 2, . . . , J − 1.

The average number of block errors in each state are then

n̄0 =

{ �y� d̄0q0 = �y� for z < U0

(�y�+ 1) d̄0q0 = �y�+ 1 for z ≥ U0
(27)

n̄j =

⎧⎪⎪⎨
⎪⎪⎩

�y� d̄jqj = �y� q1q2 · · · qj
for z < U0 + U1 + · · ·+ Uj

(�y�+ 1) d̄jqj = (�y�+ 1) q1q2 · · · qj ,
j = 1, 2, . . . , J − 1, for z ≥ U0 + U1 + · · ·+ Uj

(28)

n̄J =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

�y� d̄JqJ = �y� q1q2···qJ
1−qJ

for z < U0 + U1 + · · ·+ UJ−1(
�y�+ z−U0−U1−···−UJ−1

UJ

)
q1q2···qJ
1−qJ

for z ≥ U0 + U1 + · · ·+ UJ−1,

(29)

and the average BLER is given by

P
(L)
BL =

J∑
i=0

n̄i/L, (30)

which represents the general expression for the BLER in the

finite L case.

III. ESTIMATING THE MODEL PARAMETERS

We now describe how the model parameters are deter-

mined. First, we choose an operating channel SNR of interest,

typically somewhat below the iterative decoding threshold

of the underlying LDPC-BC. Then we simulate the BLER

performance of the SC-LDPC code at that SNR and produce

a data file of the burst length distribution of all finite-length
error bursts, i.e., error bursts that return to state S0. Given that

we have simulated a total of N frames, each of length L, for

a total of LN simulated blocks8, this data file gives the total

number of finite-length error bursts of each length contained

in all N frames. We also produce a second data file that gives

the burst length distribution of all end of frame (EOF) error
bursts, i.e., bursts of one or more block errors at the end of a

frame.

Next we decide the number of states to be included in the

model, i. e., we must set the value of J . Typically, most finite-

length error bursts are short, since longer bursts tend to lead

to unlimited error propagation. In order to limit the size of

8Each simulated frame actually contains L+W time units, but only the
first L decoded blocks are considered for the burst length distribution. This
is done to avoid the decoding window overlapping the termination nodes in
the graph, since frame termination is not taken into account in the model.

the model, we normally choose J just large enough to include

those burst lengths that occur most often, while combining the

occasional longer finite-length bursts with the EOF bursts.9

Once J has been set, it is straightforward to determine

the model parameters. We begin by letting λj be the num-

ber of burst errors of length j, j = 1, 2, . . . , J , where

λJ = λFL + λEOF, λFL is the number of finite-length error

bursts of length J or greater (if any), and λEOF is the number

of EOF bursts. We also let δJ = δFL + δEOF be the total

number of block errors in the error bursts that comprise λJ .

Then, recalling that the dwell time in each intermediate state

is exactly one time unit, the total number of time units Tj

spent in state Sj is

Tj =

J∑
i=j

λi, j = 1, 2, . . . , J − 1, (31)

the total number of block errors Ej made in state Sj is

Ej =
J∑

i=j+1

λi, j = 1, 2, . . . , J − 1, (32)

and it follows that

qj = Ej/Tj , j = 1, 2, . . . , J − 1. (33)

To find q0, we note that the total number of time units T0

spent in state S0 equals the total number of correctly decoded

blocks, which is given by

T0 = LN −
J−1∑
i=1

iλi − δJ , (34)

the total number of block errors E0 made in state S0 is

E0 =
J∑

i=1

λi = T1, (35)

and it follows that

q0 = E0/T0. (36)

Finally, to compute qJ , we note that the total number of time

units TJ spent in state SJ equals δJ minus the number of

block errors that occurred prior to reaching SJ . So,

TJ = δJ − (J − 1)λJ , (37)

the total number of block errors EJ made in state SJ
10 is

EJ = TJ − λJ , and it follows that

qJ = EJ/TJ . (38)

Example 7: N = 20, 000 frames of length L = 5000
were simulated on a binary-input AWGN channel with BPSK

modulation for the SC-LDPC code of Fig. 1 with M = 1000,

W = 12, and Eb/N0 = 0.9 dB, which is 0.2 dB below the

threshold of the underlying (3,6)-regular LDPC-BC, resulting

9In the case that there are EOF bursts of length less than J , the burst
length distribution data files are modified to count these as finite-length bursts
rather than as EOF bursts.

10Once in the burst error state SJ , the decoder remains there after each
subsequent decoding error and only returns to the random error state S0 after
a finite-length burst error (of length J or greater) or an EOF burst.
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in a decoded BLER = 0.4670.11 The results of the simulation

were then used to create a model with J = 5, where J was

chosen to be the smallest burst length with less than 100

simulated block errors of that length. From the data files,

we determined that λ1 = 7957, λ2 = 1762, λ3 = 666,

λ4 = 261, λFL = 178, λEOF = 15, 104, δFL = 118, 157,

and δEOF = 46, 557, 890. Based on these empirical results,

the model parameters q0 = 4.866 × 10−4, q1 = 0.6931,

q2 = 0.9020, q3 = 0.9589, q4 = 0.9832, and q5 = 0.9997
can be calculated using (31) - (38). Then, from (12) and (13),

the asymptotic average BLER is given by P
(∞)
BL = 0.4670,

where we note that the exact agreement in this case is due to

the fact that the simulated frames were quite long (L = 5000).
Now considering the finite length analysis, we can use (12)

and (23) - (29) to compute the average number of block errors

in each state as n̄0 = 1, n̄1 = 0.6931, n̄2 = 0.6252, n̄3 =
0.5995, n̄4 = 0.5894, and n̄5 = 1797.2976, from which we

observe that almost all the block decoding errors occur in state

S5, the burst error state. Finally, it follows from (30) that the

average simulated BLER is given by P
(5000)
BL = 0.3602.12

Finally, we note that the models developed from a single

simulation at a given frame length L can be used to estimate

BLER performance for different frame lengths, and hence to

predict the performance gain of code doping techniques [7],

[8], without having to recalculate the model parameters. This

follows from the reasonable assumption that the probability

of a finite-length error burst that returns the decoder to

state S0 does not depend on the length of the frame being

simulated, and hence the model parameters q0, q1, . . . , qJ−1

are essentially independent of L.13 Also, the value of qJ
can be modified by adjusting the lengths of the simulated

error propagation bursts to account for different values of L.

With this modification, it is then straightforward to predict the

performance of doping by performing the analysis for frame

length L/2, which corresponds to a single doping point.
Example 7 (Cont.): For frame length L = 2500, we left

the values of q0, q1, . . . , q4 unchanged and modified the value

of q5 to reflect the fact that the maximum length of an

error propagation burst is now only 2500. This results in the

slightly modified value q5 = 0.9996.14 Again using (12) and

(23) - (30), we obtain P
(2500)
BL = 0.1781, a roughly 50%

reduction in the estimated BLER compared to L = 5000,

which reflects the expected performance gain that can be

achieved with doping.15 The simulated BLER in this case is

11A low SNR value was chosen for the simulation in order to illustrate
the problems caused by decoder error propagation, which typically has little
effect on performance at high SNRs.

12The accuracy of the finite length estimate can be improved by including
more states in the model and by assigning a probability distribution to the
dwell times in states S0 and SJ , but at a cost of added complexity.

13For the same reason noted in Footnote 1, this statement is not exact.
14The small change in the value of q5 in this case reflects the fact that,

for these values of M , W , and Eb/N0, it is very unlikely that the decoder
escapes from SJ before the end of a frame, regardless of the value of L.

15The expected “doping gain” depends on the values of M , W , and
Eb/N0. As noted in [7]–[9], doping only improves performance under
conditions for which the decoder suffers from error propagation.

given by P
(2500)
BL = 0.2967, which also represents a substantial

reduction compared to the simulated BLER for L = 5000.

IV. CONCLUSION

We introduced a general model to analyze the BLER

performance of SWD of SC-LDPC codes. Specifically, the

model accounts for the problem of decoder error propagation,

whereby, under low latency operating conditions at SNRs near

capacity, block decoding errors introduce correlation into the

decoding process that can sometimes trigger an unlimited burst

of further errors. We then showed how the model parameters

can be estimated from a simulation run at a particular SNR

and indicated how the model can be used to predict decoder

performance for different values of the frame length L without

recomputing the model parameters, which allows us to predict

the BLER performance of code doping techniques [7], [8] for

mitigating the effect of decoder error propagation.
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