
Developing, Analyzing, and Evaluating Self-Drive
Algorithms Using Electric Vehicles on a Test

Course
Ryan Kaddis

Department of Math and
Computer Science

Lawrence Technological
University

Southfield, MI
rjkaddis@gmail.com

Enver Stading
Department of
Mathematics

Nebraska Wesleyan
University

Lincoln, NE
estading@nebrwesleyan.edu

Aarna Bhuptani
Department of Math and

Computer Science
Vanderbilt
University

Nashville, TN
aarna.h.bhuptani@vanderbilt.edu

Heather Song
Department of Statistics

The Ohio State
University

Columbus, OH
heatherj.song@gmail.com

Chan-Jin Chung
Department of Math and

Computer Science
Lawrence Technological

University
Southfield, MI

cchung@ltu.edu

Joshua Siegel
Department of Computer Science

and Engineering
Michigan State University

Lansing, MI
jsiegel@msu.edu

Abstract-- Reliable lane-following is one of the most important
tasks for an automated vehicle or ADAS. The intent of this
project was to design and evaluate multiple lane-following
algorithms for an automated vehicle using computer vision. The
implemented algorithms’ performance was then evaluated on a
testing course and compared with a human driver. ROS and
OpenCV were used to detect and follow lanes on the road. A
street-legal vehicle with a high-definition camera and drive-by-
wire system was used to implement and evaluate driving data.
Each algorithm was evaluated based on time for completion,
speed limit infractions, and lane positioning infractions. The
recorded evaluation data determined the most reliable lane-
following algorithm. All of our algorithms had a success rate of at
least 60% on certain lanes of the testing course.

Keywords—Automated Vehicles, Lane-Following, Computer Vision,
Robot Operating System (ROS), OpenCV

I. INTRODUCTION
The focus of this project is enhancing an automated

vehicle’s ability to follow lanes using lane-following
algorithms. Lane following is one the most important and
essential tasks an automated vehicle needs to accomplish
reliably. Three different algorithms were designed for a street-
legal, low-speed vehicle to achieve lane-following, even in
harsh roadway and environmental conditions. Each algorithm
was designed with ROS and OpenCV, and written in Python.
The algorithms we wrote are Hough Line Detection, Line
Detection with Spring Method Center Approximation, and
Blob Line Detection with Shifted Line Following.

These algorithms must account for poor road conditions,
sharp curves, and external marks, like parking lot lines. The
course used to test and evaluate these algorithms is meant to

reflect harsh roadway conditions. Many of the challenges
faced during development were derived from using computer
vision, and various techniques were employed to counteract
each problem. [2] Similar research has identified problems
when using computer vision to lane-follow. Such approaches
use a Region of Interest (ROI) [3], perspective
transformations [2], and image preprocessing techniques [2, 3]
to remove unwanted noise and objects. Our approach for each
algorithm uses a unique blend of image filtering and ROI
cropping to obtain only the relevant portions of the camera
view.

The best algorithm was determined by comparing the
results of all three algorithms. The algorithms were also
analyzed in comparison to a licensed human driver, to
determine whether the algorithms can out-perform a human.
The driving data proved that while humans were more
successful at staying centered in the lane, the algorithms were
able to avoid more speed infractions.

II. ENVIRONMENT

A. Mako Camera and Autonomous Campus Transport
ACTor 1 (Autonomous Campus TranspORt, see Fig. 1) is

built on top of a Polaris Gem e2 provided by MOBIS.
Lawrence Technological University, DENSO, Dataspeed,
Veoneer, SoarTech, and Realtime Technologies provided
Dataspeed’s drive-by-wire system, vision sensors, 2D and 3D
LIDARs, GPS, on-board computers, and all other hardware.
Width of the vehicle is 55.5 inches (141cm) and length is 103
inches (262cm). The Polaris Gem e2 has a top speed of twenty
miles per hour, and a range of approximately twenty miles.

This material is based upon work supported by the National Science
Foundation under Grant No. 2150096 and 2150096

687

2022 IEEE 19th International Conference on Mobile Ad Hoc and Smart Systems (MASS)

2155-6814/22/$31.00 ©2022 IEEE
DOI 10.1109/MASS56207.2022.00101

To lane-follow, the vehicle relies upon image data taken
from the Mako G-319 camera from Allied Vision. This
camera has a resolution of 2064x1544 with a max frame rate
of 37 fps at max resolution, and importantly, it has ROS
support which made it ideal for our purposes [1].

Fig. 1. Image of the Polaris GEM e2 “ACTor 1” vehicle from the official
testing day. Sensors on the roof were covered due to rain.

B. Environment
To test the algorithms, the research team tested on a track

drawn in a parking lot on Lawrence Technological
University’s campus (see Fig. 2). It is a two-lane course, with
an intersection where the car is programmed to stop at a
yellow line before crossing it using a dead reckon turn. The
course is meant to reflect poor road conditions found in real
environments on highways, riddled with potholes and fading
road lines. Many of the yellow parking lines have been
blacked out to prevent the algorithm from detecting yellow, as
it might think it is the yellow at the intersection and stop the
car in the middle of a lane. The goal for each of the three
algorithms is to make two laps around the course in both the
inner and outer lanes, making sure to stop at the yellow line
and then make the right or left turn and continuing for a
second lap before stopping once more at the yellow line.

Fig. 2. Aerial Drone Image of Test Course. Image provided by Scott
Lehman, LTU eLearning.

III. METHODS

A. Software Architecture and Algorithm Commonalities
Each of the lane following algorithms will share the same

software architecture for the sake of simplicity and
modularity. Each algorithm will make use of two ROS nodes:
the controller and yellow detection nodes. The controller node
handles publishing control messages to the drive-by-wire
system both during lane following and dead reckoning, during
the turn at the intersection (see Fig. 2). In order to know when
to switch from lane following to dead reckoning, and vice-
versa, the controller subscribes to messages sent by the yellow
detection node, which is responsible for detecting the yellow
line at the beginning of the intersection. The yellow detection
is accomplished by using an HSV mask and blob detection,
which will determine whether a large amount of yellow is
detected. Once the yellow line is detected, then leaves the
camera’s view, the controller will then use dead reckoning to
pull forwards towards the line, stop for three seconds, then
turn at the intersection. The turn at the intersection was done
with dead reckoning, as there are no lane lines to follow. The
way the lane following nodes interact with the controller is
simple: the lane following node only has to provide a desired
yaw rate, and the controller will package it properly and give
the command to the drive-by-wire system.

Fig. 3. ROS Node Architecture Diagram from rqt_graph. The lane-following
node (top center) can be easily exchanged.

B. Probabilistic Hough Lines
The first lane-following method we will utilize is

Probabilistic Hough Lines. Hough lines have been used in
previous research over lane keeping and lane centering
algorithms, so it is known that it is a viable solution [4]. The
methods we utilize from the Probabilistic Hough Lines
deviates from prior research: the method starts by using
Computer Vision to get images from the road that is currently
in front of the vehicle. By cropping for a region of interest
(ROI) that only looks at the road, other external noise that the
camera would normally pick up, like trees and the sky, is
reduced. After cropping down the source image to only use
the ROI, the image is then smoothed using a median blur
function from OpenCV. Then the image is masked to only see
white by using HSV to filter out colors and the Canny Edge
Detection filter is applied. Canny Edge Detection is an
OpenCV function that further reduces noise by only showing
edges. The edges are found from gradient changes in pixels,
non-maximum suppression, and thresholding [5] as shown in
(1).

 (1)

y y

688

Following the Canny Edge filter, Probabilistic Hough Lines
are used to find lines from the image produced by Canny Edge
Detection. Probabilistic Hough Lines are also used in OpenCV
and are found by using the parametric form for a standard line
equation [6] shown in (2).

 (2)

The lines found are then overlaid onto the ROI of the source
image to visualize these transformations. In Fig. 4 one can see
the image filtering and modification steps from the masked
image to Canny Edge filtering, lastly to drawing Hough Lines.

Fig. 4. Image of the steps Hough Line Detection follows. First, it masks for
the lines, then applies a Canny detection, finally, the Hough lines.

After the preprocessing is done with an image, the vehicle
still needs a position to move to or needs a direction in which
to drive. For this self-driving algorithm, the slope of each line
is calculated and if the slope is between the upper and lower
thresholds the slope is summed with all other slopes from lines
found in the image that also meet this condition. An average
of the slopes is then computed and used to draw out a line
originating from the center of the vehicle. The drawn line
allowed for the calculation of a yaw rate to then be passed
along to the vehicle to give it a direction to move while
staying in the lane lines.
C. Canny/Hough Line Detection with Spring Method Center

Approximation
Like the aforementioned algorithm, this algorithm will

begin with the Canny/Hough line detection method. The
method for this is to detect edges using Canny, detect lines
using Hough line detection, filter those lines to only the lane
lines, and then create a mask. First, the Canny color method is
used to detect edges of the picture. Next, a Hough transform
detects only lines that are near 45° and then extends these
lines in case of broken or dashed lines, allowing the car to

follow a solid line throughout. The challenges with detecting
lines, and why we use these methods, are to get rid of the
noisy data such as random lines around the road, the horizon,
as well as if the lane lines are broken or dashed that could also
create problems in the algorithm. Once we get rid of this
noise, we are left with the extended lane lines that form an X,
which we can simply crop to leave us with the 45° lane lines,
and the spring method center approximation method can be
implemented. The main goal of this algorithm is to push the
center of the vehicle (CV) to the center of the lane (CL) using
spring physics as a dynamic control model [1]. This works
because when the vehicle is in the center of the lane, the x
component of the push force of the spring is in equilibrium.
For the force to actually be translated to steering input, the
method is as follows. First, rays will be generated from the CV
point, and then the rays that intersect with the line mask must
be identified. With the ray lengths, the force can be simulated
as a push or pull force on the point CL. For the last step, the
steering input is calculated using the horizontal component of
the force to shift the vehicle right or left to center it in the
lane. [3] Some expected drawbacks of this algorithm are that
the original [1] was implemented in C++ while the research
team adapted/implemented it in Python [8]. The research team
believes this algorithm provides a lot of promise as
Canny/Hough line detection provides the program with two
solid lines to follow consistently and the use of spring physics
is more reliable in the long run than simply relying on camera
data or a line-following algorithm.

Fig. 5. Camera-view Visualization of Hough Lines and Spring-Center
Approximation. The spring rays stop and “compress” at the lane lines.

689

D. Blob Line Detection and Shifted Line Following
The final lane-following algorithm we implemented is

simpler than the prior two. The goal of all lane following
algorithms is to approximate the center of the lane and to steer
the vehicle towards it [7]. This can be accomplished by
detecting only one of the lane lines, then driving the car while
maintaining a certain distance from the detected
line. Computer Vision is used to detect the line in real time by
first masking and thresholding the image. The mask, as seen
in the image below on the left, is accomplished by filtering
pixels by their Hue, Saturation, and Value (HSV) levels. HSV
filtering has proven to be more reliable than basic grayscale
filtering, since HSV values can accommodate for different line
colors and light conditions [1]. The mask will create a high
contrast between the lane line and the road around it with a
binary image (Fig. 6), which indicates that the program has
successfully differentiated the line from the rest of the
road. To isolate the line, blob detection in OpenCV is used to
create a contour around the largest group of white pixels
available in the masked image. A point is then placed in the
center of the blob, as seen in the image on the right. Once the
program is aware of the center of the detected line, the vehicle
can then be commanded to try to keep that point in the same
area in the image while in motion.

Fig. 6. Mask and Blob Visualization Windows. The red dots form a contour
around the lane line, and the black dot is the calculated center of the contour.

IV. CHALLENGES
The uniqueness of this research project derives from the

numerous obstacles our team had to overcome to get our three
algorithms to function during conditions such as different
lighting, different road conditions, and distractions that would
confuse our camera and mess with our algorithms. Considering
people drive at all times of the day as well as on imperfect roads,
the research team had to prepare for and overcome these
challenges.

A. Shadows
While testing in the morning and in the evening, the course

was overshadowed by the tree pictured below in Figure 7.
Within this shadow, the camera was unable to detect the white
lines, and the algorithm was unable to continue functioning.
To fix this, the research team came up with many solutions.
The most successful one being when the algorithm lost sight
of the contours to continue at the same yaw rate. This was less
successful on the outer lane than the inner as on the outer lane
the vehicle approaches the shadow at more of a straight line,

leading the vehicle to cross the white lines and continue for
the sidewalk next to the tree. On the inner lane, however, the
vehicle approaches at a curve, so the vehicle continues to
follow at this yaw rate, leading the vehicle out of the shadow
and back to the light where it can once again detect the white
lines.

Fig. 7. Image of Tree Shadow Covering Portion of the Course. The shadow
covers a large portion of the outer lane.

B. Road Conditions
The course was meant to represent harsh roadway

conditions. Large portions of the lanes had potholes, cracks,
and bumps, which interfered both with the vehicle’s speed
control, as well as the algorithms’ vision detection. The lane
lines were also left in a rough state. As the picture below in
Fig. 8 shows, they are much thinner than a real road would be,
and therefore were much harder to detect with our different
algorithms. Many of the challenges occurred when the
algorithm would mistake the yellow lines for the white lane
lines and move the vehicle out of the lanes. Furthermore, even
when the white lines were able to be detected, much of the
paint was worn in some places and segments of the lanes’ road
surface were missing.

Fig. 8. Example of Poor Course Condition. Potholes and parking lot lines
contributed to unwanted noise.

C. Environmental Conditions
Many environmental conditions, like lighting conditions

and weather, greatly affected the reliability of our algorithms.
During overcast conditions, the algorithms worked as intended,

690

as shadows and sunny conditions did not affect the filters we
had in place and did not interfere with the Mako camera.
During sunny conditions, however, the research team would
have to adjust the filters and the parameters the code used to
detect the white lines. During rainy conditions, the authors
found that the algorithms, especially Hough line detection, did
not work. The rain streaks across the window were confused
for Hough lines, and the algorithms struggled to differentiate
between lane lines and rain streaks, which led to calculations of
incorrect yaw rates.

D. Camera
Our algorithms struggled in sunny conditions due to

overexposure. The solution the research team found was to
tape a sunglass lens to our camera and turn the exposure
completely down, but many times even this did not suffice and
our algorithms could not work properly as we solely relied on
the camera to guide us through the course. As seen in Fig. 9,
this is the camera view when no sunglass was attached versus
when the sunglass was taped on for testing.

Fig. 9. Example of Camera View without lens (top) and with lens (bottom).
Without the sunglass lens, line detection was impossible.

V. ANALYSIS AND EVALUATION OF RESULTS
The table I below shows the recorded data for each

successful run of each algorithm, along with data from a
human driver. An evaluation program was used to collect the
total time in seconds, average speed in miles per hour, and
speed infractions of a successful run for each method. An
external evaluator recorded the number of times the vehicle
would either touch a lane line or drift outside the proper lane.
On the official testing day, an evaluator would follow behind
the vehicle and note at which points during the test the vehicle

went out of the lane. The total number of recorded runs for
each algorithm was used to determine the average success
rate. A run was successful if it could complete two continuous
laps on the course.

TABLE I. RESULTS DATA

Results
Data Lane Success

Rate
Time
(s)

Speed
(mph)

Distance
in Error
(m)

Line
Touches

BLOB INNER 16.67% 160.42 2.164 2.337 5

OUTER 75% 200.44 2.211 3.197 1

HOUGH INNER 10% 171.80 2.170 2.413 3

OUTER 62.5% 204.99 2.184 2.048 3

SPRING INNER 71.43% 164.90 2.171 2.740 3

OUTER 33.3% 195.59 2.188 3.162 6

HUMAN INNER 100% 63.17 5.843 46.280 0

OUTER 100% 80.98 5.738 18.148 0

The runs were processed further into a speed-time graph
for visual purposes. A few of the graphs will be available here,
and the rest will be available on the NSF REU site [9]. The
graph below in Fig 10 details the speed over time for the blob
method running on the outside, counter-clockwise direction of
the course. The speed control for this algorithm is noticeably
more consistent, especially in comparison to the human driver.
The bumps in the graph are the result of the vehicle trying to
make corrections for bumps and inconsistencies in the road.

Fig. 10. Histogram of Driving Data from Blob Algorithm on Outer Lane.

The next graph in Fig 11 details the performance of the spring
method algorithm on the inside of the course. In comparison
to the previous algorithm, the speed control has more
variance, which is the result of the Hough line detection.
Hough lines are dependent on the accuracy of the HSV mask,
which varies greatly depending on weather and light

691

conditions. The sharp peaks and troughs of the graph are the
result of losing a Hough line in the mask, then picking the line
up again.

Fig. 11. Histogram of Driving Data from Spring Algorithm on Inner Lane.

On average, a human driver was able to drive faster than
the algorithms, near the set speed limit of 7mph. The human
would often exceed the speed limit, then, once the infraction
was noticed, overcorrected and went far below 7mph.
Humans, while able to follow a lane easier, struggled greatly
with speed control when compared to the automated drive-by-
wire system.

VI. CONCLUDING REMARKS
The purpose of this research is to introduce three working

algorithms in which the autonomous vehicles can follow the
course in both the inner and outer lanes. The data collected for
each algorithm show no obvious outliers, and the graphs for
each algorithm show that the ACTor vehicle traveled at an
overall consistent speed during both laps. We tested these
vehicles at the fastest speed they could safely achieve while
maintaining the most accuracy possible. In the end, all three
algorithms were able to complete the course for two laps at
one point during testing and demonstration. Unfortunately, not
all the algorithms work equally as well and as accurate for the
inner and outer lanes. The most accurate algorithm for the
inner lane is the Line Detection with Spring Method Center
Approximation, and the most accurate algorithm for the outer
lane is Blob Line Detection with Shifted Line Following. The
blob and spring methods had the highest success rate in their
respective lanes, and had the fewest line touches/departures.
Those algorithms were also able to complete the course with a
higher average speed. A high average speed means that the
vehicle did not have to slow down as much for turns, and
paired with the minimal amount of line touches, indicates
good speed and centering control.

Many of the lane-following algorithms that currently exist
are designed for smooth, well-indicated roads. [2, 3] Our
algorithms were able to traverse the test course, despite the
many challenges, like the sharp turns and poor road

conditions. Computer vision-based lane-following has not
been tested under these conditions, and we concluded that our
algorithms form a baseline for navigating difficult stretches of
road. The blob method, while it boasted the highest success
rate, struggled on sharper turns, namely, the inside lane. Blob
line detection had a major issue with sharp corners; it required
that the left line be visible, and it was not always within the
camera view. The spring method, while not as smooth of a
ride, was able to handle all types of roadway sections more
reliably, since it can use both lines to follow the road.

In the future, we hope to develop the algorithms to allow
the vehicles to travel at a faster speed and faster time,
preferably as fast as the human data, and allow the vehicles to
provide consistent data regardless of the weather and lighting
conditions. We also hope to develop more accurate algorithms
so that the vehicles avoid touching lane lines and stay within
the given space. The evaluation data files of the algorithms
driving were kept for further research in the future.

ACKNOWLEDGMENTS
We would like to thank our mentors, Dr. Joe DeRose and

Prof. Nick Paul, as well as our teaching assistants, Mark
Kocherovsky, and Joe Schulte.

FUNDING
This material is based upon work supported by the

National Science Foundation under Grant No. 2150292 and
2150096.

REFERENCES
[1] Paul, N., Pleune, M., Chung, C., Warrick, B., Bleicher, S., & Faulkner, C.

(2018). ACTor: A Practical, Modular, and Adaptable Autonomous
Vehicle Research Platform. 2018 IEEE International Conference on
Electro/Information Technology (EIT), 0411-0414.

[2] Haque, M. R., Islam, M. M., Alam, K. S., Iqbal, H., & Shaik, M. E. (2019).
A computer vision based lane detection approach. International Journal
of Image, Graphics and Signal Processing, 10(3), 27.

[3] Y. Xing et al., "Advances in Vision-Based Lane Detection: Algorithms,
Integration, Assessment, and Perspectives on ACP-Based Parallel
Vision," in IEEE/CAA Journal of Automatica Sinica, vol. 5, no. 3, pp.
645-661, May 2018, doi: 10.1109/JAS.2018.7511063.

[4] Berriel, R. F., de Aguiar, E., De Souza, A. F., & Oliveira-Santos, T.
(2017). Ego-lane analysis system (elas): Dataset and algorithms. Image
and Vision Computing, 68, 64-75.

[5] OpenCV: Canny Edge Detection. (n.d.). OpenCV. Retrieved July 25,
2022, from https://docs.opencv.org/4.x/da/d22/tutorial_py_canny.html

[6] OpenCV: Hough Line Transform. (n.d.). OpenCV. Retrieved July 25,
2022, from
https://docs.opencv.org/3.4/d3/de6/tutorial_js_houghlines.html
(accessed July 27, 2022).

[7] Chan-Jin Chung, A Simple Lane Following Algorithm Using A
Centroid of The Largest Blob, NSF Self-Drive REU 2022 Workshop at
LTU, https://www.robofest.net/AutoEV/lanefollowing_algo22chung.pdf
(accessed July 27, 2022).

[8] Nick Paul, Minimal python implementation of blob lane following
algorithm, https://github.com/nick-paul/lane_follow_blob (accessed July
30, 2022)

[9] Team Star Final Presentation Slides in PDF,
https://www.ltu.edu/uploads/media/arts-
sciences/TeamStar22SelfDriveSlides.pdf (accessed July 30, 2022).

g

692

