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Abstract-- Reliable lane-following is one of the most important 
tasks for an automated vehicle or ADAS. The intent of this 
project was to design and evaluate multiple lane-following 
algorithms for an automated vehicle using computer vision. The 
implemented algorithms’ performance was then evaluated on a 
testing course and compared with a human driver.  ROS and 
OpenCV were used to detect and follow lanes on the road. A 
street-legal vehicle with a high-definition camera and drive-by-
wire system was used to implement and evaluate driving data. 
Each algorithm was evaluated based on time for completion, 
speed limit infractions, and lane positioning infractions. The 
recorded evaluation data determined the most reliable lane-
following algorithm. All of our algorithms had a success rate of at 
least 60% on certain lanes of the testing course. 
 
Keywords—Automated Vehicles, Lane-Following, Computer Vision, 
Robot Operating System (ROS), OpenCV 

I. INTRODUCTION 
The focus of this project is enhancing an automated 

vehicle’s ability to follow lanes using lane-following 
algorithms. Lane following is one the most important and 
essential tasks an automated vehicle needs to accomplish 
reliably. Three different algorithms were designed for a street-
legal, low-speed vehicle to achieve lane-following, even in 
harsh roadway and environmental conditions. Each algorithm 
was designed with ROS and OpenCV, and written in Python. 
The algorithms we wrote are Hough Line Detection, Line 
Detection with Spring Method Center Approximation, and 
Blob Line Detection with Shifted Line Following.  

These algorithms must account for poor road conditions, 
sharp curves, and external marks, like parking lot lines. The 
course used to test and evaluate these algorithms is meant to 

reflect harsh roadway conditions. Many of the challenges 
faced during development were derived from using computer 
vision, and various techniques were employed to counteract 
each problem. [2] Similar research has identified problems 
when using computer vision to lane-follow. Such approaches 
use a  Region of Interest (ROI) [3], perspective 
transformations [2], and image preprocessing techniques [2, 3] 
to remove unwanted noise and objects. Our approach for each 
algorithm uses a unique blend of image filtering and ROI 
cropping to obtain only the relevant portions of the camera 
view. 

The best algorithm was determined by comparing the 
results of all three algorithms. The algorithms were also 
analyzed in comparison to a licensed human driver, to 
determine whether the algorithms can out-perform a human. 
The driving data proved that while humans were more 
successful at staying centered in the lane, the algorithms were 
able to avoid more speed infractions. 

II. ENVIRONMENT 

A. Mako Camera and Autonomous Campus Transport  
ACTor 1 (Autonomous Campus TranspORt, see Fig. 1) is 

built on top of a Polaris Gem e2 provided by MOBIS. 
Lawrence Technological University, DENSO, Dataspeed, 
Veoneer, SoarTech, and Realtime Technologies provided 
Dataspeed’s drive-by-wire system, vision sensors, 2D and 3D 
LIDARs, GPS, on-board computers, and all other hardware. 
Width of the vehicle is 55.5 inches (141cm) and length is 103 
inches (262cm). The Polaris Gem e2 has a top speed of twenty 
miles per hour, and a range of approximately twenty miles. 

This material is based upon work supported by the National Science 
Foundation under Grant No. 2150096 and 2150096 
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To lane-follow, the vehicle relies upon image data taken 
from the Mako G-319 camera from Allied Vision. This 
camera has a resolution of 2064x1544 with a max frame rate 
of 37 fps at max resolution, and importantly, it has ROS 
support which made it ideal for our purposes [1]. 

 
Fig. 1. Image of the Polaris GEM e2 “ACTor 1” vehicle from the official 
testing day.  Sensors on the roof were covered due to rain. 

B. Environment 
To test the algorithms, the research team tested on a track 

drawn in a parking lot on Lawrence Technological 
University’s campus (see Fig. 2). It is a two-lane course, with 
an intersection where the car is programmed to stop at a 
yellow line before crossing it using a dead reckon turn. The 
course is meant to reflect poor road conditions found in real 
environments on highways, riddled with potholes and fading 
road lines. Many of the yellow parking lines have been 
blacked out to prevent the algorithm from detecting yellow, as 
it might think it is the yellow at the intersection and stop the 
car in the middle of a lane. The goal for each of the three 
algorithms is to make two laps around the course in both the 
inner and outer lanes, making sure to stop at the yellow line 
and then make the right or left turn and continuing for a 
second lap before stopping once more at the yellow line. 

 
Fig. 2. Aerial Drone Image of Test Course. Image provided by Scott      
Lehman, LTU eLearning. 

III.  METHODS 

A. Software Architecture and Algorithm Commonalities 
Each of the lane following algorithms will share the same 

software architecture for the sake of simplicity and 
modularity. Each algorithm will make use of two ROS nodes: 
the controller and yellow detection nodes. The controller node 
handles publishing control messages to the drive-by-wire 
system both during lane following and dead reckoning, during 
the turn at the intersection (see Fig. 2). In order to know when 
to switch from lane following to dead reckoning, and vice-
versa, the controller subscribes to messages sent by the yellow 
detection node, which is responsible for detecting the yellow 
line at the beginning of the intersection. The yellow detection 
is accomplished by using an HSV mask and blob detection, 
which will determine whether a large amount of yellow is 
detected.  Once the yellow line is detected, then leaves the 
camera’s view, the controller will then use dead reckoning to 
pull forwards towards the line, stop for three seconds, then 
turn at the intersection. The turn at the intersection was done 
with dead reckoning, as there are no lane lines to follow. The 
way the lane following nodes interact with the controller is 
simple: the lane following node only has to provide a desired 
yaw rate, and the controller will package it properly and give 
the command to the drive-by-wire system. 

Fig. 3. ROS Node Architecture Diagram from rqt_graph. The lane-following 
node (top center) can be easily exchanged. 

B.  Probabilistic Hough Lines 
The first lane-following method we will utilize is 

Probabilistic Hough Lines. Hough lines have been used in 
previous research over lane keeping and lane centering 
algorithms, so it is known that it is a viable solution [4]. The 
methods we utilize from the Probabilistic Hough Lines 
deviates from prior research: the method starts by using 
Computer Vision to get images from the road that is currently 
in front of the vehicle. By cropping for a region of interest 
(ROI) that only looks at the road, other external noise that the 
camera would normally pick up, like trees and the sky, is 
reduced. After cropping down the source image to only use 
the ROI, the image is then smoothed using a median blur 
function from OpenCV. Then the image is masked to only see 
white by using HSV to filter out colors and the Canny Edge 
Detection filter is applied. Canny Edge Detection is an 
OpenCV function that further reduces noise by only showing 
edges. The edges are found from gradient changes in pixels, 
non-maximum suppression, and thresholding [5] as shown in 
(1).  

 

                         (1) 

y y
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Following the Canny Edge filter, Probabilistic Hough Lines 
are used to find lines from the image produced by Canny Edge 
Detection. Probabilistic Hough Lines are also used in OpenCV 
and are found by using the parametric form for a standard line 
equation [6] shown in (2).  
 

                             (2)         
 
The lines found are then overlaid onto the ROI of the source 
image to visualize these transformations. In Fig. 4 one can see 
the image filtering and modification steps from the masked 
image to Canny Edge filtering, lastly to drawing Hough Lines. 
 

 

 

 
Fig. 4. Image of the steps Hough Line Detection follows. First, it masks for 
the lines, then applies a Canny detection, finally, the Hough lines. 

After the preprocessing is done with an image, the vehicle 
still needs a position to move to or needs a direction in which 
to drive. For this self-driving algorithm, the slope of each line 
is calculated and if the slope is between the upper and lower 
thresholds the slope is summed with all other slopes from lines 
found in the image that also meet this condition. An average 
of the slopes is then computed and used to draw out a line 
originating from the center of the vehicle. The drawn line 
allowed for the calculation of a yaw rate to then be passed 
along to the vehicle to give it a direction to move while 
staying in the lane lines.  
C. Canny/Hough Line Detection with Spring Method Center 

Approximation 
Like the aforementioned algorithm, this algorithm will 

begin with the Canny/Hough line detection method. The 
method for this is to detect edges using Canny, detect lines 
using Hough line detection, filter those lines to only the lane 
lines, and then create a mask. First, the Canny color method is 
used to detect edges of the picture. Next, a Hough transform 
detects only lines that are near 45° and then extends these 
lines in case of broken or dashed lines, allowing the car to 

follow a solid line throughout. The challenges with detecting 
lines, and why we use these methods, are to get rid of the 
noisy data such as random lines around the road, the horizon, 
as well as if the lane lines are broken or dashed that could also 
create problems in the algorithm. Once we get rid of this 
noise, we are left with the extended lane lines that form an X, 
which we can simply crop to leave us with the 45° lane lines, 
and the spring method center approximation method can be 
implemented. The main goal of this algorithm is to push the 
center of the vehicle (CV) to the center of the lane (CL) using 
spring physics as a dynamic control model [1]. This works 
because when the vehicle is in the center of the lane, the x 
component of the push force of the spring is in equilibrium. 
For the force to actually be translated to steering input, the 
method is as follows. First, rays will be generated from the CV 
point, and then the rays that intersect with the line mask must 
be identified. With the ray lengths, the force can be simulated 
as a push or pull force on the point CL. For the last step, the 
steering input is calculated using the horizontal component of 
the force to shift the vehicle right or left to center it in the 
lane. [3] Some expected drawbacks of this algorithm are that 
the original [1] was implemented in C++ while the research 
team adapted/implemented it in Python [8]. The research team 
believes this algorithm provides a lot of promise as 
Canny/Hough line detection provides the program with two 
solid lines to follow consistently and the use of spring physics 
is more reliable in the long run than simply relying on camera 
data or a line-following algorithm.  

 
Fig. 5. Camera-view Visualization of Hough Lines and Spring-Center 
Approximation. The spring rays stop and “compress” at the lane lines. 
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D. Blob Line Detection and Shifted Line Following 
The final lane-following algorithm we implemented is 

simpler than the prior two.  The goal of all lane following 
algorithms is to approximate the center of the lane and to steer 
the vehicle towards it [7]. This can be accomplished by 
detecting only one of the lane lines, then driving the car while 
maintaining a certain distance from the detected 
line.  Computer Vision is used to detect the line in real time by 
first masking and thresholding the image.  The mask, as seen 
in the image below on the left, is accomplished by filtering 
pixels by their Hue, Saturation, and Value (HSV) levels.  HSV 
filtering has proven to be more reliable than basic grayscale 
filtering, since HSV values can accommodate for different line 
colors and light conditions [1].  The mask will create a high 
contrast between the lane line and the road around it with a 
binary image (Fig. 6), which indicates that the program has 
successfully differentiated the line from the rest of the 
road.  To isolate the line, blob detection in OpenCV is used to 
create a contour around the largest group of white pixels 
available in the masked image.  A point is then placed in the 
center of the blob, as seen in the image on the right.  Once the 
program is aware of the center of the detected line, the vehicle 
can then be commanded to try to keep that point in the same 
area in the image while in motion.   
 

 
Fig. 6. Mask and Blob Visualization Windows. The red dots form a contour 
around the lane line, and the black dot is the calculated center of the contour. 

IV. CHALLENGES 
The uniqueness of this research project derives from the 

numerous obstacles our team had to overcome to get our three 
algorithms to function during conditions such as different 
lighting, different road conditions, and distractions that would 
confuse our camera and mess with our algorithms. Considering 
people drive at all times of the day as well as on imperfect roads, 
the research team had to prepare for and overcome these 
challenges. 

A. Shadows 
While testing in the morning and in the evening, the course 

was overshadowed by the tree pictured below in Figure 7. 
Within this shadow, the camera was unable to detect the white 
lines, and the algorithm was unable to continue functioning. 
To fix this, the research team came up with many solutions. 
The most successful one being when the algorithm lost sight 
of the contours to continue at the same yaw rate. This was less 
successful on the outer lane than the inner as on the outer lane 
the vehicle approaches the shadow at more of a straight line, 

leading the vehicle to cross the white lines and continue for 
the sidewalk next to the tree. On the inner lane, however, the 
vehicle approaches at a curve, so the vehicle continues to 
follow at this yaw rate, leading the vehicle out of the shadow 
and back to the light where it can once again detect the white 
lines.  

 
Fig. 7. Image of Tree Shadow Covering Portion of the Course. The shadow 
covers a large portion of the outer lane. 

B. Road Conditions 
The course was meant to represent harsh roadway 

conditions. Large portions of the lanes had potholes, cracks, 
and bumps, which interfered both with the vehicle’s speed 
control, as well as the algorithms’ vision detection. The lane 
lines were also left in a rough state. As the picture below in 
Fig. 8 shows, they are much thinner than a real road would be, 
and therefore were much harder to detect with our different 
algorithms. Many of the challenges occurred when the 
algorithm would mistake the yellow lines for the white lane 
lines and move the vehicle out of the lanes. Furthermore, even 
when the white lines were able to be detected, much of the 
paint was worn in some places and segments of the lanes’ road 
surface were missing.  

 
Fig. 8. Example of Poor Course Condition. Potholes and parking lot lines 
contributed to unwanted noise. 

C. Environmental Conditions 
Many environmental conditions, like lighting conditions 

and weather, greatly affected the reliability of our algorithms. 
During overcast conditions, the algorithms worked as intended, 
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as shadows and sunny conditions did not affect the filters we 
had in place and did not interfere with the Mako camera. 
During sunny conditions, however, the research team would 
have to adjust the filters and the parameters the code used to 
detect the white lines. During rainy conditions, the authors 
found that the algorithms, especially Hough line detection, did 
not work. The rain streaks across the window were confused 
for Hough lines, and the algorithms struggled to differentiate 
between lane lines and rain streaks, which led to calculations of 
incorrect yaw rates. 

D. Camera 
Our algorithms struggled in sunny conditions due to 

overexposure. The solution the research team found was to 
tape a sunglass lens to our camera and turn the exposure 
completely down, but many times even this did not suffice and 
our algorithms could not work properly as we solely relied on 
the camera to guide us through the course. As seen in Fig. 9, 
this is the camera view when no sunglass was attached versus 
when the sunglass was taped on for testing.  
 

 
Fig. 9. Example of Camera View without lens (top) and with lens (bottom). 
Without the sunglass lens, line detection was impossible. 

V. ANALYSIS AND EVALUATION OF RESULTS 
The table I below shows the recorded data for each 

successful run of each algorithm, along with data from a 
human driver. An evaluation program was used to collect the 
total time in seconds, average speed in miles per hour, and 
speed infractions of a successful run for each method.  An 
external evaluator recorded the number of times the vehicle 
would either touch a lane line or drift outside the proper lane. 
On the official testing day, an evaluator would follow behind 
the vehicle and note at which points during the test the vehicle 

went out of the lane. The total number of recorded runs for 
each algorithm was used to determine the average success 
rate. A run was successful if it could complete two continuous 
laps on the course.  

TABLE I. RESULTS DATA 
 
Results 
Data Lane Success 

Rate 
Time 
(s) 

 
Speed 
(mph) 

Distance 
in Error 
(m) 

Line 
Touches 

BLOB INNER 16.67% 160.42 2.164 2.337 5 

OUTER 75% 200.44 2.211 3.197 1 

HOUGH INNER 10% 171.80 2.170 2.413 3 

OUTER 62.5% 204.99 2.184 2.048 3 

SPRING INNER 71.43% 164.90 2.171 2.740 3 

OUTER 33.3% 195.59 2.188 3.162 6 

HUMAN INNER 100% 63.17 5.843 46.280 0 

OUTER 100% 80.98 5.738 18.148 0 

The runs were processed further into a speed-time graph 
for visual purposes. A few of the graphs will be available here, 
and the rest will be available on the NSF REU site [9]. The 
graph below in Fig 10 details the speed over time for the blob 
method running on the outside, counter-clockwise direction of 
the course. The speed control for this algorithm is noticeably 
more consistent, especially in comparison to the human driver. 
The bumps in the graph are the result of the vehicle trying to 
make corrections for bumps and inconsistencies in the road. 

Fig. 10. Histogram of Driving Data from Blob Algorithm on Outer Lane. 

The next graph in Fig 11 details the performance of the spring 
method algorithm on the inside of the course. In comparison 
to the previous algorithm, the speed control has more 
variance, which is the result of the Hough line detection. 
Hough lines are dependent on the accuracy of the HSV mask, 
which varies greatly depending on weather and light 
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conditions. The sharp peaks and troughs of the graph are the 
result of losing a Hough line in the mask, then picking the line 
up again. 

Fig. 11. Histogram of Driving Data from Spring Algorithm on Inner Lane. 

On average, a human driver was able to drive faster than 
the algorithms, near the set speed limit of 7mph. The human 
would often exceed the speed limit, then, once the infraction 
was noticed, overcorrected and went far below 7mph. 
Humans, while able to follow a lane easier, struggled greatly 
with speed control when compared to the automated drive-by-
wire system. 

VI. CONCLUDING REMARKS 
The purpose of this research is to introduce three working 

algorithms in which the autonomous vehicles can follow the 
course in both the inner and outer lanes. The data collected for 
each algorithm show no obvious outliers, and the graphs for 
each algorithm show that the ACTor vehicle traveled at an 
overall consistent speed during both laps. We tested these 
vehicles at the fastest speed they could safely achieve while 
maintaining the most accuracy possible. In the end, all three 
algorithms were able to complete the course for two laps at 
one point during testing and demonstration. Unfortunately, not 
all the algorithms work equally as well and as accurate for the 
inner and outer lanes. The most accurate algorithm for the 
inner lane is the Line Detection with Spring Method Center 
Approximation, and the most accurate algorithm for the outer 
lane is Blob Line Detection with Shifted Line Following. The 
blob and spring methods had the highest success rate in their 
respective lanes, and had the fewest line touches/departures. 
Those algorithms were also able to complete the course with a 
higher average speed. A high average speed means that the 
vehicle did not have to slow down as much for turns, and 
paired with the minimal amount of line touches, indicates 
good speed and centering control.  

Many of the lane-following algorithms that currently exist 
are designed for smooth, well-indicated roads. [2, 3] Our 
algorithms were able to traverse the test course, despite the 
many challenges, like the sharp turns and poor road 

conditions. Computer vision-based lane-following has not 
been tested under these conditions, and we concluded that our 
algorithms form a baseline for navigating difficult stretches of 
road. The blob method, while it boasted the highest success 
rate, struggled on sharper turns, namely, the inside lane. Blob 
line detection had a major issue with sharp corners; it required 
that the left line be visible, and it was not always within the 
camera view. The spring method, while not as smooth of a 
ride, was able to handle all types of roadway sections more 
reliably, since it can use both lines to follow the road.  

In the future, we hope to develop the algorithms to allow 
the vehicles to travel at a faster speed and faster time, 
preferably as fast as the human data, and allow the vehicles to 
provide consistent data regardless of the weather and lighting 
conditions. We also hope to develop more accurate algorithms 
so that the vehicles avoid touching lane lines and stay within 
the given space. The evaluation data files of the algorithms 
driving were kept for further research in the future. 
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