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A Unifying Framework to Construct QC-LDPC
Tanner Graphs of Desired Girth
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Abstract— This paper presents a unifying framework to con-
struct low-density parity-check (LDPC) codes with associated
Tanner graphs of desired girth. Towards this goal, we highlight
the role that a certain sgoare matrix that appears in the product
of the parity-check matrix with its transpose has in the construc-
tion of codes with graphs of desired girth and further explore it in
order to generate the set of necessary and sufficient conditions for
a Tanner graph to have a given girth between 6 and 12. For each
such girth, we present algorithms to construct codes of the desired
girth and we show how to use them to compute the minimum
necessary value of the lifting factor. For girth larger than 12,
we show how to use multi-step graph lifting methods to deter-
ministically modify codes in order to increase their girth. We also
give a new perspective on LDPC protograph-based parity-check
matrices by viewing them as rows of a parity-check matrix
equal to the sum of certain permutation matrices and obtain
an important connection between all protographs and those with
variable nodes of degree 2. We also show that the rvesults and
methodology that we develop for the all-one protograph can be
used and adapted to analyze the girth of the Tanner graph of any
parity-check matrix and demonstrate how this can be done using
a well-known irregular, multi-edge protograph specified by the
NASA Consultative Committee for Space Data Systems (CCSDS).
Throughout the paper, we exemplily our theoretical results with
constructions of LDPC codes with Tanner graphs of any girth
between 6 and 14 and give sufficient conditions for a multi-step
lifted parity-check matrix to have girth between 14 and 22,

Index Terms— Low-density parity-check (LDPC) codes, guasi-
cyclic codes, girth, protograph, Tanner graph.

I. INTRODUCTION
OW-DENSITY parity-check (LDPC) codes, in particular
quasi-cyclic LDPC (QC-LDPC) codes, are now found
in many industry standards. One of the main advantages of
QC-LDPC codes is that they can be described simply, and
as such are attractive for implementation purposes since they

Manuscript received 7 July 2021; revised 29 November 2021; accepted
11 April 2022, Date of publication 25 April 2022; date of current ver-
sion I8 Augnst 2022, This work was supported by the Wational Science
Foundation under Gramt OCF-2145917, Grant CN5-2148358, Grant HRD-
1914635, and Grant OLA-1757207. An earlier version of this paper was
presented in part at the 2021 I[EEE International Symposium on [nformation
Theory [17 [DOT: 10 110MISTT45174.2021.9518241). (Corresponding author:
David G. M. Mitcheil.)

Roxana Smarandache is with the Department of Mathematics and Electrical
Engineering, University of Notre Dame, Notre Dame, IN 46556 USA (e-mail:
rsmarand @nd.edu).

Dravid G. M. Mitchell is with the Klipsch School of Electrical and Compauter
Engineering. Mew Mexico State University, Las Cruces, NM 83003 USA
(e-mail: dgmm & nmsu.edu).

Communicated by B D, Wesel, Associate Editor for Coding Technigues.

Color versions of one or more figures in this article are available at
httpsz/idod.org/ 10,1 109/TTT.2022.3170331.

Digital Object Identifier 10.1109TIT. 20223170331

. Senior Member, IEEE

can be encoded with low complexity using simple feedback
shift-registers [2] and their structure leads to efficiencies in
decoder design [3]. The performance of an LDPC code with
parity-check matrix i depends on cycles in the associated
Tanner graph, since cycles in the graph cause correlation
during iterations of belief propagation decoding [4]. Moreover,
these cycles form substructures found in the undesirable trap-
ping and absorbing sets that create the error floor. Cycles have
also been shown to decrease the upper bound on the minimum
distance (see, e.g., [5]). Therefore, codes with large girth are
desirable for good performance (large minimum distance and
low error floor). Significant effort has been made to design
QC-LDPC code matrices with large minimum distance and
girth, see [6]-[13] and references therein.

In this paper, we will start from a previous theorem by
McGowan and Williamson [14] and the terminology intro-
duced in Wu ef al. [15] that elegantly relate the girth of H
with the girth of By(H) £ (HHT)¥? gte mod ) 4~ 4
which we stale as Theorem 2. The paper [15] uses this theorem
to construct an LDPC code with a binomial protograph that
has good performance. We take this connection in a different
direction: we show how, when applied to a matrix in a general
standard form, it yields the necessary and sufficient conditions
on the sets of exponents in order for H to attain a desired
girth 4 < g < 12, Therefore, we exploit the necessary and
sufficient condition given by Theorem 2 in order to oblain
necessary and sufficient conditions on the sets of exponents
which, in turn, we use to generate extremely fast algorithms to
construct codes with desired girths. Therefore, the novelty of
this paper consists in realizing a previously unstated potential
of the theorem. We exemplify this potential on a variety of
protographs and showed how one can obtain fast algorithms
to construct codes of desired girth. In doing so, we are not
trying to compete with any of the codes from the large body
of literature on this topic, but use these examples to raise
awareness of this technique that can be used to simplify the
task of construction and analysis of such codes.

A. Contributions of the Paper

The contributions of the paper are as follows. In Section 111,
we derive an equivalent statement of Theorem 2, and in doing
so we showcase a submatrix Cpy of HHT of relevance when
looking for cycles in the Tanner graph of H. Specifically,
we show that the girth of a Tanner graph of an n.N = n,N
parity-check matrix H based on the (., n, -regular fully con-
nected (all-one) protograph, with lifting factor N, is directly
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related to the properties of the product C}:HQJH Ar a2y
t = 1, and then further exploit this connection in order o give
the sets of necessary and sufficient conditions for a QC-LDPC
code based on an n,. x n, all-one protograph, with n, = 2, 3,
and 4, respectively, to have any girth between 6 and 12.! These
conditions are then used to write fast algorithms to construct
codes of such desired girth.”

We also show that, when constructing parity-check matrices
of girth larger than 21, we need to consider all [ = n, subma-
trices and impose the girth conditions on them. In particular,
if we want to construct n.N = n, N protograph-hased parity-
check matrices of girth larger than 4, 6, and 8, respectively,
it is necessary and sufficient to give the girth conditions for
the cases n, = 2, 3, and 4, respectively. It follows from these
observations that the cases n. = 2, 3, and 4 that we consider
in this paper are not just particular cases, but provide the girm
tramework for the n. x n, all-one protograph, for all n, = 2.

We also give a new perspective on n.N x n,N LDPC
protograph-based parity-check matrices by viewing them as
1N rows of a parity-check matrix equal to the sum of certain
N = ny, N permutation matrices. Together with our results
that the cycles in the Tanner graph of a 2N = n, N parily-check
matrix H based on the (2, n, )-regular fully connected (all-one)
protograph correspond one-to-one to the cycles in the Tanner
graph of a N x N matrix 3, obtained from H by adding
cerfain permutation matrices in ils composition, we obtain an
important connection between n. » n, protographs, for any
n, = 2, and protographs with check-node degree n, = 2.
Therefore, although the case of 2 x n, protographs seems
of limited practical importance on its own or important only
as part of a larger protograph, with this above-mentioned
new perspective, it is in fact relevant in conmnection to any
1. ¥ T, protograph. In addition, square n, N = n, N parity-
check matrices equal to sums of permutation matrices have
enjoyed a lot of attention in the context of projective geometry
codes [6], [16]. [17], so they are important as well.

Although we mostly assume the case of an (n., n, )-repular
fully connected protograph, the results and methodology can
be used and adapted to analyze the girth of the Tanner graph of
any parity-check matrix. We exemplify how this can be done
using an irregular, multi-edge protograph (with entries 0, 1,
2 rather than just 1 as in the all-one protograph) specified by
the NASA Consultative Committee for Space Data Systems
(CCSDS) [18], [19]. Here, we show how to obtain the matrix
C'y and how the results from the all-one protograph can be
adapted to this type of protograph to give the necessary and
sufficient girth conditions.

'We note that the necessary and sufficient conditions to obtain a code
with no d-cycles, or equivalently, HHT Al = 0 (see Section ), have
been addressed and solved previously in the literature; e.g., the condition
HHT AT =0 is known largely as the row-column (RC)-constraint. However,
there are no such resulls regarding the conditions for the girth w be larger than
6, 8 and 10. In addition. our technigue yields the conditions in a compact form
and as part of 4 peneral classification, Despite not being new, we included the
first case of g > 4 for completeness of our classification and o emphasize
how easily and elegantly it is vielded by applying the theory.

2 s detsiled in the numerical results, the algorithm mun-times are typically

a fraction of a second, and in all cases in this paper run in less than 2 seconds
on a standard laptop computer.
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We also extend our results and methodology to obtain codes
with girth larger than 12. QC-LDPC Tanner graphs dircctly
circularly lifted from a protograph containing a 2 =« 3 all-one
sub-protograph, referred to as a QC lifting, cannot be consid-
ered anymore, see, e.g., [3], therefore, we need to consider a
matrix composed of permutation matrices such that some are
not circulant. In order to obtain an increase in girth beyond
the restrictive upper bound 12 (and/or increased minimum
distance), we demonstrale how a deterministic multi-step
graph lifting approach, called pre-lifting [11], can be applied.
Towards this goal, we first show that any n.N = n,N
circularly lifted graph (defining an arbitrary QC-LDPC code)
with N = N;N; is equivalent to a graph derived from a
ne % 7y protograph, circularly pre-lified with a (first) lifting
factor N, and then circularly lifted with a (second) lifting
factor equal to Nao. We then show and exemplify for n, = 3
that graphs of n.N x n,N parity-check matrices can be
pre-lifted in a deterministic way in order to increase their girth
and/or minimum distance, whereby exponents are modified Lo
break the (circular) limiting structure of the original QC-LDPC
code. We used this approach to construct QC-LDPC codes
of girth 14 starting from certain QC-LDPC codes of girth
10 or 12 that we deterministically choose such that their
equivalent structures in which the pre-lifts are observed allow
for slight modifications of the exponents to yield a girth
increase. We also give sufficient conditions for a pre-lift (o
allow for girth from between 14 and 22.

The structure of the paper is as follows. Section 1T con-
tains the background resulis and needed terminology, while
Section Ul exploits these results to show how the girth
of H is directly related to the properties of the product
C‘I‘ 2lpgtt mod2) ¢ = 1 and how this connection can be
uwd to obtain necessary and sufficient conditions on H (o
have girth larger than 4. 6, and 8.

In Sections IV and V we give the sets of necessary
and sufficient conditions for a QC-LDPC code based on an
T, * My all-one protograph, n. = 2, 3.4, to have any girth
between 6 and 12, and use them to write fast algorithms (o
construct codes of such desired girth. We also present a new
perspective on n.N = n, N LDPC protograph-based parity-
check matrices by viewing them as n, N rows of a parity-check
matrix equal to the sum of certain n,N x n,N permutation
matrices. In Section V-B, exemplified in the case n. = 3,
we extend our results and methodology to obtain codes with
girth larper than 12 by considering a 2-step lifting method,
and give sufficient conditions for a pre-lift in order to allow
for girth from 14 to 22, In Section VI, we show how to
obtain the matrix Ty for an irregular, multi-edge protograph
used in the NASA CCSDS LDPC code and how to adapt
the results for the all-one (regular, single-edge) protograph
to this irregular protograph. We then exemplify the modified
approach by giving the necessary and sufficient conditions for
this protograph to have girth larger than 4. Section VII contains
computer simulations of some of these codes, confirming the
expected robust error control performance, while Section VIII
contains concluding remarks. Lastly, Appendices B and C
revisit two of the examples in the paper, Examples 3 and 13,
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respectively, in order to show how the pre-lifting technigues
presented in Section V-B can be used to oblain a girth increase
and, possibly, a minimum distance increase.

We emphasize that what we present is a unifying framework,
in the sense that every previous construction of codes of a
certain girth must fit in this framework, since we provide the
set of necessary and sufficient conditions for a given girth to be
achieved. The construction papers so far have given sufficient
conditions for a code to have Tanner graphs of a certain
girth. For example, the literature on eliminating 4-cycles in
LDPC codes by choosing the exponents from difference sets
is large [20]-[24]. It is what we do, and 1l is, in fact, what the
Fossorier conditions, displayed here in Corollary 4, do as well.
The novelty of this paper is that it shows that these are not only
sufficient but also necessary conditions in order to get girth
6 and it provides in a simple minimal format all the conditions
that the differences of the exponents must satisfy in order to
result in a code of Tanner graph of girth 6, 8, 10, and 12,
respectively. In addition, the set of minimal conditions for a
desired girth allows for our proposed algorithms to choose
lifting exponents to be extremely fast (less than 2 seconds
in all considered cases) - in fact they can be evaluated by
hand. Lastly, if desired, they can display codes of a given
girth for the smallest graph lifting factor N, Therefore, we do
not exhaustively visit other constructions found in the literature
because of this very different scope of our paper. Although we
mostly assume the case of an (n., ny )-regular fully connected
protograph, for n. = 2,3, and 4, the results can be used to
analyze the girth of the Tanner graph of any parity-check
matrix. We note that the theory would need to be suitably
adapted; this is addressed and exemplified in Section VI.

1. DEFINITIONS, NOTATION, AND BACKGROUND

As usual, an LDPC code C is described as the null space
of a parity-check matrix H to which we associate a Tanner
graph [25] in the usual way. The girth of the graph of H,
denoted by girth(H ), is the length of the shortest cycle(s) in
the graph. If a matrix has an entry larger than 1 then we say
the corresponding graph has multiple edges between a pair
of nodes. We say that a graph has girth 2 if it has multiple
edges.’

A protograph [19], [26] is a small bipartite graph rep-
resented by an n, = n, biadjacency matrix? Bn,.xn.. with
non-negative integer entries by;, which we also refer to as
a protograph. The parity-check matrix H,,_ (or H when n,
is clear from the comtext) of an LDPC block code based
on the protograph B, ., can be created by replacing each
non-zero entry bi; by a sum of b;; non-overlapping N = N
permutation matrices and a zero entry by the N = N all-zero
malrix. Graphically, this operation is equivalent to taking an

A note of caution when using the Magma program to compute the girth
of a graph with multiple edges: the command “gir” does not output 2 for
the girth of a graph with multiple edges; it outpois the size of the smallest
cycle in the single-edge praph obtained from the original by considering each
multiple edge as a single edge.

“The bisdjacency matrix of a finite bipartite graph G with n left vertices
and m right vertices is an n x m matrix where the entry a;; i the number
of edges joining left vertex i and right vertex 7.
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N-fold graph cover, or “lifting”, of the protograph. We call
the resulling code a protograph-based LDPC code.

Throughout the paper, we use, for any positive integer L,
the notation [L] to denote the set {1,2,..., L}, while, for any
sel, we say that it has maximal size if all the possible values
that can be generated for the set should be distinct.

A special notation used throughout the paper is the ele-
gant triangle operator introduced in [15] between any two
non-negative integers e, f = Z to defing

démfé{l, ife>2/=0

0, otherwise

and between two s x t matrices E' = (e )y and F' = (fij)ans
with non-negative integer entries, o define the matrix D) =
(dij)sxe = EAF entry-wise as dyy 2 ey /Afyy, forall i €
[s]. 3 € [8].

We denote the NV = N circulant permutation matrix where
the entries of the N x IV identity matrix [ are shifted to
the left by » positions modulo N, as =", Note that 0 and
1 = 1Y correspond to the all-zero and identity matrices,
respectively, where the dimensions are implied by the context.
We say that a {permutation) matrix P has a fived column (or
row), and write (P +1)/A0 # 072 if it overlaps with the
identity matrix in at least one column {or row). It follows
that any two permutation matrices £ and ¢} have no common
column if and only if (P + Q) A0=0< (PQT+1)AD=
0= (PTR+1)A0 = 0 & (QTP+I)A0 = 0 =
(PT 4+ QT) A0 = 0 where the matrix addition is performed
over &. In addition, (P + I)A0 =0« (P'+1)A0 =0, for
all integers ¢ == 1. Lastly, we state the following property in a
lemma, since it will be used repeatedly in our results.

Lemma 1: Let A = (aij)sx: and B = (bij)axe be two
matrices with non-negative integer entries, then the equality
(A+ B)MA = BAA holds.

Proof: The claim follows from the entry-wise equalities.

1'. if i +B[ = 21ﬂ1‘ =D,
{a;-j + ﬁ;jjl&uij = { o 9 i =

0, otherwise,

{1! e o = beias,

0, otherwise,

|

The triangle operator is used also in the following
theorem of [14] and [15] to describe an important
&8

connection between girth(H) and matrices B(H) =
(HHT)U gt mod 2) ¢ = 1 This connection forms the
base of our paper.

Theorem 2 ([I4] and [15]): A Tanner graph of an LDPC
code with parity-check matrix H has girth(H) = 2{ if and
only if By(H)AB, 2(H}=0,1=2,3,...,1

Lastly, we extend [27], Theorem 2, on cycles in all-one
protographs that gives the algebraic conditions imposed by a
cycle of length 21 in the Tanner graph ot an all-one protograph-
based LDPC code, to the more general case of any protograph,
irregular or/and multi-edge.

"The matrix addition is performed over Z.,
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Theorem 3; Let ¢ be a code described by a protograph-
based parity-check matrix H where each (i,7) entry is
the N =« N zero matrix or a sum of N =« N non-
overlapping permutation matrices. Then, a cycle of length
21 in the Tanner graph associated with H is a lifted cycle
of a 2l-cycle in the protograph, ie.. one that visits sequen-
tially the groups of N copies of check and variable nodes
in the same order of the cycle in the protograph. There-
fore, the 2i-cycle is associated with a sequence of permu-
tation matrices P!u_'ilu'l Pl:_]'m P!]_'il] ' Pl'zju e '-R:_L_f:_HPMJ'r_J
{with no two eqgual adjacent permutations) such that
(an.'inpfl_fnpil.‘flpiz_h Pia 1fi- |P;|I;_f;.., + I) 20 # 0.

Proaf: The proof is the same as for single-edge pro-
tographs: the path of the 21 cycle will touch nodes associated
with a sequence of permutation matrices such that any two
consecutive matrices visited are different. Unlike codes based
on protographs that contain only Os and 1s, in multi-edge
protographs two consecutive matrices can both be in the same
position (k,[) in the protograph, if that position has an entry
of 2 or larger. ]

Corellary 4 Let C be a code described by a parity-check
matrix H = (P;) € Fie¥*"¥ where each P, ; is an
N = N circulant matrix «*4. Then the Tanner graph asso-
ciated with H has a cycle of length 21 if there exist indices
i0,81,...,8—1 and jo, j1,...,Ji—1 such that i, # 1,41, js =
Je+1 (where s + 1 here means s + 1 mod 1), for all = &
{ﬂ_. 1, R 5—1]. and such that oo _‘?i-l_]'l:|+5'll.‘fl —Siagy +- -4

Fiy_adia ~ Faiia T 0.

111, THE MATRIX (g AND THE RELATION
BETWEEN girth(C'y) anD girth({H)

In this section, we use Theorem 2 in order to highlight
a relation that exists between girth(H) and the girth of a
cerain submatrix C'y of HHT. From this, we obtain the
necessary and sufficient conditions for the graph of # to have
girth 6, 8, 10, or 12, For simplicity, we assume the case of an
T, % 1y all-one protograph. However, the technigues developed
here can be applied to any protograph as we exemplify in
Section VI,

Let H,,, and Cy,_ be defined as®

Py P Pia, |

Pn Py - Ppn,
H=H, = ) . . : (1)

Pﬂ,—'l Pn,._? Pﬂ,n.._

0 Cla Cin, ]

C 0 Can,
G i A C ™ @

Cn,.l Cﬂ,.! el 0 A

where

Cj 2CH 2 PuPn"++ Pn,Ppn,", ii€nd, 3

where F,; are permutation matrices, for all 7 € [n].j € [ny].
In this paper, we later focus on the case that the permutation
maltrices are circulants or arrays of circulants (Sections IV
and V) since this will result in QC-LDPC codes that are

e will use the notation B and T when mne is clear from the context.
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attractive in practice; however, the results in this section hold
for arbitrary permutation matrices.

Below, we highlight how the matrix Cy appears in the
products B;:

Bo(H)=1I,B\(H)=H,B3(H) =
B3(H) =n,H+ CyH,By(H) =

= fyd +Ch,
(nyI + Cy)2,

Bi(H) = (nod + Cu)*H, Bg(H) = (nd + Cx)?, elc.
More generally, the following is true for all m = 1,
Bym(H) = Cf + nufm(I,Ch,...,Cg "), (4)
Bymi1(H) = CH + nofun(1,Ctt,...Cp H,  (5)
where

m—1
il Ca,....CF 2 X ()™l @

=0

is a linear function in I, Cy,...,C}; " with positive coeffi-

cients. Indeed,

0
m—1
e ST (T){m}m_,_lcif =

C'}}‘+nt._fm[f,CH._...,E";}‘“]|,
where the function fi,(I,Cy,...,C7 ') is defined in (6).

It follows that BmH(Hj — {HH[F)’”H = {Cu)™H

ny fnlI,ChH, - .., Cy; ') H, which proves (5).
Equations (4) and (5) give the following useful
equivalences:

B‘Zm{.H]&BEm—E{H} =0&
CRA(I+Ca+---+CF 1) =0, (M
Bim+1{H]ﬂBEm—l{H} =0+
CEHA(H+CyH +---+CF 'H)=0.  (8)
Indeed, By, (H ) ABay 2(H) = 0 if and only if, for each
(i, j)-entry Bow_2(H)(i,7) of the matrix Bag,_o(H) that
is equal to 0, the (i, j)-entry Bopm(H)(i,7) of the matrix
Bom(H) is less than or equal to 1. Since By o (H) =
(nef+Cx)™ ! is a linear functionin I, Cy,...,C}; " with
positive coeflicients,
Bam_a(H)(i,j) =0 (I+Cu+---+Cg ™) (i,j) =0
& nufm(I,Ch,...,Cl )i, 5) = 0.

Therefore,

Bam(H)(i,7) =12 (Ca)"(i,4) <1+
Crli, A (I+Cu +---+CF ") (i,5) =0.
We thus obtain the equivalence (7), while the second equiva-

lence (8) is obtained similarly. Therefore, Theorem 2 can now
be restated.
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Theorem 5: A Tanner graph of an LDPC code with
parity-check matrix H has girth(H) > 21 if and only if, for
allt=2,3,...,L

C}f‘}JHH maid 2}& (I 0+ + C}i‘:rj—l) E(t mod ) _ 0,

We call C'y the girth-matrix of H.

In particular, we have the following theorem.

Theorem 6: Let H, Cy, and Cy; be defined as in (1), (2),
and (3). Then

1) girth(H) > 4 if and only if Cyy A0 = 0, forall i,j €
[ne].i # j. Equivalently, girth(H) > 4 if and only if C;; does
not have multiple edges, for all i, j € [n.). 1 # 7, equivalently,
if and only if girth(Cpy) > 2;

2) girth(H) > 6 if and only if CgA0 = O and
CyHAH = 0. Equwalcnlly girth(H) = 6 if and unl}r if

Ci; A0 = 0 and Z CuPi/sPy = 0, for all k £ [ny), 1,

|7H

[nel. i # 4;
3) girth(H) > & if and only if Ciy /A0 = 0 and C%A(T +
Cy)= l] Equivalently, girth(H'} > 8 if and only it C;; &0 =

0 and E CaCy AC;; =0, for all 4, € [n.], i # j;

4) II" nc = 3, then girth(H)
girth(Cy ) > 4.7

Proaf: 1) From Theorem 5, we have the following
equivalence girth(H) > 4 +— Cpdil = 0 +—
;40 = 0 <= (7; does not have multiple edges, for all
i,5 € [mel,i # .
HE} The condition CypHAH =
Y CyPa/APg = 0, for all k € [ny],i € [ng], from which
I=1

= B if and only if

0 is equivalent to

i
U:é claim follows.
3) We need to show that by satisfying CHLA(I +

Cy) = 0 we also obtain CyHAH = 0. L::l R £

[C'u Ciia 0 Ciapg C-‘mn], for all 1 € [n,).
LU

Then, RRIAT = 0 = Y CaCudl = 0 =

=1
L=

M Ry Ny
¥ Cu (E H;;P;L) Al =0 =% 3 OaBaPoAT =
iz e [
N
0= 3 CyPufrPy =0, for all k £ [ny),1 € [na),
=1
i
which is equivalent to Bs(H)AB (H) =0,
4) For n, = 3, CRA(I + Cy) = 0 implies that, for
3
all i € [3], ¥ CuCud = 0, and, equivalently, based on

=1
£ 2

Theorem 2, that girth [C]g C];;] = 4, girth [Cz] Gz:}] -
4, and girth [Cy; Caz] > 4. However, since for a matrix
with n, = 3. a 4-cycle occurs in Oy it and only if it occurs
in a row of C'y, we obtain that girth(Cy) = 4.

Reversely, if girth(Cy) > 4, then CH AT = 0 which also
implies the weaker condition C% A (I + Cyr) = 0. Therefore,
for m, = 3, we obtain that C5A(] + Cy) = 0 is in fact
equivalent to CZ AT =0, |

"Due to Lemma 7, we ohtain that, for n. = 3, girth{ H) > 8 if and only
if girth(C'y) = 6.
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Similar theorems can be stated for girth larger than 10, 12,
and so on.

We exemplilfy how the matrix C'y is oblained and that its
girth is 6, as expected, for n, = 3, by revisiting the following
AN = 4N protograph-hased code of girth 10 that can be found
in [11] and [28].

Example I: Let
Py Py Pz P
H=|P Pn Pn Py|2
Psy Ps; Pz Py
(1 0|1 0 1 ] 1 0 7
0 1({0 1 0 1 0 1
1 0j=x 0O o ] o =9
0 1|0 | o0 |z 0
1 0(l0 |z 0|z 0
I 0 1|7 0 o | o0 I |

Here, the permutation mairices are Ny = N7 = 2 = 2 arrays of
Ny x N circulant matrices, such that &N = Ny Na. This double
lifting is referred to as pre-lifting, and results in a QC-LDPC
matrix if the second lifting is circulant [11]. The matrices C';
and C'y associated with A are

T [ 14z 2942
Cn=Cip= __r.m +z3 1425 |
[1 4 2% + 21! '
C:llzc;ra:_ =7 1+;:“+::” 3
r —G -1 o
T 1 R o Rl o
Coa =Usz = LI—I e 1 ]
0 Ciz Cig
Oy =|Cn 0 O
Oy Caa 0O

where C'y is shown explicitly in (9) at the bottom of the next
page.

The 3N « 3N = 6N; « 6N, relatively dense (8, 8)-regular
matrix C'y; has girth 6 for N3 = 27, for example. Equivalently,
the (3, 4)-regular 7 has girth 10 for any such Na. Moreover,
codes with parity-check matrices that are submatrices of H
based on 2 x 4 all-one (sub-)protographs have girth 12, for
these Na. |}

Remark {: The matrix C'y is therefore relevant when dis-
cussing the girth of H. In particular, we have observed the
following two equivalences

| girth(H) > 4 < girth(Cy )

| for n. = 3, girth( H) > 8 < girth(Cy ) > 4. |

Unfortunately, we cannot keep increasing the girth of Uy in
hope to obtain higher girth for the associated H, because, if
1, = 3, Oy cannot have girth larger than 6, and if n. = 4,
';r cannot have girth larger than 4, no matter what lifting or
pre-lifting we choose. The 6-cycles and 4-cycles, respectively,
are ¢asy Lo observe. We stale this fact below as Lemma 7. [
Lemma 7: Let H and Cgx be matrices defined as in (1)
and (2). If n, = 3, then girth{Cx) < 6, and if n. > 4,
girth(Cry ) < 4.
Proof: The proof can be found in Appendix A. [ |
The following theorems connect, for some particular cases,
codes with parity-check matrix H,,, based on a protograph B

Authorized licensed use limited tor New Mexico State University. Downdoaded on December 21 2022 at 18:13-23 UTC from IEEE Xplore. Restrictions apply.



SMARANDACHE AND MITCHELL: UNIFYING FRAMEWORK TO CONSTRUCT QC-LDPC TANNER GRAFHS

of size n. = ny to codes with parity-check matrix H,,, based
on a sub-protograph of B with size m % ny,, m < n.. This
allows one to expand mN = n,/N protograph-based matrices
to n N x n, N matrices of the same girth after making sure
that the mN = n, N protograph-based matrices based on the
sub-protograph of size m x ny,, m < n, of B have the desired
girth.

We start with a simple observation that formally states the
following connection between Cy, and Cy, . which can
be useful in obtaining the girth conditions for n N x n, N
codes by starting from (n, — 1)N = n, N codes of desired
girth and adding an extra row.

Lemma 8: Let n, = 3, Cy,,_, Cp,__, be defined as in (2),
and C,_ ; be defined as in (3) with ¢ = n, for all 7 € [n.—1].
The following decomposition of Cy,_ into two submatrices
X I S thal contains information about the first n, — 1 rows
Hyp _y of Hy_ (through Cg, _, ), and Yy, that contains
information about the new added row in H,, (through C),)),
can be observed,

Oy Opn,.—13%1 O, —1 -3 G
GH _ ne—1 (n.—1)x aE [Fe—1)x{n.—1) LT X
"o | Dys(ne—1) 0y CIF_ O1x1)’
x”:,-—l Y‘:ﬂe
where
Cf-[_ = [Cnnl Gﬂr:“u_l] .

This lemma can be used to obtain the conditions for girth
larger than g for a matrix H,_ with check-node degree n,
when we start from a matrix H,__; with check node degree
n, — 1 of girth larger than g and add an extra row of
permutations. For example, to obtain the conditions for girth
larger than 8 for a matrix Hy with n. = 4, we start from
a matrix Hy with n, = 3 of girth larger than 8 and add an
extra row of permutations. The necessary condition for girth
larger than 8 is C%, 2A(Cy, + I) = 0, which can be rewritten
as (Xg, +Ym) & (Xpg, +Yir, +1) = 0, from which we
obtain, based on the many zeros in the description of X ﬁ.g,
Yi,» Xu,Yu,, and Yy, Xy, the following three eniry-wise
conditions (obtained by writing the condition G“}f‘ MOy, +
1) = 0 entry-wise):

(CF, + CoC)A(Ch,y + 1) =0,
Ch,Cs\Cy = 0, and C] C4AT =0,

L

where CI [C.1| Cyz C.-ig] . If we start from a 3 = n,
matrix of girth larger than 8, then C A(Cy, + 1) = 0 is
already satisfied; theretore, from the conditions given by this
equality, we only need to record the conditions involving Cy.

SROT

Consequently, Lemma 8 can be efficiently used to obtain
conditions on the permutation matrices on the 4th row of Hy.

In addition, we also have the following connection.

Theorem 9: Let H,, be defined as in (1), and let m = 2.

Then girth{ Hy,} = 2m if and only if all min(wm, n.) = 0,

submatrices of Hy_ have girth greater than 2m.

Progf: If m < n., an 2m-cycle cannot involve more than
m rows of Hy,; a cycle involving m + 1 rows of H,,_, must
be of length strictly larger than 2m. IT m > n,, then the claim
holds trivially. |
In particular, this theorem gives the following corollary.

Corollary 10: Let H,_ be defined as in (1). Then

o If n1. == 2, then girth(H,,_) = 4 if and only if all 2 = n,
submatrices of H,, have girth > 4, and, equivalently,
it and only it matrices C; have no multiple edges, for
all £, € [ng],i # 4:

o Il n, = 3, then girth(H,,_) > 6 if and only if all 3 = n,
submatrices have girth > 6, and, equivalently, if and only
if all 3 = 3 submatrices of H,,, have the permanent over
Z of maximum possible weight;

o If m, = 4, then girth(H,,_) > B if and only if all 4 = n,
submatrices of I, have girth = 8;

» If 1. == 5, then girth{ H,,) = 10 if and only if all 5 = n,
submatrices have girth > 10.

Lastly, a weaker result can also be stated.
Corollary 11: Let H,, Cy, , and Cj; be defined as
in (1), (2), and (3). Let m > 2. Then, for all 1 < i < § < n,,

girth(H,,,) > 2m = girth(Cy;) > m.

e

Proof: In order for the graph of H,_ to have a certain
girth 2m, we need all its submatrices to have girth at least
2y, including all its 2 » n submatrices, graphs of which have
twice the girths of their associated C; matrices. u

Remark 2: 1t follows that, when constructing parity-check
matrices of girth 2m, we need to make sure that the associated
matrices Cj; have girth at least m. In addition, we need
to consider all m x n, submatrices and impose the girth
conditions on them. Thus, we can start from a 2 = n, matrix
of girth 2m and add one row al a time imposing the girth
conditions such that the newly formed matrix maintains the
girth 2. |:|

In the next sections, we will use the above resulis to
construct Hy, of various girths for the cases of n, = 2,3,
and 4.

IV. THE GIRTH OF 2N x n,N MATRICES H;

Although the case of a 2 x n,, protograph seems of limited
practical importance on its own, it is essential when seen as

i 0 0 1+a? 04 | 14z 24 o i
1] 0 104 —13 1 -|—;1:_5 7T 1+ 441
O — l1+zx o 4 g 0 0 1 P e g
A gl p13 1+ x5 0 0 rl4 24 gt 1 v i
14z 4z ' 1 o4z M 0 0
| - 4 1+t +a" | tat+a® 1 0 0 |
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part of a larger protograph, since each n. = n, protograph of
girth 2m, with n,. > 3, has ("y) 2 x n,, protographs that need
to have girth at least 2m. In addition, we show in the next
theorem that the cycles in the Tanner graph of H; are in one-
to-one correspondence with the cycles of the Tanner graph of a
sum of permutation matrices in the composition of Ha. Parity-
check matrices equal to a sum of some permutation matrices
have enjoyed a lot of attention in the context of projective
geomelry codes [6], [16], [17].

In particular, any n.N x n,N protograph-based LDPC
parity-check malrix can be seen as a submalrix of a square
ny N » n, /N malrix that is, in fact, a sum of permutation
matrices of size n,N x n,N. For example, the n, x ny
all-one matrix is a sum of n, distinct permutation matrices
1+a+w2+- 4z~ each of size n,, » 1. These matrices are
then lifted with lifting factor N to obtain permutation matrices
PPy ... B, each of size n, N 3 n, N, giving a sum of the
same size. So any n,N = n, N LDPC monomial matrix can be
seen as a submatrix of such a square matrix Py +Pa+- - + P, .

The following example demonstrates this important fact:
how a protograph-based parity-check matrix can be decom-
posed (not umiquely) as a sum of permutation matrices.
The code we use is the (128, 64) NASA CCSDS standard
code [18].

Example 2: Let N = 16 and H {123 g4y be as shown in (10)
al the bottom of the next page. Then Hyyog 54y i8 a sum of
8 permutation matrices F; of size 8N = 8N, N = 16, from
which we only take the first 4N rows. Indeed, let P, P,
Py Py P, By, B, and Py be of size 8N = 8N, obtained
by taking the following 8 » & permutation matrices and then
lifting them with circulants of size N = 16 (circulants are
only given for the first 4 rows since the rest are arbitrary) as
tollows: the identity matrix 1 lifted with 1, 1, 1, 1 (b{:x:d in
the matrix above), the identity matrix 1 lifted with =", L“
15, 13 (boxed in red), the circulant matrix z lifted with =%
T, z”, 1 (circled), the circulant matrix =2 lifted with ', =,
13 17 (shaded red), the circulant matrix o lifted with 1. 1, 1,
o3 (blue), the circulant matrix =% lifted with =%, 1, 1, 1 (red),
the circulant matrix =% lifted with £'4, =, ='!, r (green), and
the circulant matrix =” lifted with =%, 1, ', ='* (orange),

respectively.
8

Then Hi13s61) = 2 Py, where I is the matrix formed by
the first 4N rows nl‘li’l, and thus 15 a submatrix of a sum of
1, = & permutation matrices. We will revisit this matrix in
Examples 6 and 18, L]

We conclude from the above that the case of a 2 = ny
protograph is important in its own right, and will explore some
of the above-mentioned facts below.

Theorem 12: Let

Hy = I I o I Cy=ClL 2 Z” oL
2 P P B, |’ . 1 i—1 -
Then,

girth(Hz ) = 2 girth(Cha).

MNote that, without loss of generality, P could be chosen equal
to 1.
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Proof: We show that any cycle of size 21 in H; cor-
responds one-to-one to a cycle of size | in Chs. Indeed,
from Theorem 3, the Tanner graph associated with Ha
has a cycle of length 2{ if and only if there exist

indices #1,d2,....%1 € [my]. such that i, # 4,4y and
such that TPJ P, ITIPIP,IT...PT P,ITAI £ 0
PIP,PYP;, ---P] PyAI # 0. Equivalently, there exist

iy, Mma, ..., my such that Fy (ma,my) = B, (mo,ma) =
P (g, mg) = - = Fy(my,mq) = 1, which is equivalent
to the existence of an I-cycle in C. [ |

Since a 2{-cycle in H; is equivalent to an [-cycle in ' 5, and
any hipartite graph can only have even size cycles, | must be
even, leading to the 2I-cycle in Hs to have the size a multiple
of 4. Therefore, the girth of a 2 = n,, parity-check matrix Ho
must be multiple of 4.

Corollary 13: Let

P B P A AT &%= pT
Hy = i Cy =0, = P Q.
a [ 4 Q‘E an + 21 12 ; H Ql’
Then

girth(Hz) = 2 girth(Cy).
Proaf: The graph of Hy is equivalent to the graph of the

matrix PT 0, Qm] which, based on Theorem 12

has twice Thc girth of Cn [ |

The following remark is a well known fact, see for exam-
ple [5] for more details. We state it here because it can be
seen as another corollary of the results regarding the 2 « n,
protographs.

Remark 3: Let H,_ be an LDPC code based on a proto-
graph B = (Bij)n.xn,, with By; > 0 integers. If B has
a 2 = 3 submatrix that has all its entries lifted to circulant

matrices in H,_, then girth{H,, ] < 12. O
Example 3: Let
41
=t L 4],

Then the 41-cycles in the Tanner graph of the 2NV = 3N matrix
Hy are in one-to-one correspondence with the 2{-cycles in the
Tanner graph of Cha = I+ o+ Py To insure that girth(Hz) =
5 we need to choose matrices Py and Py such that the matrix
I+ Py + P; does not have multiple edges (and thus has girth
greater than 2), while in order for H; to have girth 12, we need
to choose Py and Py such that the girth of 7 + Py + Py has
girth 6. For example, we can take Py and Fs to be circulant,
equal to = and <, respectively, and N = 7. Then the matrix
I+ P;+Py=1+x+ s corresponds to the 7 = 7 parity-
check matrix of the cyclic projective code of size 7, which has
girth 6. Therefore, the corresponding 14 » 21 matrix Hz has
girth 12,

Any choice of Py and Py where both are circulants restricts
the girth of I + P + P5 to be at most 6 (see Remark 3);
therefore, in order to obtain a girth of Hy larger than 12,
we need to take P oand P; non-circulant. A convenient
way to do this is by a 2-step lifting method consisting of
a prelifting, i.e., forming a square matrix (circulant or not) by
lifting with Ny, and then lifting it with circulant permutation
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matrices of size Ny, ie., forming a permutation matrix as
a Ny = Ny array of Ny « No circulanis. For example, the
matrices P and Py below are obtained by first lifting each to a
3 x 3 matrix given by the circulant permutation matrices 1 and
x? with N7 = 3, respectively, and then applying a second
lifting with circulants =, £'%, =7 and =, =, 2, respectively. i.e..

x 0 ] 0 0]
B=l0 % 0|, B=10 0
ooz r 0 0]
such that
1+ T 0 ]
I+B+B2| 0 1+4+z% 22
T 0 1+z']

The matrix I + F» + P, has girth 8 for Np = 11, girth 10 if
the lifting is increased to Nz = 31, and girth 12 if the lifting
is increased to Ve = 41. Therefore, the 2N = 3N = 6Ny =
9Ny parity-check matrix H; formed with the above P and Py
has girth 16, 20, and 24, for N = 11, N = 31, and N =41,
respectively. (As a side nole, the matrix T + Pa + P; has
minimum distance 48 for &N = 31.) O
In Appendix B, we revisit Example 3 to show how the
techniques of Sec. V-B were used in order to obtain matrices
of girth beyond 12.

The following section provides algorithms to construct
2N = ny, N protograph-based codes of various gir‘l‘.h dm and,
equivalently, to construct sums of n, N = n,N permutation
matrices of girth 2m, m = 1.

A. Case of girth(H) = 4m, form =2, 3

Theorem 14: Let Hy and C'3q be defined as in (11), and let
Py =zY, forall j € [ny)], and 7, = 0.

1} girth(Hz) = 4m > 4 < girth(Cs) > 2 if and only if

the set {i; | j € [ny]} is of maximal size.®

2) girth(Hz) = 4m = 8 if and only if the set

{i; — i1 | §,1 € [ny|, 7 # 1} is of maximal size.?

The following are two algorithms based on the conditions
of Theorem 14 to construct Hz with girth larger than 4 and 8,
respectively. We note that the conditions consist of only
additions and subtractions to compute the forbidden sets. The
algorithms, as exemplified below, run in a fraction of a second
for all of the considerd cases on a standard laptop. They will
later be extended to larger protographs and girths.

fRecall that by maximal size, we indicate that all the possible values that
can be generated for the sel should be distinct.

“We note that the sets in Theorem 14 could be obtained directly by applying
Fossorier’s girth conditions, so the results of this theorem are nol new. The
novelty of this theorem is obtaining them using <2 and using the “maximal
size” sel terminology.

SH09

Algorithm 1 Constructing Codes with n,. =2, g > 4

1gge=:0

2: for [ := 2 to0 n, do

32 Choose i; ¢ {is |ac [l - 1]}
4: end for

Algorithm 2 Constructing Codes with n, =2, g > 8

1: i : =10

2. for [ :=2 t0 ny do

%  Choose i ¢ {i; +is — iz | @, bee [ - 1]}.
4: end for

Example 4: We construct a 2 « n,, protograph-based matrix
of girth 4m, for m = 2, 3, following Algorithms 1 and 2 and
choosing the smallest possible exponents at each slep, giving

11 1 1 1 1 1 1
H‘E-sr::i=|:1 g Fd S 7]1

11111111]

H: = ;
2 g8 1 = 1:3 I‘.r I12 Iﬂﬂ ISD Idi

The matrix H3 g4, constructed using Algorithm 1, has girth
Bfor N =8 Inthiscase Co;y = 14+ x4+ .-+ 27 is the
8 x 8 all-one matrix of girth 4. The matrix H3 -5, constructed
using Algorithm 2, has girth 12 for N = 77, for example.
Equivalently, the corresponding 77 = 77 matrix (' = 1 +a+
1+ 27 + 21 + 2% + 230 + 1M hag girth 6. O

The following lemma gives an easy way to choose the next
exponent values such that they are larger than the ones in the
forbidden sets.

Lemma 15: Let Hs and 5y be defined as in (11). Let g
be defined recursively as

ip=14+245_4, 1u=0, I = 2.

Then the Tanner graph of the code with parity-check matrix
H; has girth 12 for some N. Equivalently, C'y; has girth 6.
We exemplify this easy method below.
Example 5: The following matrix has girth 12 for N = 73

111 1 1 1 1 1

1 T I3 .'1:? IIE I.'!] IE‘»:I 1127 .

Hy =

The comresponding 73 = 73 matrix Cy = 1+o+22 " +215+
3+ 2594 £127 has girth 6. We reduce the exponents modulo
N = T73toobtain Coy = 14 s+ 3+ 7+ 118+ 03 45838 4 54
Note that this N is not the minimum for which a code can be
found, but it can be easily obtained by hand and it is faster
than Algorithm 2.

We also note that the component matrix Oy, = 1+z+z+
x7+1'% of the denser C'y; above has girth 6 for N = 25 while,

.' R
1 0 1 B

—_— . (10)
s @ .+ ! 14 1 0 'l
T + 13 i 1 0
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as expected, Ca; = 1+ + o has girth 6 for N = 7 (this is
the projective code [17]). |
We now review Example 2 in view of the connection of
Theorem 12.
Example 6i; Let P defined in Example 2 and let

r r r r r 1
P B PP F P B Bl o0

Theorem 12 says that girth(Ha) = 2 girth(2) where Ch2 =
Z. 4 and has girth 6. Therefore H is matrix of girth 12,
By itself, this is not an interesting code; however, the strongly
connected o is, since the parity-check matrix Hijos gay o
the NASA CCSDS (128, 64) code is contained as a submatrix
and thus girth(H 25 64)) = girth(Cyz). U

Remark 4: While the (';; matrices we construct can be
invertible, there are cases of IV for which the null-space is
non-zero, thus giving codes worth considering. For example,
the matrix C3; = 1 + x + 2 has girth 6 for different values
of N: however, the values of N = 7 14, eic., are needed
in order for the code with parity-check matrix Cs; to have
non-zero codewords (due to the fact that 1 + = + 2% is a
polynomial divisor of 7 — 1). O

H &

B. Case af girth{H;)

If we want to obtain matrices Hz of girth larger than
12, then at least one of the matrices % has to be non-
circulant. In our constructions, we follow a prelifting {double
litting) approach, as demonstrated already in Examples 1
and 3. For example, permutation matrix P below can be
seen as the entry 1 in the protograph, first pre-lified to the
N1 % N1 = 3 = 3 circulant matrix =2, before the second lifting
with circulants =%, =%, +° with lifting factor N, = N/N, ie.,

0 2 0 01 0
P=|0 0 £, withz*=1[0 0 1.
©* 0 0 1 0B

The following theorem gives the necessary and sufficient
conditions for girth larger than 12.

Theorem 16; Let Hy be given as in (11). Then,
girth(Hz) > 12 if and only if Cq1 CT,C01 AC2 =0,

Example 7: The 2N = 5N matrix Hy with Pa, Py, Py, Fs,
and Cy; listed below (in this order) has girth 16 and, equiva-
]cnli}r. the 3N = 3N matrix C-'g. has girth 8:

=dm, for m = 4

e A IE
l} ] 0 ;
l] 5 0 u .r” 0
18 41 15 1:+1:
I:r 0 I"‘ |1 +=8 2“-'+1
= 00 L Y S -I-l

The pre-lifted protograph used for [Py P Py Py Fi| corre-
spondsto [1 = = 1 z%], O
Example 8: In this example, we start from a 5 = 5
pre-lifted protograph [1 = 2% =% z%| for sub-matrix
[Py s Py Py Fs] because it has girth 6. This would insure
that the structures Mz, P4, Pg that limit the girth to 12, 14,
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and 16 (listed in [8] and in Appendix D)) are all avoided. The
lifted matrices [Py Py Py Ps| are (in order)

(=]

DO 0D 0 =T 0 0O 0 =z 0O
10 0 0 0 o 0 0 0 1
0« 0 o0 O0|,[«2 0 0 0 O
D0 L 0 0 0 £ 0 0 0
D O 0 % 0 0o 0 @™ 0 o0

0 0 £ 0 o0 0o £ 0 o0 0

] o 0 ' 0 o o0 " 0o 0

0 0 0 o0 2|.lo0o 0o 0 = 0

2™ 0 0 0 0 o o0 0 o0 ™

0 ™ 0 0 J L—m 0 0 0 0

giving a matrix Hy of girth 20 for N = 458 and, equivalently,
the matrix

1 a2t a? A
1 1 0 4 1
Cu=Pi+B+---+ 5=z 1 1 7 g8
108 o7 51 4 16e
p309 180 04 68
of girth 10 for N = 458, a

Remark 5: Note that by taking a 3 = 5 submatrix of Py +
Py + --- + F; above, we obtain a (3, 5)-regular LDPC code
of girth 10. For example, the matrix H.,p, below gives a code
of minimum distance 24 and girth 10 for a minimum value
N = 101 (and other larger)

1 & it £ ]
Hese= 1 1 oo™ o |
;r'lﬁ ¥ 1 IET 26

Since all protograph-hased n.N = n, N parity-check matri-
ces can be seen as submatrices of n,/N x n,.N square
matrices that are equal to sums of n, lifted permutation
matrices, we can construct codes by constructing sums of
permutation matrices with good girth, and either use them as
the parity-check matrices (for a proper value of N), or take
submatrices, like we did in the above example. u

V. THE GIRTH OF n.N x 1, N MATRICES H,,_, n. = 3,4

This section provides necessary and sufficient conditions'”
and associated algorithms to find 3 x n, and 4 x n, QC-
LDPC protograph-based codes of various girth 2m > 6. The
algorithms start by constructing a 2 = n, protograph-based
code of girth > 2m and expanding it to a 3 x n,, then to
4 x ny. Cases of n, = 5 can be solved similarly.

As before, we will consider H,,, to be in the reduced form,
i.e., it has identity matrices on the first row and first column,
since the conditions are simpler to see. In addition, we will
assume that the matrix Hy,_ is composed of circulant matrices
ool 2k for all | £ [ny), with iy = 51 =k = 0.

"W These conditions are minimal, in the sense that no condition is implied
by ather conditions,
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A. Case of 4 < girth(H,,,) < 12

In this section we will consider H,,_as defined below, for
n. = 2,3, and 4, respectively, alongside the corresponding
matrices Cp, and Cj;. As mentioned above, we assume,
without loss of generality, that i = j; = ki =0 (i.e., Hy, is
in reduced form):

1 .- 1 0o
H’Z = |:I1'|- _— I'ﬂn:| 5 CHZ é [Gz_l {_12] ;
1 ees A
— H, N L
HJ_[H‘ s e ] =18 = (12)
0 Cpp Cia
£ C
Cus = |[Cn 0 Cgg| = [Ggrz DS] :
s Caa 0O 4
1 1
Hy h rinu
H4 = |:Ik|. Ik“'-’ ] = pd qina | {13}
_:kl Iku‘.
0 Ciz Ciz Cua
o 8 |Cnn 0 Cu Cu| _[Chy Cy
e Cun Csa 0 Cy cl D
Cio Cizg Csiza 0
Ty Ty
Cj_z - C:.-,_.rl - E 1 023 = GE—? = E Iff _.'ﬂr
=1 =1
., Ty
Cu=05< Yo ¥ by =CH & Y oghh,
=1 =1
Thy Ty
Cia = CL = E 8. Cgq = G;ra = Lh—H i
i=1 I=1
Cia
C3 2 [gm] , Ca2 |Caa
23 D
(14)

Theorem 17: Let Hy and Cp, be defined as in (13)
and (14). Then girth(H,) = 4 if and only if each one of
the six sets {iy,. --;in..}z {1, ---:jﬂ1.}1{k‘l: ---,kn,.}:{il 2=
J:h e -13In1. _j'n.,}s {i1—.ﬁ'1.. " sim. —kn‘.}u and {jl_kls---f
Jne — kn, } is of maximal size.

Proof:  In order to avoid 4-cycles, we need o insure
that the codes based on the 2 « n, sub-protographs have no
4 cycles, for all such sub-protographs, and, equivalently, that
Cys0 =0, forall 1 < i < § < 4. The claim on the sets
above follows from this. [ ]

Remark 6: The conditions for girth(Hs) > 4 are obtained
from Theorem 17 by ignoring the sets above that contain any
kg, ie., girth(Hs) > 4 if and only if each one of the 3
Sets {ilruﬂiﬂu}-‘ Uty adn b i — Jayeenying, — j'n._-} is
of maximal size.

We now present an algorithm to choose these exponents
in which we first choose iy,13,...,1,, (sequentially), and
then choose §1, ja, ..., jn,. and then all ky, &g, ..., kn,, such
that, at each step, the conditions of Theorem 17 are satisfied.
This algorithm is an extension of Algorithm 1 for 2N = n, N
parity-check matrices H». To obtain an algorithm for n, = 3,
we simply ignore Lines 8-10 that choose the exponents ky,
I € [ny).
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Algorithm 3 Constructing Codes with n. =4, g > 4

3 i] = U,j] = D_,k] =
s for | ;=2 to n, do
Choose i; & {ia | a € [ — 1]}.
- end for
tor | ;= 2 to mn, do
Choose ji ¢ {ja, i1 + (o —1a) | @ € [I - 1]}
: end for
for [ .= 2 to ny, do
[{ C]j'fﬂse ki & {ka iy + (kg —ie) i + (ka — ja) | @ €
—1]}.

- end Tor

b o~

=

We now extend this to larger girth in Theorem 18 and
Algorithm 4.

Theorem 18: Let Hy and Oy, be defined as in (13)
and (14). Then girth(H) = 6 if and only if, for all [ £ [n,],
each one of the sets

{ir —do 5t — dun bt — ks | 8 € [na], 8 # 1},

{ia,8s — Ja + 1,0 — ks + Fa | 5 € 0], 5 #£ 1},
{desds —te+ i Js — ke + ki | 5 € [ny], 5 # 1],
(kay ko — ia + i1, ka — Jo + i | 8 € [ng],8 # 1}

is of maximal size.

Proaf: From Theorem 6 we see thal in order to avoid
6-cycles, we need to insure that, for all { € [n,], and all
&t € [ng] \ {1},

(Craz™ + Craz® + Crax®) A1 =0,
(Ca1 + Cogx® + Cogz*®™ )AL =0,
(Ca1 + Cag™ + Cagz®™)2x? = 0,
(Ca1 + C;;QI“ + Cigrj[j.&zkr = .

Equivalently, the following equalities hold,

Tl

3 (-t g e 4 Hhe) AL,
=1
szl
Tl

37 (gt 24t 4 ghembe ) Agh

e=1

EE
LU

Z (IL 4 ==ttt +I:.',—k,+in} Arh =0,

p=1

apl

LU
Z {z:k" +Ik,.—=,.+1¢ +Ik,—.;l.+_f:::| Mok = 0,
ol
from which the claim follows. |
Example 9: We construct two 4« 8 protograph-based matri-
ces, one of girth larger than 4, and one of girth larger than 6,
starting from the 2 = 8 matrix Hp -4 from Example 4 and
adding a 3rd and a 4th row such that the conditions of
Algorithms 3 and 4 are satisfied, respectively. Choosing the
exponent at each step as the smallest positive integer not in
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Algorithm 4 Constructing Codes with n, =4, g = 6
sy =05 =0,k =0

1

2: for [ :=2 to ny do

3  Choose if ¢ {iq |ac [l —1]}.

4: end for

5 for [ :=2 to ny, do

6: Chmseji E {jmit‘i‘jn_imi!‘i‘ja—?'t |‘3'E [i—l],tE
1]}

7: end for

& for [ ;=2 to n, do

9:  Choose ky & {i; + (ks —d¢), 50 + (ks — Je) i + (ke —
'3.5}_1 jt +{ks _._?;3]13;1 +“"s o i.-a] +{T:! —ja]; 'ii 5 & [ks _j.i] 30
(e — iz} | s € [l — 1]t € [m]}

1t end for

the forbidden set yields

1 1 1 1 1 1 1 1
H4 g=4 = : .r.2 ;52 ,r':: J'I: ;;;5 ;Lliir .!I:
i 1 2 £ 2 £f 1 =z o
"1 I r @ 2 I 1
1 1 1 1 1 1 1 1
H, g 1 = _1:2‘_ w2 ¢ & £ L
4 1 IE- II"’ I‘Z] IEG I:]-'Z I-'SD I-l'i’
1 J:Er .'1;17 Iﬂd. _LH[I I:i? IA.E Isd.

A
Remark 7: At each step, we can choose i, j;, and & to
be the minimum positive integer such that they satisfy the
conditions of the algorithm (as done in Example 9), but
the resulting matrix may not necessarily have the smallest
N possible for that girth, nor be the best code. The above
algorithms can be modified to, e.g., select exponents randomly,
avoiding those values in the forbidden set, or so that they are
larger than the maximum value in the forbidden set. Different
choice of exponents will yield different minimum N (see also
Remark 10). Since the forbidden sets are generated in the same
way, the run-time in any realization will be similar, but can
result in codes with varying performance. Finally, we note that
the algorithms can also be modified to pick exponents column-
by-column, rather than row-by-row as presented here; see [1]
for examples. Again, this will typically result in different codes
which may or may not yield improved performance. O
Similar theorems can be stated for girth(H;) > 8 and
girth{H ) > 10, but the number of conditions increase; so, for
clarity we only present them for n. = 3 and refer the reader
to Remark 14 for how to extend these conditions to the case
. = 4. We also refer the reader to [29] for a list of these
conditions.
Thearem 19: Let Hy and Cp, be defined as in (12)
and (14). Then girth(H;) = 8 if and only if each two of
the following sets of differences

{iu —tp |uFvu,ve [ﬂ'ﬂ]}1 {ju—Jvlu#v,uve [nt‘]}1

“’Eu — Ju) — (iv — .?1] | u#F vu,v € [ﬂ'u”

contains non-equal values and each set is of maximal size.
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Equivalently, girth{H3) = & if and only if each one of the
three sets {1y, — iy, ju—Jju | u #F v, v £ [0}, {iu—iu, (fu—
u) — (iv — Jv) | u # v,u,v € [mu]}s {du — Jo: (fu — Ju) —
(iy — ju) | u # v,u,v € [ny]} is of maximal size.

Proof:  We have girth(Hs) = 8 if and only if
girth(Cy,) = 6 if and only if C} ATl = 0. By expanding
this last equality into the equivalent conditions we obtain:

(C12Cn + ChaCn ) AT =10,

(C21C12 4 CaaCap) AT =10,
(Ca1Cr3 + Ca2C3) 5T = 0.

Equivalently,
Y sy Y g Al=0,
e [ng) 0, 1y ]
Y. afeby N alethlsil agop
e [ng) 0, 1y ]
Z e e L z glhe—dul=lh—fs) A7 —=q.
U, v [ng] i [ny]

The claim follows. |

Remark 8: Since Cy, has girth 6, it means that Cy; have
girth 6, for all 1 < ¢ < j < 3. Therefore, all 2N x n,N
sub-matrices have girth 12 when, overall, H3 has girth 10.

Algorithm 5 Constructing Codes with n,. =3, g > &

Iy =0, 51 =0

2: for [ := 2 to0 n, do

3 Choose 4 ¢ {1y +1z — i |u,t, s € [ — 1]}

4: end for

s:for I := 2 to n, do

& Choose j; ¢ {ju+Js — Jts Ju+%a — b, Ju+ (Js —is) —
Ui._it}s'f:{'i'fa_frb'f'{ju_iu)zil'f'{ju_ju:l'i'{,js_ia}_{j!,_
i), i+ Js — Je + (Ju —ix) | a,beE [ﬂ.u],u,s;t = [I - 1]}

7: end for

Remark 9: We note that in Step 6 in Algorithm 5 (and also
in Algorithm 6 later), the range ¢ < [ — 1] assumes that the
exponents j; are chosen to be increasing in value with {. This
is how we have implemented the algorithms in our examples.
However, for general exponent selection (increasing in value
or not) we should amend Step 6 to have + £ [I] to ensure
that the conditions in the corresponding theorem are met, i.e.,
25 ‘?‘i {_?1: + Ja: Ju + ':..?-f = f.-a] + i, 24 + '[J'u TN 'ﬂ'u] + l:j!‘ =N
ig),it + js + (Ju — u) | uw,s € [I-1]}. O

Remark 10: Given a parity-check matrix Hs that meets the
conditions of Theorem 19 (ie., it can achieve girth larger
than 8) then the lifting factors W < Zt for which the
parity-check matrix has girth 10 (or larger) are given by
N {{is + it — fu — to, Ju — Ju +1a — &2, Ju — Jo + Ja — Jt,
Ju — Ju+ (e — te) — (e — i), (Je — i) — (G — )+
Uu Ol 'Eu] o Uu b 3{1?;'1 Ua i iﬂ] [ 'Ut n *If.j + ju - *It' |
s,t,u,v £ [ny]} , where the smallest such value is denoted
Npin and the notation « { b denotes that a does not divide
b. Similar statements can be made to determine viable (and
minimum} N for general H,,, and desired girth by using the

Authorized licensed use limited tor New Mexico State University. Downdoaded on December 21 2022 at 18:13-23 UTC from IEEE Xplore. Restrictions apply.



SMARANDACHE AND MITCHELL: UNIFYING FRAMEWORK TO CONSTRUCT QC-LDPC TANNER GRAFHS

conditions in the associated theorem or, equivalently, algo-
rithm. We note that picking a larger N than Ny, may ofien
yield better performance provided that the girth is maintained,
see Section V1L N

Example 10: Note that in Example 4, we used Algorithm 2
(the first part of Algorithm 5) to obtain a 2N x n, N matrix
Hj g-p of girth 12 for N = 77. The circulants ™ are

[I” 'z ... I“"‘]=

A = a2 2 2 2 o

44] )
The matrix Coy =1+ z+ 2"+’ + 2% + 220 4 £ 4 o
has, equivalently, girth 6 for N = 77.

Therefore, we need o choose the TOW
[z7: z72 g 7] such that Cay = = +--- + =’
has girth 6, but also such that the resulting matrix
Cs3 = xh~4 4 gphfa 4 gh—ta 4 ...  gl—ts s
girth 6, and also 'y has girth 6. S0 we choose 7 such that
the difference berween j; and any exponent already found
in '3 or 5 does not appear among the differences of the
exponents already found, and we impose the same for j; — .
i.e., that the difference between (7, — ¢;) and any exponent
already found in €% or Ch; does not appear among the
differences of the exponents already found.

We obtained the following matrix with Tanner graph of girth
10 for Ny, = 514 (applying Remark 10)

1 1 1 1 1 1 1 1
1 x g3 g7 12 g .80 44

5
1 66 461 106 444 194 274,385

i
xr

Note that Cha, Chz. and Chz all have girth 6, giving 3
(2, 8)-regular codes of girth 12. O

The following lemma extends Lemma 15 for 2N = n, N
parity-check matrices Ha of girth(H:) > 8 o 3N x n,N
matrices H4. It gives an easy way to choose the next exponent
values such that they are larger than the ones in the forbidden
sels, i.e., sets that would decrease the girth to 8 or lower.

Lemma 20: Let Hy and Cpy, be defined as in (12) and (14).
Let i; and j; be defined recursively as

B {_}1 =0, ja=1+4142+4+2iy .,
2, =142 3 +4, 1 =3
The Tanner graph of the code with parity-check matrix Hz has
girth 10 for some V.

Proof: Note that ¢y >4y 1 > - >4 and §; > 511 >
oo = J1. We obtain that if = 14+ 25,1 = iy +is = iy + i —
iy, for all u,s,t [l — 1]. The forbidden set for j is
{71+71—51 = 0, 51 +ia—in = ta—ip, 1 H{J1—31) — (1 —11) =
Dyig +da —dp+ (h —d1) = de +ia —dpiz + (1 —81) +
(Gi—i)—(h —d1) = d, 0+ 51—+ (1 — 1) = 12 |
a,b € [ny]} = {0,ig — tp,i2 +ig — ip,i2 | a,b € [ny]} and
1+ i + 24y, is definitely larger than each of these values.
Lastly, jr = 1+ 251+ > &1+ ju + s forall 5.t £ [[—1],
and so, it is larger than any of the values in its forbidden set
{.’ju T ja' __'jh_fu + 3'0, B ?rhsju + Uﬂ i 'Ea} y (ft b tli-]l?iﬂ + ?rr; Ha
ih+{ju _iu]hi! +|:ju _'iu]"l‘{ja _'i.i]'_ {J‘!, _it]ﬁii +j.1 e
Je+ (u —tu) | @ b€ [ngl,u,s,tc [I—1]} [ ]

Remark 11: Instead of the choice of j above, we can
alternatively choose, for example, j; = 1+ 35,y or jy = 1+

ip =0,
u=14+245_,, =

3813

Je_1t+max{fi_s, iy, }+max{j;_s,in,} to obtain a QC-LDPC
code matrix Hy with girth 10 for some N. Such choices
hold since each of the chosen values satisfy the conditions
of Algorithm 5, where they can be seen to be, at each step,
larger than the largest forbidden value. o

We exemplify this easy method below.

Example I1: We construct a 3 = 7 matrix based on
Lemma 20 to obtain the first matrix Hy ;-5 below of girth
10 for Npw = 433. After reducing the exponents modulo
N = 433, this matrix is equal to the second matrix, which
has girth 10 for Ny, = 347:

1 1 1 1 1 1 1
Hygma=|1 =« 2 ' P o F =
1 u_.liE wiﬁn 3:52:; I‘HJ'?:Z ;F‘MTE ‘_!:4415
1 1 1 1 1 1 1
1 T Iﬂ- ;J:? IIL ;1;3| .'1;53
1 :1,‘] 28 l.-zs:: ;EEIE. 1_!:‘2[!5 ;tf] 1 1_!:86

If we write 260 = —87 and 206 = —141, we obtain the
first matrix below of girth 10 for the new minimum value
N = 327, for which —141 = 186 and —87 = 240, as shown
in the second matrix below

1 1 1 1 1 1 i
Hygma=|1 &£ = £ g8 1 8] =

] gl o 87 06 o141 11 56

L, & 4 £ A it 9

1 . o & o g g5

] gl28 20 L05 186 11 86

This last matrix has girth 10 for Ny, = 275,

Mote that this N is not the minimum for which a code can
be found with girth 10, since the minimum with the algorithm
is W = 219. But it can be easily obtained by hand. O

Theorem 21; Let Hs and Cy, be as defined in (12)
and (14). Then girth(H) = 10 if and only if, for all | £ [n.],

1) each two of the four sets of differences
fiu —fp |2 F vttt € My, E L {u—J0 | 8 #
v,u,v € [y, # h{—gu+jo—dut+i | u#
v,u, v € [yl v F I -ttt —Je+ii | v # vu,
¥ € [Ry], v # 1}
contain non-equal values, for all [ = [m] and each set
is of maximal size.

2} each two of the four sets of differences
{iw—du+dv | uF v,u,v € [ny],v # T}, e —dp 1+ |
u ?E v, v e [n'l']'.'u ?é ”". {'::tl- _jﬂ] = '::TJ _.J'l':I +i |
uFvu,v € [mlv# I {iv—go+i |eFvuve
[1y], v # 1} contain non-equal values, and each set is of
maximal size.

3) each two of the four sets of differences
{Ju—dutip | Fv,u,0 € [my], v F# 1, L —du+i |
u#vuv e [n)v # I {ju—do+5 |uFvuve
[“t']u"-’ Flh{u—tutiv—Jot+ i |2 F#Fvuve
[my], v # [} contain non-equal values, and each set is of
maximal size.
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Proof: We apply the condition Cjy, Hs/A(Hy+Cr, Hz) =
0 1o obtain

(C12Cn + C13Ca1 + C13Ca2z™ + CyaChar™) A
|:C|2;I‘Jif T C'|:;;r‘j[ 1 I} =1,

(C23Cha1 + (C21Cr2 + C23Cag) z" + Cqy Crar™) A
(Ca1 + Cozae® +2%) =0,

(C22C21 + CayCrox™ + (C31C1a + CapCaz) ) A
(Ca1 + Caaz® 4+ 2%) =0,

from which we obtain (15)-(17). shown at the bottom of the
next page. These three equalities hold if any two monomials
on the left side of the triangle operator are not equal, unless
they are equal to one of the monomial on the right side of the
triangle operator. We obtain the claim of the theorem. ]

The following Algorithm 6 uses Theorem 21 to construct
a parity-check matrix Hz such that the girth is 12. Similar to
the above, the exponents iy, u < [n,] are chosen first, i.e.,
it chooses the row of the matrices =* such that the girth of
the 2N = n, N matrix is equal to 12. (Note that this matrix
would be the same as for girth(H3) > 8 from Algorithm 2.)
Following this, one more row is added with the additional
conditions above to insure that the girth is 12 rather than =
10 as in Algorithm 5.

Algorithm 6 Constructing Codes with n, = 3, g = 10

1: 49 =0,71 =0.

2 for 1 :=2 to n, do

3:  Choose i; & {iy+i, — i | u,t, s [ — 1]}

4: end for

5 for l:=21to0 n, do

i Choose j] (j‘f {t.a_'ib +..'I'-s_~'3.a +j.¢_jt+|:ju_iu]':'ia+
iy —ig+ |:.?-a = is:h —ta+Js +ju B [:_?1: o isjrjs = {Jc = i;] +
l:.]‘-u. = iu]-. ig + {,J:s = is] % 'Ut g T:E} =+ (Ju b iu]eil + 'i-:: -
jt =1 UF‘ 5 E ia} +U1+ = iii}!‘“ o ?rr; +_.i:.u 75 UJ' i '*;!,J g Ulr i
'iuj, I —ig +js +jt.| _ji!-. B tig—ip— i +..'i|-£.~..'li! +ju—j£1 |
a,b,c €[], s,u,v,te I —1])

7: end for

Remark 12: Again, for general exponent selection (increas-
ing in value or not) we should amend Step 6 to have t = [l
to ensure that the conditions in the corresponding theorem are
mel, i.e., 2j; ?( {ta+ s+ {fu— *Iu:h —dgt+Jotjutin fati+
I:ju_?:u}- in"' Ua =) iﬂ:|+3ll+{ju _*.u:'- tII! 'l'*lu'f'un _in:l +Uu e
iu), 201 —da+ ja+ (Ju—tu), js+ju | @ € [n], 5,0 € [ 1]}
isee Remark 9). O

The following is such an example. We start from Hs -5
and use Algorithm 6 to find the third row.

Example 12: The matrix

1 | 1 1 1 1 1 1

Tt = 2 4P o 0 g8 L

] 56 plad 232 336 526 664 747
has girth 12 for Ny = 1245 (length ny Ny, = 9960), for
example. H|

Remark 13: An alternative way to obtain a girth 12 matrix
is by starting from a girth 10 matrix and modifying the
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exponent of a circulant matrix that is a component of a
10-cycle. Since a girth 10 matrix H; must have all 2 = n,
and 3 x 2 sub-protographs lifted to girth 12 codes, we can
check the girth of the 3 < 3, 3 x 4, etc., submatrices to find out
which ones are of girth 12 (if any) and which are of girth 10.
If we find out that an entry decreases the girth from 12 (o 10,
we can change its exponent to a much larger one to break the
10 cycle. We do this in the following example. O

Example 13: Let us consider the (3, 5)-regular submatrix
H3 g-.s below obtained from the (3, 8)-regular QC-LDPC code
of girth 10 for N = 514 constructed in Example 10. Note
that, for this &, all 2 = 3 and 2 = 5 submatrices of the
3 x5 matrix Hs 5.5 correspond to (2, 3)-regular and (2, 5)-
regular protograph-based codes, respectively, with girth 12,
since (', .. has girth 6 and hence the submatrices (;; all
have girth 6 (they cannot be higher), resulling in associated
matrices of girth 12, Since the girth of Hs 4.5 is 10, there
must be some 10-cycles in Hy g~ in a 3 x 3 submatrix of
Hg_y;,g. We check the girth of each 3 = 4 submatrix and find
that the 3 x 4 submatrix obtained from columns 1, 2, 3, and
5 of Hy g~ has girth 12, and so does the 3 5 matrix obtained
from Hs ;-5 by masking !¢ (substituting it with 0). Hence
the 10-cycle visits this circulant. We make a substitution, for
example, +*** instead of ', to obtain H3 g=10 below of
girth 12 for Npip = 328:

I 1 I I I
Hypi—|l = = % 20 |

1 Ibﬁ I'.ll.'lﬁ I'Id.il w'lD-'t

I 1 I I !
Hygap= |1 = ¥ 24 28|,

1 Iﬁﬁ I'II)E 1‘244 I'.IQ:I-

We note that Hj g~a has girth 10 for Ny, = 158 and H3 g~ 10
has girth 10 for Ny, = 222, obtained using Remark 10, but
H3j 4~a cannot achieve girth 12 for any N. O

In Appendix C, we revisit Example 13 to show how we
can use the girth 10 construction together with the pre-lifting
technigues presented in Section V-B, in order to obtain a girth
12 code and possibly increase the minimum distance.

We conclude this section with a remark concerning the
extension of the n, = 3 resulls given above to n, = 4.

Remark 14: The conditions in the case of n, = 4 can be
obtained by starting from a 3 x n, matrix of the desired
girth and using the connection between gy, and Cg,. In
Section I, we show how to use Lemma 8 efficiently to do this
in the case girth(H) > 8, for which C} A(Cy +1) = 0 must
be satisfied, and, equivalently,

(C%, + C4C])A(CH, +1) =0,
Cp,CsACy =0, and CJCyAT = 0.

This resulls in an “inductive™ construclion: we start from a
3 % ny, malrix of girth larger than 8 to insure that C3; A(Cy, +
I} = 0 and thus reduce the above 3 conditions to only
the ones that derive conditions on exponents &;. In [29],
we provide all conditions for n, = 4 (derived using a more
direct approach) together with simulations of constructions
using the algorithms. o
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B. Case of Girth girth{H,,_.) = 2m = 12

If we want girth larger than 12, we cannot take H,_ to
be composed solely of circulants, since it is well-known that
a circulant lifting of a 2 = 3 all-one protograph limits the
girth to be 12, see, e.g., [5]: therefore, we need to consider a
matrix composed of permutation matrices such that some are
not circulant. For n, = 3, let 4, (J; permutation matrices and

1 1 - 1
H3= P‘.I P2 Fﬂ." 4
1 QE Qﬂ"

where we can take P = (}y = 1 without loss of generality.

We start with the remark that the parity-check matrix of
every QC-LDPC code with lifting factor N = N1 N3 can be
seen as a pre-lifted matrix formed by following a sequence
of liftings, one of factor N; followed by a lifting of factor
Nz, So one way to construct codes of larger girth than 12
{or to increase its minimum distance) is to rewrite the parity-
check matrix of a QC-LDPC code of girth 12 as an equivalent
pre-lifted matrix, and then modify some of the exponents to
increase the girth and/or the minimum distance.

Thearem 22: Every QC-LDPC code with parity-check
matrix H of length N = Ny Ny is equivalent to a pre-lifted
QC-LDPC code of pre-lift size (first lifting factor) Ny and
circulant size (second lifting factor) Ns.

Proaf: We can transform each polynomial entry g(x) =
go(z™) + zg1 (£ ) + -+ 2V gy, _1(z™) of H into an

iy

N1 x Ny equivalent matrix, [g(z)] 2

(18)

go(x)  xgn,—1(z) xgn,—2(x) xgi(x)
qi(x) golx)  xgn,—1(T) rgn, ()
an, _ E)  am —.2 ()  an,-s(x) aolx)

In the scalar matrix H we can see this equivalence by perform-
ing a sequence of column and row permutations (reordering
of the columns and rows). We abuse the notation and use
the equality sign between the two eqguivalent representations
{which result in equivalent graphs). u

For example, if N; = 2 and N = 2N;, then the entries
% = (z%)* and £t = z(z?)® give the following
transformations

0 0 ot
[z%] = [Lﬂ ;u“] and [z = |:J:a 0 ] .

3815

Similarly, if N = 3N, the equivalent code is

0 0 wﬂ-+1
. [T3n+I]= = 0 0 :

0 0 ="

¥ 0 0
[ =|D = B
0z 0

and

g 2
[I:Iu+‘2] =10 {0 J_:u+]
® 0 0
with component matrices of size Nz = Ny, In Appendix B,
we revisit Example 3 to show how Theorem 22 can be used
to obtain matrices of girth 24.

Example I4: In Appendix C, we consider the (3, 5)-regular
matrix Hs g5 from Example 13 of girth 10. To improve
performance, we first rewrile the code to display a pre-lifted
protograph with Ny = 2 and then modity the exponents to
achieve girth 12 for the same code length as the single lifting
of Hz 4~ 10 from Example 13 (giving a code of length 1640 in
both cases). The simulated decoding performance of both the
original codes, the pre-lifted code, and a random QC-LDPC
code with similar parameters are provided in Section VIL [

As mentioned above, the pre-lifted protograph must be free
of a 2 = 3 all-one matrix to achieve QC-LDPC matrices with
girth larger than 12. In the next examples, we demonstrate how
the (equivalent) pre-lift of earlier designs limit the girth (o be
12 and how a pre-lift can be selected to avoid such limiting
sub-structures.

Example 15: Consider the (3, 5)-regular matrix Hs g~10 of
girth 12 constructed in Example 13. Suppose that we write it
as a Ny = 3 prelift, described compactly as (19), shown at
the bottom of the next page. As can be seen, several 4-cycles
exist in the submatrix (one such example is highlighted by
boxed values) that correspond to 2 » 3 submatrices along with
the identity matrices to the left (not shown). Hence, simply
modifying exponents could not possibly increase the girth
beyond 12 for any N,

One can also try to modify the protograph to avoid as many
2« 3 all-one matrices as possible. The matrix (20), shown at
the bottom of the next page, was modified from (19) using
some non-circulant matrices for the pre-lift, but it still contains
such 2 = 3 submatrices (where entries involved are denoted
with variables A, B, and C'). Again, any choice of circulants
in those entries would limit the girth to 12 or less; however,
setting A = B = €' = 0 (masking) eliminates the limiting
structures and thus it is possible to turther increase the girth.

RIS

RIS

RIS

Z (Iiu-u I R e e e LT I.;iwfiu—:'u‘.l—iu) A (1+ Z (% +,:J"-~"'"}) =0,
Z (I{iu—ju}+.i|1.l + Iil+iu—iu + Iil+{"'u—ju}+ﬁu—iu:‘ + ;Ejf+{iu—ja-}) AN (I“ + Z {Ilu + ﬂ]"‘ih_.fh}) e []1

Z (I{ju—iu}+i~:- + I:l:t+.'|i1.;—‘i1.- + Ijl';":'ju—jv] +ﬂ'r+f.i|u—ful:|+|:iv—jul:|) Fi (.LJI i Z {ﬂ." + Ii1+ju—1u} =1{.

(15)
UE[fy]

(16)
UE [fiy]

(17)
UE [fig]
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Indeed, masking and modifying the exponents as shown above
gives a girth 14 irregular code for N = B91. Setling A =
1% B = 1% and €' = x5 gives a (3, 5)-regular matrix
with girth 12, but where many 12-cycles were eliminated by
choosing the original exponents to give an (irregular) code of
girth 14. Both the irregular code of girth 14 and the regular
code of girth 12 are simulated for N = 891 (or length n =
13, 365) in Section VII. 0
In Example 15 we were not successful in oblaining a
(3,5)-regular QC-LDPC matrix of girth 14, since it is not
trivial to avoid the limiting sub-structures in the pre-lifted
protograph without thought. We now show that the pre-lifted
protograph can be chosen/designed in a deterministic way to
avoid such structures. We note that starting tfrom a known
‘good” code, e.g., one with a parity-check matrix of girth 12,
provides a good base that can be modified relatively easily to
increase the girth. Indeed, we see below that some good codes
can be observed as derived from a good pre-lifted protograph.
Example 16: We construct a matrix Hz with submatrix

P B B Ps:|=|:;r: g7 8 :’“]

Qs Qs Qs Os 3 158 136 106

This matrix has girth 12 for N = 279 = 3% . 31. The
{submatrix) expansion of Hy as an equivalent code with an
observed 3-prelift is given in (21), shown at the bottom of
the next page, where we note that the original matrix was
carefully selected such that the pre-lift is free of 2 x 3 all-one
submatrices. The pre-lifted protograph of (21) corresponds to

z z 1 z%

[1 oz I]
which does nol result in any 2 « 3 all-one submatrix (even
though 4-cycles exist in the protograph) because each row
multiplied by = and =* does not overlap with the other rows
in more than 2 positions.

The submatrix in (22), shown at the bottom of the next page,
is obtained by moditying certain exponents in the above that
participate in 12-cycles. Tt has girth 14 for N = 752 (code
length n = 11, 280 and also, e.g., for N = 903 (code length
1 = 13, 545) that we simulate in Section V1l to compare with
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The final example demonstrates a construction of a girth
14 regular code obtained from a pre-lified protograph of size
Ny = 5 that corresponds to a protograph of girth 6. This
choice ensures a priori that the 5-cover does not have any
2 3 all-one submatrix.

Example 17: The matrix Hg with

By By By Bl [= ¥ =% a
5 QS Qi QE — IS? __:54 I‘Jd] IIEE

as in (23), shown at the bottom of the next page, has girth
12 for N = 245 = 5 49, i.e,, Ny = 5, Nz = 49. Note that
the pre-lifted protograph of Hy corresponds to

1 1 1 1 1 1 1 1 1 1
1 £ £ 22 #A|=|1 =z £ £ i
I Gl gl 3 I 52 gl g8 Gl

v R (R -
which has girth 6. S0 not only does it not have any 2 3 all-one
submatrix, it also does not have any 2 « 2 all-one submaltrix,
which is a substructure contained in the matrices of Pis
and P4, both matrices of Py, the first of the matrices listed
in Pz, and the first two mairices of Py, where Py are
protograph substructures shown in [8] to restrict the girth to
24, ¢ = G, listed for easier reference in Appendix D. Therefore,
a pre-lifted protograph of girth 6 has potential to lead to a girth
14, 16, or 18 code. In fact, if the pre-lift avoids the é-cycles
of the second matrix of Fyz and the 6-cycles of the last two
matrices of Py, then it has potential to yield a girth 20 or a
girth 22 code.

We modified the above exponents to obtain a girth 14 matrix
for N = 605 given by

R B P K
QE Qij Q-& Qs]
as in (24), shown at the bottom of the next page. Such
modification can be achieved relatively easily by masking and
then unmasking circulants one by one and choosing them such
that the girth is 14 (or larger as desired). O
Theorem 23: let B be an (n.,ny)-regular n. Ny = n, Ny
parity-check matrix of a protograph-based QC-LDPC code of
girth 6. Then there exist a lifting factor N for which B can
be lifted to obtain a QC-LDPC code with parity-check matrix

codes of similar lengths from Example 15. [0 H,,_ of girth 14, 16, or 18, as desired.
0 0 =z |0 0 S 0 0o 0
1 0 o|z2 0 o0 |0 z¢ 0|0 0O 7
|:P;g R P Rl |0 1 Dl £ o |0 0 2|2 0 0 (19)
@2 Q2 Q0 Q) |22 o0 o0flo o [0 0o |0 [#] o
0 £2 0 | 0 ] 210 1] 0 1] 86
| 0 o 2o £ 9 (o 2 o |5 0 0
[ 0 0 zz|o o H|lo £ 0 o 1
1 0 o0 |z 0o |l o o |0 o0 I
B BB B ] 1 0|0 o0 (£ 0 0 |7 0 0 (20
[ s Qz Qq Qs]_ D I 0[]0 0 | 0 0 20| il )
0 0 2|0 2 0 | A 0 0 0 B 0
| =22 8 @6 (¢ o @ | 0 =2 |0 o a™ |
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Proof:  From the limiting substructures found in [8]
and listed for easier reference in Appendix D, we observe
that all the structures that need to be avoided in order to
allow for girth 14, 16, and 18 contain a 2 = 2 all-one
submatrix (they have girth 4). These structures are discussed
in Example 17. Since B is of girth 6 and it acts as a
pre-lifted protograph used on an n. » n, all-one protograph
to obtain H,, , then H,,_ cannot possibly contain any of these
substructures. [ ]

Remark 15: We remind the reader that for girth 14 and
above we use the compuler to search for the next good value
and used a value of N large enough to allow such a value.
Algorithms like the ones we presented in Section V-A for
girth up to 12 could be developed, but due to the fact that
each protograph needs to be considered separately, it will
answer only this case rather than allow for a general algorithm
like those earlier. This could nevertheless be attractive if the

SEIT

protograph has been optimized; we show how this could be
done for the NASA CCSDS protograph in Section V1. O

Theorem 24: Let B be an  (n.,ng)-regular n.N; =
1y Ny parity-check matrix of a protograph-based QC-LDPC
code of girth 8. Then there exist lifting factors Ny for which
B can be lifted to obtain a QC-LDPC code with parity-check
matrix Hy_ of girth 20 or 22, as desired.

Progf: From the limiting substructures found in [8] and
listed for easier reference in Appendix D, and from the
discussions in Example 17, most of the forbidden structures
Pis and Pop for girth 20 and 22 contain a 2 = 2 all-one matrix.
There is one structure in Pz and two in Pag that have girth
6. Taking B of girth 8 guarantees that these structures are not
present in the lifted H,_ from B. |

Remark 16; Theorems 23 and 24 are only sufficient but not
necessary. Example 16 does not satisfy these theorems but
demonstrates that a 3 » 5 matrix of girth 14 can be obtained

0 0 x| O 0 | = [} [} 0 £ 0
1 0 0f 22 ] 0 0 af 0 0 0 gl
0o10/0 £ 0|0 0 £L|z4 0 o0 .
£ 000 & 0[]0 0 %[0 0 &= (21)
0 z0lo o0 225 o0 o0 |2 0 0
| 00 = 2 0 0 % 0 0 £35 0 ]
0 0 z| 0 o0 £ |z 0 o]0 5 0 ]
1 0 o| = 0 0 0 2 0] 0 0 gf
] = 0 { ! f 1] { ¥ | 12 ] { 2
20 010 £ 00 0 &0 0 & ke
n £ p| 0 0 L8029 g 0|58 0 0
| 0 0 L 0 0 0 ¥ 0 g7 0 |
[0 0 0 0 z|0 0 o0 2 o|o0 0 2 0 0|0 2 0 0 0 ]
1 o 0o 0o oflo o 0o o £|0 o o £ o|lo0o o0 £ 0 0
0 1 0 0D 0Ol 0 © @ 0|0 O 0 0 *|D 0 0 =2 0
0o 01 0 0(f0 =z 0 0 0|2 0 0 0 O|lO0 O 0 0 I
o o 01t 0O(fO O £ O O|0 £ 0 0 0|z2 0 0 0 0 (23)
0 0 0 zr 0|0 ¥ 0 0 0|0 0O 0 0 ™D 0 £ 0 0
0 0 0 0 |0 0 2 0o o0|(z2® 0 0 0 0/0 0 0 £ 0
£ 0o 0o 0o o|lo o o Lt p|lo0o £ o o 0|0 0 0 0
0o £ 0 0 ol0o 0 0 O L0 0 £ 0 0|z 0 0 0 0
| 0 0 22 0 0|2 0 0 0 0|0 0 0 2 0|0 %€ 0 0 0 |
0 0 O 0 |0 0 0 2 0 0 o = 0 0|0 £ 0 0o 0 ]
1 o 0 o o|lO0O 0 @@ o0 2|0 0 0 # 0|0 0 P 0 0
0o £ 0 0 0|1 @ 0 0 0O 0o @ o0 0 L0 0 0o =z o0
o 0o £ o0 0|0 L 0 o0 0|2 0o O 0 O0|0D 0 0 0 B
0 0 0 =z 0|0 0 =z 0 O 0 £ o 0 0|z 0 0 0 O
0 0 0 9 0|0 «® 0 0 O 0 ¢ 0 0 [0 0 £ 0 0
0o 0 0 0 z£9(0 o0 2 0 0 |z 0 O 0 0|0 O 0 ¥ 0
£ 0 o 0 o|0 0O 0 £ o0 D £2¢ g nooo o0 0o 0 o0 LM
0 £ 0 0 0|0 0 0 0 L% 0 0 £9 o o0 | 0 0 0 0
| 0 0 £ 0 0 |z 0 0 0 0 00 O O 2 0|0 L7 0 0 0 |
(24)
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from the all-one matrix pre-lifted with Ny = 3 provided that
the pre-lifted protograph excludes the limiting structure. [

V1. PrROTOGRAPHS WITH MULTIPLE EDGES

In this section, we briefly address the case in which the
original protograph is not all-one, to demonstrate how the
theory and techniques can be extended to such protographs.
In particular, we revisit the earlier example of the NASA
CCSDS protograph that was discussed in the context of sums
of permutation matrices in Examples 2 and 6, and now connect
to the perspectives developed in Section V.

We proceed then to consider a 4 8 protograph that contains
entries equal to 2 (multiple edges) and zero matrices as shown
in (10). Without loss of generality, we can let Fy = (}s =
Hs = 8 = I and assume the reduced matrix in (25),
shown at the bottom of the next page, because, by multiplying
rowsfeolumns with permutation matrices, we obtain equivalent
graphs and equivalent corresponding codes.

In this case, HHT = AAT + BBT = 8] + Ca +Cpy

——
where, unlike in the case of protographs without mﬁﬁiplc
Edges, CA = {CAI{J}HEH] ﬂl.'!d., therefore GH = CA + CB+
has non-zero entries on the main diagonal, ie., Cqu 7+ 0,
and C'y 4 # 0, respectively. The component matrices €4 g
for 'y are computed as

i 2w e G S e,

Cags2 x4 Chaudaz®ir i,
1
£ CI,E'I ] J;—bl + g02 +ZIEI_bJ'
=1
1
Capa2Cly 2™ 2%+ Z b
F=1

4
iy P —— —
Cau2Cl gt M ta™+) oh,
=1

Caan

4
Can2Clgtzr=+a+) 29,

=1
4

Capt 2CL g 2 x4 4 b=,
J=1
4
= O S g™ +Z;u“J'dJ,
§=1
and the component matrices C'g ¢y for Cg are
iy Fay & a
Ce11=0, Cp =0, Cp33=0, Cpaa=0,
AT & i—h AT & i —g
Cp12=Cp = Z "M, Op13=Cp 3 = Z TR
J=T8 J=6.8

AT & E : ay—ds AT A Z by—n
Gﬂ.ldzcﬂ__.{lz i Cﬂl'z:]:CB,Sg: i '{_.
=67 J=6,8
A T - E : by —d BT A z : g —d
CB.'E'i =(zﬂ_u= T .11{:3131 =CB_.-‘[3= | e il
J=5T §=5.6

Therefore, we obtain (g as in (26), shown at the bottom of
the next page.
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Mote that Theorem 5 still holds, so in computing B, we only
need to consider powers of Cly. For example, if we desire o
avoid 4-cycles then Oy AT = 0 must hold, which is equivalent
o

CauST =0, forall i € [4],
{GA,@ + Cp,y; A0 =0, forall 7,5 € [4],1 # 7.

Equivalently, no value in the set {2a;, 2bg, 2eq, 2d, | is 0 mod-
ulo &V, and each of the sets below are of maximal size

{—b1,a2,a; —b;,j € [8],j #5,6},
{—e1,a3.8; —¢j,7 € [8],5 # 5,7},
{—di,a4,0; — ds, j € [B], 5 # 5,8},
{—c2,b3,b; — €5, € [8],5 #6,T},
{—da, bs, b; — 4}, 7 € [8], 7 # 6,8},
{—ds,e4,¢5 — dy, 5 € [8],7 # 7,8}

A fast algorithm with comparative run-times similar to those in
Section V-A can be created to construct matrices H satistying
the conditions above.

Example 18: We revisit the matrix Hjqg gq) from Exam-
ple 2, this time as a 4 x 8 protograph-based matrix of the
form above, in order to compute the matrix Cy, .. and
show that it satisfies the conditions for the matrix H{]gg_m 1o
have girth 6. Indeed, the matrix in (27), shown at the bottom
of the next page, with N = 16, satisfies all the conditions
above (these can be easily checked by hand), and hence it has
girth 6. O

A similar approach and theory to that developed above for
the NASA CCSDS protograph can be developed for arbitrary
protographs with multiple edges.

VII. STMULATION RESULTS

To verify the performance of the constructed codes, com-
puter simulations were performed assuming binary phase shift
keyed (BPSK) modulation and a binary-input additive white
Gaussian noise (AWGN) channel. The sum-product message
passing decoder was allowed a maximum of 100 iterations and
employed a syndrome-check based stopping rule.

In Fig. 1, we plot the bit error rate (BER) for the R = 2/5,
(3, 5)-regular QC-LDPC codes from Example 13. We show
the performance of two codes of length n = T90 (N = 158)
and n = 1640 (N = 328) derived from Hs ;-s, both with
girth 10, the performance of the code of length n = 1640
(N = 328) derived from Hjg..q0 with girth 12, and two
random QC liftings of the all-ones 3 » 5 protograph with
the same length (N = 328) and respective girths of 6 and 8.
We observe that the larger lifting factor results in an improved
waterfall as expected and that the error floors of the large
girth codes are lower than the random code.!! Finally, also
shown is the pre-lifted version of the code from Example 14
and Appendix C with Ny = 2 and Ny = 164, which
results in a (3, 5)-regular code of length n = 1640. In this
comstruction, some exponents were modified to break some
circular sub-structures and we see that the error floor is
lowered compared to the single lifts.

"An additional example comparing single lifts to random codes with
vanous girth was presented in [1].
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Bit Error Rate

=

+Hs s, N = 158, n =790, g = 10
aRandom QOC, & =328, n = 1640, g =6
sRandom QC, N =328 n=1640 g=8§
-Hs gngs N = 328, n = 1640, g = 10
o-Hygon, N = 328, n = 1640, g = 12
=+=Pre-lifted, N} = 2, n = 1640, g = 12

0.5 1 1.6
BufM,

Fig. 1. Simulated decoding performance in terms of BER for the R = 2/5
QC-LDPC codes from Examples 13 and 14.

In Fig. 2, we plot the BER for the B = 2/5 QC-LDPC
codes with longer block lengths from Examples 15 and 16.
We remark that these high girth codes display no indica-
tion of an error-floor, at least down to a BER of 10~7,
The regular codes from Example 15 (reduced multiplicity
of 12 cycles) and 16 (with girth 14) have similar perfor-
mance in the simulated range, but we anticipate deviation
at higher SNRs where the 12-cycles are involved in trap-
ping sets. For reference, the iterative decoding threshold
for (3,5)-regular LDPC codes is 0.96dB [30]. The irreg-

B9

107 T T T T T T T T T
1I:I'1‘ i
102 ~
2
8 1 1
o ]
£ ot 3
<4
ol 1
1 2
-wFExhl: Irreg, = 13,365, = 14 E
" b Exdl: Reg., n = 13, 365, 9 = 12 o
=Ex52: Reg., n= 13,545, 9= 14
& T T T T T L L : L
e 1] o2 0.4 0.6 0.8 1 12 14 16 18 2
B/ Na
Fig. 2. Simulated decoding perfformance in terms of BER for the R = 2/5

QC-LDPC codes from Examples 15 and 16.

ular code of girth 14 is shown to outperform the regu-
lar codes in the simulated range. We remind the reader
that the irregular code was obtained by masking some
circulants from the pre-lifted code to increase the girth.
Such a strategy can yield good optimized irregular LDPC
codes.'?

2%e note that although the emphasis in this paper is not o construct
optimized QC-LDPC codes. the performance of these codes is superior lo
those of, e.g., comparable high girth but longer codes from [31].

I'+A 5 Py Py 0 B B B
G T+ O Qs |Q 0 Q7 Qs
Ha[A|B]2| B R I{Ry R |Rs Rs 0 R
i Sa 54 IT+85|85 5 S5 0
A B
14 ™ x5 = i T - o
L 1+ " i s 0 P g
= w‘-’l w‘-‘z 1 - Ir!; Iﬂq _.re;. ‘_!:cﬁ U ;Eﬂ” {25}
T T2 s 14+x% |[g95 gde 97
[ o 4 gl I—b] + 2 + E Iﬂj—bf 1 4 gla + E P Bt I—I‘.‘il 4+ ot 4 E Iﬂ_,—dj 7
Je(s] i8] e8]
i a8 J#E,T FrEE
T pgh + 3 gt b 4 ghe g+ Y gy gl ¥ b
FE[d] FE[8] FE[E]
758 i7R,T P
r—8s + o1 + z w—aj+c,- E—bs +It‘2 + E I—b_{+l".--_j 3 + 8 E—da + e i E ‘Eﬂ_{—dj
F<[8] JE[4] JE[]
I=8,7 is6T IwT e
04 + Idl. + E z—ﬂ.j+df I—b.,_ o Idz e E I—b_,+d1: Tt R Id'a + E I—E‘_-,-+vlfj I—vlf.;_ + Idl
ic |8 (3] Fe(8]
| LB ih.E iwT.E
{26)
1+z7 o2 " g i G ol A |
G 15 7
a T 1+ 1 T 1 0 1 =
Hii2s.60) = L4 " 14158 g4 A1 0 L (27)
1 T z? 1422 (2% 2 1 0
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VIII. CoNCLUDING REMARKS

In this paper we provided a unifying framework under which
all constructions of girth between 6 and 12 can be included.
Towards this goal, we gave necessary and sufficient conditions
for the Tanner graph of a protograph-based QC-LDPC code
to have girth between 6 and 12. We also showed how these
girth conditions can be used to write fast (run-time of several
seconds) algorithms 1o construct such codes and how to
employ a double graph-lifting procedure, called pre-lifting,
in order to exceed girth 12. We showed that the cases of
variable node degrees n,. = 2, 3, and 4 that we consider in
this paper are not just particular cases, but provide the girth
tramework for the n. x n, all-one protograph, for all n, = 2.

We also presented a new perspective on n.N = n, N LDPC
protograph-based parity-check matrices by viewing them as
1N rows of a parity-check matrix equal to the sum of certain
1ty N % m, N permutation matrices and highlighted an important
connection between n, x ny, protographs, for any n, = 2, and
protographs with n, = 2. Finally, we exemplifed how the
results and methodology can be used and adapted to analyze
the girth of the Tanner graph of any parity-check matrix on an
irregular, multi-edge protograph of the NASA CCSDS LDPC
code.

APPENDIX A
ProoF oF LEMMA 7

Proaf: Every matrix H has a graph that is equivalent to
that of a matrix in reduced form, where the first row as well
as the first column of H are made of identity matrices. For
this reduced matrix, the corresponding matrix ';; contains the
identity matrix as a submatrix. It follows that set of N 6-cycles
must exist, where a cycle is formed by tracking edges going
from any entry 1 in the position (i,{) of T (which exists
because Co; has T as submatrix) to the 1 in the position (i, )
of Ty, to the 1 in the position (i,7) of Csa, to the 1 in the
position (7,i) of Cyz, to the 1 in the position (i,t)} of Cya,
to the 1 in the position (4,7) of (zs, and back to the 1 in the
position (i,4) of Cg;, thereby visiting the matrices as shown
in the following diagram:

Ciz — Cia
T l
Oy «— 1 +— Cus.
l |
Oy — Ca

{We can easily generalize this sequence following the example
above.) We obtain that girth(Cy) < 6, for any n, x ny
protograph based matrix w‘iéh all érncﬁ,
i . 13 L
Similarly, if n, = 4, Co i
of C'y. As above, we can reduce these matrices such that [ is
a submatrix of each one of ;; in the above matrix, thereby
exposing at least N 4-cycles in the graph of Cy. |

is always a submatrix

APPENDTX B
ExAMPLE 3 REVISITED
In order to exemplify Theorem 22, we revisit Example 3 and
show how we obtained the matrices of girth 24. Suppose that

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 68, NO. ¥, SEFTEMBER 2021

a 2 x 3 protograph based code has [+ Py + Py = 1+x* +2° of
girth 6 (it salisfies the conditions of girth 6) or, equivalently,
girth{H) = 12. We rewrite this as

14z = | _ ] . [0 =2
[ @ l-l-u:J_I-l_[ﬂ .L:|+[.t U]‘

) 0 =2
PT:[E J.,:| PH':[:: ll:]:|

We now slightly modify one entry in this quasi-cyclic parity-
check matrix, enough to break the equivalence to the cyclic
code. For example, the 18 = 18 matrix

a|l+T 2
I+ﬂ+ﬁ—[z 1+ﬁy

« 0 0
Pé:[ﬂ .!.‘5]' Pa:[;t‘ ﬂ]’

has an associated graph with girth 8. Note that we had to
increase the size of the circulant matrices in order to observe
an increase in girth. It follows that the LDPC code with 36 =
54 parity-check matrix

1+2% +2% =

[I I I]— I|;r ID ||I]Iu:2
1 — .
I B & _JTIZI:L-rJ x 0
[1 0|1 0 10
1B de1 |81
|10 [z 0O 0 =
| 01 (0 2 [z 0O

has girth 16.

Similarly, we can start from the cyclic code of length
21 with the same parity-check matrix 1+ 7%+ r3. We reorder
the rows and the columns of the parity-check matrix or,
equivalently, make the replacements such that

1+ Ey 0
IT+B+PB=| 0 1+z = |,
| 1 ] 1+=x

r 0 0] 0« 0
Po=10 z 0|, Pa=|0 0 =z|.

0o 0 = 1 00 0

0 1+

xr 0. 0 0 x 0

Bi= |0 =% 0], =0 0 af
o0 I z 0 0

to obtain girth 8 for a circulant size N = 11, girth 10 if the
size of the circulant is increased to N = 31, and girth 12 if
the size is increased to N = 41, Therefore, the corresponding
parity-check matrix H has girth 24 for N = 41.

APPENDIX C
ExAMPLE 13 REVISITED
We consider the (3, 5)-regular matrix H3 4-.z from Exam-
ple 13 of girth 10. To improve performance, we rewrite the
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B 0 1 0 1 0 1 0 ]
o1]0 110 1 0 1 0 1
T T T S
Hag=2= 109 111 o0|s® 0|0 5|0 o0 (20
1 s W (o W[ o [FF @
0 1|0 =% 10 o8 B 88 g =
[1 0| 1 0 1 0 1 0 1 0
o010 1|0 1 0 1] 0 1
1 0| 0 T 0 =% % 0 [z D
H3 g210 = 01l 1 ol o 0 5| 0 L (29
IO = ol [aF B (e ol e 6
|0 1] 0 g2 0 % 0 == 0 g% |
codes we constructed to display a pre-lified protograph with REFERENCES

Ny =2 as in (28), shown at the top of the page. The matrix
(299, also shown at the top of the page, was modified in
iwo entries, such that the 3 = 4 submatrices do not have all
permutation matrices circulant (and hence commutative) and
thus they can observe an increase in minimum distance and
in girth. We need to modify at least one of every group of 4.
The matrix shown in (29) has girth 10 for N = 123 and girth
12 for N = 164. Simulation results for the second code are
provided in Section VII

APPENDIX D
SUBSTRUCTURES Py THAT LiMIT
GIRTH TO 2i, 1 = 6, FROM [8]

We use the notation found in [8]. Let Py denote the
incidence matrix of the subgraph of a protograph, which gives
rise to an inevitable 2i-cycle such that no inevitable cycles
of length smaller than 2¢ are included in it. Therefore, if a
protograph contains the submatrix Py, or PY, for i > 6, then
its protograph code cannot have girth larger than 24,

Lemma 25 [8]; The matrices Py are as follows:
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