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Abstract

Water supplies contaminated with heavy metals are a worldwide concern. MXenes have properties
that make them attractive for the removal of metal ions from water. This work presents a simple
one-step method of Ti3Co Ty carboxylation that involves the use of a chelating agent with a linear
structure, providing strong carboxylic acid groups with high mobility. The carboxylation decreases
the zeta-potential of Ti3C,Tx by ~16 to ~18 mV over a pH range of 2.0 to 8.5, and improves Ti3C2Tx
stability in the presence of molecular oxygen. pH in the range of 2—6 has a negligible effect on the
adsorption capacity of TizCoTx and COOH-Ti3C,Ty. Compared to Ti3C2Tr, COOH-Ti3C, Ty has a
slightly higher but much faster mercury uptake, and the concentration of mercury ions leached out
from it is lower. For both Ti3C2Tx and COOH-Ti3Co Ty, the leached mercury ion concentration is
far below the US-EPA maximum level. At an initial Hg?" concentration of 50 ppm and pH of 6,
COOH-Ti3C- Ty has the equilibrium adsorption capacity of 499.7 mg/g and removes 95% of Hg?*
in less than 1 min. Moreover, it has an equilibrium time of 5 min, significantly shorter than that of
Ti3CoTx (~ 60 min). Finally, its mercury-ion uptake capacity is higher than commercially available
adsorbents reported in the literature. Its mercury removal is mainly via chemisorption and

monolayer adsorption.
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1. Introduction

The presence of heavy metal ions (HMIs) in aquatic systems, particularly in drinking water, is of
growing global concern [1-3]. Among heavy metals, mercury (Hg), which has many industrial
applications, is a hazardous water pollutant that can damage the nervous system. The U.S.
Environmental Protection Agency (EPA) has placed an upper limit of 2 ppb for Hg ions in water
and wastewater streams [4]. Conventional methods for the removal of heavy metals are
precipitation, electrolysis, ion exchange, adsorption [5], membranes, concentration and solvent
extraction. Among them, adsorption has received considerable attention for its considerable
removal efficiency, low cost, and inherent flexibility [6, 7].

Traditional sorbents such as activated carbons, clays, and zeolites are not efficient for water
remediation due to their weak affinity with most metal ions, low surface area, and pH instability
[8, 9]. Although metal-organic frameworks (MOFs) have demonstrated exceptional capacity to
adsorb heavy metal ions and water contaminants, their applications have been limited due to their
severe agglomeration, low stability, and complex synthesis [ 10]. In contrast, two-dimensional (2D)
materials with special structural features and abundant functional groups can be ideal candidates
for the removal of heavy metal ions from wastewater effluents. Graphene oxide (GO),
molybdenum disulfide (MoS:), and their derivative are attractive for the adsorption of metal ions
from wastewater. The particular structures and excellent affinity of different functional groups on
sorbents (e.g., carboxyl, hydroxyl, and carbonyl) towards metal ions are their advantages [11, 12].
The selectivity and capacity of the adsorbents can be improved by surface modification with
different chemical compounds (e.g., dithiocarbamate, polyethyleneimine (PEI), polyacrylamide,
polymaleicamide dendrimer) and functional groups. The electron-donating property of most

dendrimers forms Hg-complexes, which enhance the mercury-ion removal capacity of modified
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GO nanosheets. It was reported that more than 99% Hg?" was removed by anchoring SnS; on GO
nanosheets [13]. The modification of GO with thiol groups also resulted in a six-fold higher Hg*"
uptake than the pristine GO [14]. The synergistic effect of three adsorption mechanisms, the soft
Lewis acid-base and electrostatic interactions of S?>~ with mercury ions, and the electrostatic
interactions and ion-exchange capability of —OH and —COOH groups with Hg?", are the main
reasons for high-efficient removal of thiol-modified GO nanosheets. Additionally, the weak
stability of GO in acidic and alkaline environments and difficulty in the separation of GO particles
from effluent are the main obstacles to their practical applications. Moreover, it has also been
reported that GO nanosheets have moderate toxicity to human cells [15, 16]. However, in the case
of MoS: nanomaterials, poor dispersibility in aqueous media and small interlayer spacing of ~2.7
A limit their application for heavy metal removal [17, 18].

2D structure, hydrophilicity, and tunability of MXenes have provided potential alternatives
for the removal of mercury ions from aqueous solutions [19]. Yu et al. [20] recently reviewed the
application of MXenes and functionalized MXenes for the removal of different water pollutants
and heavy metal ions, highlighting that the removal efficiency strongly depends on the functional
groups on the MXene and the chemistry of the contaminants. MXenes possess abundant active
sites (—OH, —F, and —O), negative zeta potential (pH > 2.3), and excellent dispersity in water,
which can facilitate mercury capture [21-31]. The in-situ reductive-adsorptive feature of MXenes
is distinctive and makes them very appropriate for the removal of metal ions from wastewater.
Ti3C, Ty was utilized for the selective adsorption-reduction of BrO3 to Br~ in aqueous waste
streams [32]. For example, Cr®" ions were reduced to less toxic Cr** and then removed by Ti3C, Ty
nanosheets. Reductive adsorption of Cu?" was reported for both delaminated and multi-layered

MXene nanosheets. However, Ti3C,Tx decomposes to TiO> crystals in aqueous media due to
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surface oxidation [33-35]. The low energy formation of OH-terminated Ti3C,T, supports faster
oxidation of this material in aqueous media. Hu et al. [36] studied the removal of Hg*" from mixed
divalent cationic metal solutions using Ti3C>Tx. They ascribed the good selectivity of the adsorbent
to its large number of oxygen-containing functional groups on its surface. They reported that the
adsorbent maintains a high adsorption capacity at low pH. Shahzad et al. [37] studied the Hg*"
removal capacity of TizC,Txand TisCNT (titanium carbonitride) MXenes from aqueous solutions.
Their study confirmed the interaction of bimetal and hydroxyl groups with Hg?* via electrostatic
interactions and adsorption-coupled reduction. Their batch adsorption studies showed that Ti3C2Tx
and TisCN have Hg?* removal capacities of 5473 and 4606 mg/g, respectively. A nice critical
review by Othman et al. [38] has put MXenes adsorption behavior toward heavy metals into
perspective.

The functionalization of Ti3CoTy surface to delay the degradation and improve the rate of
adsorption has been investigated. For example, carboxylated Ti3C>Tx MXene (core-shell COOH-
MXene@PEI-PAA) synthesized via the layer-by-layer self-assembly method showed good
stability and reusability for dye removal [39]. The presence of positively-charged groups in the
nanocomposite decreases its capacity for metal ions capture. MXenes functionalized with MoS:
displayed a high mercury adsorption capacity of 7.16 mmol/g and a distribution coefficient of
7.87x10° mL/g [40]. Other groups that have reported the carboxylation of Ti3C> Ty and its potential
for heavy-metal ion removal are our group [41] and Zhang ef al. [42]. Laki et al. [41] modified
Ti3CoTx with a chloroacetic acid solution at room temperature and prepared carboxylated Ti3C2Tx
(Ti3C2T,—~COOH). Their Ti3C2T,—~COOH showed high stability and dispersity in aqueous media
and negative zeta potential in a wide range of pH. Zhang et al. [42] reported that: their synthesized

carboxyl functionalized Ti3CoTx (via the attachment of phenyl carboxylic acid to TisC,Tx via a
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three-step reaction) had significantly higher stability in water than the pristine Ti3C,Ty; and it
exhibited superior U(VI) and Eu(Ill) adsorption capacities up to 334.8 mg/g and 97.1 mg/g,
respectively. It is believed that the carboxyl groups stabilize MXene layers, owing to higher energy
formation compared to the OH—terminated Ti3C,Tx [43]. However, bonding the carboxyl group
directly to a benzene ring in the benzene carboxylic acid (benzoic acid) makes this acid weak (Ka
= 6.4 x 107> at 25°C). Moreover, the benzene ring restricts the mobility of the carboxylic group
and thereby decreases its availability for efficient metal ions capture.

In this study, we present a simple one-step method of Ti3C, T, carboxylation that involves
the use of a chelating agent with a linear structure, providing strong carboxylic acid groups with
high mobility. It investigates how introducing carboxyl functional groups on the surface of Ti3C>Tx
MXene affects the ability of Ti3C,Tx to adsorb mercury and mitigates Ti3C,Tx oxidation without
sacrificing the dispersibility and hydrophilicity of the MXene. The surface and structural properties
of the carboxylated Tiz3CoTx (COOH-Ti3C>Ty) are studied using Fourier transform infrared (FTIR)
and UV-Vis spectroscopies, zeta-potential measurements, scanning electron microscopy (SEM),
and X-ray diffraction (XRD) analyses. The mercury adsorption of the surface-modified MXene
(COOH-Ti3C2Ty) is studied in a batch system at different pH values and with different initial
conditions, and likely adsorption mechanisms are discussed. Preliminary results from this study

had been presented at the 2019 AIChE Annual Conference [41].
2. Materials and Methods

2.1. Materials
Mercury (II) nitrate hydrate (>98%) and chloroacetic acid (>99%) were purchased from Bean
Town Chemical (BTC). Nitric acid (>69.1%) and sodium hydroxide (>98%) were bought from

Fishers scientific. Hydrochloric acid (HCI>37%), hydrofluoric acid (HF>51%), and lithium
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chloride (LiCl > 99%) were supplied from Sigma-Aldrich Co. Diphenylthiocarbazone (dithizone),
and distilled 1,4-dioxane were obtained from TCI, Inc. Thiourea was purchased from Alfa Aesar;
it was used for MXene recovery. Deionized water was purchased from Hanna Instruments (HI-
70436 De-lonized water). A stock solution containing 1000 mg-L™' of Hg?* was prepared by
dissolving Hg (NOs3); in deionized water acidified with HNOs3 (0.5% v/v) to prevent hydrolysis.
All solutions and reagents for spectrophotometric determination of trace levels of mercury(Il) were
prepared according to the procedure reported in [44].

2.2 Synthesis of Ti3C2Tx and COOH-TizC2 T

Ti3AlC2, MAX phase was prepared according to the literature [45]. Delaminated TizCoTx was
synthesized by selective etching of the Al element from the Ti3AIC2 MAX phase by using a diluted
HF/HCI solution [46]. 2 mL HF solution and 12 mL HCI (38% v/v) were added to 6 mL deionized
water in a polypropylene vial. 1 g Ti3AlC; powder was added slowly to the solution and stirred
(300 rpm) for 24 h at 35°C. After the etching process, the excess acids were removed via
centrifugation (3500 rpm, 10 min) and washing the collected solid several times with water to
attain a pH between 5-6. Next, 50 mL of DI water was added to the collected solid, followed by
adding 1 g of lithium chloride to the mixture and stirring it for 24 h at 35°C to delaminate Ti3CoTx
[47]. The colloidal solution was washed and centrifuged at 3500 rpm for 10 min to remove the
excess amount of lithium ions. The sediments were shaken and vortexed in water and centrifuged
at 3500 rpm. The supernatant was collected as the high quality MXene intercalated with Li" [48]
for further use, and this process was repeated a few more times. The collected supernatant colloidal
solution was placed in an argon-sealed vial [49], and its concentration was measured using the
gravimetric method at room temperature. The COOH-Ti3C, T, was prepared by the addition of 1.7

g chloroacetic acid to a 1 mg/mL delaminated Ti3C, T, colloidal solution at 0 °C and stirred for 2h
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to convert —OH groups on the surface of Ti3C,Tx into carboxyl groups (Figure 1). The mixture was
then neutralized with an abundant amount of distilled water to obtain a pH value of ~5.5 for the
supernatant.

2.3. Batch Adsorption Experiments

We measured trace levels (0.1-500 ppm) of mercury (II) spectrophotometrically using an
ultraviolet-visible (UV-Vis) spectrometer. The calibration of the spectrometer involved the
following steps. 0.8 mL of a 0.2 mM dithizone solution and 0.1 mL of IM H2SO4 were first added

to 4.1 mg of a 0.1-500 ppm mercury solution. 5 mL dioxane was then added to the mixture. For

(a) Ti>AIC:
Selective etching

>

HF/HCI, 24 h

Carboxylation

' <

CICH2CO:H, 2 h

4 o

HOOD*HDO

Qo
Q
&
Figure 1. Schematic representation of the COOH—Ti3C, T, preparation. (a) MAX phase, (b) un-delaminated
Ti3CoTy, (¢) delaminated Ti3Co Ty, and (d) COOH-Ti3C,Tk.
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Hg?* concentrations in the range of 0.1-50 ppm, a linear correlation between the absorbance and
Hg?* concentration was obtained.

The mercury adsorption experiments of the Ti3C, Ty and COOH-Ti3C, T, were conducted
using a batch method (V/m of 10 and 100 mL/mg). 1-1000 ppm Hg?** aqueous solutions were
prepared. 1 mg of COOH-Ti3C2T; or TizC2Tx was added to 10 mL of an Hg?" aqueous solution
and stirred slowly for 24 h at 25°C to reach adsorption equilibrium. Next, the mixture was
centrifuged (at 3500 rpm and for 10 min) and filtered using a 25 mm hydrophilic PTFE (0.22 um)
filter with no mercury ions adsorption. The supernatant solution was collected to determine Hg?*
content of the sample via UV-Vis spectroscopy. The Hg?" concentration of each solution was
measured before and after adsorption. Using these concentrations and the following equations, we

calculated the adsorption capacity (Q,, mg/g) and the mercury removal percentage (%):

CoV—CV

Q¢ = % (1)
Co—Ct

Removal (%) = — % 100 )

Co

where m (g) is the mass of the adsorbent, IV (mL) is the volume of the solution, and C, and C;
(mg/mL) are the Hg** concentration of the solution before and after the adsorption, respectively.
Each COOH-Ti3C. Ty adsorbent was recovered by centrifugation and desorbed in 50 mL of an

acidic mixture of nitric acid (0.5 M) and thiourea (5 wt.%.) stirred at 200 rpm and 298 K for 8 h.

2.4. Effect of pH on Adsorption Capacity

To study the effect of pH on the adsorption capacity, we conducted the batch adsorption
experiments (V/m = 100 mL/mg) with initial Hg concentrations of 50 and 200 ppm at the pH range
of 2—6. The pH of the system was controlled by adding 0.1 M HNOs. We carefully monitored pH

to ensure that it remained constant during the tests.
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2.5. Hg Leaching Test

To simulate the potential mercury contamination during the adsorbent disposal in a landfill, a
chemical analysis (namely, toxicity characteristic leaching procedure) was conducted. First, the
Hg-Ti3C,Tx and Hg—COOH-Ti3C, Ty samples from the adsorption experiments were dried at room
temperature. 5 mg of each sample was then added to 100 mL of an extractant solution (0.57 vol.%
glacial acetic acid) and stirred at 100 rpm and room temperature. The solution was filtered, and
the mercury concentration was measured using the UV-vis absorption method at different
extraction time instants.

2.6. Characterization Methods

Ti3C2Tyx, COOH- Ti3C2 Ty, and COOH- Ti3C2Tx—Hg complexes were characterized using multiple
techniques to evaluate their morphology and physicochemical properties. Zeta-potential (C-
potential) was measured using dynamic light-scattering analysis (Brookhaven Instrument Corp.,
Holtsville, New York) at room temperature. X-ray diffraction (XRD) patterns were recorded using
an X-ray diffractometer (Rigaku SmartLab, Akishima-shi, Tokyo, Japan) with Cu Ka radiation (A
= 0.15406 nm), 0.02° step size, and dwelling time of 0.5 s. Transmission electron microscopy
(TEM) images were obtained using a JEOL JEM-1400 series 120kV Transmission Electron
Microscope (Peabody, Massachusetts, USA). In addition, a Zeiss Supra S0VP scanning electron
microscopy (SEM) and energy dispersive X-ray analysis (EDX) were conducted to check the
morphology and elemental composition. Fourier transform infrared (FTIR) spectra were obtained
on a Thermo Fisher Nicolet IS50 FTIR spectrometer (Thermo Fisher Scientific, MA, USA) in the
wavenumber range of 3600-600 cm ! with the resolution of 0.5 cm™!'. UV-Vis was conducted
using a UV-1700 Shimadzu spectrophotometer (Shimadzu, Kyoto, Japan) with a 10 mm optical

path length cuvette and scanning from 200 to 1000 nm. Thermogravimetric analysis (TGA) was
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performed using a SDT 650 (TA Instruments, Utah USA) between 50 to 750 °C with enhancement

rate of 20 °C-min"' under highly pure nitrogen.

3. Results and Discussion

3.1. Characterization of Ti3C:Tx and COOH-Ti3C2Tx

TEM analysis shown in Figures Sl1a and S1b (in the Supplementary Information) indicates that the
functionalization does not alter the morphology of the flakes. Figure S1c depicts the (—potential of
Ti3C,Tx and COOH-Ti3C Ty colloidal solutions (~0.04 mg-mL ') in the pH range of 2.0 to 8.5.
The C-potential of COOH- Ti3C, Ty at a pH value of 5.5 is —44.3 mV, which is almost twice that of
Ti3Co Ty, confirming the successful carboxylation of TizCT. It seems that replacing the hydroxyl
groups that each has one oxygen atom with the carboxyl group that each has two oxygen atoms is
responsible for this improvement. Moreover, carboxyl anions are very stable due to the resonance,
which improves the adsorption capacity of COOH-Ti;C.Tx by preventing aggregation of the
nanosheets. FTIR spectra demonstrate the successful replacement of —OH groups with -COOH
moieties after the modification. As can be seen in Figure S1d, characteristic peaks of COOH—
TisC, Ty appeared at 700—900, 1375, 1750, and 2150-2280 cm™!. The absorption peak at 597 cm™!
is related to the vibration of Ti—O bonds [22, 50]. The new peaks at 1750, 1400, and 1200 cm!
correspond to the carbonyl linkages, confirming the modification of Tiz3CT..

To determine the extent of the Ti3C2Tx modification, we performed TGA on TizC,Tx and
COOH-Ti3C, Ty (Figure 2a). After complete decomposition, the residual TizCs in the Ti3C. T, and
in COOH-Ti3C,Tx samples (denoted by Xyx and Xcoon—mx) were 89 and 84 wt. %, respectively.
COOH-Ti3C,Tx showed more weight loss than Ti3CoT, due to the presence of the organic
CH>COOH groups [51, 52]. From these values, the grafting degree (GD), the number of —

CH2COOH groups grafted onto each Ti3C, T, repeat unit, can be calculated using the equation [53]:

10
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GD = (XMX _XCOOH—MX) (XCOOH—MX) 3)

McH,cooH MrTizCyTy
where Mri,c,t,and Mcy,coon are the molar masses of a Ti;C, T, repeat unitand CH,COOH,
respectively. Assuming that x = 2 (T= -0, —OH, —F), and for every —OH group on the surface of
the MXene, there are three —F and —O functional groups (that is, the molar fraction of —OH groups
among all pristine-MXene functional groups is 0.25), Mrj,c,, = 201.65 g/mol. Mcy,coon =
59.05. Thus, our sample has a GD = 0.20, which implies that 20 —-OCH,COOH groups were
grafted to every 100 Ti3CoTx repeat units. The grafting yield (Gy), the fraction of the ~OH groups

that participated in the grafting, can be calculated using [53]:

GD
YoH X

(4)

Gon =
where ygy is the molar fraction of the —OH groups among all pristine-MXene functional groups.
You = 0.25, x = 2, and Ggy = 0.40 suggest that about 40% of —OH groups on TizCoTx were
converted to -OCH>COOH. The partial conversion of the OH groups can be due to the incomplete
delamination of the Ti3CoT. sample, which limits the accessibility of all reactive groups to
CICH>COOH.

XRD measurements (Figure 2b) indicate that the characteristic peaks of (002), (004) and
(008) at 20 = 6.5°, 14° and 27°, respectively, confirming the successful synthesis of Ti3C,Tx. The
sharp (002) peak was shifted to lower frequencies at 20 = 4.7°, indicating a larger d-spacing layer
~19.2 A for COOH-Ti3C,T, and successful carboxylation of TizC,T, surfaces. After mercury
adsorption by Ti3C>Tx and COOH-T13C, Ty, a small peak at 20 = 35° appeared, suggesting a small
portion of Ti atoms oxidized into TiO2 during the reduction of Hg>* to Hg* and Hg". This is a well-
known mechanism of metal adsorption by MXenes [54]. The lower intensity of the TiO» peak for

the COOH-Ti3C, T, samples verifies more stability of the modified MXene against oxidation. The

11
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(002) peak of the pristine TisC2T; shifted from 6.3° to 5.7° (d-spacing from 14 A to 15.5 A),
indicating that the intercalation of mercury ions expanded the MXene interlayer spacing [23, 55].
However, the (002) peak of COOH-Ti3C> Ty after mercury adsorption slightly shifted to a higher
angle, which explains the smaller interlayer spacing. The contradiction in the trend can be
attributed to the stronger interactions between the carboxylic acid groups and the mercury ions
(a) (b)
COQOH-Ti3C> after mercury adsorption
ﬂ..,ﬁ_f\"L—-——-‘—-
s El |
= S Fresh COCH-Ti3C2
] =
o £
+ c
=
5 g
= Ti 3C> after mercury adsorption
Fresh TizCz
80 T T T T T T T T T T T T T T
100 200 300 400 500 600 700 5 10 15 20 25 30 35 40
Temperature (°C) 26 (degree)
(©) 4, (d), _
a |
25 80007
E ,
= 20 6000-
] COOH-MXenes stored for 40 days| o 1
c 25 =) 1 m
(W] T u
_E 4
§ 2.04 COOH-MXenes 54000'_
2 15 d |
Z 2000 mm
o> 104 i. B Pristine MXenes
im B COOH-MXenes
0.5 Fresh MXenes
Bl
200 300 400 500 600 700 800 900 0 50 100 150 200

Wavelength (nm) Equilibrium concentration C_ (ppm)

Figure 2. (a) TGA thermographs of Ti3C2Ty and COOH-T13C,Tx and (b) XRD patterns of TizC2Ty;
COOH-Ti3C, Ty before and after mercury adsorption with the initial concentration of 50 ppm. (c)
UV-Vis spectra of the fresh and 40-day stored Ti3C2Tx and COOH-Ti13C,Tx; (d) the equilibrium
adsorption capacity of TisC2Tx and COOH-Ti3CxTy at different Hg?* concentrations (V/m=10
mL/mg).

12



266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

[42], which disrupts the ordered MXene layers and reduces the intensity of the peak and interlayer
spacing. Similar behavior had been observed for the adsorption of UO3* by the 2D layered silicate
RUB-15 [56]. Additionally, more adsorption of positively-charged mercury on the surface of
functionalized MXene neutralizes the negative charge of MXenes and suppresses the repulsion
forces between the layers [57].

The UV—Vis spectra of Ti3C.Ty and COOH-Ti3CoTx (Figure 2¢) show strong peaks
between 280 to 330 nm [58-60]. In addition, the UV—Vis spectrum of Ti3C.T, has a distinct
absorption peak at 770 nm. The disappearance of the peak at 770 nm is another proof that Ti3C2Tx
was carboxylated. The peak intensity at 770 nm was selected to assess the degradation of Ti3C, Ty,
and the peak at 330 nm was considered for the degradation of COOH-Ti3C,Tx [61, 62]. Both
Ti3C,Ty and COOH- Ti3C,Txcolloidal solutions showed oxidation after 40 days. TizCoT, degraded
faster than COOH-Ti3C, Ty, as the intensity of the peak at 330 nm decreased more for Ti3C2Tx. As
deprotonation and the electrostatic repulsions between COOHs on the surface of COOH-TizCoTx
are stronger than OHs on the surface of Ti3C,, the COOH-Ti3C, T, oxidizes slower than Ti3CoTx
[63, 64].

3.2. Mercury Ions Adsorption

The mercury-ions adsorption capacities of TizC>Tx and COOH—Ti3C, T, were examined at room
temperature and a pH value of 6 using a batch method. 1 mg or 0.1 g Ti3C,Tx and COOH-T13C.Tx
were added to 10 mL of a 1-1000 ppm Hg?* aqueous solution, and the mixture was stirred for 24
h. As indicated in Table 1, the mercury-ion uptake and removal increase with an increased amount
of the adsorbent. Ti3C>Tx removed about 98.1% of mercury ions from a 200 ppm Hg?* solution
(V/m of 10 mL solution per 1 mg adsorbent), while COOH—Ti3C,Tx removed 99.9%. This value

is about half (~45.7%) when V/m was increased by 10 times (when 0.1 mg of Ti3C,Tx in 10 mL

13
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of solution was used). Expectedly, more active adsorption sites are accessible at higher adsorbent
contents. However, the adsorption capacity is smaller at higher adsorbent dosages because of the
smaller ratio of adsorbent to the pollutant. COOH-Ti3C,Tx and Ti3C,Tx demonstrated similarly
high adsorption capacities (Figure 2d). However, COOH-Ti3C, T, has a significantly higher rate
of adsorption. These indicate that the presence of carboxyl groups on the surface and the more
negative surface charge of COOH-Ti;C,Tx contribute more to the rate of adsorption, as is
discussed later.

The effect of initial mercury-ion concentration on the capacity and the removal efficiency
was investigated in the range of 1-1000 ppm (Figures 3a and 3b). The mercury uptake capacity
increased with the initial Hg*" concentration of both unmodified and modified Ti3C>T.. This
enhancement is explained by the stronger mass transfer driving force between the surface of
adsorbents and the solute. However, the removal percentage slightly decreased at higher mercury
contents. As seen in Figures 3a and 3b, this reduction is more severe in the mixtures with a lower

amount of sorbents (i.e., V/m = 100 mL/mg). The mercury ions are likely are adsorbed on the
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Figure 3. Equilibrium adsorption capacity and the removal percentage of mercury ions at two

different ratios of the volume solution (mL) per adsorbent mass (mg) for (a) pristine Ti3C>T, and
(b) COOH-Ti3C,T..
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Table 1. The mercury adsorption parameters of Ti3C>T,and COOH-Ti3C-T, at different Hg*"
concentrations and two adsorbent dosages.

Pristine MXenes COOH-functionalized MXenes
Co V/m=10 mL/mg V/m= 100 mL/mg V/m=10 mL/mg ‘ V/m= 100 mL/mg
R R

Ce Qe (% ) Kd Ce Qe R (%) Ky Ce Qe (% ) Kq Ce Qe R (%) Kq

182.00 | 8180.0 | 81.8 | 4.5e4 | 676.00 |32400.0| 32.4 | 4.8¢4 [159.30|8407.0 | 84.1 | 5.3e4|652.00 (34800.0 34.8 | 5.3¢4
+5.20 | £50.0 | +0.5 |+1.65e¢3|£19.40 |£1940.0| +£1.9 |+4.1e3 |+9.61 | £92.1 | +0.9 |+3.7e¢3|£32.40 3200.0|+3.2 |+0.7e4
16.70 | 4833.0| 96.7 | 2.9¢5 |250.20 [25000.0( 50.0 | 1.0e5 | 8.10 [4919.0 | 98.4 | 6.1e5(288.00 [21200.0|42.4 | 7.4e4
+1.10 | £11.0 | £0.2 [+1.98e4|£11.80 | £1200 [ £2.3 |£0.9e4 |£0.35 | £3.7 | £0.1 [£2.0e4{+20.50 +2050.0 |+4.1 |+1.2e4
3.81 | 1961.9| 98.1 | 5.1e5 | 83.00 [11700.0( 58.5 | 1.4e5 | 0.11 |1998.9 | 99.9 | 1.8¢7[108.60 {9140.0 {45.7 | 8.4e4
+0.10 | £0.1 +0.0 [+6.70e4| £5.90 | £590 |£2.9 |£1.5¢4 [£0.10 | 0.1 +0.0 [+1.3e6]| £8.10 [+810.0 |+4.1 |+1.3e4
1.36 | 9864 | 98.6 | 7.2e5 | 19.80 | 8020.0 | 80.2 [ 4.0e5 | 0.09 | 999.1 | 99.9 | 1.1e7| 12.00 |8800.0 |88.0 | 7.3e5
+0.12 | £54 | +0.1 |+6.21e4| £2.10 | +210 |+2.1 |+4.3e4 |£0.00 | +£0.0 | £0.0 | +0.0 [ +1.40 | £140 |+1.4 |+8.4e4
1.16 | 488.4 | 97.7 | 42e5 | 830 |4170.0|83.4 |5.0e5 | 0.03 | 499.7 | 99.9 | 1.7¢7| 3.30 |4670.0 |93.4 | 1.4e6
+0.10 | +0.1 +0.0 |+3.71e3| £0.61 | +61 |+1.2 |+49e4 |+0.00 | £0.0 | +0.0 | +0.0 | 0.15 | £15.0 |+0.3 |+5.0e4
0.31 97.0 | 97.0 | 3.2e5 1.6 840.0 [ 84.0 | 5.2¢5 | 0.01 99.9 99.9 | 1.4e7| 0.20 | 980.0 |98.0 | 4.9¢6
+0.01 | £0.1 | +0.0 [+1.04e4| +£0.10 | +9.9 |+£1.1 |#4.6e4 |£0.00 | £0.0 | 0.0 | +0.0 | £0.00 | +£0.0 |+0.0 | +0.0
0.16 48.4 96.8 | 3.1e5 | 0.81 | 420.0 [84.0 | 5.2¢5 | 0.00 | 49.9 99.9 | 1.0e7| 0.11 | 489.0 |98.0 | 4.4e6
+0.0 | £0.0 | £n/a | £0.0 | £0.00 | 0.0 |+0.0 | £0.0 |+0.00 | +0.0 | +0.0 | +0.0 [ +0.00 | +0.0 [+0.0 | +0.0
0.02 9.8 98.0 | 4.9¢5 | 0.14 86.0 |86.0 | 6.1e5 | 0.00 10.0 99.9 | 3.3e6| 0.01 99.2 199.2 | 1.2¢7
+0.0 | #0.0 | £0.0 | £0.0 | £0.00 | +0.0 |+0.0 | £0.0 |+0.00 | 0.0 | £0.0 | #£0.0 | £0.00 | +0.0 [+0.0 | 0.0

1000

500

200

100

50

10

Cy=initial concentration (ppm); C.= equilibrium concentration (ppm); Q.= equilibrium adsorption capacity (mg/g), R%= Hg removal; K=
distribution coefficient (mL/g)

303 surface of MXenes sheets while the number of active sites is less at a lower adsorbent
304  concentration.

305 The mercury-ion adsorption of Ti3C>Tyand COOH-Ti3C, T, in 50 ppm and 200 ppm Hg*"
306 aqueous solutions (V/m=10 mL/mg) was evaluated for the different duration times within 0—180
307 min. More than 98% mercury-ion uptake from the 50-ppm solution in 5 min (Figures 4a and 4b)
308 indicates that both Ti3C,Trand COOH-Ti3C, Ty are effective adsorbents to remove mercury ions
309 from wastewater due to their special structural properties and high density of surface functional
310  groups. Generally, the adsorption mechanism of metal ions follows two steps; at first, the ions are
311  quickly adsorbed on the available active sites, and the process is swift. The adsorption proceeds
312  slower as the adsorption sites fill up, and the ions are required to diffuse into the pores and
313  interlayer. The larger d-spacing of MXenes compared to other 2D materials such as GO, MoS,
314  facilitates the second step. As observed in Figures 4c and 4d, Ti3C>T, demonstrates about 70%

315  Hg*' removal after 20 min. However, COOH-Ti3C>T, removed the same amount of mercury in
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316

317

318

319

320

321

322

323

just 1 min at the same initial concentration (200 ppm), and the mercury-ion concentration dropped
to less than 1 ppm in 10 min. The faster adsorption of COOH-Ti3C, T can be related to the stronger
binding of mercury ions to carboxylic moieties and more negative surface energy of COOH—
Ti3C, Ty, which increases the electrostatic interactions of COOH-Ti3C,Ty. Figure 4e shows the
adsorption kinetics results of Ti3C2Tx and COOH-Ti3CoTx. The removal rate of Hg?" increased
quickly and then leveled off at 10 and 60 min for COOH-Ti3C>Tx and Ti3C, Ty, respectively. This
rapid mercury removal at the beginning of the process can be explained by high initial

concentration of Hg?" and thereby a larger driving force, while the saturation of adsorbent sites
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Figure 4. Adsorption-time study: The concentration and the removal percentage of mercury
from a 200 ppm and 50 ppm solution (% = 10 mL/mg) for (a) Ti3C,Ty and (b) COOH—
Ti3C2Ty; (c) the mercury removal; and (d) the Hg?" concentration and (e) the equilibrium
adsorption of Ti3CoT, and COOH-Ti3C,Tx from a 200 ppm solution (% = 10 mL/mg) vs.

time.
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results in a slower adsorption rate. The results indicate that COOH-Ti3C,Tx is a more efficient

sorbent than Ti3C> Ty for mercury-ion removal.

Morphological characteristics of COOH-Ti3C,Tx before and after the adsorption were
evaluated by SEM (Figure S2a and S2b). The surface of COOH-Ti3C,T,—Hg is more rough after
mercury ions are settled on, and the SEM-EDX is evidence for the mercury-ion adsorption on the
surface of COOH-Ti3CoTx. Additionally, the UV and FTIR spectra of the MXenes revealed some
changes before and after the adsorption test (Figures S2¢ and S2d) due to interactions between the
mercury ions and the functional groups on the surface. The appearance of new bands at 1300 cm’
U'and 1700 cm! can be related to the interactions between mercury and the functional groups

(COOH, OH) on the surface of the adsorbent. Similar results have been reported for mercury-ion

adsorption by other sorbents [65].

The distribution coefficient (K;) is an important parameter for assessing the performance

and affinity of the sorbents on a target metal ion. The K is defined as [66, 67]:

(CO - Ce) K

K, =
d Ce m

(5)

Where C, (mg-L™") is the initial metal ion concentration, C, (mg-L™!) is the equilibrium metal ion
concentration (the amount of unabsorbed mercury), V (mL) is the volume of the aqueous media,
and m is the mass (g) of adsorbent.

The K, reflects the affinity of the adsorbents to the heavy metals, and values greater than
1.0x10° mL-g ! represent suitable sorbents [68]. The K, values of Ti3sC>Tyx and COOH-Ti3C2Ty
for Hg?" adsorption are 4.2x10° and 1.7x10” mL-g ™!, respectively, which are among the highest
values for mercury-ion adsorption (Table 1), indicating that Hg** binds effectively to Ti3Ca2T,

surface. Figure 5 compares mercury-ion adsorption K,; values of COOH-Ti3C,Txand Ti3Co T, with
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346  those of well-known benchmark adsorbents; the Hg?* distribution coefficient of COOH-Ti3C2Tx
347  is among the highest reported values in the literature.

348  3.2.1 Effect of pH on Adsorption Capacity

349  Ti3CyTx and COOH-Ti3C,Tx demonstrated high mercury uptake in the pH range of 2-6 (Figure
350  6a). pH of the effluent is important as the ion complexes, surface charge, and functionalities of the

351 adsorbent can change with pH. The adsorption capacity of COOH-Ti3C, Ty increased slightly
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T
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352 Figure 5. Comparison the distribution coefficient and the equilibrium adsorption capacity of
353  Ti3C,Trand COOH-Ti3C, T, with other adsorbent in the literature: red filled circle (Fe-BTC) and
354  blue filled triangle (Fe-BTC/PDA) [69], purple filled diamond (TPB-DMTP-COFSH) [70], orange
355 filled left-pointing triangle (NanoSe Sponge) [71], green filled right-pointing triangle (COF-S-SH)
356  [72], brown hexagonal (PAF-1-SH) [73], light brown star (S-FMC-900) [68], red pentagon
357 (LMOF-263) [74], light blue filled circles (DMS-Fe304) [75], open diamond (LHMS-1) [76],
358  black open circle (SCTN-1) [77], red-open triangles (Chalcogenide glass) [78], blue open pentagon
359 (Mn-MoS4) [79].

360
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361  with an increase in pH in the range of 2—3, while that of Ti3C, T, remained almost constant. Earlier,
362  we discussed less the negative surface charge of TizCoTr and COOH-Ti3Co Ty at lower pH values,
363  which can adversely affect their efficacy for adsorption of the positively-charged Hg ions. On the
364  other hand, Hg*" is the dominant ion in acidic solutions, while it is hydrolyzed to Hg(OH)* by
365 moving to neutral pH values [80]. It seems that the more positively-charged mercury ions at lower
366 pH compensate for the opposite effect of the less negatively charged surface of MXenes. In
367 addition, it has been reported that mercury ions tend to form covalent bonds, which are less
368 impacted by pH values than ionic interactions [81].

369  3.2.2. Mercury Leaching

370  The potential leaching of adsorbed mercury on TizC2Tx and COOH-Ti3C.Tx was determined at
371  two initial Hg concentrations. After seven days of stirring at room temperature, the maximum
372 mercury-ion concentration is 30 pg/L for Ti3Co Ty (Figure 6b). This amount is within the safe limit
373  recommended by EPA (<200pg/L) to classify it as an industrial hazardous waste [82]. The amount

374  of mercury leachate from COOH-Ti3C. T, is much lower than that from Ti3C2Tx due to the strong

a b
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Figure 6. (a) Mercury uptake of TizCoTx and COOH-Ti3C. Ty at different pH values; (b) the

mercury leaching from the adsorbents vs. the extraction time.
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interactions between mercury ions and the COOH functional groups. The mercury content in
leachate for both samples increased with increased initial concentration, but for both samples, it is
still much lower than the safe limit defined by the US EPA. The leaching rate of mercury ions into
the solution was fast at the beginning of the extraction process, while it gradually slowed down by
the extraction time. As a large amount of soluble mercury ions was leached out to the solution
during 24 h, the concentration gradient inside the adsorbents layers and leachate decreased,
resulting in a slower extraction rate. Moreover, the covalently-bonded mercury on Ti3CoTx and
COOH-Ti3C, Ty is unable to leach out into the solution.

3.2.3. Kinetics of Adsorption

Figure 4e indicated that the mercury-ion adsorption is very fast initially and the rate of the
adsorption decreases with time quickly. COOH-Ti3C, T, reaches the equilibrium state much earlier
than Ti3C2Tx due to its more negativity of the surface and stronger interactions. We investigated
the kinetics of the adsorption process via fitting the data to the Lagergren pseudo-first order and

the Ho’s pseudo-second order models (Figure 7). These models respectively are [83, 84]:

Log (Q¢ — Q) =log Qe — 7= (6)

t 1 t

o kQZ Q.

(7)

where k; (min™1) and k, (g mg~tmin™1) are the pseudo-first order and the pseudo-second order
rate constants, respectively. Q, and Q. are the mercury-ion adsorption capacity (mg-g ') at
equilibrium and t (adsorption time, min), respectively.

The estimated model parameters are given in Table S1. Figure 7a indicates that the plot of
In (Qe— Q) versus time is not linear, and the calculated Q,, is not close to the experimental data; in
contrast, the Q. obtained from the pseudo-second-order kinetic model is 1600 mg/g and 2000 mg/g

for Ti3C,Tx and COOH-Ti3C, Ty, respectively, are close to the experimental values (Figure 7b).
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Furthermore, the pseudo-second-order kinetic model has the highest R? values (almost 1). This
result indicates that the pseudo-second-order kinetic model is more representative of the
experimental data, and the mercury-ion adsorption on Ti3C, T, and COOH-Ti3C, T, is governed by
a chemical adsorption process [72, 85]. In addition, we investigated the initial adsorption behavior
(h;) of the metal ions on TizCoT, and COOH-Ti3CoTy via comparison of the sorbent h;
(h; = k,Q,) and h, values (h, = k,Q2) (mg/g.min). Table S1 indicates that the initial adsorption
rates of COOH-Ti3C, T, were higher than Ti3C,Tx in both models. The high h,value of COOH—
Ti3C. T, points to more capability of COOHs groups compared to the OHs ones to bind with Hg*".
The results confirm that the COOHs on the surface of COOH-Ti3C. Ty affected not only the initial
adsorption rate but also contributed to the increase of the mercury-ion diffusion between the

COOH-Ti3C. Ty layers by increasing the interlayer distance.
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Figure 7. (a) Pseudo-first-order and (b) pseudo-second-order of the mercury adsorption on
TisC;Tyand COOH-TisC; Ty (Co= 200 ppm, — = 10 mL/mg).
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3.2.2. Equilibrium Isotherms

Langmuir and Freundlich isotherm models were used to calculate the equilibrium constants and

mercury-ion adsorption capacities of COOH-Ti3C,Tx and TizCoT, (Figure S3) [67, 85].

Ce _ Ce KL

(8)

Langmuir model: =
Qe Qmax Qmax

Freundlich model: InQ, =In Kr + nin C, 9)
where C, (L/g) is the equilibrium concentration, K; (L/g) is the Langmuir adsorption constant,
Qumax is the theoretical maximum capacity, and Kr (mg/g)(L/mg)'™ and n are the Freundlich
constants. Figure S3 shows how the two models fit the experimental data, and Table 2 gives the
model parameter estimates. The Langmuir isotherms model represents the data better [have higher
R? values (~0.99)] than the Freundlich model, indicating that the mercury adsorption on the
Ti3C, Ty and COOH-Ti3C,Tx are more likely monolayer adsorption [86-88].

3.2.3. Adsorption Mechanism

Understanding the adsorption mechanism of mercury ions onto COOH-Ti3C,Tx surface is
essential to comprehend the effects of surface functionality on the efficiency of the process.
Surface physicochemical properties such as the surface area, terminal groups, hydrophilicity, and
surface charge can influence the interactions between Mls and TizCoT,—COOH. The results

Table 2. Parameter values obtained from fitting Langmuir model and Freundlich models to the

Ti3C, Ty and COOH-Ti3C, Ty adsorption data.

Langmuir adsorption model Freundlich adsorption model
Adsorbent Qumax Kr
K, (L/g) R? n R?
(mg.g™) ((mg/g)(L/mg)"")
TizCs 22.0 10 0.9893 338.66 0.80 | 0.9275
COOH-Ti3C; 2.0 104 0.9989 1461.91 0.54 | 0.7818
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427  revealed that different mercury adsorption mechanisms, electrostatic interaction [6, 26, 89],
428  surface complexation [88, 90], and mercury (II) reduction [91] are likely to be involved in this
429  study.
430 Electrostatic attractions. Mercury ions can be adsorbed on COOH-Ti3:C.T, via
431  electrostatic attractions between their positive charges and the negatively charged surface of the
432  hydrophilic nanosheets (Figure 8) [88]. The electrostatic attraction can be detected by the
433  adsorption behavior at different pH values, where the mercury removal was almost unchanged due
434 to the electrostatic interaction of MXene surface functional groups with Hg** and Hg(OH)" at low
435  and high pH values. In addition, better adsorption of more negatively-charged COOH-Ti3C,Tx
436  compared to the less-negatively charged pristine TizC,Tx suggested the electrostatic interaction
, Electrostatic
;&7 interaction Surface
N gt complexation
O
/7
|J\ / |
idati I
Reduction | Oxidation Hg>+ Hg+
o = = = . .
| 1 Reduction
QO Ti-Ti | |
@ c-c 09
| |
O TiO: _OQO_OQOQOQO_OQO_

Figure 8. Schematic representation of the adsorption mechanisms of mercury ions to COOH-Ti3CoTs.
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mechanism for this system. The high density of functional groups on the surface of COOH-—
Ti3C, Ty can facilitate mercury-ion removal via electrostatic interactions between Ti—O and Ti—
COOH and Hg?" [40]. Needless to say, cations are always adsorbed by negatively-charged
sorbents, and hydrophilicity has a positive effect on the adsorption. More negative surface charge
of COOH-Ti3C,T, than Ti3C2T, and lower hydration energy of Hg?" compared to Cu®" [92]
signifies the importance of this mechanism for adsorption of MIs on COOH-Ti3C;T,.

Surface complexation. The presence of carboxyl groups enhances affinity between Ti—
COOH and Hg?* ions, which may lead to inner-sphere complex formation onto the surface of
COOH-Ti3C,T, [22, 23, 88, 93], as shown in Figure 8. The appearance of the peak at 500 cm’!
confirms the existence of complexation between Hg ions and the functional groups (Ti-O-Hg)
(Figure S2d). The interaction of Hg with the functional groups of Ti3C>Tx has also been confirmed
via FTIR and XPS spectroscopy elsewhere [36]. Compared to TizCoTx, COOH-TizCoTy has a
higher tendency to contribute to the surface complexation because of its carboxyl groups [94]. It
has also been reported that carboxyl groups tend to interact with heavy metal ions, and participate
in the chemisorption mechanism more than hydroxyl groups [42]. This also explains the higher
mercury-ion adsorption of COOH-T13C,T..

Reduction-oxidation. The faster mercury adsorption of COOH-Ti13C>Tx suggests that the ion
removal should be via more than a simple electrostatic interaction mechanism. Reductive
adsorption of heavy metals ions (e.g. Hg (II), Cr (VI), Cu (II), Fe (IIT)) on a MXene has been
reported by others [38]. As shown in Figure 8, the reduction-oxidation mechanism leads to the
reduction of Hg?* to Hg* and Hg?, and also to the formation of white TiO> particles, as confirmed
by XRD peak at 20 = 35°, and XPS elsewhere [95]. The white precipitation during the adsorption

test has also been reported elsewhere [26]. Wang et al. reported that the surface redox reaction
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involves a partial electron transfer from Ti atoms on the surface of Ti;C,Tx flakes [96]. This
irreversible oxidation process can deteriorate the adsorption capacity of MXene after a few
adsorption-desorption cycles, as will be discussed later.

3.3. Adsorbent Regeneration

Regeneration is one of the important steps of the adsorption process which can decrease the process
cost significantly and protect the environment [3, 97, 98], as the regenerated sorbents can be used
again in the process. After attaining the adsorption equilibrium, our absorbents, COOH-Ti3CoTx
and Ti3C, Ty, were collected and washed with 10% W/V thiourea in 0.1 M HCI, followed by 1M
HNO:s to recover the adsorbents. The mercury removal efficiencies of COOH-Ti3C, Ty and TizC2Tx
decreased from 99.9% to 95.3% and 83.4%, respectively, after 3 cycles (Figure 9). The reduction
in mercury uptake is explained by the partial oxidation of MXenes into TiO, and the possible
chemical bonds between the adsorbents and ions (i.e., incomplete desorption of metal ions from
the surface). The regeneration study also confirmed the higher stability of the functionalized

MXenes against oxidation in an aqueous solution, which agrees with our XRD data.
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Figure 9. The mercury removal (%) efficiency of COOH—-Ti3C,Txand Ti;C, T, at different
number of adsorption—desorption cycles from 50 ppm aqueous solution.

475

476 4. Conclusions

477  This work presented a simple one-step method of Ti3C, T carboxylation that involves the use of a
478  chelating agent with a linear structure, providing strong carboxylic acid groups with high mobility.
479 It investigated how introducing carboxyl functional groups on the surface of TizCoTx MXene
480  affects the ability of TizC,Txto adsorb mercury. The carboxylation of Ti3C2Tx at room temperature
481 resulted in fast and efficient adsorption of mercury ions from water. The surface of the
482  functionalized Ti3C, T (COOH-Ti3C,Ty) exhibited a more negative surface charge over a pH range
483  of 2.0 to 8.5. In addition, surface modification increased the interlayer spacing of TizCyTx
484  nanosheets and their oxidation stability. The stability and the rate of mercury ions adsorption was

485  also improved compared to the pristine Ti3C,Tx in the pH range values of 2—6. The adsorption
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capacity and distribution coefficient of COOH-Ti3C2Tx in a 50 ppm Hg?" solution (pH=6)
significantly increased to 499.7 mg/g and 1.67x107 mL/g from 488.4 mg/g and 4.2x10° mL/g for
the pristine Ti3C.T.. The adsorption capacity increased gradually by increasing the Hg?*
concentration in water while the removal efficiently slightly decreased. The removal percentage
was also decreased significantly at lower adsorbents dosage because of the limitation of adsorptive
sites. COOH-Ti3C,T, exhibited significantly faster mercury-ion uptake compared to the pristine
Ti3C, Ty, and the adsorption reaches the equilibrium condition in less than 10 min. The mercury
uptake by COOH functionalized MXenes were more stable than the pristine MXenes during a
seven-day leaching test experiment. Also, the mercury concentration in the extract solution
(16pg/L) is about 10% of the defined safety limit by the EPA organization. The K; value of
COOH-Ti3C- T, for Hg?* removal is 1.7x10” mL-g !, which is among the highest values for
mercury-ion adsorption reported in the literature. The chemisorption and electrostatic interactions
between the carboxyl groups and Hg>* are responsible for high adsorption performance of COOH—
Ti3C2Tx. The Langmuir isotherm and the pseudo-second order kinetic models predicted that the
adsorption of mercury ions was taken place between nanosheets interlayer and the COOH moieties
accelerated the ions diffusivity between the sheets, resulting in fast and efficient mercury-ion
removal from aqueous effluents. COOH-Ti3C>T, has industrial potential for efficient removal of
heavy metal ions, as it has a higher mercury-ion uptake capacity than commercially available
adsorbents reported in the literature.
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