Vronicle: Verifiable Provenance for Videos from Mobile Devices

Yuxin (Myles) Liu*
University of California, Irvine
Irvine, California, USA
yuxinliu@uci.edu

Sharad Agarwal
Microsoft
Redmond, Washington, USA
Sharad.Agarwal@microsoft.com

ABSTRACT

Demonstrating veracity of videos is a longstanding problem that
has recently become more urgent and acute. It is extremely hard
to accurately detect manipulated videos using content analysis,
especially in the face of subtle, yet effective, manipulations, such
as frame rate changes or skin tone adjustments.

In this paper, we present Vronicle, a method for generating prove-
nance information for videos captured by mobile devices and using
that information to verify authenticity of videos. A key feature
of Vronicle is the use of Trusted Execution Environments (TEEs)
for video capture and post-processing. This aids in constructing
fine-grained provenance information that allows the consumer to
verify various aspects of the video, thereby defeating numerous
fake-video creation methods. Another important feature is the use
of fixed-function post-processing units that facilitate verification of
provenance information. These units can be deployed in any TEE,
either in the mobile device that captures the video or in powerful
servers.

We present a prototype of Vronicle, which uses ARM TrustZone
and Intel SGX for on-device and server-side post-processing, re-
spectively. Moreover, we introduce two methods (and prototype
the latter) for secure video capture on mobile devices: one using
ARM TrustZone, and another using Google SafetyNet, providing a
trade-off between security and immediate deployment. Our evalua-
tion demonstrates that: (1) Vronicle’s performance is well-suited for
non-real-time use-cases, and (2) offloading post-processing signifi-
cantly improves Vronicle’s performance, matching that of uploading
videos to YouTube.

CCS CONCEPTS

« Security and privacy — Systems security; Mobile platform
security; Trusted computing; « Information systems — Data
provenance; - Computing methodologies — Image and video
acquisition; « Computer systems organization — Cloud com-
puting.

“Equal contribution

This work is licensed under a Creative Commons Attribution International 4.0 License.

MobiSys 22, June 25-July 1, 2022, Portland, OR, USA
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9185-6/22/06.
https://doi.org/10.1145/3498361.3538943

Yoshimichi Nakatsuka*
University of California, Irvine
Irvine, California, USA
nakatsuy@uci.edu

196

Ardalan Amiri Sani
University of California, Irvine
Irvine, California, USA
ardalan@uci.edu

Gene Tsudik

University of California, Irvine
Irvine, California, USA
gene.tsudik@uci.edu

KEYWORDS

Video provenance, Deepfakes

ACM Reference Format:

Yuxin (Myles) Liu, Yoshimichi Nakatsuka, Ardalan Amiri Sani, Sharad Agar-
wal, and Gene Tsudik. 2022. Vronicle: Verifiable Provenance for Videos
from Mobile Devices. In The 20th Annual International Conference on Mobile
Systems, Applications and Services (MobiSys °22), June 25-July 1, 2022, Port-
land, OR, USA. ACM, New York, NY, USA, 13 pages. https://doi.org/10.1145/
3498361.3538943

1 INTRODUCTION

An increasing number of mobile devices, such as smartphones,
tablets, body-worn cameras, and smart glasses, incorporate cam-
eras. They allow users to record videos at any time, which facilitates
a wide variety of applications, most notably security-critical appli-
cations where videos are used as evidence, or the videos themselves
are sensitive. Consider the following examples: (i) citizen journal-
ists recording footage of an important event (e.g., a protest), or
conducting an interview using smartphones, (ii) law enforcement
using body-worn cameras to record their interactions with citizens,
(iii) courts using videos as evidence, (iv) electronic legal contract-
signing platforms using videos from smartphones to identify sign-
ing users [49], (v) e-voting (e.g., shareholder or political) platforms
using videos from smartphones to identify voters [16], or (vi) video-
conferencing conducted on smartphones or tablets in government,
military, or corporate meetings. Indeed, recent events have further
highlighted the importance of these applications [18, 57].

Videos have been used as evidence in legal settings for a long
time, since faking them was generally believed to be nearly impos-
sible. However, there has been an increasingly concerning trend of
fraudulent videos, so-called deepfakes, whereby an attacker either
manipulates an existing video or spoofs one. One recent example is
a fake video of the Chief-of-Staff for the prominent Russian political
activist (Alexei Navalny) in a Zoom call with Dutch parliamentari-
ans [19]. Another example is a video of the Speaker of the US House
of Representatives, Nancy Pelosi, which was doctored to show her
struggling with speech [34, 48]. Yet another recent example is a
fake video used by a parent to disadvantage cheerleading rivals
of her daughter [31]. Unfortunately, such fakes are widely shared
on a variety of forums, intermingled with genuine videos, making
it hard for consumers to distinguish fact from fiction. The root of
the problem is lack of concrete means to ascertain a given video’s
credibility.

https://doi.org/10.1145/3498361.3538943
https://doi.org/10.1145/3498361.3538943
https://doi.org/10.1145/3498361.3538943
https://creativecommons.org/licenses/by/4.0/
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current

MobiSys ’22, June 25-July 1, 2022, Portland, OR, USA

Broadly, there are two approaches to combatting fake videos. One
way is to detect them through content analysis [40, 43, 44, 46, 53,
66] and identifying anomalies, e.g., unnatural human eye blinking.
Although this approach does not impose any requirements for
producing a video, its accuracy is low and will likely get worse due
to rapid advances in the deepfake technology [20, 60]. The second
approach involves embedding provenance information into a video.
This is information about the source of the video, i.e., the camera
that originated it, and the sequence of all filters applied during
post-processing. Provenance information allows a video consumer
to check whether it was generated by an authentic camera and
processed by a set of acceptable and genuine filters.

In this paper, we focus on the latter since it has the potential
to effectively mitigate fake videos by providing hard-to-fabricate,
detailed provenance info. Several provenance techniques have been
recently proposed. They fall into two categories: the first provides
fine-grained provenance info though its performance is poor. For
example, PhotoProof [50] uses zero knowledge proofs to authenti-
cate transformations applied to an image. However, it takes several
minutes to generate a proof of transformation for a single 128 X 128
image, which is unacceptable for videos, especially, those with
higher resolutions found on modern mobile devices. The second
category trades off better performance for coarse-grained prove-
nance info. For example, AMP [29] allows video producers to sign
their content, enabling consumers to verify the identity of the video
producer. This provenance info, while useful, requires the consumer
to fully trust the video producer since there is neither a proof of
the originating camera, nor of how video post-processing was per-
formed prior to signing. Furthermore, this approach is even less
effective for videos from mobile devices since it only provides a
proof of the originator, and not of content authenticity.

Motivated by the need to improve upon prior techniques, we
introduce Vronicle (Video Chronicles), a method for generating
provenance info for videos captured by mobile devices and using
this info to verify authenticity of videos. There are three major
components in the Vronicle architecture: (i) mobile device with a
camera (camera device for short), (ii) video post-processor, and (iii)
video consumer. The camera device is responsible for capturing
the video and generating provenance info about the device. The
video post-processor receives the video from the camera device,
applies the requested filters, and appends cryptographic proofs for
each filter to the provenance info. The video consumer, having
received the video and its provenance info, checks whether the
video was captured by an authentic camera device, and verifies
applied filters along with their parameters and the order in which
they were applied.

One key contribution of Vronicle is the use of Trusted Execution
Environments (TEEs) for video capture and post-processing as well
as for constructing fine-grained provenance info that allows the
consumer to verify various aspects of the video, thereby defeating
many fake-video creation methods.

Another key contribution of Vronicle is how it constructs the
post-processor using fixed function post-processing units, where
each unit can be deployed in a separate TEE and is responsible
for applying one filter to the video (or for encoding or decoding
the video). The main benefit of this approach is that it simplifies

197

Yuxin (Myles) Liu, Yoshimichi Nakatsuka, Ardalan Amiri Sani, Sharad Agarwal, and Gene Tsudik

verification of provenance info. Moreover, these units can be de-
ployed in different TEEs. For example, they can be deployed in the
camera device itself when offline (on-device) processing is needed.
Alternatively, they can be offloaded to powerful servers to achieve
high(er) post-processing performance.

We present a comprehensive prototype of Vronicle, which uses
ARM TrustZone and Intel SGX for on-device and offloaded post-
processing, respectively. We also introduce two methods (and proto-
type the latter) for secure video capture on a mobile device: one that
uses ARM TrustZone for enhanced security, and the second that
leverages (TrustZone-hardened) Google SafetyNet for immediate
deployment. !

We conduct a comprehensive evaluation of Vronicle. First, we
provide a detailed security analysis and show how Vronicle’s prove-
nance info mitigates various attacks, including attacks on the plat-
forms (camera or post-processor) and the video. Second, via perfor-
mance experiments we demonstrate that, while both on-device and
offloaded post-processing offer acceptable performance for non-
real-time use cases, the latter outperforms the former significantly.
Finally, we show that the performance of offloaded post-processing
is on par with uploading videos to YouTube. Specifically, it takes
about 44 seconds to upload and post-process (with 6 filters) a 10-
second 720p video in Vronicle. Meanwhile, it takes an average of 31
(and maximum of 45) seconds to upload the same video to YouTube,
which (we suspect) also performs some post-processing, such as
transcoding and copyright checks.

2 BACKGROUND

2.1 Trusted Execution Environment

A Trusted Execution Environment (TEE) is a primitive that pro-
tects security-critical code and data from untrusted components. A
typical TEE provides the following features:

Isolated Execution: A TEE creates an execution environment
isolated from the rest of the system, including the OS and hypervisor.
Code running inside a TEE is protected against tampering during
execution. Also, data within a TEE are only available to the code
running inside the same TEE.

Remote Attestation: A TEE can, upon demand, attest itself by
creating a cryptographic proof of the platform authenticity and of
the integrity of the code running inside it. Any (local or remote)
party can verify this proof to determine whether it can trust that
TEE and the code running within it.

Examples of popular TEEs are Intel Software Guard Extensions
(SGX) [23, 36, 47] and ARM TrustZone [2, 3]. SGX, used in x86
machines, provides enclaves to host security-critical code. It sup-
ports attestation, enabling a remote party to verify an enclave’s
identity and confirm that it is a genuine SGX enclave. An enclave’s
identity is a unique identity called MRENCLAVE, which is a crypto-
graphic hash of the code that is loaded into the enclave and other
configuration details.

TrustZone provides a secure world, which uses a secure OS to host
security-critical code in Trusted Applications (TAs). TrustZone does
not universally support remote attestation. However, the secure

'We open source the prototype for the benefit of users and researchers and provide a
video demo showing Vronicle’s workflow at: https://trusslab.github.io/vronicle/

https://trusslab.github.io/vronicle/

Vronicle: Verifiable Provenance for Videos from Mobile Devices

Can compromise
<= everything other than TEEs

- Can manipulate content in

transit
Atta'ckn\

Post-processed

N\ N—\|video + updated
OR provenance info
[E—— -

Video post-processor Video
(running either on the camera device consumer
itself or on powerful servers)

Video +
provenance
information

Camera device
(i.e., a mobile device
with a camera)

Figure 1: Overview of Vronicle.

world OS can implement remote attestation, as in Kinibi OS in
Samsung devices [25].

However, use of ARM TrustZone to deploy security-critical code
faces practical challenges as mobile device vendors control and
heavily restrict the set of TAs. Therefore, deploying TAs in com-
mercial devices is not straightforward. An alternative for deploying
such code in Android is SafetyNet [7], which helps developers gain
trust in users’ devices and it is used in security-critical applications
such as finance [39]. SafetyNet provides an attestation API [14],
which returns a cryptographically-signed attestation report to de-
termine the integrity of the device, its system software, and the
requesting app. Recent realizations of SafetyNet use TrustZone to
harden its security [62].

2.2 Video Post-Processing

Most videos undergo some post-processing. Modern mobile de-
vices use an Image Signal Processor (ISP) to perform simple post-
processing tasks, such as demosaicing and white-balancing. Popular
video editing software applications support many post-processing
filters, such as repairing, enhancing, beautifying, special effects, im-
age scaling, deringing, denoising, deflicking, brightness adjustment,
saturation adjustment, contrast adjustment, sharpening, whitening,
and lens flare [21]. Filters are employed for a variety of reasons,
such as undoing artifacts introduced by the camera hardware in
order to make the final video look more “natural” or blurring a face
for privacy.

3 VRONICLE DESIGN OVERVIEW

Figure 1 shows the high-level overview of Vronicle. The camera
device (i.e., a mobile device with a camera such as a smartphone)
generates a video. It sends the video and some provenance info to
the video post-processor. The post-processor applies a sequence of
filters to the video and updates the provenance info accordingly.
Finally, the video consumer receives the post-processed video and
uses the provenance info to authenticate the camera device that
captured the video and the exact sequence of filters applied during
post-processing. The attacker may attempt to manipulate the video
on the camera device, on the video post-processor, or in transit. How-
ever, the attacker cannot compromise the TEEs used on the camera
device and the post-processor.

198

MobiSys ’22, June 25-July 1, 2022, Portland, OR, USA

The post-processor can either run in the camera device (when
on-device, local post-processing is desired) or be offloaded to the
cloud (when achieving high performance is critical). We use the
TrustZone secure world for on-device post-processing and SGX
enclaves for offloaded post-processing.

In addition, we introduce two realizations of the camera device:
one where the camera application runs within the TrustZone secure
world to securely capture and sign the video (i.e., TrustZone-camera),
and another, where the camera application uses Google SafetyNet to
attest the integrity of the camera device (i.e., SafetyNet-camera). The
former provides enhanced security and the latter is immediately
deployable. We present a prototype of the latter.

4 TEE-BASED PROVENANCE INFO

At the core of Vronicle is the concept of provenance info. Its pur-
pose is to allow the consumer to authenticate: (1) the actual camera
device that captured the video, and (2) the exact sequence of filters
applied during post-processing. Vronicle needs to enable the con-
sumer to verify that the provenance info is authentic, and has not
been tampered with.

Our key idea to achieve these goals is to leverage TEEs both in the
camera device to capture the video and in the post-processor to process
the video. The isolated execution environment of TEEs helps secure
the execution of video capture and post-processing. Moreover, the
attestation feature of TEEs enables the consumer to authenticate the
code running in the TEEs and verify the authenticity of provenance
info.

Next, we sketch out how our TEE-based provenance info is
generated, verified, and used.

4.1 Generating Provenance Info

For the sake of simplicity, for now we consider a single video frame.
The camera device uses a TEE to securely capture a frame (F). It
then sends the frame along with some provenance info PI to the
post-processor.

The provenance info is as follows: PI = {ARTgg_cam, F_metadata,
Sigcam}. The first element of PI (ARTgg_cam) is the attestation report
from the TEE used to capture the frame. It has two key components:
(1) identity of the TEE (i.e., an identification of the code running in
the TEE, and (2) a certificate for a private key provisioned to (and
only to) the TEE. Moreover, the attestation report is signed by the
TEE vendor (e.g., Google in the case of SafetyNet). The identity of
the TEE helps authenticate it (and hence the camera device) to the
consumer.

The second element of PI (F_metadata) is all the important
information about the frame needed for inspection by the consumer,
e.g., time of capture. The final element (Sigcan) is a digital signature
computed over F and F_metadata using the aforementioned private
key. This signature helps protect (and prove to the consumer) the
integrity and authenticity of the frame and its info.

Upon receiving the data (i.e., {F, PI}) from the camera device,
the post-processor applies a sequence of filters and generates the
post-processed frame, F’. It also extends PI to generate PI’, which
is as follows: PI” = {PI, ARteg _pp, filter_metadata, Sigpp}.

The first element (PI) is included here without modifications.
The second element (ARTee_pp) is the attestation report from the

MobiSys ’22, June 25-July 1, 2022, Portland, OR, USA

TEE used to execute the post-processing. Similar to the report for
the camera device TEE, the report here has two key components: (1)
identity of the TEE, and (2) a certificate for a private key provisioned
to (and only to) the TEE. Also similarly, the attestation report is
signed by the TEE vendor (e.g., Intel in the case of SGX). The identity
of the TEE helps authenticate to the consumer the code used for
post-processing.

The third element (filter_metadata) is all the important infor-
mation about applied filters, e.g., order of applied filters. The final
element (Sigpp) is a digital signature computed over PI, F’, and
filter_metadata using the aforementioned private key. This sig-
nature helps protect (and prove to the consumer) the integrity and
authenticity of the original provenance info sent from the camera
device and included in the extended provenance info, the processed
frame, and info about the filters.

4.2 Verifying Provenance Info

The consumer receives the following information: {F’, PI’}. First,
the consumer verifies the attestation reports in PI (e.g., that they
are signed by the expected vendors). Second, it inspects and verifies
the identities of TEEs included in the attestation reports (e.g., that
a legitimate filter is applied). The consumer’s goal is to ensure that
the right TEEs (i.e., the right TEE platforms and the right code
within the TEEs) were used for both capture and post-processing.
Third, it validates the certificates in the attestation reports.? Fourth,
it checks the signature from the post-processor (Sigpp). However,
the consumer does not (and indeed cannot) check the signature
from the camera device (Sigcam) since it does not have access to
the original frame F. We will address this issue in §6.1. Finally,
the consumer checks the info regarding the frame sent from the
camera device and the info about the sequence of filters sent from
the post-processor, and decides whether to use the post-processed
frame or not.

4.3 Supporting Videos

Videos are encoded to reduce size, e.g., using the H.264 encoding.
This poses two challenges: (1) image filters typically operate on
raw frames, and (2) encoded formats typically include audio. To
address this, we include two additional components to the post-
processor: decoder and encoder. The former receives the video
from the camera device, decodes it and forwards the video frame by
frame to image filters. The decoder also extracts the audio from the
video. All post-processed frames as well as the audio are then given
to the encoder, which encodes them into a video that is ready for
the consumer. Figure 2 shows this design. Note that it is possible to
perform post-processing on the audio as well, although we do not
currently support that in our prototype.

4.4 Provenance Info for Videos

In §4.1, we discussed the components of the provenance info for a
single frame. The provenance info for a video includes additional
information, shown in Table 1. It includes information about the
video, such as the video ID as well as the time of video capture,
provided by the camera device. Two additional pieces of info are

2This includes multiple checks, including purely cryptographic validity, expiration,
revocation, and validation of higher-level PKI certificates.

199

Yuxin (Myles) Liu, Yoshimichi Nakatsuka, Ardalan Amiri Sani, Sharad Agarwal, and Gene Tsudik

audio
Video + Post-processed
provenance l video + updated
information

| &
& provenance info
decode filter 1 filter N ent‘nriﬂJ >

Video post-processor

Figure 2: High-level view of the post-processor.

useful, although our current prototype does not support them:
location and depth map. The former is useful when it is important to
know where content was originally captured. The latter is important
to defeat an attack where a video is captured of a deepfake displayed
on a screen (§8.1).

The provenance info also includes information about the video
segment. We assume a video is broken into multiple segments and
uploaded for post-processing segment by segment. We use segments
to help process a video in smaller chunks. In fact, when referring to
“a video sent from the camera device,” we actually mean “a video
segment.” Provenance info further includes the list of filters, remote
attestation reports of TEEs, e.g., TrustZone TAs, SGX enclaves, or
SafetyNet apps.

Table 1 specifies the size of various components of the prove-
nance info, which can be used to calculate the overall size of the
provenance info for a video. As an example, the size of the prove-
nance info of a 10-second 1080p video captured in 30 FPS and
post-processed with 3 1-parameter filters is 11,194 bytes (80 bytes
for Video Info, 12 bytes for Segment Info, 204 bytes for Filter Info,
88 bytes for Encoder/Decoder Info, and 10810 bytes for Camera
Device Info).

Table 1 implies the use of different TEEs for filters, decoder, and
encoder (as opposed to one TEE for the whole post-processor). We
will discuss this design decision in (§6).

5 THREAT/ADVERSARY MODEL

Since Vronicle’s primary goal is for consumers to gain trust in
videos using verifiable video provenance, we discuss the threat
model from the consumer’s perspective.

We consider two types of adversaries. The first adversary tries
to generate a fake video or tamper with a video produced by Vron-
icle. The second adversary attacks the camera device or the post-
processor. Examples of this adversary are the owner/operator of the
camera device, or the operator of the data center where offloaded
post-processing happens. Both types aim to produce tampered or
spoofed videos that appear genuine to the consumer.

We assume that the first adversary type can create arbitrary
videos and provenance info, or can make arbitrary changes to a
video produced by Vronicle, e.g., insert frames, drop frames, crop
frames, or change the frame rate.

We assume that the second adversary type can control every-
thing outside the TEEs in the camera device and the post-processor
including the OS, applications, and network. More specifically,
in the case of TrustZone (either for the camera device or post-
processor), we assume that TrustZone’s hardware and firmware,
the secure world OS, the TAs used by Vronicle, and the remote
attestation report from the secure world OS are trusted. In the case

Vronicle: Verifiable Provenance for Videos from Mobile Devices

MobiSys ’22, June 25-July 1, 2022, Portland, OR, USA

Size
Provenance (typical /
Category Provenance Component Name bytes) Usage
Video ID 44 Prevents swapping of frames from different videos
. Timestamp 10 Prevents manipulation of date and time of video
Video Info : - -
Location (not prototyped) 18 Helps verify where the video was captured
Depth map (not prototyped) Varying Defeats video of video attack
Dimensions 8 Prevents manipulation of frame sizes
Segment ID 3 Prevents swapping of frames from different segments
Total number of segments 3 Prevents dropping of segments
Segment Info Prevents frame rate attacks
Frame rate 3 .
(Necessary to encode video correctly)
Total number of frame(s) 3 Prevents dropping of frames
Number of filter(s) (F) 3 Prevents applying a wrong number of filters
. Ordered list of applied filters 15 X # of F | Prevents applying a wrong order of filters
Filter Info - - -
Identity of applied filter(s) 44 x # of F | Prevents applying wrong filters
Parameters (P) of applied filter(s) 8 x #0of P | Prevents using wrong filter parameters
Encoder/ Identity of encoder and decoder 88 Prevents tampering with the decoder or encoder
Decoder Info | Frame tag (i, a frame ID) 3 Prevents reordering of frames
(Added by decoder/removed by encoder) &
C
amera Identity of the camera device TEE 10810 Prevents incorrect or malicious camera devices
Device Info

Table 1: Components of provenance information in Vronicle.

We exclude the digital signatures and certificates from the table for

brevity. The data sizes for identities assume SGX enclaves for filters, decoder, and encoder and assume SafetyNet for the camera

device.

of SGX (used for post-processing), we assume SGX hardware and
firmware, the enclave codes used by Vronicle, and SGX remote
attestation report are trusted. In case of TrustZone-hardened Safe-
tyNet (used for the camera device), in addition to TrustZone, we
assume that the SafetyNet’s realization on the device (which checks
the health of the device, OS, and the requesting app) as well as its
remote attestation report are trusted.

Out-of-Scope attacks include: side-channel attacks, Return-
oriented Programming (RoP) as well as other code-reuse attacks,
physical attacks, and attacks on cryptographic primitives. We also
consider Denial-of-Service (DoS) attacks to be irrelevant to this
paper, since they have nothing to do with the adversary’s goal
of producing fake videos. Finally, since Vronicle is primarily con-
cerned with veracity of videos (i.e., their authenticity and integrity),
confidentiality and secure distribution of videos (i.e., digital rights
management) are out of scope.

6 POST-PROCESSING UNITS

A simple design for the video post-processor is to deploy it within
one TEE (e.g., one TrustZone TA or one SGX enclave), which hosts
all three components: decoder, filter(s), and encoder. However, this
presents two important challenges:

First, it is hard for the consumer to verify that the correct filter
binaries are deployed in the TEE. This is because of many possible
filter combinations. Since TEE remote attestation measures the
code loaded at initialization time, we cannot allow dynamic code
loading (otherwise the attacker can run arbitrary code in the TEE
without being detected). Therefore, a different TEE binary needs to
be generated given a desired set of filters. This would complicate
verification, since the consumer would need to re-create the binary
and compare its measurement with that in the remote attestation

200

Video +
provenance
information

Post-processed

video + updated

provenance info
It

.

Video post-processors

Figure 3: Fixed-function post-processing units for video post-
processing.

report. Second, it requires generating the TEE binary upon receiving
the post-processing request, thus increasing start-up latency.

To address these challenges, we construct the video post-
processor using fixed-function post-processing units. Each unit is
responsible for one filter, or for decoding/encoding the video. The
units can then be hosted in separate TEEs (e.g., TrustZone TAs or
SGX enclaves). They can post-process the video, each appending
its own information to the provenance info. Figure 3 shows how
Vronicle uses fixed-function post-processing units. First, the video
sent from the camera device is delivered to the decoder TEE, i.e., the
TEE hosting the decoder unit. Decoded frames are then forwarded
to the sequence of appropriate filter TEESs, i.e., TEEs hosting filter
units. The output of the last filter is sent to the encoder TEE, which
generates the final post-processed video.

This design addresses the aforementioned challenges: (1) it sim-
plifies verification of remote attestation reports. The consumer only
needs to keep a table of measurements for all common filters and
decoders/encoders. It can then use this table to check TEE measure-
ments in the report. (2) It relieves the post-processor from having

MobiSys ’22, June 25-July 1, 2022, Portland, OR, USA

to generate custom TEE binaries for each video, which reduces the
overall post-processing latency.

In addition, this design provides two additional benefit. First,
fixed-function units can be deployed in different TEEs, either on
the device when local processing is needed or in powerful servers
when performance is critical. We have ported the same set of post-
processing units to execute within TrustZone TAs or Intel SGX
enclaves. This design further allows for a combination of these two
approaches (i.e., executing some of the filters locally and offloading
the rest), although we do not explore this hybrid approach in this
paper. Second, in the case of SGX-based post-processing, it enables
scaling out the execution of the post-processor to multiple servers,
which can help with performance under heavy load. We do not
explore this aspect of Vronicle either.

Nonetheless, despite its benefits, our use of fixed-function post-
processing units raises some challenges that we address next.

6.1 Minimizing Provenance Info

§3 postponed the discussion of how the consumer can check the
signature sent by the camera device in order to verify the integrity
of the original video and its info. Doing so requires providing the
original video to the consumer, which can double the bandwidth
needed to retrieve a video. The use of fixed-function post-processing
units further exacerbates this problem, since the consumer needs
to check the signatures generated by all units, which would require
access to the intermediate, partially-processed videos sent from one
unit to another.

We address this problem using chain verification, i.e., we rely on
each unit to verify integrity of its input. For example, assuming two
units, A and B:

(1) A receives the video and its info from the camera device and

verifies the signature of these data.

(2) B verifies A’s signature on the intermediate video generated

(as well as other info) by A.

(3) The consumer verifies B’s signature on the final video (as

well as other info).

This frees the consumer from checking integrity of data passed
from the camera device to the first unit and between units, hence
minimizing required bandwidth. One question remains: how can
the consumer ensure that the units do perform the aforementioned
checks? The consumer can do so since it authenticates the code of
each unit (i.e., the code running in the corresponding TEE) via its
remote attestation report.

6.2 Flow of Provenance Across Units

While the consumer can establish trust in the TEEs hosting the
post-processing units via remote attestation reports, it cannot
trust anything outside the TEEs. Moreover, the fixed-function post-
processing paradigm requires the video to be split to frames, which
go through filter TEEs independently, before getting merged back
into the final video in the encoder. This complicates consumer veri-
fication of: (1) all frames in the input video being post-processed
and included in the final video, (2) preservation of frame ordering
in the final video, and (3) completeness and accuracy of the prove-
nance info of the post-processed video. To address this, we carefully

201

Yuxin (Myles) Liu, Yoshimichi Nakatsuka, Ardalan Amiri Sani, Sharad Agarwal, and Gene Tsudik

frm1 frm2

(0[]
A A () 5
C]C}/ﬁlter 1/DD\\filter Z\D—D/encode

A\

frm1 frm2

)@DDDDD

Figure 4: Flow of provenance info between fixed-function post-
processing units.

design the flow of provenance info between units, as discussed next
and illustrated in Figure 4 (for a video with two frames).
Provenance splitting. The decoder receives the video and its
provenance info. After decoding the video segment, it sends a part
of the video provenance info (along with some new info) with each
of the frame to filter TEEs. The part of the provenance info that is
passed to the filter TEEs is needed to securely filter and encode the
video segment in the encoder. It includes the video ID and segment
ID, which help the encoder ensure that it is encoding the frames
of the same video segment, as well as the total number of frames,
which is used by filter TEEs for sanity checking. Other components
of the provenance info can then be sent directly to the encoder. This
is especially important for large components of the provenance
info, mainly the attestation reports, since otherwise sending them
alongside each frame would adversely affect performance. Also,
the decoder adds a frame-specific tag (frame id) to each frame’s
provenance. This helps the encoder to encode the frames in the
correct order.

Provenance appending. After processing a frame, a filter TEE
appends its identity (e.g., SGX enclave MRENCLAVE value) to the
frame provenance info. This helps the consumer of the video au-
thenticate the filter. Moreover, the decoder and encoder TEEs also
add their own identity to provenance info. This is needed by the
consumer to verify that the video was correctly decoded and subse-
quently encoded.

Provenance merging. The encoder receives the post-processed
frames along with their provenance info. It verifies the provenance
info of each frame by ensuring that their common parts (all except
frame ID) match. It also checks the frame ID and compares it with
the total number of frames for correct and complete ordering. It
then merges frame provenance into the finalized provenance info
for the encoded video, which also includes the provenance info
directly sent from the decoder.

7 IMPLEMENTATION
7.1 Video Post-Processor

Vronicle is carefully designed for easy integration into different
TEEs. We build an ARM TrustZone-based prototype using OP-TEE
to prove the feasibility of secure post-processing in mobile devices
and an Intel SGX-based prototype, which we use for offloading post-
processing to powerful servers. They both have four components:
H.264-based decoder and encoder, filters, and scheduler, where the
decoder, encoder, and filters each have a trusted part (which runs
inside the TEE) and an untrusted part (which runs outside the TEE).

Vronicle: Verifiable Provenance for Videos from Mobile Devices

On the other hand, the scheduler is completely untrusted. Its main
role is to manage the execution of other components.

We build a filter framework that allows popular open-source
filters to be easily integrated into Vronicle. To demonstrate this,
we integrate 7 popular filters: Blur, Sharpen, Brightness, Grayscale,
Auto de-noise, Auto white balance, and Frame erase.

The frame erase filter needs some discussion. The goal of this

filter is to remove a frame from the video, e.g., for privacy reasons.
A typical implementation of this filter would drop the frame from
the video. In this case, to prevent frame dropping attacks by ad-
versaries, adequate provenance info needs to be added to securely
identify the frames dropped by the filter. While possible, this so-
lution complicates the design of the encoder that needs to check
presence of all frames and integrity of frame ordering in the video.
Therefore, we implement this filter using an alternative, simpler
method. Our frame erase filter just zeros out all the pixels of the
frame instead. This way, the erased frame still exists in the video
(hence making the checks easier in the encoder), yet contains no
information at all. Moreover, the consumer can decide what to do
with erased frames. For example, it can drop them when viewing
the video or can even show them to the user so that the user is
aware of dropped frames.
ARM TrustZone vs. Intel SGX. Trusted parts of our units in
ARM TrustZone-based post-processor run as TAs in OP-TEE, where
each TA is signed and protected by OP-TEE. Note that TAs can be
deployed and updated only by the device vendor. As mentioned
in §2.1, OP-TEE does not support remote attestation. Therefore,
we emulate it by generating a key-pair (and the corresponding
certificate) for each TA.

Intel SGX-based post-processor uses enclaves to host the trusted
parts. Remote attestation is used to generate each trusted part
(enclave)’s key-pair and its certificate. We use remote attestation
leveraging Intel Attestation Service (IAS). We also integrate an open-
source demultiplexer in the decoder enclave and a multiplexer in the
encoder enclave to make our system capable of directly processing
an audio-included MP4 container.

Another key difference between the two TEEs is that at the time
of implementation, OP-TEE’s TAs only support C, whereas SGX’s
enclaves support both C and C++, resulting in better filter compati-
bility and optimization in the Intel SGX-based post-processor.
ARM TrustZone Post-Processor APIL In our ARM TrustZone
based post-processor prototype, each TA can be called using some
API (using Android NDK) from an Android application. The android
application here is in fact the scheduler that controls the whole
flow of data and component executions.

7.2 Camera Device

We report a prototype of the SafetyNet-camera. More specifically,
we build an Android application for recording and uploading videos.
The application also allows the user to choose the set of filters to
be applied.

SafetyNet attestation presents a particular challenge that we
address. SafetyNet attests that the OS and the app are not com-
promised at the time of the check. This creates an opportunity for
a TOCTOU attack, whereby the attacker compromises the device
(e.g., roots it) after the check and before using the camera app.

202

MobiSys ’22, June 25-July 1, 2022, Portland, OR, USA

To mitigate this, we deploy a two-report scheme: (i) the camera app
generates a fresh key-pair and uses the hash of the public key as a
nonce to conduct the first round of SafetyNet attestation; (ii) the
user records a video using the camera app; (iii) the app again uses
the hash of the public key as a nonce to conduct another round
of SafetyNet attestation; (iv) the app uses the private key to sign
the video as well as its provenance info and then erases that key.
Besides preventing TOCTOU attacks, this scheme uses a new key-
pair and new attestation reports for each video, thus preventing
reuse, which would otherwise raise privacy concerns. Also, note
that the SafetyNet attestation report includes a timestamp, which
prevents the reuse of the same report. Finally, this scheme binds
the public key generated for the video to the app that generated it
via the SafetyNet report.

7.3 TrustZone-based Camera

We have not prototyped the TrustZone-camera. The straightfor-
ward approach to securely use the camera in TrustZone is to port
its device driver to the secure world. This approach would, however,
increase the TCB. An enforcement layer can be introduced between
hardware and platform software to enable end-to-end secure appli-
cations while giving users fine-grained control over their devices
[42]. Our own work, Tabellion [49], tries to address this problem by
utilizing the hypervisor to secure the memory buffer containing the
photo captured by the camera. However, it only supports photos,
and not videos. We are also aware of industrial effort to securely
take verifiable photos using TrustZone [15].

7.4 Consumer

We build a consumer-facing video application. After downloading
the video, the application validates the attestation reports with
the corresponding vendors (e.g., Intel in the case of IAS issued
certificate) and verifies the signature of the processed video and
provenance info using the authenticated certificates. It then checks
that the provenance info contains the identity (e.g., MRENCLAVE
value) of the pre-approved post-processing units: decoder, filters,
and encoder as well as that of the camera device TEE (e.g., SafetyNet
attestation reports). It then displays the verification status to the
user. After successful verification, it plays the video (using the open
source VLC video player [1]).

8 SECURITY ANALYSIS

This section discusses a range of potential attacks on Vronicle. We
assume the attacker can attempt to manipulate the video on the
camera device, on the video post-processor, and in transit. However,
the attacker cannot compromise the TEEs used on the camera device
and the post-processor.

8.1 Video Attacks

Note that in the following attacks, we assume that attacker can-
not manipulate or spoof the provenance since it would be easily
detected.

Frame Modification/Spoofing. An attacker may try to change
or spoof the content of some of the frames. This would be easily
detected since the provenance info includes a signature computed
over the video frames.

MobiSys ’22, June 25-July 1, 2022, Portland, OR, USA

Frame Deletion. An attacker may attempt to remove some frames
from a video segment. However, since the provenance info includes
the total number of frames in a video segment (Table 1: Segment
Info), the encoder will not produce the final video.

Frame Substitution. An attacker may try to replace some frames
in a video segment, e.g., using frames from a different video. Because
video ID (Table 1: Video Info) in the provenance info would not
match that in substituted frames?, this attack is easily detected.
Frame Cropping. An attacker may try to prevent the consumer
from viewing a certain part of the frame by cropping it and falsely
declaring the frame as having smaller dimensions. Since prove-
nance info includes frame dimensions (Table 1: Video Info), this
manipulation is detected.

Video Segment Omission. An attacker may try to delete an entire
video segment. Once again, since the provenance info includes the
total number of video segments and segment ID (Table 1: Segment
Info), this attack is trivially detected.

Video Segment Substitution. An attacker may try to substitute
an entire segment. As the provenance info includes a segment ID
(Table 1: Segment Info), this attack is easily detected.

Frame Rate Manipulation. This is the attack used to create a
deepfake video of the US Speaker of the House Nancy Pelosi [48], in
which the frame rate of the video segment (where she was talking)
was reduced. Vronicle detects this attack because the frame rate
(Table 1: Segment Info) is part of the provenance info.

Using Undesired Filters. An attacker who controls the untrusted
components of the post-processor may try to use filters that are not
included in provenance info. Recall that every filter TEE appends its
identity to the provenance info (Table 1: Filter Info), thus defeating
this attack.

Wrong-Order Filtering. Applying the same set of filters in a dif-
ferent order usually yields a different outcome. An attacker may
try to apply filters in an order different from that declared in prove-
nance info. Note that the video producer requests the order of filters.
However, we are not concerned with what the producer requested,
rather with the provenance info to correctly capture the order that
was applied. Since provenance info (covered by the signature) in-
cludes the exact order in which filters were applied (Table 1: Filter
Info), wrong-order filtering is easily detected.

Video of video. An attacker may use Vronicle’s camera device
to record a video of a deepfake video displayed on a screen. As
mentioned in §4.4, it is possible use the depth map info to defeat
this attack. That is, the camera device can record the depth map
(Table 1: Video Info), at the same time that it records the video,
and include that in the provenance info. The consumer can then
detect if the content is recorded off of a flat (or even curved) display.
The depth map can be recorded using hardware solutions (e.g., the
TrueDepth camera or dual cameras, which are already available in
many mobile devices and can record the distance of pixels to the
camera [24]), or using software-only solutions [30].

8.2 Platform Attacks

As can be seen, the provenance info protects against various attacks
on the video. Therefore, the attacker may try to attack Vronicle’s

3Video ID is the hash of the public key provisioned to the camera device TEE, including
the modulo and public exponent.

203

Yuxin (Myles) Liu, Yoshimichi Nakatsuka, Ardalan Amiri Sani, Sharad Agarwal, and Gene Tsudik

platforms (camera device and post-processor) in the hope of tam-
pering with the provenance info. Next, we discuss the techniques
such an attacker may attempt and Vronicle’s protection against
them.

To compromise the camera device, the attacker may consider to:
(1) modify the camera app, (2) root the device, (3) install a custom
OS image, (4) install a rootkit, (5) try to bypass the attestation frame-
work, e.g., SafetyNet attestation, (6) exploit a kernel vulnerability,
(7) mount a code reuse attack on the kernel, (8) mount a physical
attack to extract keys, (9) use a side-channel attack to extract keys,
(10) exploit a vulnerability in the TEE, or (11) mount a code reuse
attack on the TEE. Our SafetyNet-camera protects against attacks
(1)—(5). Our TrustZone-camera further protects against attacks (6)
and (7). (8)—(11) are out of scope of our threat model.

To compromise the local post-processor running in TrustZone
secure world, the attacker may use the same set of aforementioned
attacks. And similarly to TrustZone-camera, the TrustZone-based
post-processor protects against attacks (1)-(7) (and the rest are out
of scope).

To compromise the SGX-based post-processor, the attacker may:
(1) modify the enclave code, (2) try to bypass the enclave attestation
framework, (3) exploit the enclave code vulnerabilities, (4) mount
a code reuse attack on the enclave code [26, 41], or (5) use a side-
channel attack to extract the enclave keys. Our post-processor
prototype protects against (1) and (2), while (3)-(5) are out of the
scope of our threat model.

Moreover, out-of-scope attacks can be addressed orthogonally.
For example, if future SGX versions eliminate currently present side-
channels [28, 38, 55], Vronicle would be automatically hardened
against attack (5) on the post-processor. Also, vulnerabilities in the
TEE code can be addressed by using memory-safety vulnerability
checking tools (e.g., TEEREX [27]) or by using an SDK written in a
secure programming language (e.g., Rust [63]).

9 PERFORMANCE EVALUATION

9.1 Setup

ARM TrustZone-based post-processor. We implement Vroni-
cle’s ARM TrustZone-based post-processor on a Hikey 620 Devel-
opment Board. It is equipped with a HiSilicon Kirin 620 SoC, which
has 8 ARM Cortex-A53 cores running at 1.2 GHz with 2GB of RAM,
and runs OP-TEE 3.8.0 and AOSP 9(P) with a modified Linux kernel
4.14. ARM TrustZone in our configuration can use up to 120MB of
memory.

Intel SGX-based post-processor. We realize Vronicle’s Intel SGX-
based post-processor on a Microsoft Azure Confidential Computing
VM. It has a 3.7GHz Intel Xeon E-2288G 8-core processor with
32GB of RAM, and runs Ubuntu 18.04 LTS OS with the Azure Linux
kernel 5.4.0. Intel SGX in our configuration can use up to 128MB of
memory.

Consumer and camera device. We instantiate the consumer
on a machine with a 3.4GHz Intel Core i7-3770 4-core processor
and 16GB of RAM with wired Internet connection. This machine
runs Ubuntu 20.04 LTS OS with Linux kernel 5.4.0. The camera
device is a Samsung Galaxy S20+ smartphone, equipped with a
Qualcomm Snapdragon 865 processor and 12GB RAM with 5GHz

Vronicle: Verifiable Provenance for Videos from Mobile Devices

140r | Proéessiﬁg =

—_ =
A Q0 O N
===

Execution Time (Sec.)

[\
=)

]

FE

Blur Sharpen GreyBrightness DN WB C, C,

MobiSys ’22, June 25-July 1, 2022, Portland, OR, USA

16} Uploading
- 1 REZJ
g 14 Processing 233
ZRD) Downloading 1
N~ r
L %
£ 10f S e
8 R
o 151
g 2B
= 2B
g 6 A
3 4K
3 b I
o 4 S
5 5B
¢ o 5% |
0

Blur Sharpen GreyBrightness DN~ WB C, C,

Figure 5: Post-processing execution time with different filters in the ARM TrustZone-based post-processor (Left) and the Intel

SGX-based post-processor (Right).

Processing T 40 Uploading T
200 3535 Processing &2
© 30 Downloading 23
150 225
=20

Execution Time (Sec.
N 5
(=) (=]

144p 240p 480p 720p 1080p

=

£15

3

QE]O

[] e

ol [0

144p 240p 480p 720p 1080p

Figure 6: Post-processing execution time for videos with dif-
ferent resolutions in the ARM TrustZone-based post-processor
(Left) and the Intel SGX-based post-processor (Right).

Wi-Fi Internet connection. It runs Android 11 OS, and supports the
TrustZone-hardened SafetyNet Attestation API.
Configurations. For reproducibility of experiments, we use a pre-
recorded 10-second 1080p video with 334 frames in our camera
device. We resize the footage into the following resolutions: 176 X
144 (144p), 320 X 240 (240p), 640 X 480 (480p), 1280 % 720 (720p), and
1920 X 1080 (1080p). As default, we use a 2-second video segment
(60 frames) with a 720p resolution, and the blur filter. The 7 filters
we use are identical on both prototypes, where the only difference
is that the white balance filter is able to use optimized libraries in
Intel SGX-based prototype, which is because Intel SGX supports
C++ in addition to C. We run each experiment at least 3 times.
The default setting for each filter is as follows: convolution ma-
trix of 7 X 7 for both the blur and sharpen filters and 0.2 decrease
for the brightness filter. All other filters (gray, de-noise, white bal-
ance, and frame erase) have no configuration parameters. For the
TrustZone-based post-processor, we measure its total processing
time, which is from when the decoder TA starts initializing to
when the encoder TA outputs the result. As the Intel SGX-based
post-processor is a server-based prototype, we partition measured
latency into three parts: uploading, processing, and downloading.
Uploading represents the time from when the scheduler receives a
connection from the camera device to when the scheduler finishes
receiving all files. A small portion of enclave preparation is also
counted in this since we utilize multiple threads. Processing repre-
sents the time from when the scheduler finishes receiving all files

204

ASOO Processing T 60 Uploading]
g 5] Processing B2
:\3_:)/400 @ 50] Downloading 1
E300 Eor
= =
= = 30
2200 2
2 220
o Q
100 ﬂ & 10
o1 o | 2
30 60 120 300 30 60 300

Figure 7: Post-processing execution time for videos with a dif-
ferent number of frames in the ARM TrustZone-based post-
processor (Left) and the Intel SGX-based post-processor (Right).

to when the encoder finishes encoding the last frame. Downloading
represents the time from when the encoder receives a connection
from the consumer to when the encoder gets the confirmation from
the consumer that it has successfully received all files.

9.2 Evaluation Results

Post-processing execution time. Figure 5 shows the execution
time of Vronicle for applying various filters to a 2-second video in
both platforms. We show the results for applying a single filter (the
first 7 bars) and for three-filter combinations (C1 is the sharpen
filter followed by the white balance and de-noise filters, and C2 is
the blur filter followed by the brightness and gray filters). Results
show that Vronicle achieves a decent performance in both setups: it
takes about 23.6 and 7.3 seconds to process the video with the most
lightweight filter with local and offloaded processing, respectively,
and takes about 101.8 and 13.1 seconds for a heavyweight filter
combination (C1). In contrast, as we show in §11, prior systems
take several orders of magnitude longer to achieve the same. More-
over, these results show that offloading post-processing to powerful
servers significantly improves the performance.

We also measure the execution time for different frame sizes or
different numbers of frames. Figure 6 and Figure 7 show the results,
which show that execution time increases linearly with the increase
in either frame size (in terms of the number of frame pixels) or the
number of frames in both prototypes.

MobiSys ’22, June 25-July 1, 2022, Portland, OR, USA

The overhead of design decisions in Vronicle. Two important
design choices in Vronicle are: hosting the post-processor in TEEs
and using fixed-function post-processing units. We now evaluate
the overhead of each choice using our SGX-based post-processor. To
do this, we introduce three baseline implementations of the video
post-processor. Baselinel does away with the fixed-function units

and executes all the post-processor components in one SGX enclave.

Baseline2 does away with the use of enclaves (and digital signatures)
and uses trusting OS processes to host different components of the
post-processor. Baseline3 does away with both design decisions
and executes all post-processor components in one OS process. We
show the results for two filter combinations: one with 2 filters (blur
and sharpen) and one with 6 filters (all our filters excluding the
frame erase filter). For a fair comparison, we use the same number
of threads for filters in all prototypes and use separate threads for
decoding and encoding. We use 2 and 6 threads for filters for 2-filter
and 6-filter experiments, respectively.

The results are shown in Figure 8. The comparison of Vronicle
vs. Baselinel shows that the use of fixed-function units adds 14.3%
and 118.9% performance overhead in the 2-filter and 6-filter config-
urations, respectively. The major reason for the high performance
overhead is due to thread idling in Vronicle. More specifically, in
Vronicle, each filter runs as an individual thread, while in Baselinel,
all filters run together in one thread (though there are multiple
such threads). This means that Baselinel can make sure that all
threads are making use of as much computing resource as possi-
ble, whereas, Vronicle may have some threads idling at times. The
comparison of Vronicle vs. Baseline2 shows that the use of SGX
enclaves adds 44.3% and 62.8% performance overhead in the 2-filter
and 6-filter configurations, respectively. Finally, the comparison of
Vronicle vs. Baseline3 shows that both design decisions together
add 54.7% and 223.4% performance overhead in the 2-filter and 6-
filter configurations, respectively. Given the benefits of these design
decisions (i.e., the ability to provide verifiable provenance, ease of
verification by the consumer, and ease of portability), we believe
that their overheads are acceptable.

Finally, note that Baselinel and Baseline3 require some time

to generate the post-processor binary, since it changes depending
on the choice of filters. We measure the compilation time from
source to binary (assuming that the time to generate the source
from existing filters is negligible): 6.5 and 4.1 seconds for Baselinel
and Baseline3, respectively. Note that this overhead is not shown
in Figure 8.
Comparison with YouTube. To get a sense of usability of Vroni-
cle’s performance, we compare it with YouTube. More specifically,
we upload a 10-second video to YouTube and measure the time it
takes for the video to be uploaded and processed by YouTube. We
suspect the processing includes transcoding the video, as well as
several checks, such as copyright checks. We use the same Galaxy
S20+ smartphone under the same 5GHz Wi-Fi network for upload-
ing the video. This takes an average of about 31 seconds (with a
maximum of 45 seconds and a minimum of 20 seconds). We then
upload and post-process the same 10-second video with 6 filters (all
our filters excluding the frame erase filter) in Vronicle. This takes
an average of about 44 seconds (with a standard deviation of 0.14
seconds). Therefore, we believe Vronicle’s performance is good and
usable for non-real-time use cases.

205

Yuxin (Myles) Liu, Yoshimichi Nakatsuka, Ardalan Amiri Sani, Sharad Agarwal, and Gene Tsudik

20 Uploading
5 Processing 23
o .

L 15 Downloading 1
Z

Q

<10 -
3 "‘ %’:’2
2 Sk ko
= Tl -

%

k]
8

,.v
3
%

[
oo

0%
XX

XX

K

%
%
[

]

Bl B2s B3¢

Vs

Figure 8: Post-processing execution time with different design
decisions. B1, B2, B3, and V refer to Baslinel, Baseline2, Base-
line3, and Vronicle. The last number in the x-axis labels shows
the configuration. 2 is the 2-filter configuration and 6 is the
6-filter configuration.

Consumer. We measure the verification time by the consumer.
Results show that the consumer takes on average 3.4 seconds (with
standard deviation of 0.0012 seconds) to verify the provenance
information when SGX and Android SafetyNet are used. This shows
that verification is fast enough for consumers not to experience
much playback latency.

Power consumption of on-device post-processing. We use a
Galaxy S20+ camera device for this experiment. We do not use
the HiKey board since it cannot represent the power consumption
of a real mobile device. Since we cannot program the TrustZone
secure world in a commodity phone, we leverage Android Native
Development Kit (NDK) [10] to port the Blur filter to run in an
Android app and measure the power consumption of executing this
filter in the device. We measure the energy consumption of applying
this filter to five randomly-generated 2-second video segments
using Batterystats and Battery Historian [6]. Our overall results show
that the average energy consumption is 86.77 (standard deviation of
2.59) milliwatt-hours, which is 0.67% of this smartphone’s battery
capacity assuming the voltage to be 3.7 V.

10 DISCUSSIONS & FUTURE WORK

10.1 Performance Optimizations

Our prototype achieves decent performance for non-real-time use-
cases, where the captured video is not needed by the consumer
immediately. However, it does not support real-time use-cases, no-
tably video conferencing. We are considering solutions to support
real-time videos. One solution is parallelizing the post-processing
using multiple instances of the same filter TEEs. We can further
make use of distributed computing to split work between multi-
ple machines. Another is to leverage accelerators to increase the
performance of our filters. However, the latter would require TEE-
enabled accelerators [51, 61], which are not currently available for
SGX enclaves.

Vronicle: Verifiable Provenance for Videos from Mobile Devices

MobiSys ’22, June 25-July 1, 2022, Portland, OR, USA

Granularity of Provenance Performance (sec) Videos? Method
Alethia [17] Coarse-grained No measurements Yes Digital Signature
PhotoProof [50] | Fine-grained 673.5 (128x128) No Zero Knowledge Proof
YouProve [33] | Coarse-grained 28.0 (JPEG, 1296x972) No Fidelity Analysis
FrameProv [22] | Fine-grained No prototype Yes Digital Signature
AMP [29] Coarse-grained 0.08 ~0.24 Yes Fragile Watermarking
X . X 4 (30 frames, 1280x720
Vronicle Fine-grained ~é(1 0 (300 frames)) Yes TEE

Table 2: Comparison with related work.

10.2 Third-Party Verifiers

In Vronicle, video consumers use provenance info to decide whether
to trust a video before watching it. However, doing so is not trivial
as it requires performing several checks and reasoning about fil-
ters and their parameters. While savvy users can do this on their
own, we envision a third-party verifier that takes the provenance
info, rates the trustworthiness of the video, and makes the result
available to end-users. This is similar to how rating agencies in the
financial markets rate various financial assets. While more experi-
enced investors can directly study each financial asset to make a
decision on their own, most investors simply trust the ratings by
well-known and reputable rating agencies. We leave it to future
work to develop an algorithm to rate the trustworthiness of a video
processed by a sequence of filters.

10.3 Camera Device Privacy

Vronicle relies on the camera device TEE to generate signatures
over the captured video and its provenance info using a private key.
Usage of this private key might raise concerns regarding camera
device privacy since videos signed with the same private key can
be linked. Vronicle’s SafetyNet-camera prototype addresses this by
generating a fresh key-pair for each video, as discussed in §7.2.

We however note that the ability to identify camera devices
might be beneficial in certain use-cases. For example, in the case
of a video used as evidence in the court, the complete identity of
the device that captured the video might be needed. In some other
cases, however, it might be adequate to specify the device model,
e.g., iPhone 12. We believe that existing privacy solutions, such as
k-anonymity [58], can be integrated in our solution.

11 RELATED WORK

Secure Video Provenance. Several video provenance methods
have been proposed in the past [17, 22, 29, 32, 35, 56], including
watermarking, hash chaining, use of digital signatures, and use of
blockchain. Table 2 summarizes key related work and how they
compare against Vronicle. Granularity of provenance is defined as
“fine” when the system provides information of how the video/photo
was edited, and “coarse” otherwise. Below, we describe the key
related works.

Some works provide provenance for a single photo only. Photo-
Proof [50] uses zero knowledge proofs to cryptographically prove
that the photo has been edited correctly without revealing the origi-
nal photo. However, the latency of generating and proving the proof
is orders of magnitude slower compared to Vronicle. YouProve [33]
analyzes a photo to understand where it was edited.

206

Some works extend photo provenance to provide provenance for
a video. One example is Aletheia [17], a tool that allows users to
protect the provenance of their videos by signing them. The main
drawback of this system is that it requires consumers to trust the
signer without the ability to verify the filters applied to the video.
Another example is FrameProv [22], which provides provenance
for a video of raw frames using a hashchain of frames. However,
it requires trusting the system that conducts video processing and
encoding. Several related works have proposed a video provenance
system that uses blockchain to prove and assess the provenance of
the video [11, 15, 35]. All of these systems suffer from high latency
because of their dependency on blockchain. AMP [29] utilizes the
Confidential Computing Framework [12] instead of blockchain to
build a fast and reliable public ledger that keeps track of published
media. AMP uses watermarking methods to embed provenance
information into the media and therefore does not allow editing of
the videos, as it breaks the watermarked information. The drawback
of the system is that it requires trusting the publisher.

Media provenance is gaining attraction not only in academia but
also in the industry. An early attempt on trustworthy photo capture
in industrial setting was Canon’s Original Data Security Kit [4]
to prove image originality. However, later on it was proven that
there was a flaw in the system [5]. More recently, startup compa-
nies such as Truepic [15] and Serelay [9] aim to provide verifiable
provenance for photos using TEEs (but not videos). Moreover, we
see their trusted cameras as complementary to our system, as it
will provide users with a wide variety of trusted camera devices
to choose from. In addition, iPhone uses a physically isolated Se-
cure Enclave Processor to securely control the camera [8]. While
not the case today, the same design can be used to provide secure
provenance as well.

Both Truepic and Serelay follow the Content Authenticity Ini-
tiative (CAI) [13] standard. CAI is an organization that aims to
establish a standard in media provenance. CAI’s vision aligns with
Vronicle: providing fine-grained provenance information at a “rea-
sonable” performance. We believe Vronicle is a step towards achiev-
ing CAI’s requirements for videos.

Secure Camera and Sensors. Some works utilize Trusted Platform
Module (TPM) to implement secure cameras. TrustCAM [65] uses
a non-migratable key protected by a TPM on a surveillance camera
to sign frames before they are streamed. TrustEYE.M4 [64] goes a
step further and applies similar techniques to the image sensing
unit, which can effectively shrink the Trusted Computing Base
(TCB). Saroiu et al. use Intel Trusted eXecution Technology (TXT)
to authenticate different raw sensors’ data such as camera and GPS’s

MobiSys ’22, June 25-July 1, 2022, Portland, OR, USA

readings [45, 54]. Their work cannot, however, provide fine-grained
provenance for videos, especially when offloaded.

Secure Video Processing using GPU TEEs. We envision utilizing
GPU TEEs in Vronicle in the future to provide more complex filters
such as edge detection and object recognition. There has been
several works to realize TEEs for GPUs, notably Graviton [61]
(which is a proprietary emulator) and Telekine [37]. Visor [52] is a
secure, privacy-preserving video analytics platform that is built on
top of Graviton. It provides confidentiality to the video analytics
pipeline and protects the video data from attacks including side-
channel attacks. In contrast, in Vronicle, we are not concerned with
confidentiality of the video.

Motion-based Video Timestamps Attestation C-14 [59] assures
the earliest timestamp when an untrusted drone records a video.
It provides a random challenge containing a sequence of motions
for the drone to complete, where the footage is then used to verify
that the drone has successfully finished all required motions.

12 CONCLUSIONS

We envision a world where consumers can easily verify authenticity
and integrity of videos using trustworthy provenance information.
Current video veracity techniques are either too coarse-grained
in provenance (i.e., prove little to the consumer), or offer poor
performance — a matter of minutes for a single small frame.
Vronicle provides precise provenance information on both the
original video recording as well as every step of post-processing.
Vronicle defends against attackers that control all network com-
munication as well as all software state outside TEEs. One of the
prototypes described in this paper can be immediately deployed
and used. Our evaluation shows that (1) Vronicle’s performance
is good and usable for non-real-time use cases and (2) offloading
Vronicle’s post-processing improves its performance significantly.

ACKNOWLEDGMENTS

The work of UCI authors was supported in part by the NSA Award
#H98230-20-1-0345 and UCI ICS Exploration Research Award. The
work of Gene Tsudik and Yoshimichi Natakatsuka was also sup-
ported in part by NSF Awards SATC-1956393 and CICI-1840197. The
authors thank the paper shepherd, Steven Ko, and the anonymous
reviewers for their insightful comments.

REFERENCES

[1] 2001. VLC. https://www.videolan.org/vlc/.

2004. ARM Security Technology, Building a Secure System using TrustZone Tech-
nology. http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492¢/
PRD29-GENC-009492C_trustzone_security_whitepaper.pdf.

2004. TrustZone: Integrated Hardware and Software Security: Enabling Trusted
Computing in Embedded Systems. In ARM White Paper.

2010. Canon Original Data Security Kit. http://www.canon.co.jp/imaging/osk/
osk-e3/index html.

2010. Canon Original Data Security System Compromised: ElcomSoft Discovers
Vulnerability. https://www.elcomsoft.com/PR/canon_101130_en.pdf.

2015. Profile battery usage with Batterystats and Battery Historian. https:
//developer.android.com/topic/performance/power/setup-battery-historian.
2017. Protect against security threats with SafetyNet. https://developer.android.
com/training/safetynet.

2017. Security certifications for the Secure Enclave Processor. https://support.
apple.com/en-gb/guide/scce/sccca7433eb89/web.

2017. Serelay: Trusted Media Capture. https://www.serelay.com/.

2018. Android NDK. https://developer.android.com/ndk/index.html.

2019. Amber: Instilling trust into video. https://app.ambervideo.co/.

207

(12]

(18]

[19

[20]

[21

[22]

)
&

[24

[25]

[26

[30

[31

(32]

@
&

(34]

Yuxin (Myles) Liu, Yoshimichi Nakatsuka, Ardalan Amiri Sani, Sharad Agarwal, and Gene Tsudik

2019. CCF: A framework for building confidential verifiable replicated
services. https://github.com/microsoft/CCF/blob/master/CCF-TECHNICAL-
REPORT pdf.

2019. Content Authenticity Initiative. https://contentauthenticity.org/.

2019. Google SafetyNet Attestation APL https://developer.android.com/training/
safetynet/attestation.

2019. Truepic: Photo and video verification you can trust. https://truepic.com/.
2019. Votz. https://voatz.com/.

2020. aletheia: Fight fake news by signing your files. https://danielquinn.github.
io/aletheia/.

2020. Impact of COVID-19 on the Video Conferencing Market, 2020
- ResearchAndMarkets.com. https://www.businesswire.com/news/home/
20200416005739/en/Impact-COVID-19-

Video-Conferencing-Market-2020--.

2021. Dutch MPs in video conference with deep fake imitation of Navalny’s Chief
of Staff. https://nltimes.nl/2021/04/24/dutch-mps-video-conference-deep-fake-
imitation-navalnys- chief-staff.

2021. Video: No, Tom Cruise isn't on TikTok. It's a deepfake.
https://www.cnn.com/videos/business/2021/03/02/tom-cruise- tiktok- deepfake-
orig.cnn-business.

Adobe. 2021. Video effects and transitions in Premiere Pro. https:
//helpx.adobe.com/lu_en/premiere-pro/user-guide. html/lu_en/premiere-
pro/using/video-effects-transitions.ug.html.

M. Ahmed-Rengers. 2019. FrameProv: Towards End-to-End Video Provenance.
In Proc. ACM New Security Paradigms Workshop (NSPW).

I. Anati, S. Gueron, S. Johnson, and V. Scarlata. 2013. Innovative technology
for CPU based attestation and sealing. In Proc. ACM International Workshop on
Hardware and Architectural Support for Security and Privacy (HASP).

Apple Developer Article. 2017. Capturing Photos with Depth.
https://developer.apple.com/documentation/avfoundation/cameras_and_
media_capture/capturing_photos_with_depth.

N. Asokan and A. Paverd. 2021. Remote Attestation. Building trust in things you
can’t see. Tutorial.

A. Biondo, M. Conti, L. Davi, T. Frassetto, and A. Sadeghi. 2018. The Guard’s
Dilemma: Efficient Code-Reuse Attacks Against Intel SGX. In Proc. USENIX
Security Symposium.

T. Cloosters, M. Rodler, and L. Davi. 2020. TeeRex: Discovery and Exploitation of
Memory Corruption Vulnerabilities in SGX Enclaves. In Proc. USENIX Security
Symposium.

V. Costan, I. Lebedev, and S. Devadas. 2016. Sanctum: Minimal Hardware Exten-
sions for Strong Software Isolation. In Proc. USENIX Security Symposium.

P. England, H. S. Malvar, E. Horvitz, J. W. Stokes, C. Fournet, R. Burke-Aguero, A.
Chamayou, S. Clebsch, M. Costa, J. Deutscher, S. Erfani, M. Gaylor, A. Jenks, K.
Kane, E. Redmiles, A. Shamis, . Sharma, S. Wenker, and A. Zaman. 2020. AMP:
Authentication of Media via Provenance. (2020). arXiv:2001.07886

H. Farrukh, R. M. Aburas, S. Cao, and H. Wang. 2020. FaceRevelio: A Face Liveness
Detection System for Smartphones with a Single Front Camera. In Proc. ACM
MobiCom.

J. Fingas. 2021. Woman allegedly made deepfakes to kick rivals off daughter’s
cheerleading squad. https://www.engadget.com/woman-creates- deepfakes-for-
cheerleader-

daughter-215024991.html.

A. Gehani and U. Lindgvist. 2007. VEIL: A System for Certifying Video Prove-
nance. In Proc. IEEE International Symposium on Multimedia (ISM).

P. Gilbert, J. Jung, K. Lee, H. Qin, D. Sharkey, A. Sheth, and L. P. Cox. 2011.
YouProve: Authenticity and Fidelity in Mobile Sensing. In Proc. ACM SenSys.

D. Harwell. 2019. Faked Pelosi videos, slowed to make her appear drunk, spread
across social media. https://www.washingtonpost.com/technology/2019/05/
23/faked-pelosi-videos-slowed-make-her-appear-drunk- spread-across-social-
media/.

H. R. Hasan and K. Salah. 2019. Combating Deepfake Videos Using Blockchain
and Smart Contracts. IEEE Access 7 (2019), 41596-41606. https://doi.org/10.1109/
ACCESS.2019.2905689

M. Hoekstra, R. Lal, P. Pappachan, V. Phegade, and J. Del Cuvillo. 2013. Using
Innovative Instructions to Create Trustworthy Software Solutions. (2013).

T. Hunt, Z. Jia, V. Miller, A. Szekely, Y. Hu, C. J. Rossbach, and E. Witchel. 2020.
Telekine: Secure Computing with Cloud GPUs. In Proc. USENIX NSDIL

T.Hunt, Z. Zhu, Y. Xu, S. Peter, and E. Witchel. 2018. Ryoan: A distributed sandbox
for untrusted computation on secret data. ACM Transactions on Computer Systems
(TOCS) (2018).

M. Ibrahim, A. Imran, and A. Bianchi. 2021. SafetyNOT: On the usage of the
SafetyNet Attestation API in Android. In Proc. ACM MobiSys.

P. Korshunov and S. Marcel. 2018. DeepFakes: a New Threat to Face Recognition?
Assessment and Detection. (2018). arXiv:1812.08685

J. Lee, J. Jang, Y. Jang, N. Kwak, Y. Choi, C. Choi, T. Kim, M. Peinado, and B. B.
Kang. 2017. Hacking in Darkness: Return-Oriented Programming Against Secure
Enclaves. In Proc. USENIX Security Symposium.

M. Lentz. 2020. Assurance and Control over Sensitive Data on Personal Devices.
https://https://doi.org/10.13016/nx2k-waen.

https://www.videolan.org/vlc/
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
http://www.canon.co.jp/imaging/osk/osk-e3/index.html
http://www.canon.co.jp/imaging/osk/osk-e3/index.html
https://www.elcomsoft.com/PR/canon_101130_en.pdf
https://developer.android.com/topic/performance/power/setup-battery-historian
https://developer.android.com/topic/performance/power/setup-battery-historian
https://developer.android.com/training/safetynet
https://developer.android.com/training/safetynet
https://support.apple.com/en-gb/guide/sccc/sccca7433eb89/web
https://support.apple.com/en-gb/guide/sccc/sccca7433eb89/web
https://www.serelay.com/
https://developer.android.com/ndk/index.html
https://app.ambervideo.co/
https://github.com/microsoft/CCF/blob/master/CCF-TECHNICAL-REPORT.pdf
https://github.com/microsoft/CCF/blob/master/CCF-TECHNICAL-REPORT.pdf
https://contentauthenticity.org/
https://developer.android.com/training/safetynet/attestation
https://developer.android.com/training/safetynet/attestation
https://truepic.com/
https://voatz.com/
https://danielquinn.github.io/aletheia/
https://danielquinn.github.io/aletheia/
https://www.businesswire.com/news/home/20200416005739/en/Impact-COVID-19-
https://www.businesswire.com/news/home/20200416005739/en/Impact-COVID-19-
Video-Conferencing-Market-2020--
https://nltimes.nl/2021/04/24/dutch-mps-video-conference-deep-fake-
imitation-navalnys-chief-staff
https://www.cnn.com/videos/business/2021/03/02/tom-cruise-tiktok-deepfake-orig.cnn-business
https://www.cnn.com/videos/business/2021/03/02/tom-cruise-tiktok-deepfake-orig.cnn-business
https://helpx.adobe.com/lu_en/premiere-pro/user-guide.html/lu_en/premiere-pro/using/video-effects-transitions.ug.html
https://helpx.adobe.com/lu_en/premiere-pro/user-guide.html/lu_en/premiere-pro/using/video-effects-transitions.ug.html
https://helpx.adobe.com/lu_en/premiere-pro/user-guide.html/lu_en/premiere-pro/using/video-effects-transitions.ug.html
https://developer.apple.com/documentation/avfoundation/cameras_and_media_capture/capturing_photos_with_depth
https://developer.apple.com/documentation/avfoundation/cameras_and_media_capture/capturing_photos_with_depth
https://arxiv.org/abs/2001.07886
https://www.engadget.com/woman-creates-deepfakes-for-cheerleader-
https://www.engadget.com/woman-creates-deepfakes-for-cheerleader-
daughter-215024991.html
https://www.washingtonpost.com/technology/2019/05/23/faked-pelosi-videos-slowed-make-her-appear-drunk-spread-across-social-media/
https://www.washingtonpost.com/technology/2019/05/23/faked-pelosi-videos-slowed-make-her-appear-drunk-spread-across-social-media/
https://www.washingtonpost.com/technology/2019/05/23/faked-pelosi-videos-slowed-make-her-appear-drunk-spread-across-social-media/
https://doi.org/10.1109/ACCESS.2019.2905689
https://doi.org/10.1109/ACCESS.2019.2905689
https://arxiv.org/abs/1812.08685
https://https://doi.org/10.13016/nx2k-waen

Vronicle: Verifiable Provenance for Videos from Mobile Devices

[43]

[44]

[45]

[46

[47]

[48]

[49]

[50]

[51]
[52]

[53

[54]

Y. Li, M. Chang, and S. Lyu. 2018. Ictu Oculi: Exposing AI Created Fake Videos
by Detecting Eye Blinking. In Proc. IEEE International Workshop on Information
Forensics and Security (WIFS).

Y. Li and S. Lyu. 2019. Exposing Deepfake Videos by Detecting Face Warping
Artifacts. In Proc. IEEE Conference on Computer Vision and Pattern Recognition
Workshops (CVPRW).

H. Liu, S. Saroiu, A. Wolman, and H. Raj. 2012. Software Abstractions for Trusted
Sensors. In Proc. ACM MobiSys.

S. McCloskey and M. Albright. 2018. Detecting GAN-generated Imagery using
Color Cues. (2018). arXiv:1812.08247

F. McKeen, I. Alexandrovich, A. Berenzon, C. V. Rozas, H. Shafi, V. Shanbhogue,
and U. R. Savagaonkar. 2013. Innovative Instructions and Software Model for
Isolated Execution.. In Proc. Inter. Workshop on Hardware and Architectural Support
for Security and Privacy (HASP).

S. Mervosh. 2019. Distorted Videos of Nancy Pelosi Spread on Facebook and
Twitter, Helped by Trump. https://www.nytimes.com/2019/05/24/us/politics/
pelosi-doctored-video.html.

S. Mirzamohammadi, Y. Liu, T. A. Huang, A. Amiri Sani, S. Agarwal, and S. E.
Kim. 2020. Tabellion: System Support for Secure Legal Contracts. In Proc. ACM
MobiSys.

A. Naveh and E. Tromer. 2016. PhotoProof: Cryptographic Image Authentication
for Any Set of Permissible Transformations. In Proc. IEEE Symposium on Security
and Privacy (S&P).

H. Park and F. X. Lin. 2022. TinyStack: A Minimal GPU Stack for Client ML. In
Proc. ACM ASPLOS.

R. Poddar, G. Ananthanarayanan, S. Setty, S. Volos, and R. A. Popa. 2020. Visor:
Privacy-Preserving Video Analytics as a Cloud Service. In Proc. USENIX Security
Symposium.

A. Rossler, D. Cozzolino, L. Verdoliva, C. Riess, J. Thies, and M. Nief3ner. 2019.
Faceforensics++: Learning to Detect Manipulated Facial Images. In Proc. IEEE
International Conference on Computer Vision.

S. Saroiu and A. Wolman. 2010. I Am a Sensor, and I Approve This Message. In
Proc. ACM Workshop on Mobile Computing Systems & Applications (HotMobile).

208

[55]

[56

[57]

[58

o
20,

[60]

[61

[62

(63]

[65

[66

MobiSys "22, June 25-July 1, 2022, Portland, OR, USA

M. Shih, S. Lee, T. Kim, and M. Peinado. 2017. T-SGX: Eradicating
Controlled-Channel Attacks Against Enclave Programs. In Proc. NDSS Sym-
posium. https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/t-
sgx-eradicating-controlled-channel-attacks-against-enclave-programs/

M. Sorell. 2012. Video Provenance by Motion Vector Analysis: A Feasibility Study.
In Proc. IEEE International Symposium on Communications, Control and Signal
Processing (ISCCSP).

M. H. Stanzione. 2020. ‘Wet’ Ink Signatures Requirements May Fade After
Coronavirus. Bloomberg Law, The United States Law Week.

L. Sweeney. 2002. k-ANONYMITY: A MODEL FOR PROTECTING PRIVACY. Int.
Journal on Uncertainty, Fuzziness and Knowledge-based Systems (2002).

Z. Tang, F. Delattre, P. Bideau, M. D. Corner, and E. Learned-Miller. 2020. C-14:
Assured Timestamps for Drone Videos. In ACM MobiCom.

R. Toews. 2020. Deepfakes Are Going To Wreak Havoc On Society. We Are
Not Prepared. https://www.forbes.com/sites/robtoews/2020/05/25/deepfakes-
are-going-to-wreak-havoc-on-society-we-are-not-prepared/.

S. Volos, K. Vaswani, and R. Bruno. 2018. Graviton: Trusted Execution Environ-
ments on GPUs. In Proc. USENIX OSDL

M. Vonau. 2020. Latest SafetyNet improvements threaten to finally kill Magisk
Hide. https://www.androidpolice.com/2020/03/11/safetynet-improvements-kill-
magisk-hide/.

H. Wang, P. Wang, Y. Ding, M. Sun, Y. Jing, R. Duan, L. Li, Y. Zhang, T. Wei, and
Z.Lin. 2019. Towards Memory Safe Enclave Programming with Rust-sgx. In Proc.
ACM CCS.

T. Winkler, A. Erdélyi, and B. Rinner. 2014. TrustEYE.M4: Protecting the Sensor —
not the Camera. In Proc. IEEE International Conference on Advanced Video and
Signal Based Surveillance (AVSS).

T. Winkler and B. Rinner. 2010. TrustCAM: Security and Privacy-Protection
for an Embedded Smart Camera Based on Trusted Computing. In Proc. IEEE
International Conference on Advanced Video and Signal Based Surveillance (AVSS).
X. Yang, Y. Li, and S. Lyu. 2019. Exposing Deep Fakes using Inconsistent Head
Poses. In Proc. IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP).

https://arxiv.org/abs/1812.08247
https://www.nytimes.com/2019/05/24/us/politics/pelosi-doctored-video.html
https://www.nytimes.com/2019/05/24/us/politics/pelosi-doctored-video.html
https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/t-sgx-eradicating-controlled-channel-attacks-against-enclave-programs/
https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/t-sgx-eradicating-controlled-channel-attacks-against-enclave-programs/
https://www.forbes.com/sites/robtoews/2020/05/25/deepfakes-are-going-to-wreak-havoc-on-society-we-are-not-prepared/
https://www.forbes.com/sites/robtoews/2020/05/25/deepfakes-are-going-to-wreak-havoc-on-society-we-are-not-prepared/
https://www.androidpolice.com/2020/03/11/safetynet-improvements-kill-magisk-hide/
https://www.androidpolice.com/2020/03/11/safetynet-improvements-kill-magisk-hide/

	Abstract
	1 Introduction
	2 Background
	2.1 Trusted Execution Environment
	2.2 Video Post-Processing

	3 Vronicle Design Overview
	4 TEE-based Provenance Info
	4.1 Generating Provenance Info
	4.2 Verifying Provenance Info
	4.3 Supporting Videos
	4.4 Provenance Info for Videos

	5 Threat/Adversary Model
	6 Post-Processing Units
	6.1 Minimizing Provenance Info
	6.2 Flow of Provenance Across Units

	7 Implementation
	7.1 Video Post-Processor
	7.2 Camera Device
	7.3 TrustZone-based Camera
	7.4 Consumer

	8 Security Analysis
	8.1 Video Attacks
	8.2 Platform Attacks

	9 Performance Evaluation
	9.1 Setup
	9.2 Evaluation Results

	10 Discussions & Future Work
	10.1 Performance Optimizations
	10.2 Third-Party Verifiers
	10.3 Camera Device Privacy

	11 Related Work
	12 Conclusions
	Acknowledgments
	References

