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ABSTRACT This paper presents a discrete-time dynamical system model learning method from demonstra-
tion while providing probabilistic guarantees on the safety and stability of the learned model. The controlled
dynamic model of a discrete-time system with a zero-mean Gaussian process noise is approximated using
an Extreme Learning Machine (ELM) whose parameters are learned subject to chance constraints derived
using a discrete-time control barrier function and discrete-time control Lyapunov function in the presence
of the ELM reconstruction error. To estimate the ELM parameters a quadratically constrained quadratic
program (QCQP) is developed subject to the constraints that are only required to be evaluated at sampled
points. Simulations validate that the system model learned using the proposed method can reproduce the
demonstrations inside a prescribed safe set while converging to the desired goal location starting from various
different initial conditions inside the safe set. Furthermore, it is shown that the learned model can adapt to
changes in goal location during reproductions without violating the stability and safety constraints.

INDEX TERMS Discrete-time control barrier function, extreme learning machine, safe model learning.

I. INTRODUCTION

Advancements in data-driven dynamic model learning [1], [2],
[3] provide new possibilities to learn dynamic models with
applications to autonomous systems operating in remote, haz-
ardous and/or confined environments. Behavior cloning (BC),
one of the methods of imitation learning, learns a dynamic
system model and/or a policy from expert demonstrations [4],
[5]. Motion of autonomous systems or robots generated from
expert demonstrations often exhibit stability and safety prop-
erties that should be preserved while learning the system
model. BC presents many advantages such as increased sam-
ple efficiency compared to reinforcement learning and can
be useful in many robotics and engineering applications [6],
[71, [8], [9], [10], [11]. Dynamic system learning-based BC
methods have incorporated stability [8], [9], [11], [12], [13]
and safety [5], [10], [14] constraints in learning linear or
nonlinear continuous-time system models. However, incorpo-
rating these constraints for uncertain discrete-time nonlinear

systems represented using neural networks (NN) with noise
poses technical challenges for constrained learning of such
system models.

This paper addresses the challenge by presenting a non-
linear dynamic system model learning method subject to
probabilistic stability and safety constraints. The controlled
dynamic model of a discrete-time system with a zero-
mean Gaussian process noise is approximated using extreme
learning machine (ELM), which is a computationally ef-
ficient approximation for the system model compared to
NN [15]. Probabilistic constraints on the ELM parame-
ter learning are derived using control Lyapunov function
(CLF) and control Barrier function (CBF) theory for discrete-
time systems. A chance-constrained quadratically constrained
quadratic program (QCQP) optimization problem is then
formulated to learn the ELM parameters with the proba-
bilistic stability and safety constraints, which are further
simplified to make the optimization problem tractable. The
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FIGURE 1. A block diagram that illustrates the information flow and
procedure for the discrete-time dynamical system model learning method.

schematic view of the proposed approach is illustrated
in Fig. 1.

The concept of safety is centered around the idea of con-
straining the behavior of the system model to a prescribed set,
by ensuring forward invariance of the set with respect to the
system model. Barrier functions (BF) are commonly used to
certify the forward invariance of a closed set with respect to a
system model. For the synthesis of safety-critical controller
design CBFs have been used via Quadratic Programming
(QP) [16], [17]. CLF and CBF are merged to synthesize stable
and safe controllers by solving a QP in [18], [19]. CBF meth-
ods work for constraints on systems that have relative-degree
more than one. In [20], a backstepping-inspired methodology
is used to obtain a CBF that renders a closed set forward
invariant when the system has relative degree more than one.
However, demonstrating a backstepping-based CBF design
for systems with relative degree greater than two in practice is
challenging [21], [22]. An exponential control barrier function
(ECBF) that can handle state-dependent constraints for non-
linear systems with any relative degree is introduced in [22].
In [23], a more general form of control barrier function termed
high-order control barrier function (HOCBF) is proposed.
HOCBFs are not restricted to exponential functions and are
determined by set of class /C functions.

In [24] an adaptive CBF (aCBF) is proposed, which en-
sures the forward invariance of a closed set with respect to
a nonlinear control-affine system with parametric uncertain-
ties. In [25] the aCBF method is merged with an adaptive
data-driven safety controller for contracting systems. Authors
in [26] develop a method to learn a robustly safe controller
along with learning the system parameters and corresponding
uncertainty bounds. A metric based on the covariance of the
parameter estimates is used to determine if the data is suf-
ficient to update the parameters. These methods mainly focus
on controller synthesis problem with a known dynamic system
model or with model adaptation.

The controller synthesis methods assume the knowledge of
barrier function. Methods for learning barrier functions and
safe regions directly from sensor data are developed in [16],
[27], and [28]. Although there is a lot of work on safe con-
troller synthesis problem, very few methods are developed for
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learning safe and stable closed-loop autonomous system using
ELM dynamic system modeling that incorporates safety and
stability constraints.

Classical linear system identification techniques utilize
parametric model structure and guarantee the stability of
learned models [2], [3]. Machine learning techniques, such as
NN and Gaussian processes (GPs), have been used for non-
linear system identification [11], [29]. Model uncertainties,
in the form of a NN approximation error, are accounted for
in [14] along with stability and safety constraints using recip-
rocal BFs, where the uncertainty is bounded by a constant. In
the context of Bayesian learning, GP state-space models are
learned with stability constraints in [11]. In [30], a simultane-
ous continuous system model learning and control synthesis
method is developed, where GPs are used for model learning,
and probabilistic CBF and CLF are used to achieve safety and
stability.

Compared to our previous work in [31], a controlled
discrete-time nonlinear system with a zero-mean Gaussian
noise is considered in this paper, resulting in a more generic
formalism for learning closed-loop autonomous systems. De-
tailed proofs of theorems and lemmas are presented while
including the ELM reconstruction error, and the method is
evaluated on three different simulation examples. The contri-
butions of the paper are summarized as follows.

® A learning method for discrete-time nonlinear con-
trolled systems approximated using ELM with additive
zero-mean Gaussian process noise is developed while
verifying the probabilistic safety and stability properties
of the learned system.

e A discrete-time zeroing control barrier function (DT-
ZCBF) and discrete-time control Lyapunov function
(DT-CLF) [32] are used to obtain safety and stability
chance constraints that yield a computationally tractable
system identification with probabilistic guarantees on the
system’s safety and stability, respectively.

e An ELM network is used to represent an uncertain
discrete-time system, and the ELM reconstruction error
is regarded as a bounded signal.

® The constrained ELM parameter learning problem is
formulated as a QCQP, which contains finite number
of decision variables with infinite constraints leading
to a semi-infinite program. To make the optimization
tractable, an equivalent optimization problem is derived
that requires the constraints to be evaluated only at a
finite number of sampled points [10], [33].

® The constrained model learning approach is demon-
strated in simulation using three examples: (1) a 2 ©
of freedom (DoF) planar robot whose joint positions
are lower and upper bounded using a zeroing barrier
function, (2) learning motion trajectories of one of the
complex shapes from a publicly available dataset, (3) a
wheeled mobile robot that travels along a certain trajec-
tories in a confined space.

Notation: The sets of real numbers and integers are de-

noted by R and Z, respectively. The symbols Rt and Z*
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denote the set of non-negative real numbers and non-negative
integers, respectively. For ease of notation, the dependency
of variables is abbreviated, for example, x(k) is denoted by
Xk, unless necessary for clarity. The standard Euclidean norm
of a vector is denoted by | - || and || - || is the Frobenius
norm. The weighted norm of a vector x € R” by a positive
definite matrix A is denoted by |x||4 = v xTAx. The symbol
Amax{-} denotes the maximum eigenvalue of a matrix. The
symbol [-]; denotes the function evaluation at a point that
belongs to a state-space D;. g(sy) € R"! denotes the sigmoid
activation function computed using the estimated ELM input
weight matrix U and the estimated internal slopes and biases
ap and by,. €(si) € R" denotes the ELM model reconstruction
error. The arguments of g and € are dropped for brevity, unless
necessary for clarity.

II. PRELIMINARIES

In this section, preliminaries of DT-CLF and DT-ZCBF are
presented. Consider an unknown nonlinear discrete-time sys-
tem of the form

x(k 4+ 1) = fx(k), u(k)) 4 v(k), 6]

where f:D xU + D is a continuous function, x(k) €
D C R”" is the state of the system at time step k € Z™T, and
u(k) = m(e(k)) e U C R™ is the system control input with a
policy 7 (-) that depends on the error e(k) = x(k) — x*, v(k)
is independent and identically distributed zero-mean Gaussian
process noise with covariance X, which is a symmetric and
positive definite matrix, and x* is the system equilibrium.

A. DISCRETE-TIME CONTROL LYAPUNOV FUNCTION

The classical stability analysis of continuous-time nonlinear
dynamical systems using Lyapunov theory is extended to the
discrete-time domain. It entails finding a positive definite
function V : D +— R, which decreases along the trajecto-
ries of the system given in (1). Refer to [32] and references
therein for a comprehensive study on discrete-time Lyapunov
theorems.

Definition 1 (DT-CLF): Given the discrete-time system
(1), V(x) is said to be a DT-CLF if it can be bounded by
a1 (lxell) < V(xg) < aa(llxe|l) and there exists a control input
u;, € U such that

Cr (g, wi) = AV O, u) + B(lxl) <0, Ve € D, (2)

where AV(xk, Mk) = V(xk“) — V(xk) = AVk, o1, o, and
B belong to class /C function.

B. DISCRETE-TIME ZEROING CONTROL BARRIER
FUNCTION
Safety properties can be achieved by constraining the solu-
tions of the discrete-time dynamical system to a pre-specified
closed set S = {x; € D : h(x;) > 0}, where & : R” +— R is
a continuous function associated with a barrier function [32].
Definition 2 (DT-ZCBF): Given the discrete-time system
(1) and the set S, a continuously differentiable function 4 :
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R" — R is said to be a DT-ZCBEF, if there exists a class IC
function satisfying n(r) < r, Vr > 0, aset D with S €D C
R", and a control input u; € U such that

Cp (xx, ug) = AhQx, ug) +n(h(xg)) = 0, Vxp € D, (3)

where Ah(xk, Mk) = h(xk+1) — h(xk) = Ahk.

The set S is forward invariant with respect to the discrete-
time system in (1) if and only if there exists a DT-ZCBF as
defined in Definition 2, which means for any initial condition
xo € S, implies x; € S, Vk € Z7 [34].

Assumption 1: The function f: D xU + D is locally
Lipschitz continuous and bounded in D.

1Il. CHANCE-CONSTRAINED ELM LEARNING PROBLEM

Consider a discrete-time nonlinear dynamical system in
(1), it is assumed that the unknown function f(-) can
be parameterized as f(xg, mw(e;)) = WTg(sk), where W e
R +Dx1 jg the unknown ideal bounded constant output layer
weight matrix, g(s¢) = [Y(gsp)", 1] : R2H s Rt
Sk = [x,;r, ekT, 117 € R () € R™ is the vector sigmoid
activation function, n;, is the number of neurons in the hidden
layer of the ELM. The vector sigmoid activation function (-)

is given by
T
] N C))

where q =[P, bp]leR"W*Z+D P = diag(ap)U" €
R™x2n, ap € R" and by, € R"™ are the ideal internal slopes
and biases vectors, respectively and U € R?*" is the ideal
bounded input layer weight matrix. Other activation functions
such as radial basis functions, tangent sigmoid can also be
used [35], [36]. The nonlinear function f(xy, u;), defined in
(1), is modeled using an ELM given by

F G, ) = W g(se) + €(sp), (5)

where W € RU+TDx" jg the estimated ELM output weight
matrix, €(sx) € R" is the function reconstruction error, and
g(sp) = [1//(qsk)T, 117, where q is constructed using the esti-
mated ELM input weight matrix U and the estimated internal
slopes and biases aj, and b,. The parameters ap, b, and U
of ELM are computed using intrinsic plasticity (IP) or batch
intrinsic plasticity (BIP) algorithms. See [36] and [14] for
preliminaries of ELM.

Assumption 2: The ideal weights of the ELM are bounded
by known positive constants, i.e., |[W|r < W, |U|r <U
[35].

Remark 1: The sigmoid function v;(-) € [0, 1] and hence
its derivative ¥;(-)(1 — v;(-)) has upper and lower bounds
given by 0 < ¢;(-)(1 — ¢i(+)) <0.25, Vi =1, - - -ny. Thus,
VOl = /np and [[y ()1 = Y () < 0.25,/ny. Using As-
sumption 2, the ELM parameterization of f(xy, uz) is Locally
Lipschitz continuous.

Remark 2: The nonlinear function f(xi, uy) is within real
and positive constant € of the ELM range if there exists

1 1
e @0 [ @0,

¥ (qsg) = [
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a finite number of hidden neurons n;, and constant weights
so that for all x; € S the approximation in (5) holds with
lle(sp)|| < €. The boundedness of the reconstruction error
€(sy) follows from the Universal Approximation Property of
single layer neural network [37] and the fact that for any
activation function the reconstruction error goes to zero [15],
[29],1.e., lim e(s;) = 0.
np— 00

Remark 3: Using Assumptions 1-2 and Remark 1, the fol-
lowing inequality holds: ||3iske(sk)|| <é.

Let X}l}'m ={x{, ... X7 }}2’1 denote a set of N demon-
strations with 7, time samples of the system’s trajectory of
(1), where each demonstration ends at a goal location x*
and Géil};_l = {g(sé), e 153(&}'"_1)}1/\]:1 denote their sigmoid
functions. The process noise vy together with the model yields
the following likelihood function

N T,—1

pxiGw) =[] [TeoTzi7

j=1 k=0
1. T NG
X exp THXHI_W g(sk)—e(sk)Hzi1 s

N Tp—1 ‘ _
~TI 11 N(WTg(s,i)+e(s,ﬁ>, 2) 6)

j=1 k=0

where the indexes for X and G are dropped for brevity. The
Gaussian distribution of the process noise induces a distribu-
tion over the DT-CLF and DT-ZCBF constraints in (2) and (3),
which can be used to obtain probabilistic stability and safety
guarantees in the constrained parameter learning of the ELM,
respectively.

lll. PROBLEM FORMULATION

Consider a set of state trajectories X{l};l and their correspond-
ing sigmoid functions G(l)il}fn_ 1 generated by a model of a
controlled system, where there exists u; € U that stabilizes the
system’s trajectories to a desired goal location while keeping
them in a confined space. The constrained model learning
problem is then formulated as a parameter learning problem
of an ELM approximation of f(xg, u;) given in (5), such
that the system in (1) satisfy probabilistic safety and stability
properties.

Given a safe set S defined in Section II, the ELM parame-
terized model in (5), the initial state xy € S, and the likelihood
function p(X|G, W) in (6), the ELM parameter learning prob-
lem can be formulated as a chance constrained regularized
maximum log-likelihood estimation as follows

W*=arg min —In pX|G W)+ pytr(W'W)
WeR(nh+l)><n
(7a)
st. P(Cp=<¢lx)=pr, Vx €D, (7b)
P (CL <8lxx) > pr, Vxx €D, (70
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L Css
and Vk € Z1, where
—In p(X|G, W)
1 N Tm_l . . . 2
=2 [ = WTesh—e6h| . ®
=1 k=0

uw € RT is the regularization parameter, and W* denotes the
optimal solution for W, which is used in (5) to represent the
learned system. py € (0, 1) is a user-specified risk tolerance,
and ¢, 6§ € R.

The negative log-likelihood function in (8) has the ELM
reconstruction error term, which is not measurable in practice.
To circumvent this issue and to make (8) implementable, we
only keep the terms with the decision variable W, in the
objective function. For deriving the cost function consider the
following expression

N T,—1
1 ” , 2 : L
52 Hx]ﬁH—WTg(s,j()HE_I+2g(s,j()TWE le(sh).
=1 k=0

)

Using the Young’s inequality, the second term in (9) can be
upper bounded so we have

2e(sHTWEe(s)) < HWT (sf)H2 n He(sf)H2 (10)
808 K= 81| -1 kg1

where ||e(sk)||§:,1 can be ignored since it is not associated
with the decision variable W. Hence, the cost function J(W)
to be implemented takes the following form

N T,—1
1 n . 2 2
=33 Hx,gﬂ - ng<s,{>HE,l + Hng@pr
j=1 k=0

+ pwtr (WTW) (11)
IV. CHANCE-CONSTRAINED OPTIMIZATION

A. ENCODING PROBABILISTIC SAFETY CONSTRAINTS
DT-ZCBF defines a forward invariant set such that solutions
of the nonlinear dynamical system that start in that set remain
in that set for all time. A hyperellipsoid is used to represent a
DT-ZCBE, h(x;) : R" +— R, and it is given by

hGg) =1 — (g — %) A — %), (12)

where A € R™" is a symmetric positive definite matrix, and
X is the vector that denotes the center of gravity of the hyper-
ellipsoid.

To account for the uncertainty in safety constraint satisfac-
tion, the DT-ZCBF is rewritten as

P(Cs=¢lx)=1—Feu (&) = pi
where F¢,(¢) is given by

13)

. ¢ —E[Cs 1 1 ¢ —E[Cp]
=S| =) =5 t et | s
]:CB(;) < Var [CB] ) 2 26 ( 2Var [CB]>

(14)
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and ®(-) is a cumulative distribution function of the stan-
dard Gaussian. Note that as the variance tends to zero, i.e.,
Var[Cp] — 0, the probability P(Cg > ¢|x;) tends to one
when ¢ < E[Cg]. As the uncertainty in the system dynamics
decreases to zero the safety assurance can be guaranteed with
probability one. Substituting (14) into (13), the probabilistic
safety constraint is given by

¢ —E[Cgl < —c(pr)/Var|Cgl,

where c(py) = «/ierfl(Zpk —1).

Lemma 1 is presented next to compute the parameters re-
quired for the cumulative distribution in (15), i.e., E[Cg] and
Var[Cg].

Lemma 1: Given the controlled system in (1) modeled us-
ing (5), the process noise vy induces a distribution over the
DT-ZCBF constraint in (3) with the following parameters:

15)

2
E(Csl=1— | (W g+e=5) | —w@)— 1= yhew),
(16)

Var(Csl =4 AW g+e— %)% +20(ARAR), (1)

where the class K function n(4(xy)) in Definition 2 is selected
as n(h(x;)) = yh(xy), and y is a positive constant.

Proof: Substituting (12) in (3) for h(xxy1) and using (1)
and (5) yields

Co=1—|W g+e+u—%|;—1—p)htx). (8)
Taking the expectation of Cg we have
E [1 —[WTg+e+u—x;—1- y)h(xk)]
—1-(Wig+e—5)'A
x (Wig+e—3%) —tr(AZ) — (1 — p)h(x), (19)
and the variance is
Var[Cg) = E [ (h(xxs1) — E [t D))’
=E [(—2 gTWAvk — ZGTAUk — v,;rAuk + ZXTAvk
+tr (AX))*].

Utilizing properties such as the odd moments of multivariate
Gaussian distribution are zero and the trace is invariant under
circular permutations, (20) can be written as

Var[Cpl =4 (g WAZAW "g+ € 'ATAe + ¥ ATA%

(20)

+2g ' WAZAe — 2g' WATAR — 2¢ ' ATAX)
+E [(vaAvk)z] —t2(A%). Q1)

After substituting E[(v Avp)*] = tr’(AZ) + 2r(ATAY) in
(21), the result in (17) is obtained. |

B. ENCODING PROBABILISTIC STABILITY CONSTRAINTS
In this subsection, a probabilistic stability constraint is derived
using Definition 1 for the uncertain discrete-time system given
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in (5) and a Lyapunov candidate V (x;) = (x; — )Py —
x*), where P € R"" such that P = PT > 0.

To account for the uncertainty in stability constraint satis-
faction, the DT-CLF in (2) can be rewritten as

P (CL < 8lxx) = Fe, (8) = p (22)
where
Ly Le(d-Bl
Fe, (8) = 5 + 2erf(m> . (23)

Substituting (23) into (22), the probabilistic stability con-
straint is given by

8§ —EI[CL] = c(pr)y/Var[CL],

where E[C;] and Var[Cy] are given in Lemma 2, which is
presented next.

Lemma 2: Given the controlled system in (1) modeled us-
ing (5), the process noise v induces a distribution over the
DT-CLF constraint in (2) with the following parameters:

(24)

2
‘P +tr(PX) — (1= p)V(xp),
(25)

E[C] = ” (W'g+e—x*)

2
Var[CL] = 4”P (WTg+e —x¥) (2 42t (PEPY),

(26)

where the class I function B(||x¢||) in Definition 1 is defined
as B(llxkl) = pV(xx)and 0 < p < 1.

Proof: Substituting V (x;) = (xx — x*)TP(xx — x*) in (2)
for V (x¢41) and using (1) and (5) yields

CL=|Wigtetu—xo—U=-p V). @7
Taking the expectation of C;, we have
E[[wTg+e+w -2, — (1 - p)Vewo)]
=(W'g+e— x*)T P(W g+e—x¥)
+tr(PX)— (1 — p)V(xg), (28)

and the variance is
Var(Cul = E [ (V (i) = E[VOxin)])’]
=E[(2g"WPv + 2¢ " Py + vl Av — 2x*T Py
—tr (PX))*]. (29)

Utilizing properties that odd moments of multivariate Gaus-
sian distribution are zero, and that the trace, when the matrices
are of suitable dimensions, is invariant under circular permu-
tations, (29) can be written as

Var[CLl =4 (g' WPSPW g+ €' PLPe + x* PEPx*
+2g ' WPEPe — 2g' WPEPx* — 2¢' PEPx¥)

+E[(TPe)’] - wPx) (30)
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After substituting E[(e " Pe)?] = tr>(PX) 4+ 2tr(PLPY) in
(30), the result in (26) is obtained. |

Assumption 3: The variances Var[Cg] > 1 and Var[C.] >
1.

Remark 4: Functions v/Var[Cg] and \/Var[CL] are not Lip-
schitz continuous on [0, 1] as the slope of the tangent line
to their corresponding arguments become steeper as they ap-
proach to zero. Therefore, Assumption 3 is made to satisfy the
constraint’s Lipschitz continuity requirement.

Remark 5: If Assumption 3 does not hold, i.e., Var[Cg] <
1 and Var[Cr] < 1, the right hand side (RHS) of the con-
straints in (15) and (24) can be modified by introducing a con-

stant £ > 1 such that \/€2Var[Cg] > 1 and \/£2Var[CL] > 1.

For example, for the safety constraint in (15) we get

¢ —E[Cg] < %@%r [Cal.

for which the right hand side of (31) can be lower bounded by
¢ — E[Cp] < —&c(pr)Var[Cp]. Scaling by the selected & is
equivalent to solving the optimization problem with a tighter
constraint.

€29

C. ENCODING PROBABILISTIC SAFETY AND STABILITY
CONSTRAINTS VIA QCQP

In this section, the chance-constrained ELM learning problem
is formulated as a QCQP.

Proposition 1: Given the controlled system in (1) modeled
using (5) and Assumption 3, the ELM parameter learning
problem with probabilistic safety and stability constraints
given in (7b)-(7c) can be formulated as a QCQP with the cost
function in (11) and the following constraints:

W* = arg n‘l/‘i/nJ(W) (32a)
st JAT(WTg+e—5) > <Tg.  (32b)
1P (WTg+e—x") |2 <T¢, (320

where
AL A+4c(p)ATSA, P EP+4c(pr)P' TP,

A
e, =

1 —¢ —tr(AZ) — (1 = y)h(x) = 2c(pr)tr(AZAT),
I, £

L

§—tr(PY)+ (1 — p)V(xg) — 2c(pp)tr(PXPX).

Proof: Using Assumption 3, the RHS of (15) can be lower
bounded, and the constraint can be rewritten as
¢ —E[Cg] < —c(px)Var[Cp]. (33)

Substituting E[C;] and Var[Cg] from (16) and (17) into (33)
we have

2 2
HA% (WTg—i-e—i)H +4c(pk)Hz%A(WTg+e—x)H <

1 —¢ —tr(AX) — (1 — y)h(xg) — 2c(pi)tr(AXAY), (34)
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where the RHS of (34) can be substituted by I'c,. Expanding
and rearranging (34) we get

(WTg+e—%) (A+4c(pA  ZA) (W g+ e — %) <T¢y,
(33)

which after substituting A for the middle term in (35) the
result in (32b) is obtained.

Similarly, using Assumption 3 to upper bound the RHS of
(24) we have

8§ —E[CL] = c(px)Var[CL], (36)

and when E[C;] and Var[C;] from (25) and (26) are substi-
tuted into (36) we get

2
<

P% (WT ok 2 1 T ok
gte —x*)| +dc(pp) |[Z2P(W'g+e—x")| <

8§ —tr(PE)+ (1 — p)V(xx) — 2c(pp)tr(PEPY), 37

where the RHS of (37) can be substituted by I'¢, . Expanding
and rearranging (37) we get

(WTg+e—x*) (P+4c(p)PT=P)

x (W'hg+e—x*) <Tg, (38)

which after substituting P for the middle term in (38) the
result in (32c¢) is obtained. |

The constraints (32b) and (32c) for the optimization prob-
lem must be satisfied for all x; € D, which leads to a
semi-infinite program. To circumvent the challenge of hav-
ing an uncountably infinite set, Theorem 1 is formulated that
proves only enforcing a modified constraints for a finite num-
ber of sampled points is sufficient for obtaining a solution for
the optimization problem in (32a)—(32c).

Let D; C D be a discretization of the state space D with
the closest point in D; to x; € D denoted by ||x;x — [x¢]< || <
5, where 7 is the discretization resolution. Thus, sampling x;
from D, we have ||s;y — [s¢l<| < \sz

Theorem 1: If Assumptions 2-3 hold, then the optimiza-
tion problem in (32a)-(32c) can be solved with the following
modified conditions

[T L8], =9y~ [Fes], = (xes + Yy +3e;) —Oce.
(39)

” (WT [g]z —x*) ”723_[FCLL =T (XCL+TCL +JCL) —0O¢, €,
(40)

V[x]; € D,, where

xes 2 (hmad MW+ T+ WanalAIEI) & @la)

Teg £(1- V) Amax{A} (lxe | + X1, (41b)
Is = ((nfu +é) % + gWr) Amax (A} €', (41c)
Ocy 2 2hmax (A} (W\/er %1+ %) ; (41d)
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>

xe, 2 (Rnan OV + 14 Whmad PHA1) 8 410) [y ]. + 2l A) (W S T+ 7] + %)E

Ye, £ (1 = p) Amax{P + x4, 41 B
@ = (1= 0 kmar{ 2}(””‘” 1) @b (R (M) /5 T W L4) 151 21
Jo, & ((Hx* | +é) =+ gWr) max (PYE,  (4lg) ,
V2 ((Ilill +o +gWr> A LA} 7 + (1 = ) x
N - % €
Oc, = 2Amax{P} (WV ot L4+ 5) c G ALl + IR T, Va € Dand Ve € Dp. (47)

MEWAWT, HE2wWPWT, g2 apU ./ and @, = From (42), (47), and (4la)-(41d), it is concluded that
’ ’ 2J2 7 1 T 112
ldiag(ap)|lF then the safety and stability conditions in (32b) I A> (W' g§+e€— {C)” —Teg = 0, Vaxg ED o
and (32¢) are satisfied Vx; € D. In a similar fashion, the modified stability constraint in (40)

Proof: The modified safety constraint in (39) can be written ~ ¢an be written as

= 1Pz (W [g], — ) 17 = [Te,],
1Az (W [g], =5) I =[Tey ], + 7 (xes +Yeop+es) 58{2) +7 (xe, + Yo, +13¢,) 0. (48)

Vx;, € D;. If ||P%(WTg+ € —x)|% — ¢, is a lower bound
on the left hand side of (48) then the safety constraint in (32c)
is satisfied. Consider

Vx; € D;. If ||A% WTlg+e—0)|? - [¢y is a lower bound
on the left hand side of (42) then the safety constraint in (32b)
is satisfied. Consider

1P (wT 2 3 (wT
Os=11A* (W g+ e — ) I~ 45 (W [g] +el, ) IP OL=1P2 (Wig+e—aT) I = IP> (W7 [g],
2
—(Teg = [Tes),) - (43) lele =) 7= (Fe, ~ [Te ). (49)
which by using the triang]e inequality OB can be upper which by using the triangle inequality can be upper bounded
bounded as as
1 _ 1 _ 1 1
Op=|IA3 (WTg+e —5) I =143 (W [g], +lele =) | Op =< [IP} (W g+e—x) |7 = |P?
+|Pes = [Tes], |- (44) x (W' [g], +1ele =x*) 1P|+ [Te, = [Te, ], |
After expanding each term, using Assumption 2 and Remark (50)
1, we obtain an upper bound on the RHS of (44) given by After expanding each term and using Assumption 2 and Re-
mark 1, the RHS of (50) can be upper bounded by
( max (M} + 1+ W Amax {A} ”x”> p \/_
2V2 - apr
U\/_ ()Lmax {H}vnn + 1+ Wimax {P Hx H)
<(||x|| +é)—=+—F7= ) Amax {A} €T+
MY (R N We ) b (P74
— X
(1 = %) Amax {A} (lx Il + l1x1D) <. 45 \/_ Y
Using (43) and the upper bound obtained in (45) yields (1= %) Amax (P} (Il + ||x*]|) = (51)
I ,4% (W To4e— x) 1% — e, Using (49) and the upper bound derived in (51) yields
1 1
< A2 (WT [g], +[el, —3) | IPZ (WTg+e—x) | = T¢, < |P?
— T 2
~ [Tg], + (amas (MY 1+ Wi (A} 151 g2 < (W7 [g]; +1€de =) 17 = [Te. ],

+ (s (0 Vi T Wi (P |7 ) 20

2 -
- x* +e‘—+‘Wr>,\ Pyét4(1 -
Amax (4} (el + 1) . (46) (149 2 AT ) pma (PR ET A=)
The first term on the RHS of (46) contains [€],. Hence, it is X Amax (P} (Ixell + x*]) 7. (52)
not measurable. However, expanding the norm squared and
upper bounding the terms that include [€]; results in

+ ((llxn + &) % +gWr> Amax {A} €T+ (1 —y) x

The first term on the RHS of (52) contains [€],. Hence, it is
1 | not measurable. However, after expanding the norm squared,
Az (WTg—l— € — )E) = Iey < | A2 (W—r [g]r - )E) (= the terms associated with [€]; can be upper bounded, and in
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doing so we obtain

IPE(WTg+e—x") |2~ T¢, < [P2 (W [g], —x*) I
—[Fe,], + 2hmax (P} (W\/rﬁ + )+ %) €
(o () v+ 1+ W (PY 7] )

2 -

+ ((Hx* I+8) 5+ gWr) I APYET + (1= p)

X Amax {A} (”xk” + “x* ||) 7, Vx; € D and V[x;]; € D;.
(53)

From (48), (53), and (4le)-(41h), it is concluded that
IPIWTg+e—x*)2 =T, <0,V €D. n

Remark 6: Theorem 1 proves that enforcing a modified sta-
bility and Lyapunov constraints for a finite number of sampled
points is sufficient to obtain an optimal solution of the QCQP
defined in (11).

A relaxation variable ¢ can also be introduced in the mod-
ified Lyapunov constraint given in (40) to maintain the feasi-
bility of the optimization problem by softening the Lyapunov
constraint. The modified probabilistic discrete-time control
barrier and Lyapunov functions-based QCQP (PDCBFLF-
QCQP) is given by:

PDCBFLF-QCQP

W*, 9" = arg IvlvligJ(W) + ? (54a)
2
st W' [g], =) — [Tes],
< —7 (xeg + Yeg +3cz) — Ocyé (54b)
2
|w T ], =) = [Te.],
<=7t (xe, + Yo, +3c,) — O, € + ¥ (54¢)

where c¢ is a positive constant and J(W) is given in (11).

Remark 7: In practice, the unconstrained learning for ELM
can be used to obtain the Frobenius norm of the output layer
weight matrix W stated in Assumption 2 to be included as a
constraint for the optimization problem in (54a). Moreover,
the unconstrained learning can also be used to obtain € and €’
used in constraints (54b)—(54c¢).

V. NUMERICAL EVALUATIONS

In this section three numerical examples to evaluate the
proposed method are presented.For each example, a set of
point-to-point demonstrations of a motion governed by the
controlled difference equation in (1) is considered. Each
demonstration consisting of the state trajectories is assumed
to be the solution of the underlying discrete-time dynamical
system. The objective is to learn the parameters of the ELM
network with theoretical guarantees such that the solutions of
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the learned dynamics remain inside a prescribed safe region
while converging to the desired goal location. An ellipse,
which is a commonly used approximation for representing the
region of operation, is selected such that it encloses all the
demonstrations. Once the model is learned, the parameters are
used to forward propagate the dynamics from various initial
conditions and to validate that the trajectories remain inside
the ellipse at all times without crossing the boundaries and
converge to the desired goal location. The optimization prob-
lem is solved using the CVX package in MATLAB 2020b.
Random initialization process in the ELM algorithm may lead
to having saturated or constant neurons, which are not desired
while learning the model [38]. To circumvent this problem, a
BIP learning rule is used to estimate the slopes and biases of
the ELM [38]. The active sampling strategy introduced in [14]
is also used to select informative points for the constraint
computations of the optimization problem in (54a)-(54c). For
all the three examples, the risk tolerance of py = 0.8, for vy
the covariance of ¥ = 0.02/, and regularization parameter
uw = 0.01 are chosen. The subsequent results are generated
using an ELM network with hidden neurons n;, = 25. A 100
Monte Carlo simulation runs are conducted to test the model
on bound violations during the trajectory reproduction from
various initial conditions.

To motivate our first example, consider a scenario in a
manufacturing industry where humans and robots must work
collaboratively and close to one another. In such settings,
robots must maintain their joint movements bounded when
moving in a confined space to ensure the safety of humans and
the manufacturing operation is carried out effectively. Robot
manipulators are modeled using Euler-Lagrange (EL) dynam-
ics. To demonstrate the applicability of our proposed method
to such cases, we consider, for simplicity, a two-link robot
planar manipulator with lengths L; = 1 [m] and L, = 1 [m]
and masses m; = 1 [kg] and my = 1 [kg], whose dynamics are
described by the EL equation: M(q)q + C(q, ¢)q + G(g) =
u, where M(q) € R2%2 denotes the inertia matrix, C(q,q) €
R2*2 denotes the centripetal-Coriolis matrix, G(g) € R? de-
notes the gravity vector, u € R? represents the control input
vector, and ¢, G € R? denote the joint angles and angular
velocity, respectively. A nonlinear black-box model of the
EL-dynamics in the following form g1 = f(qx, ux) is con-
sidered.

To generate the state trajectories data g for training the
ELM model, a PID set-point controller is designed to regulate
the joint positions to a desired value ¢ = [, —%]T. Through
empirical investigations, a set of seven trajectories with ran-
domly selected initial conditions are collected and their PID
gains are tuned individually. The joint position satisfies the
following bounds: 1.10 < ¢g(1) <3.49 and —1.90 < ¢(2) <
0.31, where ¢g(1) and ¢(2) denote the joint’s first and sec-
ond dimension. To avoid over sampling for the constraint
computations, an invariant region in the form of an ellipse
inscribed within the joint positions bounds is selected, i.e.,
h(gr) =1 — (g« — §) "A(gx — ), where § € R? denotes the
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FIGURE 2. lllustration of the ELM model learning using probabilistic safety
and stability constraints on joint positions data of a 2 DoF planar robot.

hyperellipsoid’s center of gravity,

2 in2 .
s« e cos & sin <l2 — %)
L L L L
A — 1 2 1 2
. 1 1 sin® cos? '
cosasmo | 5 — 5 ==+ =
4 ) 4 9

(55)

t1 and tp are the major and minor axes of the ellipse, re-
spectively and « is the orientation of the ellipse such that it
encloses the demonstrations data. Other parameters y = 0.8,
p=0.9, ¢ =0.8, and § = 0.9 are selected empirically. In
Fig. 2 the results of the ELM parameter learning are shown
when the system parameters are subject to probabilistic safety
and stability constraints given in (54b) and (54c). Using the
DT-ZCBF implies asymptotic stability of set S, shown as an
invariant region in Fig. 2. Hence, if any bounded disturbances
push the state outside the invariant region, the set S is asymp-
totically reached. For this reason, when training the system
model, the points are sampled from a more extensive set than
the selected ellipse [19]. The robot joint position trajectory
is produced at a different initial condition selected at random
from a uniform distribution between the initial condition used
during training and a point that is 0.5 mm distant apart. It can
be seen from Fig. 2, the reproduced trajectory remains inside
the desired invariant region for all time and converges to the
desired set-point. Same results are observed for all the Monte
Carlo runs. Fig. 3 shows the evolution of the joint angles
using the learned ELM parameters plotted as function of time.
The reproduced joint position trajectories never cross the set
boundaries in either direction and asymptotically converge to
a point very close to the desired position.

Advanced driver-assistance systems (ADAS) are technolo-
gies that assist drivers by providing sensory information as
warnings or reducing their control efforts. Most modern-day
vehicles are equipped with ADAS, an example of safety-
critical control applications. The architecture of autonomous
driving technology, which can also be viewed as ADAS
but with lesser driver engagements, consists of sensing, per-
ception, planning, and operation [39]. Motion planning that
computes moving paths of a vehicle while operating within a
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FIGURE 3. Evolution of the joint angles for the planar robot simulation
using the learned ELM parameters.
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FIGURE 4. Trajectories of the wheeled mobile robot learned using a
constrained learning method subject to probabilistic safety and stability
constraints. The boundary of the safe set is shown in a dark gray ellipsoid,
and random samples are selected from a more extensive set shown in the
light gray ellipsoid.
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FIGURE 5. lllustration of the model’s ability to the change of goal location
when it is learned using the proposed method. The boundary of the safe
set is shown in a dark gray ellipsoid.

confined region is an example of where the proposed method
can be utilized. Consider the following dynamic model of the
unicycle-like mobile robot.

Dx vcos(r) — aw sin(¥)
Py | = | vsin(y)+awcos(y) |, (56)
W w

where py, and p, denote the 2D position, v is the orien-
tation, and v, w denote the linear and angular velocities
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FIGURE 6. Model BendedLine, learned with probabilistic safety and
stability constraints for ellipse sets.

of the robot, respectively. Moreover, a represents the cen-
ter of the wheel to the position of interest (p,, py), which
for this example a constant @ = 0.12 [m] is chosen. This
model can be written as a nonlinear system given in (1) after
discritization, where x; = [p,(k), py(k), V()T € R3 is the
state vector, and u; € R? is the system control input. For
the system in (56), an adaptive controller similar to [40] is
first designed that tracks a desired trajectory. Through em-
pirical investigation, five trajectories with randomly selected
initial conditions are collected to be used as a demonstra-
tion data for training the ELM network. The bounds on
the states of (56) are selected as py € (=2, 1.07) [m], p, €
(—0.59,1.61) [m], and ¥ = (—0.237, 1.117) [rad]. The in-
variant region is given by h(x;) =1 — (xp — %) T Awmr(xx —
%), where ¥ € R denotes the ellipsoid’s center of gravity,
and Aypr = diag(gl_2, QZ_Z, 93_2), where 01, 02, and o3 are
the semi-axes of the ellipsoid whose values are chosen such
the ellipsoid encloses the demonstration data. Along with
the states x; two additional inputs in the form of the error,
Le., ex = py — py and ey = p, — pj are provided as inputs to
the ELM network, where p¥ and pi‘, are the target locations
that can be obtained from the demonstration data. The de-
sign parameters for this simulation are selected empirically as
y =0.95and p = 0.90,¢ = 0.5, 5 = 1. Fig. 4 shows the sig-
nificance of constrained model learning methods. As shown
in Fig. 4, the green trajectory is generated using a model
that is learned subject to probabilistic safety and stability
constraints, whereas the blue trajectory that goes outside the
state constraints is a result of the model that is learned without
any constraints. Moreover, the robustness of the described
method to the change of location is tested, and it is shown in
Fig. 5. The change of location is determined according to the
guidelines presented in [41]. The constrained trajectories are
bound to stay inside a user defined safe region while reaching
the target.

The purpose of imitation learning is to efficiently learn
motion dynamics by showing an example. However, its appli-
cation is not limited to physical systems. The LASA human
handwriting dataset [41] consists of 7 demonstrations where
the handwriting motions were collected from a pen input using
a Tablet PC. For the third example, the proposed method is
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tested on the BendedLine shape from dataset. An ellipse is
chosen for the invariant region that encloses the BendedLine
shape’s seven demonstrations. The state trajectories in all 30
shapes in the LASA dataset converge to an origin equilibrium,
i.e., x* =0, causing redundancy in the input vector to the
ELM network, that is s; = [ka, ka’ I]T. Thus, to circumvent
the data redundancy issue for this particular dataset and be
able to compute the constraints derived in (54b) and (54c),
the state trajectory for the selected shape is translated by a
constant before training. Once the model is learned, the state
trajectories are translated back to zero. The optimization de-
sign parameters for this simulation are selected empirically as
follows: y = 0.85and p = 0.75,¢ = 0.1, 8 = 1. Fig. 6 shows
that the trajectories generated by the learned model remain in-
side a safe set, and converge to the system equilibrium. Since
the constraints are derived for one-step-ahead prediction, no
barrier violation occurs during the Monte Carlo runs if the
initial condition is sufficiently close to the initial condition
of the demonstration trajectories. The average CPU time for
training the ELM network for all the simulations is computed
over five independent runs with a 1000 number of sampling
points is 3.4 seconds.

VI. DISCUSSION AND FUTURE WORK

This paper presents a dynamical system model learning
method while providing theoretical guarantees on satisfying
the safety and stability properties of the underlying nonlinear
discrete-time dynamical system. The first two simulations are
examples of physical systems where motion dynamics are
modeled using an ELM network whose parameters are learned
such that the state remains inside a predefined safe region of
operation while converging to the desired goal location. The
third simulation shows another example of using the imitation
learning method to learn hand-drawn shapes collected from a
pen input using a Tablet PC while providing theoretical guar-
antees on convergence to the goal location and staying within
a predefined safe operating region. The scope of the work is
that of learning the dynamic model to represent the trajectories
of a controlled dynamical system, e.g., the ones considered
in the simulation examples. The constrained learned model
can be used in many ways, for instance, to produce reference
trajectories for an autonomous systems from different initial
states to the final states to be followed by designing a con-
troller or to forecast trajectories of a human motion similar to
that of the third simulation example.

While designing identification algorithms for nonlinear
discrete-time systems from data is fundamental and has
significant use in many applications, studying the sample
complexity of the proposed learning scheme is of the same
importance. The sample complexity of the proposed learning
scheme can be analyzed via the following two avenues of
research which will be pursued as a future work.

1) Investigations on obtaining an optimal number of
demonstrations required to learn the state trajecto-
ries of constrained controlled dynamical systems. The
sample-complexity properties of incremental gain
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stability-constrained iterative learning algorithms is an-
alyzed in [42] and some insights are provided into
the relationship between system stability and sample-
complexity. An algorithm is introduced in [43] that
learns the parameters of a stable nonlinear dynamical
system from a single trajectory with optimal sample
complexity (offset Rademacher complexity) and nearly-
linear run time.

2) While the method presented in this paper uses the
discretization resolution t to make the semi-infinite
program tractable, authors in [7] uses the notion of
(ce-B)-grid to obtain modified constraints with an up-
per bound on the sample-point density in the region of
attraction. Inspired by the method in [7] a study will
be conducted to determine the minimum number of
samples required to compute CBF and CLF so that the
safety and stability of the underlying systems are satis-
fied point-wise in a closed set. In a related work [44],
algorithms are proposed to learn how much data is re-
quired so that the certificate function (the Lyapunov or
contraction metric) is valid at a prescribed fraction of
the relevant state space.

VII. CONCLUSION

A discrete-time nonlinear system model learning method is
presented which uses the ELM with probabilistic DT-ZCBF
and DT-CLF constraints. The system process noise is modeled
as a normally distributed Gaussian noise, which induces a dis-
tribution over the safety and stability constraints. Therefore,
the probabilistic form of the ZBF and Lyapunov constraints
are derived such that safety and stability are guaranteed within
user-defined risk tolerance. The constrained ELM learning
problem is formulated as a QCQP. A theorem is developed
to make the QCQP implementable, which proves that with a
modification to the constraints, the quadratic program with an
infinite number of constraints can be relaxed to a finite number
of constraints. The applicability of the proposed model learn-
ing method is demonstrated using three robotics engineering
examples. The safety set is modeled as an hyperellipsoid in
this work, which is a common representation for a region of
operation or an obstacle. In future the safe set representation
will be generalized to other sets by modifying the constraints.
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