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Abstract

The concept of the M -decomposition was introduced by Cockburn et al. in

Math. Comp. vol. 86 (2017), pp. 1609-1641 to provide criteria to guarantee

optimal convergence rates for the Hybridizable Discontinuous Galerkin (HDG)

method for coercive elliptic problems. In that paper they systematically con-

structed superconvergent hybridizable discontinuous Galerkin (HDG) methods

to approximate the solutions of elliptic PDEs on unstructured meshes. In

this paper, we use the M -decomposition to construct HDG methods for the

Maxwell’s equations on unstructured meshes in two dimension. In particular,

we show the any choice of spaces having an M -decomposition, together with

sufficiently rich auxiliary spaces, has an optimal error estimate and supercon-

vergence even though the problem is not in general coercive. Motivated by

the elliptic case, we obtain a superconvergent rate for the curl and flux of the

solution, and this is confirmed by our numerical experiments.
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1. Introduction

A large number of computational techniques have been developed for solving

Maxwell’s equations in both the frequency and time domains. In the frequency

domain, and in the presence of inhomogeneous penetrable media, the finite

element method is often used. It has an additional advantage compared to5

finite differences in that it can handle complex geometries.

Methods using H(curl; Ω)-conforming edge elements have been widely stud-

ied, see for example [1–6]. The implementation of the conforming method, par-

ticularly higher order elements, is complicated. Hence, non-conforming meth-

ods provide an interesting alternative for this kind of problem that may also be10

attractive for nonlinear problems. In particular, Discontinuous Galerkin (DG)

methods have been used to approximate the solution of the Maxwell’s equations

for a long time. The first DG method for solving Maxwell’s equations with high

frequency was analyzed in [7]. A local discontinuous Galerkin (LDG) scheme

was proposed for the time-harmonic Maxwell’s equations with low frequency was15

studied in [8] (see also [9] for this problem using mixed DG methods). These

methods tend to have many more degrees of freedom than conforming methods

so it is interesting to consider hybridizable methods.

This paper is concerned with developing a class of methods for Maxwell’s

equations in 2D. Obviously Maxwell’s equations are usually studied in three20

dimensions, but if the domain and data functions are translation invariant in

one direction, the full problem can be decoupled into a pair of problems posed

in two dimensions. To see how this is possible, consider the usual time harmonic

Maxwell system for the electric field E (a complex valued vector function):

curlµ−1
r curlE − κ2εrE = F .

Here µr is the relative magnetic permeability, κ > 0 is the wave number, εr25

is the relative electric permittivity which may be complex valued. In addition

F = ikε0j, where j is the given current density and ε0 is the permittivity of

vacuum.
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If εr, µr and F are independent of x3, and if we seek a solution E that

is also independent of x3 we obtain a simpler partial differential equation for

u = (E1, E2)T given in (2a) below. To define the problem for u we need some

notation. Because we are now working in two dimensions the curl operator

can be defined in two ways depending on whether its argument is a scalar or a

vector. We therefore introduce the following standard definitions where v is a

smooth vector function and p is a smooth scalar function:

∇× v = (−∂y, ∂x)T · v, ∇× p = (∂y,−∂x)T p, (1)

Similarly there are two definitions for the cross product again depending on the

use of scalar or vector functions. If n ∈ R2 is a unit vector (in practice the

normal vector to a domain in R2), we define

n× v = (−n2, n1)T · v, n× p = (n2,−n1)T p,

We can now state the problem we shall study. Let Ω be a bounded simply-

connected Lipschitz polygon in R2 with connected boundary ∂Ω. Then we seek

to approximate the solution u of the following interior problem:

∇× (µ−1
r ∇× u)− κ2εru = f in Ω, (2a)

n× u = g on ∂Ω, (2b)

where the right hand side is f = (F1, F2)T . To ensure the uniqueness of the

solution to this problem (and hence existence via the Fredholm alternative),30

we assume that µr is real valued and positive. In addition, either =(εr) > 0,

or =(εr) = 0 and κ2 is not a Maxwell eigenvalue, where =(εr) denotes the

imaginary part of εr.

Note that an alternative approach is to solve directly for the scalar vari-

able q := µ−1
r ∇ × u. Straightforward manipulation shows that q satisfies the

Helmholtz equation

∇ ·
(

1

εr
∇q
)

+ κ2µrq = ∇ ·
(

1

εr
f⊥
)
.
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where f⊥ = (f2,−f1)T . For studies of HDG applied to the Helmholtz equation

see for example [10, 11] although variable coefficients are not discussed there.35

Our approach using (2) results in a different formulation of the HDG discretized

problem and is motivated by the numerical study in [12]. Note in addition that

using the vector form of the problem has also been advocated for example in

[13, 14] and those papers further motivate the current study.

In this paper we shall study hybridizable discontinuous Galerkin (HDG)40

methods applied to Maxwell’s equations (2). HDG methods for elliptic problems

were first proposed in 2009 in [15] and an analysis using special projections was

developed in [16]. HDG methods have several distinct advantages including:

allowing static condensation and hence less global degrees of freedom, flexibility

in meshing (inherited from DG methods), ease of design and implementation,45

and local conservation of physical quantities. As a result, HDG methods have

been proposed for a large number of problems, see, e.g., [17–23].

An important property of HDG methods is the superconvergence of some

quantities on unstructured meshes (after element by element post-processing).

One way to guarantee the existence of an HDG projection and superconvergence50

is to ensure that the particular discretization spaces used in the HDG method

satisfy an M -decomposition [24]. This method of analysis has been extended to

other applications, see for example [25–29].

The HDG method has been applied to Maxwell’s equations in [12] but with-

out an error analysis. Later on, an error analysis was provided in [30, 31] for55

zero frequency and in [32, 33] for impedance boundary conditions and high wave

number. These papers did not use the M -decomposition and only considered

simplicial elements.

The aim of this paper is to use the concept of the M -decomposition to

analyze the time-harmonic Maxwell’s equations with Dirichlet boundary condi-60

tion in 2D. The main novelty of our paper is that we show that provided the

HDG spaces satisfy the conditions for an M -decomposition, and certain auxil-

iary spaces contain piecewise constant polynomials, an optimal error estimate

will hold as well as a super-convergence of the curl of the field (as was observed
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in [12]). Note that in our context superconvergence of the curl of the field is65

important because this implies that both the electric and magnetic fields can be

approximated at the same rate. We then use the M -decomposition to exhibit

finite element spaces with optimal convergence on triangles, parallelograms and

squares. Our convergence theory is supported by numerical examples in each

case.70

The outline of the paper is as follows. In Section 2, we set some notation and

give the HDG formulation of (2). In Section 3, we follow the seminal work [24]

to introduce the concept of the M -decomposition for Maxwell’s equation. The

error analysis is given in Section 4, we obtain optimal convergence rate for the

electric field u and superconvergence rate for∇×u. The construction of example75

spaces and numerical experiments are provided to confirm our theoretical results

in Section 5. We end with a conclusion.

2. The HDG method

We start by defining some notation. For any sufficiently smooth bounded

domain Λ ⊂ R2, let Hm(Λ) denote the usual mth-order Sobolev space of scalar80

functions on Λ, and ‖ · ‖m,Λ, | · |m,Λ denote the corresponding norm and semi-

norm. We use (·, ·)Λ to denote the complex inner product on L2(Λ). Similarly,

for the boundary ∂Λ of Λ, we use 〈·, ·〉∂Λ to denote the L2 inner product. Note

that bold face fonts will be used for vector analogues of the Sobolev spaces along

with vector-valued functions.85

We define the negative norm ‖ · ‖H−s(Ω) by

‖u‖H−s(Ω) = sup
v∈Hs(Ω)

|(u, v)Ω|
‖v‖s,Ω

.

The negative norm ‖ · ‖H−s(∂Ω) can be defined by the same way.

Recalling the definition of the curl operators in 2D in (1), for Λ ⊂ R2 we
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next define

H(curl; Λ) := {u ∈ L2(Λ) : ∇× u ∈ L2(Λ)},

H0(curl; Λ) := {u ∈H(curl; Λ) : n× u = 0 on ∂Λ}

H(curl; Λ) := {u ∈ L2(Λ) : ∇× u ∈ L2(Λ)},

H0(curl; Λ) := {u ∈ H(curl; Λ) : n× u = 0 on ∂Λ},

H(divεr ; Λ) := {u ∈ L2(Λ) : ∇ · (εru) ∈ L2(Λ)},

H(div0
εr ; Λ) := {u ∈H(divεr ; Λ) : ∇ · (εru) = 0}.

where n is the unit outward normal vector on ∂Λ and εr is a smooth enough

function.

Let Th := {K} denote a conforming mesh of Ω, where K is a Lipschitz

polygonal element with finitely many edges. For each K ∈ Th, we let hK be

the infimum of the diameters of circles containing K and denote the mesh size

h := maxK∈Th hK . We shall need more assumptions on the mesh to perform our

analysis. These assumptions replace the usual “shape regularity” assumption

but we delay a discussion of this point until Section 4.1. Let ∂Th denote the

set of edges F ⊂ ∂K of the elements K ∈ Th (i.e. edges of distinct triangles

are counted separately) and let Eh denote the set of edges in the mesh Th. We

denote by hF the length of the edge F . We abuse notation by using ∇×, ∇· and

∇ for broken curl, div and gradient operators with respect to mesh partition

Th, respectively. To simplify the notation, we also define a function h on Th,

∂Th and Eh which dependenting on circumstances:

h|K = hK , ∀K ∈ Th, h|∂K = hK , ∀K ∈ Th, h|F = hF , ∀F ∈ Eh.

For u, v ∈ L2(Th) and ρ, θ ∈ L2(∂Th), we define the following inner product

and norm

(u, v)Th =
∑
K∈Th

(u, v)K , ‖v‖2Th =
∑
K∈Th

‖v‖2K ,

〈ρ, θ〉∂Th =
∑
K∈Th

〈ρ, θ〉∂K , ‖θ‖2∂Th =
∑
K∈Th

‖θ‖2∂K .
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Given a choice of three finite dimensional polynomial spaces V (K) ⊂ H1(K),

W (K) ⊂ H(curl;K) and M(F ) ⊂ L2(F ), where K is an arbitrary element in

the mesh and F is an arbitrary edge, we define the global spaces by

Vh := {v ∈ L2(Th) : w|K ∈ V (K),K ∈ Th},

Wh := {w ∈ L2(Th) : w|K ∈W (K),K ∈ Th},

Mh := {µ ∈ L2(Eh) : µ|F ∈M(F ), F ∈ Eh}.

For later use, for any non-negative integer k, let Pk(K) denote the standard

space of polynomials in two variables have total degree less than or equal to k.90

Next, to give the HDG formulation of (2), we need to rewrite it into a mixed

form. Let q = µ−1
r ∇× u in (2) to get the following mixed form

µrq −∇× u = 0 in Ω, (3a)

∇× q − κ2εru = f in Ω, (3b)

n× u = g on ∂Ω. (3c)

As usual for HDG, the upcoming method and analysis are based on the above

mixed form.

For the convenience, we next give the following integration by parts formula

for each curl operator in two-dimensions. The proof is followed by a standard

density argument and hence we omit it here.95

Lemma 2.1. Let K be an element in the mesh Th, and let u ∈H(curl;K) and

r ∈ H(curl;K). Then we have

(∇× u, r)K = 〈n× u, r〉∂K + (u,∇× r)K , (4a)

(∇× r,u)K = 〈n× r,u〉∂K + (r,∇× u)K , (4b)

where n is the unit outward normal to K.

We can now derive the HDG method for (3) by multiplying each equation

by the appropriate discrete test function, integrating element by element and

use integration by parts (see (4)) element by element in the usual way (c.f. [15]).
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Summing the results over all elements, the HDG methods seeks an approxima-

tion to (q,u,u|Eh), by (qh,uh, ûh) ∈ Vh ×Wh ×Mh, such that

(µrqh, rh)Th − (uh,∇× rh)Th − 〈n× ûh, rh〉∂Th = 0, (5a)

(qh,∇× vh)Th + 〈n× q̂h,vh〉∂Th − (κ2εruh,vh)Th = (f ,vh)Th , (5b)

〈n× q̂h, v̂h〉Fh/∂Ω = 0, (5c)

〈n× ûh,n× v̂h〉∂Ω = 〈g,n× v̂h〉∂Ω (5d)

for all (rh,vh, v̂h) ∈ Vh ×Wh ×Mh, and the choice of n× q̂h follows the usual

HDG pattern,

n× q̂h = n× qh + τn× (uh − ûh)× n, (5e)

where τ is a penalization parameter taken to be positive and piecewise constant

on the edges of the mesh (more details will be given later).

It is well-known that the 2D Maxwell’s equations can be rewritten as the

Helmholtz equation. For a given w := (w1, w2), let w⊥ := (−w2, w1), then we

have that

∇× u := (−∂y, ∂x) · (u1, u2) = (∂x, ∂y) · (u2,−u1) = ∇ · (−u⊥),

n× u := (−n2, n1)T · (u1, u2) = (n1, n2) · (u2,−u1) = n · (−u⊥),

∇× q := (−∂y, ∂x)q = ∇⊥(−q).

Hence, we can rewrite the equation (3) as

κ2εru
⊥ +∇(−q) = f⊥ in Ω, (6a)

∇ · u⊥ − µr(−q) = 0 in Ω, (6b)

n · (u⊥) = −g on ∂Ω. (6c)

We can see that the Helmholtz equation is equivalent with the Maxwell

equation in 2D. The main goal of this paper is to follow paper [12], which100

focuses on the 2D Maxwell equation written as in our paper. Furthermore, it is

pointed out in [13, 14], that for the 2D Maxwell equations, it maybe better not

to rewrite the problem as a Helmholtz equation.
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3. M-decompositions

In this section, we follow the seminal paper [24] to give the concept of the

M -decomposition for Maxwell’s equation in two dimensions. To do this, we

need an appropriate combined trace operator tr : V (K) ×W (K) 7→ L2(∂K)

defined as follows:

tr(v,w) := (n× v + n×w × n)|∂K . (7)

Definition 3.1. We say that V (K)×W (K) admits an M -decomposition when

the following conditions are met:

n× V (K) ⊂M(∂K), n×W (K)× n ⊂M(∂K), (8a)

and there exists a subspace Ṽ (K)× W̃ (K) of V (K)×W (K) satisfying

∇× V (K) ⊂ W̃ (K), ∇×W (K) ⊂ Ṽ (K), (8b)

tr :
(
Ṽ ⊥(K)× W̃⊥(K)

)
→M(∂K) is an isomorphism, (8c)

for any µ ∈M(∂K), if n× µ = 0, it holds µ = 0. (8d)

Here Ṽ ⊥(K) and W̃⊥(K) are the L2(K)-orthogonal complements of Ṽ (K) in105

V (K), and W̃ (K) in W (K), respectively.

Since the 2D Maxwell equation can be rewritten as a Helmholtz equation, we

can use the spaces which satisfy the M-decomposition for second-order elliptic

operators.

Let Ve(K)×We(K) admits an Me(K) decomposition for second-order elliptic110

operators in 2D, then by [24, Definition 2.1] we must have

(a) tr(V e(K)×We(K)) ⊂Me(K) and there exists a subspace ˜V e(K)×W̃e(K)

of V e(K)×We(K) satisfying

(b) ∇We(K)×∇ · V e(K) ⊂ Ṽ e(K)× W̃e(K)

(c) tr : Ṽ e(K)⊥ × W̃e(K)⊥ →Me(K) is an isomorphism.115
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We define

V (K) := We(K),

W (K) := {v⊥ : v ∈ Ve(K)},

M(∂K) := n⊥Me(∂K).

It is easy to check that if Ve(K) × We(K) admits an Me(K) decomposition

for second-order elliptic operators, then V (K) × W (K) admits an M(K)-

decomposition for 2D Maxwell operators.

4. Error Analysis

In this section, we present our main result, an error analysis for the HDG120

approximation to Maxwell’s equations given by (5). To simplify the derivation

we shall assume that µr and εr are smooth functions and Re(µr) > 0. First

we discuss the extra conditions on the spaces V (K) and W (K) needed for this

analysis. These conditions arise because at this point each element K ∈ Th is

a general polygon, yet we need certain properties for functions in these spaces125

(that hold for standard elements including triangles, parallelograms and squares

that are considered later in this paper). For triangles these conditions follow

if the mesh is assumed to be regular, and the spaces V (K) and W (K) are

sufficiently rich. After this discussion, we consider an adjoint problem needed

for the analysis and finally present the error analysis.130

Throughout this section, we use C to denote a positive constant independent

of mesh size, which may take on different values at each occurrence.

4.1. Additional assumptions on the approximation spaces

Throughout this section we assume that the following conditions on the local

spaces V (K) and W (K) hold:135

1. Most importantly, we assume that the space V (K) ×W (K) admits an

M -decomposition.
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2. The spaces V (K) and W (K) must satisfy

P0(K) ∈ Ṽ (K) and [P0(K)]2 ∈ W̃ (K) (9)

for all elements K. In addition, we assume that if Π0 (respectively Π0)

denotes the L2(K) (respectively L2(K)) orthogonal projection onto V (K)140

(respectively W (K)) then the following estimates hold:

‖w −Π0w‖K ≤ ChsK‖w‖Hs(K) and ‖p−Π0p‖K ≤ ChsK‖p‖Hs(K)

for any sufficiently smooth w or p and 0 ≤ s ≤ 1.

3. Let T ?h be a refined mesh of Th consisting of simplices obtained by subdi-

viding each element K ∈ Th using triangles. We assume that the number

of triangles used in each element is bounded independent of h (i.e. there is145

a fixed maximum number of triangles covering each K independent of h).

Next we define W ?
h = {u ∈ L2(Ω) : u|K ∈ [P`(K)]2, ∀K ∈ T ?h } and ` ≥ 1

is some integer such that Wh ⊂W ?
h . We assume that T ?h is shape-regular.

This assumption implies that standard scaling estimates can be used for

V (K) and W (K), because scaling can be used triangle by triangle on the150

T ?h . In addition, standard finite element spaces constructed on this mesh

have the usual approximation properties.

Note that this notion of shape regularity for the general mesh is the ana-

logue of that used to define shape regularity for a quadrilateral mesh

in [34].155

4.2. The dual problems

To obtain the superconvergent rates of ∇×u and q, we need to consider the

following two dual problems. First, we find (ψ,φ) ∈ H(curl; Ω) ×H0(curl; Ω)

such that

µrψ −∇× φ = θ in Ω, (10a)

∇× ψ − κ2εrφ = 0 in Ω, (10b)

n× φ = 0 on Γ. (10c)
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Inserting (10b) into (10a) and (10c) to get the following Hemlholtz equation:

µrψ −∇× (κ−2εr
−1∇× ψ) = θ in Ω,

n× (κ−2εr
−1∇× ψ) = 0 on Γ.

By the standard regularity result for the equivalent Helmholtz equation, for

some s > 1/2 we have

‖ψ‖H1+s(Ω) ≤ C‖θ‖L2(Ω).

Next, we consider the following dual problem: find (Ψ,Φ) ∈ H(curl; Ω) ×

H0(curl; Ω) such that

µrΨ−∇×Φ = 0 in Ω, (11a)

∇×Ψ− κ2εrΦ = εrΘ in Ω, (11b)

n×Φ = 0 on Γ, (11c)

where Θ ∈ H(div0
εr ; Ω), and εr is the complex conjugate of εr. Under our

assumptions on µr, εr and κ, this problem has a unique solution. Notice that

Θ ∈ H(div0
εr ; Ω) implies that Φ ∈ H(div0

εr ; Ω). The regularity of the solution

of (11) is given in Theorem 4.5.160

We recall the following result, where L2
0(Ω) denotes the space of functions

in L2(Ω) with average value zero.

Lemma 4.1 (c.f [34, Corollary 2.4]). Let Ω be a bounded connected Lipschitz

domain in R2, then for any f ∈ L2
0(Ω), there exists a v ∈H1

0 (Ω) such that

∇ · v = f, ‖v‖H1(Ω) ≤ C‖f‖L2(Ω).

With the above result, we are ready to prove the following lemma:

Lemma 4.2. Let Ω be a bounded connected Lipschitz domain in R2, then for

any f ∈ L2(Ω), there exists a v ∈H1(Ω) such that

∇ · v = f, ‖v‖H1(Ω) ≤ C‖f‖L2(Ω).
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Proof. Let f̄ = |Ω|−1(f, 1)Ω be the mean value of f , then f − f̄ ∈ L2
0(Ω). By

Lemma 4.1, there exists a w = (w1, w2)T ∈ H1
0 (Ω), such that ∇ ·w = f − f̄ ,165

and ‖w‖H1(Ω) ≤ C‖f − f̄‖L2(Ω).

Let (x0, y0) be a point in the domain Ω. Define v = (v1, v2)T with v1 =

w1 + (x− x0)f̄ , v2 = w2, then v ∈H1(Ω) and

∇ · v = ∇ ·w +∇ · ((x− x0)f̄ , 0)T = f,

‖v‖H1(Ω) ≤ ‖w‖H1(Ω) + ‖(x− x0)f̄‖H1(Ω)

≤ C‖f − f̄‖L2(Ω) + ‖(x− x0)f̄‖L2(Ω) + ‖f̄‖L2(Ω)

≤ C(‖f‖L2(Ω) + ‖f̄‖L2(Ω))

≤ C‖f‖L2(Ω).

The previous result can be used to prove the existence of a vector potential

as follows

Lemma 4.3. Let f ∈ L2(Ω), then there exists a function w ∈ H1(Ω), such

that

∇×w = f, ‖w‖H1(Ω) ≤ C‖f‖L2(Ω).

Proof. By Lemma 4.2, there exists a v = (v1, v2)T ∈H1(Ω), such that ∇·v = f

and ‖v‖H1(Ω) ≤ C‖f‖L2(Ω). We take w = (w1, w2)T with w1 = −v2 and

w2 = w1, hence

∇×w = −∂yw1 + ∂xw2 = ∂yv2 + ∂xv1 = ∇ · v = f,

‖w‖H1(Ω) = ‖v‖H1(Ω) ≤ C‖f‖L2(Ω).

170

The proof of the next theorem follows that of [35, Proposition 3.7] and [4,

Theorem 3.50], which deal with the 3D case.
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Theorem 4.4. Let Ω be a simply connected Lipschitz domain in R2, then the

space H0(curl; Ω) ∩H(div εr ; Ω) is imbedded in the space Hs(Ω) with some

s ∈ ( 1
2 , 1], and the following estimate holds

‖u‖Hs(Ω) ≤ C
(
‖∇ × u‖L2(Ω) + ‖∇ · ( εru)‖L2(Ω)

)
, (12)

for all u ∈H0(curl; Ω) ∩H(div εr ; Ω).

Proof. Let O be a smooth open set with a connected boundary (a circle for

instance), which contains Ω̄. Let u ∈ H0(curl; Ω) ∩H(div εr ; Ω), we extend u

to O by zero, so u ∈ H(curl;O), therefore ∇× u ∈ L2(O). From Lemma 4.3,

there exists a function w ∈ H1(O)/R such that ∇ × w = ∇ × u in O and

‖w‖H1(O) ≤ C‖∇ × u‖L2(O). Since ∇ × (u − w) = 0 in O, then there is a

function χ ∈ H1(O)/R such that u − w = ∇χ in O. Since u = 0 in O/Ω̄,

we have −w = ∇χ in O \ Ω̄, therefore, χ ∈ H2(O \ Ω̄). Then χ ∈ H1(Ω)/R

satisfies

∇ · (εr∇χ) = ∇ · (εru)−∇ · (εrw) in Ω,

where ∇χ|∂Ω takes the exterior value of ∇χ = −w. So χ|∂Ω ∈ H
1
2 +s(∂Ω) with

some s ∈ ( 1
2 , 1]. By [36, Corollary 18.15], we have χ ∈ H1+s(Ω) and

‖χ‖H1+s(Ω) ≤ C
(
‖ ∇ · (εru)−∇ · (εrw)‖H−1+s(Ω) + ‖∇χ‖

H− 1
2
+s(∂Ω)

)
.

Therefore, using the fact that ∇χ = −w on O \ Ω̄ it holds

‖u‖Hs(Ω) = ‖w +∇χ‖Hs(Ω)

≤ ‖w‖H1(Ω) + C
(
‖ ∇ · (εru)−∇ · (εrw)‖H−1+s(Ω) + ‖∇χ‖

H− 1
2
+s(∂Ω)

)
≤ C

(
‖w‖H1(Ω) + ‖ ∇ · (εru)‖L2(Ω)

)
≤ C

(
‖w‖H1(O) + ‖ ∇ · (εru)‖L2(Ω)

)
≤ C

(
‖∇ × u‖L2(Ω) + ‖ ∇ · (εru)‖L2(Ω)

)
.

Thus we finish our proof.

Now we can state a complete regularity result for the adjoint problem:175
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Theorem 4.5. Under the assumptions on the domain and coefficients of (11),

we have the following regularity for the solution of problem (11)

‖Ψ‖H1(Ω) + ‖Φ‖Hs(Ω) ≤ C‖Θ‖L2(Ω), (13)

for some s ∈ ( 1
2 , 1] depending on Ω.

Proof. To simplify the notation, we define

a+(u,v) = (µ−1
r ∇× u,∇× v)Ω + (u,v)Ω.

Let Φ̃ ∈H0(curl; Ω) ∩H(div0
εr ; Ω) be the solution of

a+(Φ̃,v) = (Θ,v)Ω, ∀v ∈H0(curl; Ω) ∩H(div0
εr ; Ω). (14)

Let K : L2(Ω) → H0(curl; Ω) ∩H(div0
εr ; Ω) be such that for any w ∈ L2(Ω)

the function Kw satisfies

a+(Kw,v) = −(κ2εr+1)(w,v)Ω, ∀v ∈H0(curl; Ω) ∩H(div0
εr ; Ω). (15)

Obviously, Φ̃ and K are well-defined and

a+((I +K)Φ,v) = a+(Φ̃,v),

where I is the identity operator. This gives

(I +K)Φ = Φ̃. (16)

Form (14) and (15), we get

‖Φ̃‖L2(Ω) + ‖∇ × Φ̃‖L2(Ω) ≤ C‖Θ‖L2(Ω),

‖KΦ‖L2(Ω) + ‖∇ ×KΦ‖L2(Ω) ≤ C‖Φ‖L2(Ω).

From Theorem 4.4, we know thatH0(curl; Ω)∩H(div0
εr ; Ω) is compactly imbed-

ded in the space L2(Ω). Using (15) we see that K is a self-adjoint and compact

operator on L2(Ω). Hence, since our assumptions on εr and κ2 guarantee at

most one solution, by the Fredholm Alternative, (16) has a unique solution.
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Therefore,

‖Φ‖L2(Ω) = ‖(I +K)−1Φ̃‖L2(Ω) ≤ C‖Θ‖L2(Ω),

‖∇ ×Φ‖L2(Ω) ≤ ‖∇×KΦ‖L2(Ω) + ‖∇ × Φ̃‖L2(Ω)

≤ C
(
‖Θ‖L2(Ω) + ‖Φ‖L2(Ω)

)
≤ C‖Θ‖L2(Ω).

By the Equation (11), we have

‖∇ × (µ−1
r ∇×Φ)‖L2(Ω) ≤ C‖Θ‖L2(Ω) + C‖Φ‖L2(Ω) ≤ C‖Θ‖L2(Ω).

Since µ is smooth, then we have ∇×Φ ∈ H1(Ω) and

‖∇ ×Φ‖H1(Ω) ≤ C‖Θ‖L2(Ω).

Since Theorem 4.4 ensures H0(curl; Ω) ∩H(div0; Ω) is imbeded in the space

Hs(Ω) with ( 1
2 , 1], then we have

‖Φ‖Hs(Ω) ≤ C
(
‖Φ‖L2(Ω) + ‖∇ ×Φ‖L2(Ω)

)
≤ C‖Θ‖L2(Ω). (17)

This finishes our proof.

Let PV , PṼ , PW and P
W̃

denote the L2- projections on the spaces Vh, Ṽh,Wh

and W̃h, respectively.

Now we state the main result of the paper. The proof is found in Section 4.4.180

Theorem 4.6. Suppose the spaces (Vh,Wh,Mh) have an M -decomposition

and the assumptions in Section 4.1 are satisfied. Let (q,u) ∈ H(curl; Ω) ×

H(curl; Ω) and (qh,uh, ûh) ∈ Vh ×Wh ×Mh be the solution of (3) and (5),

respectively. Then there exists an h0 > 0 such that for all h ≤ h0, we have the

error estimate

‖q − qh‖Th ≤ C (‖q − PV q‖Th + ‖u− PWu‖Th) ,

‖u− uh‖Th ≤ C (‖q − PV q‖Th + ‖u− PWu‖Th) .

Furthermore, the post processed solution u?h ∈ W ?(Th) defined later in (66)
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satisfies the estimate

‖∇ × (u− u?h)‖Th ≤ C (‖q − PV q‖Th + ‖u− PWu‖Th

+ inf
w?

h∈W ?(Th)
‖∇ × (u−w?

h)‖Th
)
,

and the post processed solution q?h ∈ V ?(Th) defined later in (69) satisfies the

estimate

‖q − q?h‖Th ≤ Chs (‖ΠV q − q‖Th + ‖u−ΠWu‖Th

+ inf
v?h∈V ?(Th)

‖∇ × (q − v?h)‖Th
)

+ Ch‖uh − u‖Th .

4.3. The HDG Projection

An appropriate HDG projection plays a key role in the derivation of op-

timal error estimates and superconvergence (see for example [16, 37–43]). In

the case of Maxwell’s equations, we define the following HDG projection: find

(ΠV q,ΠWu) ∈ V (K)×W (K) such that

(ΠV q, vh)K = (q, vh)K , (18a)

(ΠWu,wh)K = (u,wh)K , (18b)

〈ΠV q − τn×ΠWu,n× µh〉F = 〈q − τn× u,n× µh〉F (18c)

for all vh ∈ Ṽ (K), wh ∈ W̃ (K), µh ∈ M(F ) and for all edges F ⊂ ∂K.

The following theorem proves that the above definition uniquely specifies the

projections and provides optimal error estimates for this projection.

Theorem 4.7. System (18) defines a unique projection (ΠV q,ΠWu). More-

over, we have the following error estimate:

‖ΠWu− u‖K ≤ C(‖u− PWu‖K + hK‖∇ × q − PW̃
∇× q‖K

+ h
1/2
K ‖n× (u− PWu)‖∂K), (19a)

‖ΠV q − q‖K ≤ C(h
1/2
K ‖q − PV q‖∂K + h

1/2
K ‖n× (ΠWu− u)‖∂K

+ ‖q − PV q‖K). (19b)
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We only give a proof for (19a) in the following three lemmas, since (19b) is185

very similar.

Lemma 4.8 (Existence and Uniqueness). System (18) defines a unique projec-

tion (ΠV q,ΠWu).

Proof. By Definition 3.1 we have

dimV (K) + dimW (K) = dim Ṽ (K) + dim W̃ (K) + dimM(∂K).

This means that system (18) is square, hence we only need to prove uniqueness.

We set the right hand sides of (18) to zero, i.e., q = 0 and u = 0. By (18a) and

(18b), we have

ΠV q ∈ Ṽ ⊥(K) and ΠWu ∈ W̃⊥(K). (20)

Since n×W (K)×n ⊂M(∂K), then we can take µh = n×ΠWu×n in (18c)

to get

〈τn×ΠWu,n× (n×ΠWu× n)〉∂K

= 〈ΠV q,n× (n×ΠWu× n)〉∂K

= 〈ΠV q,n×ΠWu〉∂K

= (ΠV q,∇×ΠWu)K − (∇×ΠV q,ΠWu)K

= 0.

Since τ is piecewise constant and positive, then

n×ΠWu× n = 0 on ∂K. (21)

Moreover, n×ΠWu = 0 on ∂K. Since n×V (K) ⊂M(∂K), then we can take

µh = n×ΠV q in (18c) to get

n×ΠV q = 0 on ∂K. (22)

We combine (20), (21), (22) and (8c) to conclude that ΠWu = 0 and ΠV q =

0. This proves the system (18) defines a unique projection (ΠV q,ΠWu).190
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To estimate ΠWu−u, we decouple the projection ΠW from ΠV in (18) as

follows.

Lemma 4.9. The projection ΠWu satisfies

(ΠWu,vh)K = (u,vh)K , , (23a)

〈τn×ΠWu× n,wh〉∂K = (∇× q,wh)K + 〈τn× u× n,wh〉∂K (23b)

for all vh ∈ W̃ (K), wh ∈ W̃⊥(K).

Proof. Noticing that (18c) can be rewritten as

〈τn×ΠWu,n× µh〉∂K = 〈ΠV q − q,n× µh〉∂K + 〈τn× u,n× µh〉∂K . (24)

Since n×W (K)×n ⊂M(∂K), then we take µh = n×wh ×n in (24) to get

〈τn×ΠWu× n,wh〉∂K = 〈n× (q −ΠV q),wh〉∂K + 〈τn× u× n,wh〉∂K .

(25)

Then, for all wh ∈ W̃⊥(K), by (8b) and (18a), we have

(∇×ΠV q,wh)K = 0, (26a)

(q −ΠV q,∇×wh)K = 0. (26b)

Next, we use the integration by parts identity (4b) to get

〈n× (q −ΠV q),wh〉∂K (27)

= (∇× (q −ΠV q),wh)K − (q −ΠV q,∇×wh)K

= (∇× (q −ΠV q),wh)K , by (26b)

= (∇× q,wh)K . by (26a) (28)

Therefore, (18b), (25) and (27) gives the system (23).

Now we can give the proof of (19a).195
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Proof of (19a). By the definition of PW and P
W̃

, we can rewrite equation (23)

as follows:

(ΠWu− PWu,vh)K = 0, (29a)

〈τn× (ΠWu− PWu),n×wh〉∂K = (∇× q − P
W̃
∇× q,wh)K

+ 〈τn× (u− PWu),n×wh〉∂K , (29b)

for all (vh,wh) ∈ (W̃ (K)× W̃⊥(K). By the same arguments as in the proof of

Lemma 4.8, we can prove that ΠWu− PWu ∈W (K) is uniquely determined

by the right hand side of (29). Using a standard scaling estimate (this can be

used because of the assumption on T ∗h in Section 4.1) we have

‖ΠWu− PWu‖K ≤ ChK‖τ−1(∇× q − P
W̃
∇× q)‖K

+ Ch
1/2
K ‖n× (u− PWu)‖∂K .

Thus, the triangle inequality gives the desired result.

Next, we extend the error estimates (19) to fractional order Sobolev spaces.

To do this we use a local inverse inequality. For any function wh ∈ W (K) or

ph ∈ V (K) the following inverse estimate holds:

‖wh‖Hs(K) ≤ Ch−sK ‖wh‖K , and ‖ph‖Hs(K) ≤ Ch−sK ‖ph‖K

with 0 ≤ s ≤ 1. The constant C is independent of the function, element200

and mesh size. Note that this assumption follows from our assumption on the

auxiliary mesh T ∗h when s = 1 and trivially holds when s = 0. Hence by

interpolation it holds for general 0 ≤ s ≤ 1.
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Lemma 4.10. For any s ∈ [0, 1], we have

‖ΠWu− u‖Hs(K) ≤ Ch−sK (‖u− PWu‖K + hK‖∇ × q − PW̃
∇× q‖K

+ h
1/2
K ‖n× (u− PWu)‖∂K) + ‖PWu− u‖Hs(K),

(30a)

‖ΠV q − q‖Hs(K) ≤ C(h
1/2−s
K ‖q − PV q‖∂K + h−sK ‖q − PV q‖K

+ ‖q − PV q‖Hs(K) + ‖u− PWu‖Hs(K)

+ h−sK ‖u− PWu‖K + h1−s
K ‖∇ × q − P

W̃
∇× q‖K

+ h
1/2−s
K ‖n× (u− PWu)‖∂K). (30b)

Proof. Using the fact that PW is the L2 orthogonal projection onW (K) and ap-

plying the local inverse inequality discussed before the statement of the lemma,

we get

‖ΠWu− u‖Hs(K) = ‖ΠWu− PWu+ PWu− u‖Hs(K)

≤ ‖ΠWu− PWu‖Hs(K) + ‖PWu− u‖Hs(K)

≤ Ch−sK ‖ΠWu− PWu‖K + ‖PWu− u‖Hs(K)

≤ Ch−sK ‖ΠWu− u‖K + Ch−sK ‖PWu− u‖K

+ ‖PWu− u‖Hs(K).

Combining the estimate (19a) and the above inequality we have

‖ΠWu− u‖Hs(K) ≤ Ch−sK (‖u− PWu‖K + hK‖∇ × q − PW̃
∇× q‖K

+ h
1/2
K ‖n× (u− PWu)‖∂K) + ‖PWu− u‖Hs(K).

This proves (30a).

Next, we prove (30b). By the same arguments we have

‖ΠV q − q‖Hs(K) ≤ Ch−sK ‖ΠV q − q‖K + Ch−sK ‖PV q − q‖K + ‖PV q − q‖Hs(K).

By Lemma 7.2 in [44] to get

‖ΠWu− u‖∂K ≤ C
(
h
−1/2
K ‖ΠWu− u‖K + h

s−1/2
K ‖ΠWu− u‖Hs(K)

)
. (31)

Using estimates (19b), (19a), (31) and (30a), we can obtain (30b).205
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Since P0(K) ∈ Ṽ (K) and [P0(K)]2 ∈ W̃ (K) with appropriate projection

error bounds (see Section 4.1), by Theorem 4.6 and Lemma 4.10, we have the

following corollary.

Corollary 4.11. Let (Ψ,Φ) ∈ H(curl; Ω) × [H0(curl; Ω) ∩H(div0; Ω)] be the

solution of (11) and assume that the regularity result (13) holds, then for s ∈

(1/2, 1], we have

‖ΠW Φ−Φ‖Th + ‖ΠV Ψ−Ψ‖Th ≤ Chs‖Θ‖Th , (32a)

‖ΠW Φ−Φ‖Hs(Th) + ‖ΠV Ψ−Ψ‖Hs(Th) ≤ C‖Θ‖Th . (32b)

We can now prove our main result: Theorem 4.6.

4.4. Proof of Theorem 4.6210

First, we define the following HDG operator B : [Vh ×Wh ×Mh]2 → C

B(qh,uh, ûh; rh,vh, v̂h)

= (µrqh, rh)Th − (uh,∇× rh)Th − 〈n× ûh, rh〉∂Th

+ (∇× qh,vh)Th + 〈qh,n× v̂h〉∂Th

+ 〈τn× (uh − ûh),n× (vh − v̂h)〉∂Th .

(33)

By the definition of B in (33), we can rewrite the HDG formulation of the

system (5) in a compact form, as follows:

Lemma 4.12. The HDG method seeks (qh,uh, ûh) ∈ Vh×Wh×Mg
h such that

B(qh,uh, ûh; rh,vh, v̂h)− (κ2εruh,vh)Th = (f ,vh)Th , (34)

for all (rh,vh, v̂h) ∈ Vh ×Wh ×M0
h , in which Mg

h and M0
h are defined as

Mg
h = {µ ∈Mh : n× µ|∂Ω = (PM (n× g))× n},

M0
h = {µ ∈Mh : n× µ|∂Ω = 0},

where PM denotes the L2-projection from L2(F ) onto space M(F ). Thus if

u ∈ L2(F ) then PMu ∈M(F ) satisfies

〈PMu,vh〉F = 〈u,vh〉F ∀vh ∈M(F ). (35)
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Next, we give some properties of the operator B below, the proof of the

following lemma is very simple and we omit it here.

Lemma 4.13. For any (qh,uh, ûh, rh,vh, v̂h) ∈ [Vh ×Wh ×Mh]2, we have

B(qh,uh, ûh; rh,−vh,−v̂h) = B(rh,vh, v̂h; qh,−uh,−ûh).

Lemma 4.14. If for all rh ∈ Vh, (qh,uh, ûh) ∈ Vh ×Wh ×Mh satisfies

B(qh,uh, ûh; rh,0,0) = (G, rh)Th ,

where G ∈ L2(Ω), then we have

‖∇ × uh‖Th ≤ C
(
‖qh‖Th + ‖h−1/2n× (uh − ûh)‖∂Th + ‖G‖Th

)
. (36)

Proof. By the definition of B in (33), we have

(µrqh, rh)Th − (uh,∇× rh)Th − 〈n× ûh, rh〉∂Th = (G, rh)Th . (37)

We take rh = ∇× uh in (37) and integrate by parts to get

(µrqh,∇× uh)Th − (∇× uh,∇× uh)Th − 〈n× (uh − ûh),∇× uh〉∂Th

= (G,∇× uh)Th .

After apply the Cauchy-Schwartz inequality and the local inverse inequality can215

get our desired result.

Now, we give the proof of Theorem 4.6, splitting it into three steps.

4.4.1. Step 1: Error equations and energy arguments

Lemma 4.15. Let (q,u) ∈ H(curl; Ω) × H(curl; Ω) be the weak solution of

(3), then for all (rh,vh, v̂h) ∈ Vh ×Wh ×M0
h , we have

B(ΠV q,ΠWu,PMu; rh,vh, v̂h) = (µr(ΠV q − q), rh)Th + (∇× q,vh)Th . (38)
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Proof. By the definition of B in (33) and use (8a) we have

B(ΠV q,ΠWu,PMu; rh,vh, v̂h)

= (µrΠV q, rh)Th − (ΠWu,∇× rh)Th − 〈n× PMu, rh〉∂Th

+ (∇×ΠV q,vh)Th + 〈ΠV q,n× v̂h〉∂Th

+ 〈τn× (ΠWu− PMu),n× (vh − v̂h)〉∂Th

= (µrΠV q, rh)Th − (u,∇× rh)Th − 〈n× u, rh〉∂Th by (18b), (35)

+ (ΠV q,∇× vh)Th + 〈ΠV q,n× (v̂h − vh)〉∂Th by (4a)

+ 〈τn× (ΠWu− u),n× (vh − v̂h)〉∂Th

= (µrΠV q −∇× u, rh)Th by (4a)

+ (q,∇× vh)Th + 〈ΠV q,n× (v̂h − vh)〉∂Th by (18a)

+ 〈τn× (ΠWu− u),n× (vh − v̂h)〉∂Th .

Since v̂h is single valued on interior edges and equal to zero on boundary faces,

then 〈q,n× v̂h〉∂Th = 0. Moreover, by (4a) we have

(q,∇× vh)Th + 〈ΠV q,n× (v̂h − vh)〉∂Th

= (∇× q,vh)Th + 〈q −ΠV q,n× (vh − v̂h)〉∂Th

= (∇× q,vh)Th − 〈τn× (ΠWu− u),n× (vh − v̂h)〉∂Th by (18c).

This implies

B(ΠV q,ΠWu,PMu; rh,vh, v̂h)

= (µrΠV q −∇× u, rh)Th + (∇× q,vh)Th

= (µr(ΠV q − q), rh)Th + (∇× q,vh)Th , by (3)

and completes the proof.

To simplify notation, we define

εqh = ΠV q − qh, εuh = ΠWu− uh, εûh = PMu− ûh. (39)

We subtract (34) from (38) to get the following error equations.220
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Lemma 4.16. Using the notation (39), for any (rh,vh, v̂h) ∈ Vh,×Wh ×M0
h ,

we have

B(εqh, ε
u
h , ε

û
h , rh,vh, v̂h)− (κ2εrε

u
h ,vh)Th

= (µr(ΠV q − q), rh)Th + (κ2εr(u−ΠWu),vh)Th .
(40)

Proof. By the definition of B in (33) and Lemma 4.15, we get

B(εqh, ε
u
h , ε

û
h , rh,vh, v̂h)− (κ2εrε

u
h ,vh)Th

= B(ΠV q,ΠW ,PMu, rh,vh, v̂h)−B(qh,uh, ûh, rh,vh, v̂h)

− (κ2εrΠWu,vh)Th + (κ2εruh,vh)Th

= B(ΠV q,ΠW ,PMu, rh,vh, v̂h)− (κ2εrΠWu,vh)Th

−
[
B(qh,uh, ûh, rh,vh, v̂h)− (κ2εruh,vh)Th

]
= (µr(ΠV q − q), rh)Th + (∇× q,vh)Th − (κ2εrΠWu,vh)Th − (f ,vh)Th

= (µr(ΠV q − q), rh)Th + (κ2εr(u−ΠWu),vh)Th ,

where we used (3b) in the last inequality.

Lemma 4.17. Using definition (39), we have the error estimate

‖√µrεqh‖Th + ‖
√
τn× (εuh − εûh )‖∂Th

≤ C (‖q −ΠV q‖Th + ‖u−ΠWu‖Th + ‖εuh‖Th) .
(41)

Proof. First, we take (rh,vh, v̂h) = (εqh,0,0) in (40) to get

B(εqh, ε
u
h , ε

û
h ; εqh,0,0) = (µr(ΠV q − q), εqh)Th . (42)

Next, we take (rh,vh, v̂h) = (0, εuh , ε
û
h ) in (40) to get

B(εqh, ε
u
h , ε

û
h ; 0, εuh , ε

û
h )− (κ2εrε

u
h , ε

u
h )Th = (κ2εr(u−ΠWu), εuh )Th . (43)

By the equations (42) and (43), we get

B(εqh, ε
u
h , ε

û
h ; εqh,0,0) + B(εqh, ε

u
h , ε

û
h ; 0, εuh , ε

û
h )− (κ2εrε

u
h , ε

u
h )Th

= (µr(ΠV q − q), εqh)Th + (κ2εr(u−ΠWu), εuh )Th .
(44)
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On the other hand, by the definition of B in (33) to get

B(εqh, ε
u
h , ε

û
h ; εqh,0,0) + B(εqh, ε

u
h , ε

û
h ; 0, εuh , ε

û
h )

= ‖√µrεqh‖
2
Th + ‖

√
τn× (εuh − εûh )‖2∂Th .

(45)

Hence, by the equation (44) and (45), we have

‖√µrεqh‖
2
Th + ‖

√
τn× (εuh − εûh )‖2∂Th

= (µr(ΠV q − q), εqh)Th + (κ2εr(u−ΠWu), εuh )Th

≤ C‖ΠV q − q‖Th‖
√
µrε

q
h‖Th + C‖u−ΠWu‖Th‖εuh‖Th .

Use of Young’s inequality gives our desired result.

4.4.2. Step 2: Duality argument

Similarly to Lemma 4.15, we have:225

Lemma 4.18. Let (Ψ,Φ) ∈ H(curl; Ω)× H0(curl; Ω) be the weak solution of

(11), then for all (rh,vh, v̂h) ∈ Vh ×Wh ×M0
h , we have

B(ΠV Ψ,ΠW Φ,PMΦ; rh,vh, v̂h) = (µr(ΠV Ψ−Ψ), rh)Th + (∇×Ψ,vh)Th .

The next lemma gives a partial error estimate:

Lemma 4.19. Assume Θ ∈ H(div0
εr ; Ω), and that the regularity estimate

(13) holds, then we have

|(εuh , εrΘ)Th | ≤ Chs (‖q −ΠV q‖Th + ‖u−ΠWu‖Th) ‖Θ‖Th + Chs‖εuh‖Th‖Θ‖Th .

Proof. First, we take (rh,vh, v̂h) = (−ΠV Ψ,ΠW Φ,PMΦ) in (40) we get

B(εqh, ε
u
h , ε

û
h ;−ΠV Ψ,ΠW Φ,PMΦ)− (κ2εrε

u
h ,ΠW Φ)Th

= −(µr(ΠV q − q),ΠV Ψ)Th + (κ2εr(u−ΠWu),ΠW Φ)Th .
(46)

By Lemma 4.13 and Lemma 4.18 and using (11b) we have

B(εqh, ε
u
h , ε

û
h ;−ΠV Ψ,ΠW Φ,PMΦ)

= B(ΠV Ψ,ΠW Φ,PMΦ;−εqh, εuh , εûh )

= −(εqh, µr(ΠV Ψ−Ψ))Th + (εuh ,∇×Ψ)Th

= −(εqh, µr(ΠV Ψ−Ψ))Th + (εuh , εrΘ + κ2εrΦ)Th .

(47)

26



Comparing (46) with (47) to get

(εuh , εrΘ)Th = (µrε
q
h,ΠV Ψ−Ψ)Th − (µr(ΠV q − q),ΠV Ψ)Th

+ (κ2εr(u−ΠWu),ΠW Φ)Th − (κ2εrε
u
h ,Φ−ΠW Φ)Th

= T1 + T2 + T3 + T4.

Next, we estimate {Ti}4i=1 one by one. For the terms T1 and T4, by (32a) and

estimate for εqh in Lemma 4.17, we have

|T1| ≤ Chs‖Θ‖Th(‖q −ΠV q‖Th + ‖u−ΠWu‖Th + ‖εuh‖Th),

|T4| ≤ Chs‖Θ‖Th‖εuh‖Th .

For the remain two terms T2 and T3, since P0(K) ∈ Ṽ (K) and [P0(K)]2 ∈

W̃ (K) with appropriate estimates for the projection (see Section 4.1), then by

(32b) we have

T2 = |(ΠV q − q, µrΠV Ψ−Π0(µrΠV Ψ))Th | ≤ Chs‖q −ΠV q‖Th‖ΠV Ψ‖Hs(Ω)

≤ Chs‖q −ΠV q‖Th‖Θ‖Th ,

|T3| = |(u−ΠWu, κ
2εrΠW Φ−Π0

[
κ2εrΠW Φ

]
)Th |

≤ Chs‖u−ΠWu‖Th(‖ΠW Φ‖Hs(Ω))

≤ Chs‖u−ΠWu‖Th‖Θ‖Th .

By the above estimates of {Ti}4i=1 we get

|(εuh , εrΘ)Th | ≤ Chs (‖q −ΠV q‖Th + ‖u−ΠWu‖Th) ‖Θ‖Th

+ Chs‖εuh‖Th‖Θ‖Th .
(48)

This completes the proof.

We cannot set Θ = εuh to get an estimate of εuh since εuh /∈ H(div0
εr ; Ω),

hence we need to modify the analysis.

Recall the shape-regular submesh T ?h defined in Section 4.1. We defineW ?
h =230

{u ∈ L2(Ω) : u|K ∈ [P`(K)]2, ∀K ∈ T ?h } and ` ≥ 1 is some integer such that

Wh ⊂W ?
h .
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Next, we recall the H(curl; Ω) conforming element in 2D. For any v smooth

enough, with K being a simplex, find Πcurl
K,`v ∈ P`(K) such that

〈n×Πcurl
K,`v, p`〉E = 〈n× v, p`〉E , ∀p` ∈ P`(E), (49a)

(Πcurl
K,`v,∇× p`−1)K = (v,∇× p`−1)K , ∀p`−1 ∈ P`−1(K), (49b)

and, when ` ≥ 2

(Πcurl
K,`v,∇(bKp`−2))K = (v,∇(bKp`−2))K , ∀p`−2 ∈ P`−1(K) (49c)

for all edges F of K, where bK is the bubble function of K of order three.

Following a standard procedure in [45, Lemma 3.2, Theorem 3.1], we have

the following theorem:235

Theorem 4.20. Equation (49) defines a unique Πcurl
K,`v ∈ P`(K), and the

following estimate holds:

‖Πcurl
K,`v − v‖0,K ≤ ChmK‖v‖m,K , (50)

with v ∈ Hm(Ω), and m ∈ ( 1
2 , ` + 1]. We define Πcurl

K,` = Πcurl
h,` |K for all

K ∈ T ∗h , then Πcurl
h,` v ∈ H(curl; Ω). In addition, n × v|∂Ω = 0 implies that

n×Πcurl
h,` v|∂Ω = 0.

Furthermore, the previously defined interpolation operator commutes with

curl.240

Lemma 4.21. Suppose v ∈ H(curl; Ω) is smooth enough that Πcurl
K,`v is well

defined. Let ΠK,`−1 be the L2 projection onto space P`−1(K), then we have the

commutativity property

∇×Πcurl
K,`v = ΠK,`−1∇× v. (51)

Proof. For any p`−1 ∈ P`−1(K), we have

(∇×Πcurl
K,`v, p`−1)K = (Πcurl

K,`v,∇× p`−1)K + 〈n×Πcurl
K,`v, p`−1〉∂K

= (v,∇× p`−1)K + 〈n× v, p`−1〉∂K

= (∇× v, p`−1)K .
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Following the same techniques in [46, Proposition 4.5] of 3D case, we have

the following result for 2D.

Lemma 4.22 (c.f [46, Proposition 4.5]). For any vh ∈Wh, there exists Πcurl,c
h vh ∈

W ?
h ∩H0(curl; Ω) such that

‖vh −Πcurl,c
h vh‖Th ≤ C‖h1/2[[n× vh]]‖Eh , (52a)

‖∇ × (vh −Πcurl,c
h vh)‖Th ≤ C‖h−1/2[[n× vh]]‖Eh , (52b)

where W ?
h = {u ∈ L2(Ω) : u|K ∈ [P`(K)]2, ∀K ∈ T ?h } and ` is some integer

such that Wh ⊂W ?
h .245

Definition 4.23. Suppose the solution of (3) is smooth enough. Let Q?h =

H1
0 (Ω)∩P`+1(T ?h ) be a finite element space with respect to the mesh T ?h (there-

fore, ∇Q?h ⊂H0(curl; Ω) ∩W ∗
h ) with σh ∈ H1

0 (Ω) ∩Q?h satisfy

( εr∇σh,∇qh)Th = ( εrΠ
curl,c
h (uh −ΠWu),∇qh)Th (53)

for all qh ∈ H1
0 (Ω) ∩Q?h. Then we define

Πm
W (u,uh) = ΠWu+∇σh. (54)

It is easy to check the following lemma using Definition 4.23 and Lemma 4.22,

hence we omit the proof.

Lemma 4.24. Suppose the solution of (3) is smooth enough, then we have

∇×Πm
W (u,uh) = ∇×ΠWu, [[n×Πm

W (u,uh)]] = [[n×ΠWu]], (55a)

∇×Πcurl,c
h (uh −Πm

W (u,uh)) = ∇×Πcurl,c
h (uh −ΠWu), (55b)

( εrΠ
curl,c
h (uh −Πm

W (u,uh)),∇qh)Th = 0, ∀qh ∈ H1
0 (Ω) ∩Q∗h. (55c)

In addition, we have the following estimates:

Lemma 4.25. We have the following estimates:

‖∇ × (Πcurl,c
h (Πm

W (u,uh)− uh))‖Th

≤ C
(
‖h−1/2(q −ΠV q)‖Th + ‖h−1/2(u−ΠWu)‖Th + ‖h−1/2εuh‖Th

)
, (56a)

‖(Πm
W (u,uh)− uh)−Πcurl,c

h (Πm
W (u,uh)− uh)‖Th

≤ C
(
‖h1/2(q −ΠV q)‖Th + ‖h1/2(u−ΠWu)‖Th + ‖h1/2εuh‖Th

)
. (56b)
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Proof. We use definition Definition 4.23 and Lemma 4.22. By the definition of

Πm
W in (54) and the approximation property of Πcurl,c

h in Lemma 4.22 to get

‖∇ × (Πcurl,c
h (Πm

W (u,uh)− uh))‖Th

≤ ‖∇× (Πcurl,c
h (Πm

W (u,uh)− uh))−∇× (Πm
W (u,uh)− uh)‖Th

+ ‖∇ × (Πm
W (u,uh)− uh)‖Th

= ‖∇ × (Πcurl,c
h (ΠWu− uh))−∇× (ΠWu− uh)‖Th by (55b)

+ ‖∇ × (ΠWu− uh)‖Th by (55a)

≤ C‖h−1/2[[n× (ΠWu− uh)]]‖Eh + ‖∇ × (ΠWu− uh)‖Th by (52b)

= C‖h−1/2[[n× εuh ]]‖Eh + ‖∇ × εuh‖Th .

Since εûh is single valued on the interior faces and zero on the boundary, then

we have

‖∇ × (Πcurl,c
h (Πm

W (u,uh)− uh))‖Th

≤ C‖h−1/2[[n× (εuh − εûh )]]‖Eh + ‖∇ × εuh‖Th .

Hence, (36) and (41) give the proof of (56a).

Next, by the approximation of Πcurl,c
h in Lemma 4.22 and (55a) to get

‖(Πm
W (u,uh)− uh)−Πcurl,c

h (Πm
W (u,uh)− uh)‖Th

≤ C‖h1/2[[n× (Πm
W (u,uh)− uh)]]‖Eh

= C‖h1/2[[n× (εuh − εûh )]]‖Eh .

Finally, (41) gives the proof of (56b).250

Next, we prove the following lemma which is similar in [3, Lemma 4.5].

Lemma 4.26. Let Θ ∈H0(curl; Ω) ∩H(div0
εr ; Ω) satisfy

∇×Θ = ∇×wh in Ω, (57)

where wh ∈ H0(curl; Ω) ∩W ?
h and ( εrwh,∇qh)Ω = 0 for all qh ∈ Q?h. Then

we have

‖wh −Θ‖L2(Ω) ≤ Chs‖∇ ×Θ‖L2(Ω), (58)
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where s ∈ ( 1
2 , 1] is defined in Theorem 4.4. The following stability result also

holds:

‖Θ‖L2(Ω) ≤ C‖wh‖L2(Ω). (59)

Proof. We define Π`−1|K := ΠK,`−1, then the following holds

∇× (wh −Πcurl
h,` Θ) = ∇×wh −Π`−1∇×Θ

= ∇×wh −Π`−1∇×wh

= 0.

Thus there is a qh ∈ Q?h = P`+1(T ?h ) ∩H1
0 (Ω) such that wh −Πcurl

h,` Θ = ∇qh.

By a direct calculation, one can obtain

‖wh −Θ‖2L2(Ω) ≤ CRe(εr(wh −Θ),wh −Θ)Ω

= CRe((εr(wh −Θ),wh −Πcurl
h,` Θ + Πcurl

h,` Θ−Θ)Ω

= CRe((εr(wh −Θ),∇qh + Πcurl
h,` Θ−Θ)Ω

= CRe((εr(wh −Θ),Πcurl
h,` Θ−Θ)Ω,

where we have used that wh is discrete divergence free, and Θ is divergence

free. Now using Theorems 4.4 and 4.20 we get

‖wh −Θ‖2L2(Ω) ≤ Ch
s‖wh −Θ‖L2(Ω)‖Θ‖Hs(Ω)

≤ Chs‖wh −Θ‖L2(Ω)‖∇ ×Θ‖L2(Ω),

where s ∈ ( 1
2 , 1] is specified in Theorem 4.4.

By the Helmoltz decomposition in two dimensions, there is a φ ∈ H1
0 (Ω) and

ψ ∈ H1(Ω) such that

Θ = εr∇φ+∇× ψ, ‖φ‖H1(Ω) ≤ ‖Θ‖L2(Ω), ‖ψ‖H1(Ω) ≤ ‖Θ‖L2(Ω).

Then we use the integration by parts and (57) to get

‖Θ‖2L2(Ω) = (Θ,Θ)Ω = (εr∇φ+∇× ψ,Θ)Ω = −(φ,∇ · ( εrΘ))Ω + (ψ,∇×Θ)Ω

= (ψ,∇×wh)Ω = (∇× ψ,wh)Ω ≤ ‖Θ‖L2(Ω)‖wh‖L2(Ω).

Thus we obtain our result.
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Lemma 4.27. Let (q,u) ∈ H(curl; Ω)×H(curl; Ω) and (qh,uh) ∈ Vh×Wh be

the solution of (3) and (5), respectively. Then there exists an h0 > 0 such that

for all h ≤ h0, we have the error estimate

‖q − qh‖Th ≤ C (‖q −ΠV q‖Th + ‖u−ΠWu‖Th) ,

‖u− uh‖Th ≤ C
(
hs−1/2‖q −ΠV q‖Th + C‖u−ΠWu‖Th

)
.

Proof. First, let Θ ∈H0(curl; Ω) ∩H(div0
εr ; Ω) be the solution of

∇×Θ = ∇× (Πcurl,c
h (Πm

W (u,uh)− uh)) in Ω.

By Lemma 4.26 and (56a), one has

‖Θ− (Πcurl,c
h (Πm

W (u,uh)− uh))‖Th

≤ C‖hs∇× (Πcurl,c
h (Πm

W (u,uh)− uh))‖Th

≤ Chs−1/2 (‖q −ΠV q‖Th + ‖u−ΠWu‖Th + ‖εuh‖Th) .

(60)

Therefore, by the triangle inequality, (59) and Definition 4.23 we have

‖Θ‖Th ≤ ‖(Π
curl,c
h (Πm

W (u,uh)− uh))‖Th

≤ 2‖Πcurl,c
h (ΠWu− uh)‖Th ≤ C‖εuh‖Th .

(61)

Next, we rewrite ‖εuh‖2Th as follows:

‖εuh‖2Th ≤ CRe( εrε
u
h , ε

u
h )Th

= CRe[( εr(Π
curl,c
h (Πm

W (u,uh)− uh)−Θ), εuh )Th + ( εrΘ, εuh )Th

+ ( εr((Π
m
W (u,uh)− uh)−Πcurl,c

h (Πm
W (u,uh)− uh)), εuh )Th

+ ( εr(ΠWu−Πm
W (u,uh)), εuh )Th ]

= CRe[( εr(Π
curl,c
h (Πm

W (u,uh)− uh)−Θ), εuh )Th + ( εrΘ, εuh )Th

+ ( εr((Π
m
W (u,uh)− uh)−Πcurl,c

h (Πm
W (u,uh)− uh)), εuh )Th

− ( εr∇σh, εuh )Th ]

= S1 + S2 + S3 + S4.

255
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The first three terms S1, S2 and S3 have been estimated in (60), Lemma 4.19,

(61), and (56b), respectively. We next estimate the last term S4 by taking

(rh,vh, v̂h) = (0,∇σh,∇σh − (n · ∇σh)n) in (34) to get

(κ2εruh,∇σh)Th = −(f ,∇σh)Th . (62)

Moreover, we have −(f ,∇σh)Th = (κ2εru,∇σh)Th , therefore

( εr∇σh,uh − u)Th = 0.

This implies

|S4| = |( εr∇σh,uh − u)Th + ( εr∇σh,u−ΠWu)Th |

= |( εr∇σh,u−ΠWu)Th |

≤ C‖u−ΠWu‖Th‖εuh‖Th .

By the above estimations of {Si}4i=1, there exists an h0 > 0 such that for all

h ≤ h0, we have

‖εuh‖Th ≤ C
(
hs−1/2‖q −ΠV q‖Th + ‖u−ΠWu‖Th

)
. (63)

By the above estimate and Lemma 4.17 we get

‖εqh‖Th ≤ C (‖q −ΠV q‖Th + ‖u−ΠWu‖Th) .

Combining the above estimates with the triangle inequality gives the desired

result.

Similarly to Lemma 4.15, we have

Lemma 4.28. Let (ψ,φ) ∈ H(curl; Ω) ×H0(curl; Ω) be the solution of (10),

then for all (rh,vh, v̂h) ∈ Vh ×Wh ×M0
h , we have

B(ΠV ψ,ΠWφ,PMφ; rh,vh, v̂h) = (µr(ΠV ψ − ψ)− θ, rh)Th + (∇× ψ,vh)Th .

Lemma 4.29. Let (q,u) ∈ H(curl; Ω)×H(curl; Ω) and (qh,uh) ∈ Vh×Wh be

the solution of (3) and (5), respectively. Then there exists an h0 > 0 such that

for all h ≤ h0, we have the error estimate

‖qh −ΠV q‖Th ≤ Chs(‖ΠV q − q‖Th + ‖u−ΠWu‖Th).
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Proof. First, we take (rh,vh, v̂h) = (−ΠV ψ,ΠWφ,PMφ) in (40) we get

B(εqh, ε
u
h , ε

û
h ;−ΠV ψ,ΠWφ,PMφ)− (κ2εrε

u
h ,ΠWφ)Th

= −(µr(ΠV q − q),ΠV ψ)Th + (κ2εr(u−ΠWu),ΠWφ)Th .
(64)

On the other hand, using Lemma 4.13 we have

B(εqh, ε
u
h , ε

û
h ;−ΠV ψ,ΠWφ,PMφ)

= B(ΠV ψ,ΠWφ,PMφ;−εqh, εuh , εûh )

= −(εqh, µr(ΠV ψ − ψ)− θ)Th + (εuh ,∇× ψ)Th

= −(εqh, µr(ΠV ψ − ψ))Th + (εuh , κ
2εrφ)Th + (εqh, θ)Th .

We take θ = εqh in the above equation and use (64) to get

‖εqh‖
2
Th = (εqh, µr(ΠV ψ − ψ))Th − (εuh , κ

2εr(φ−ΠWφ))Th

− (µr(ΠV q − q),ΠV ψ)Th + (κ2εr(u−ΠWu),ΠWφ)Th

≤ Chs‖εqh‖Th(‖ψ‖Hs(Ω) + ‖φ‖Hs(Ω)) + Chs‖εuh‖Th(‖ψ‖Hs(Ω) + ‖φ‖Hs(Ω))

+ Chs(‖ΠV q − q‖Th + ‖u−ΠWu‖Th).

Then, there exists an h0 > 0 such that for all h ≤ h0, we have

‖εqh‖Th ≤ Ch
s (‖q −ΠV q‖Th + ‖u−ΠWu‖Th + ‖εuh‖Th) .

By the above estimate and (63) we get

‖εqh‖Th ≤ C (‖q −ΠV q‖Th + ‖u−ΠWu‖Th) .

4.4.3. Step 3: Post-processing for the vector variable260

Let W ?(K) be a finite element space, we first define the following space:

Q?(K) = {v : ∇v ∈W ?(K)}. (65)

The post-processing method reads: we seek u?h ∈W ?(K) such that

(∇× u?h,∇×w)K = (qh,∇×w)K , for all w ∈W ?(K), (66a)

(u?h,∇v)K = (uh,∇v)K , for all v ∈ Q?(K). (66b)

Now, we state the main result in this section.
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Lemma 4.30. Let (q,u) be the solution of (3). Then the system (66) is well-

defined and there exists an h0 > 0 such that for all h ≤ h0, we have the error

estimate

‖∇ × (u− u?h)‖Th ≤ C
(
‖qh − q‖Th + inf

wh∈W ?(Th)
‖∇ × (u−wh)‖Th

)
.

Proof. Since the constraints for (66a) and (66b) are dimW ?(K)−dimV ?(K)+1

and dimQ?(K) − 1, then (66) is a square system. Therefore, we only need to

prove uniqueness for (66). Let qh = 0 and uh = 0 in (66) and we take w = u?h

in (66a) to get ∇× u?h = 0. Next, by the definition of Q?(K) in (65), there is265

a v ∈ Q?(K) such that ∇v = u?h. By (66b), we get u?h = 0. This proves the

uniqueness.

For any wh ∈W ?(K), we rewrite the system (66) into

(∇× (u?h −wh),∇×w)K = (qh −∇×wh,∇×w)K ∀w ∈W ?(K), (67a)

(u?h −wh,∇v)K = (uh −wh,∇v)K ∀v ∈ Q?(K). (67b)

By (67a) te get

‖∇ × (u?h −wh)‖Th ≤ C‖qh −∇×wh‖Th

≤ C (‖qh − q‖Th + ‖∇ × (u−wh)‖Th) .

Using the above estimate and the triangle inequality gives the desired result.

In practice, problem (66) is complicated to implement. The next lemma

provides a simple way to do this, that is equivalent to (66).270

Lemma 4.31. The post-processing problem (66) is equivalent to the following

system: find (u?h, ηh, γh) ∈W ?(K)×Q?(K)× P0(K), such that

(∇× u?h,∇×w)K + (∇ηh,w)K = (qh,∇×w)K ∀w ∈W ?(K), (68a)

(u?h,∇v)K + (γh, v)K = (uh,∇v)K ∀v ∈ Q?(K), (68b)

(ηh, s)K = 0 ∀s ∈ P0(K). (68c)

Proof. To prove this, we only need to prove (68) is well-defined and ηh = γh = 0.

It is obvious to see that the system (68) is a square system, hence we only need
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to prove the uniqueness. We take w = ∇ηh, v = γh and s = 1 in (68) to get

∇ηh = 0, γh = 0 and (ηh, 1) = 0. Hence ηh = γh = 0.

4.4.4. Step 4: Post-processing for the scalar variable275

Let V ?(K) be a finite element space defined on K which contains P0(K).

The post-processing method reads: we seek (q?h, γh) ∈ V ?(K)×P0(K) such that

(∇× q?h,∇× w)K + (γh, w)K = (f + κ2εruh,∇× wh)K ∀w ∈ V ?(K), (69a)

(q?h, v)K = (qh, v)K , ∀v ∈ P0(K). (69b)

Lemma 4.32. Let (q,u) be the solution of (3). Then the system (69) is well-

defined and there exists an h0 > 0 such that for all h ≤ h0, we have the error

estimate

‖q?h − q‖Th ≤ Ch‖uh − u‖Th + ChsK‖ΠV q − q‖Th

+ Chs(‖u−ΠWu‖Th + ‖∇ × (rh − q)‖Th),

where rh|K ∈ V ?(K) be the L2-projection of q on the element K.

Proof. First, by the triangle inequality we get

‖q?h − rh‖Th ≤ ‖q?h − qh + ΠV q − rh‖Th + ‖qh −ΠV q‖Th .

Since (q?h − qh, 1)Th = 0, then

(q?h − qh + ΠV q − rh, 1)Th = 0.

This implies

‖q?h − qh + ΠV q − rh‖Th

= ‖q?h − qh + ΠV q − rh −Π0(q?h − qh + ΠV q − rh)‖Th

≤ Ch‖∇ × (q?h − qh + ΠV q − rh)‖Th ,

(70)

where Π0 is the L2 projection on P0(K). Next, we apply the equation (69a) to

get

(∇× (q?h − qh + ΠV q − rh),∇× wh)K + (γh, wh)Th

= (f + κ2εruh +∇× (−qh + ΠV q − rh),∇× wh)Th .
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We take wh = q?h − qh + ΠV q − rh in the above equation and use (69b) to get

‖∇ × wh‖2L2(K) = (f + κ2εruh +∇× (−qh + ΠV q − rh),∇× wh)Th

= (∇× q − κ2εru+ κ2εruh +∇× (−qh + ΠV q − rh),∇× wh)Th

≤ C(‖∇ × (q − rh)‖Th + ‖∇ × (qh −ΠV q)‖Th

+ ‖uh − u‖Th)‖∇ × wh‖Th ,

which leads to

‖∇ × (q?h − qh + ΠV q − rh)‖Th

≤ C(‖∇ × (q − rh)‖Th + ‖∇ × (qh −ΠV q)‖Th + ‖uh − u‖Th).
(71)

Finally, combining (70), (71), Lemma 4.29 and the triangle inequality can get

our result.

5. Numerical experiments280

In this section, we shall present some concrete examples of spaces V (K),

W (K), M(∂K) that satisfy the definition of the M -decomposition; see Defini-

tion 3.1 and hence that are predicted to have optimal convergence rate and even

superconvergence. The construction of the spaces can be found in [29]. In all

numerical experiments, we take µr = 1, the stabilization parameter τ = 1, and

κ2εr = 10.5. We test two kinds of problems: in the first case the exact solution

is smooth and is given by

u1 = sin(2πx) sin(2πy), u2 = sin(πx) sin(πy),

q = π cos(πx) sin(πy)− 2π sin(2πx) cos(2πy),

and in the second case the solution is less regular:

u1 = r
2
3 sin

(
2

3
θ

)
, u2 = 0, q = −2

3
r−

4
3

(
sin

(
2

3
θ

)
y + cos

(
2

3
θ

))
.

In this second case the solution is less regular and u = [u1, u2] ∈ H5/3−ε(Ω)

with ε arbitrarily small. Boundary data is chosen so that the above functions

satisfy (2)
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The post-processing spaces in all experiments are taken as

Q?(K) = Pk+2(K), W ?(K) = Pk+1(K), V ?(K) = Pk+1(K).

5.1. Triangle Mesh

We assume that the mesh Th consists of shape regular triangles and choose

T ∗h = Th (see Section 4.1). We might hope that standard Pk polynomial spaces

could work. For any integer k ≥ 1, let

V (K) = Pk(K), W (K) = Pk(K),

M(∂K) = {µ : µ|F = n× pk, for some pk ∈ Pk(F ) and for each edge F ⊂ ∂K}.

In Tables 1 and 2, we show numerical results on the unit square with a285

uniform triangular mesh for smooth solution, i.e., case 1. We obtain an optimal

convergence rate for the solution u and superconvergence rate for ∇× u.

Table 1: Uniform triangular mesh and degree k elements on the unit square

Ω = (0, 1)× (0, 1) for smooth test

k
√
2

h

‖u− uh‖Th ‖∇ × (u− uh)‖Th ‖q − qh‖Th
Error Rate Error Rate Error Rate

1

23 2.14e-1 8.07e+0 1.71e-1

24 4.43e-2 2.27 3.53e+0 1.19 3.58e-2 2.26

25 1.03e-2 2.10 1.67e+0 1.08 8.46e-3 2.08

26 2.51e-3 2.04 8.10e-1 1.04 2.09e-3 2.02

27 6.18e-4 2.02 4.00e-1 1.02 5.20e-4 2.00

2

23 2.20e-2 1.47e+0 1.46e-2

24 2.51e-3 3.13 3.40e-1 2.12 1.81e-3 3.02

25 3.00e-4 3.06 8.15e-2 2.06 2.26e-4 3.00

26 3.67e-5 3.03 2.00e-2 2.03 2.82e-5 3.00

27 4.54e-6 3.02 4.94e-3 2.02 3.52e-6 3.00

In Tables 3 and 4, we show numerical results on the unit square with a

uniform triangular mesh for the non-smooth solution, i.e., case 2. The variable

qh and the post-processed approximation ∇× u?h converge at the optimal with290
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Table 2: Uniform triangular mesh and degree k elements on the unit square

Ω = (0, 1)× (0, 1) for smooth test

k
√
2

h

‖u− u?
h‖Th ‖∇ × (u− u?

h)‖Th ‖q − q?h‖Th
Error Rate Error Rate Error Rate

1

23 1.80e-1 1.71e-1 1.17e-1

24 3.64e-2 2.31 3.58e-2 2.26 1.44e-2 3.02

25 8.44e-3 2.11 8.46e-3 2.08 1.76e-3 3.03

26 2.04e-3 2.05 2.09e-3 2.02 2.17e-4 3.02

27 5.03e-4 2.02 5.20e-4 2.00 2.69e-5 3.01

2

23 1.80e-2 1.46e-2 4.38e-3

24 2.04e-3 3.14 1.81e-3 3.02 2.46e-4 4.15

25 2.44e-4 3.07 2.26e-4 3.00 1.47e-5 4.06

26 2.98e-5 3.03 2.82e-5 3.00 9.04e-7 4.03

27 3.68e-6 3.02 3.52e-6 3.00 5.60e-8 4.01

respect to the regularity of the exact solution. However, the variable uh is not

optimally convergent. This is also as predicted by by our numerical analysis,

see Theorems 4.6 and 4.7.

5.2. Parallelogram Mesh

The mesh Th is assumed to consist of parallelograms. For this mesh we295

construct T ∗h by subdividing each parallelogram into two subtriangles. The

triangular mesh is assumed to be shape regular so satisfying the requirements

from Section 4.1.

For any integer k ≥ 0, let

V (K) = Pk(K), W (K) = Pk(K) +∇span{xk+1y, xyk+1},

M(∂K) = {µ : µ|F = n× pk, for some pk ∈ Pk(F ) and for each edge F ⊂ ∂K},

Ṽ (K) = Pk−1(K), W̃ (K) = ∇× V (K)⊕W0(K).

Then V (K) and W (K) admit an M -decomposition with respect the spaces

Ṽ (K) and W̃ (K).300
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Table 3: Uniform triangular mesh and degree k elements on the unit square

Ω = (0, 1)× (0, 1) for non-smooth test

k
√
2

h

‖u− uh‖Th ‖∇ × (u− uh)‖Th ‖q − qh‖Th
Error Rate Error Rate Error Rate

1

23 4.59e-1 6.08 2.86e+0 6.08 1.32e+0 5.72

24 5.33e-1 -0.22 2.57e+0 0.15 1.58e+0 -0.26

25 3.29e-1 0.70 1.63e+0 0.66 1.06e+0 0.57

26 2.48e-1 0.41 1.59e+0 0.03 8.06e-1 0.40

27 1.73e-1 0.52 1.52e+0 0.06 5.61e-1 0.52

28 1.14e-1 0.60 1.76e+0 -0.21 3.70e-1 0.60

29 7.43e-2 0.62 2.15e+0 -0.29 2.37e-1 0.64

2

23 3.09e+0 -1.29 1.56e+1 -0.94 5.80e+0 -0.69

24 3.75e-1 3.04 1.77e+0 3.14 1.21e+0 2.26

25 3.16e-1 0.25 1.75e+0 0.01 1.03e+0 0.23

26 2.45e-1 0.37 1.82e+0 -0.05 7.97e-1 0.37

27 1.72e-1 0.51 2.08e+0 -0.19 5.58e-1 0.51

28 1.15e-1 0.58 2.51e+0 -0.27 3.69e-1 0.60

29 7.73e-2 0.58 3.11e+0 -0.31 2.37e-1 0.64

Now, we give another construction: For any integer k ≥ 0, let

V (K) = Pk(K), W (K) = Pk(K) +∇span{xk+1y, xyk+1}+
(y
−x
)
P̃k(K),

M(∂K) = {µ : µ|F = n× pk, for some pk ∈ Pk(F ) and for each edge F ⊂ ∂K},

W̃ (K) = ∇× V (K)⊕W0(K).

Then V (K) and W (K) admit an M -decomposition with respect the spaces

Ṽ (K) and W̃ (K).

In Tables 5 to 8, we show numerical results on a parallelogram with a uniform

parallelogram mesh. We obtain the optimal convergence rate for the solution u

and superconvergence rate for ∇× u.305

5.3. Rectangle Mesh

The mesh Th is assumed to consist of squares. For this mesh we construct T ∗h
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Table 4: Uniform triangular mesh and degree k elements on the unit square

Ω = (0, 1)× (0, 1) for non-smooth test

k
√
2

h

‖u− u?
h‖Th ‖∇ × (u− u?

h)‖Th ‖q − q?h‖Th
Error Rate Error Rate Error Rate

1

23 4.53e-1 6.01 1.32e+0 5.72 1.32e+0 5.76

24 5.32e-1 -0.23 1.58e+0 -0.26 1.58e+0 -0.26

25 3.29e-1 0.69 1.06e+0 0.57 1.06e+0 0.57

26 2.48e-1 0.40 8.06e-1 0.40 8.06e-1 0.40

27 1.73e-1 0.52 5.61e-1 0.52 5.61e-1 0.52

28 1.14e-1 0.60 3.70e-1 0.60 3.70e-1 0.60

29 7.43e-2 0.62 2.37e-1 0.64 2.37e-1 0.64

2

23 3.07e+0 -1.31 5.80e+0 -0.69 5.79e+0 -0.69

24 3.75e-1 3.04 1.21e+0 2.26 1.21e+0 2.26

25 3.15e-1 0.25 1.03e+0 0.23 1.03e+0 0.23

26 2.45e-1 0.37 7.97e-1 0.37 7.97e-1 0.37

27 1.72e-1 0.51 5.58e-1 0.51 5.58e-1 0.51

28 1.15e-1 0.58 3.69e-1 0.60 3.69e-1 0.60

29 7.73e-2 0.58 2.37e-1 0.64 2.37e-1 0.64

by subdividing each square into two subtriangles. The triangular mesh is shape

regular so satisfying the requirements from Section 4.1 (for a general rectangular

mesh, the triangular mesh must be shape regular).310

In this section, we assume that all elements K are rectangles with edges

parallel to the coordinate axes. We denote by Qk the standard space of poly-

nomials in two variables with maximum degree k in each variable. Unlike in the

parallelogram case, we consider the use of Qk based elements as these are often

used for square elements. Our first lemma shows that simple Qk elements alone315

do not suffice.
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Table 5: Parallelogram mesh and enriched case I on Ω = {(x, y) : 0 ≤ x −
√

3y ≤ 1, 0 ≤ y ≤

1/2} for smooth test

k
√
2

h

‖u− uh‖Th ‖∇ × (u− uh)‖Th ‖q − qh‖Th
Error Rate Error Rate Error Rate

1

23 1.30e+1 1.15e+2 4.35e+0

24 1.57e-1 6.37 5.11e+0 4.49 6.49e-2 6.07

25 1.48e-2 3.41 2.11e+0 1.28 1.08e-2 2.59

26 2.52e-3 2.55 1.02e+0 1.04 2.37e-3 2.19

27 5.23e-4 2.27 5.07e-1 1.01 5.71e-4 2.05

2

23 7.19e-1 9.18e+0 1.40e-1

24 1.46e-2 5.62 8.16e-1 3.49 2.68e-3 5.71

25 1.35e-3 3.44 1.66e-1 2.29 3.23e-4 3.05

26 1.49e-4 3.18 3.85e-2 2.11 4.03e-5 3.00

27 1.76e-5 3.08 9.29e-3 2.05 5.04e-6 3.00

Table 6: Parallelogram mesh and enriched case I on Ω = {(x, y) : 0 ≤ x −
√

3y ≤ 1, 0 ≤ y ≤

1/2} for smooth test

k
√
2

h

‖u− u?
h‖Th ‖∇ × (u− u?

h)‖Th ‖q − q?h‖Th
Error Rate Error Rate Error Rate

1

23 1.29e+1 4.35e+0 4.35e+0

24 1.54e-1 6.39 6.49e-2 6.07 5.58e-2 6.28

25 1.32e-2 3.55 1.08e-2 2.59 5.97e-3 3.22

26 1.93e-3 2.77 2.37e-3 2.19 7.36e-4 3.02

27 3.34e-4 2.53 5.71e-4 2.05 9.18e-5 3.00

2

23 7.15e-1 1.40e-1 1.13e-1

24 1.43e-2 5.65 2.68e-3 5.71 1.54e-3 6.19

25 1.31e-3 3.45 3.23e-4 3.05 6.75e-5 4.51

26 1.44e-4 3.18 4.03e-5 3.00 3.64e-6 4.21

27 1.70e-5 3.09 5.04e-6 3.00 2.13e-7 4.09
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Table 7: Parallelogram mesh and enriched case II on Ω = {(x, y) : 0 ≤ x−
√

3y ≤ 1, 0 ≤ y ≤

1/2} for smooth test

k
√
2

h

‖u− uh‖Th ‖∇ × (u− uh)‖Th ‖q − qh‖Th
Error Rate Error Rate Error Rate

1

23 1.20e+1 1.75e+2 3.61e+0

24 1.60e-1 6.23 5.18e+0 5.08 6.52e-2 5.79

25 1.47e-2 3.44 2.11e+0 1.30 1.08e-2 2.59

26 2.51e-3 2.55 1.02e+0 1.05 2.37e-3 2.19

27 5.22e-4 2.27 5.05e-1 1.01 5.71e-4 2.05

2

23 7.69e+0 1.35e+2 1.04e+0

24 1.46e-2 9.04 8.17e-1 7.37 2.66e-3 8.61

25 1.35e-3 3.44 1.66e-1 2.30 3.22e-4 3.04

26 1.49e-4 3.18 3.84e-2 2.11 4.02e-5 3.00

27 1.76e-5 3.08 9.27e-3 2.05 5.03e-6 3.00

Table 8: Parallelogram mesh and enriched case II on Ω = {(x, y) : 0 ≤ x−
√

3y ≤ 1, 0 ≤ y ≤

1/2} for smooth test

k
√
2

h

‖u− u?
h‖Th ‖∇ × (u− u?

h)‖Th ‖q − q?h‖Th
Error Rate Error Rate Error Rate

1

23 1.19e+1 3.61e+0 3.85e+0

24 1.56e-1 6.24 6.52e-2 5.79 5.60e-2 6.10

25 1.31e-2 3.58 1.08e-2 2.59 5.98e-3 3.23

26 1.91e-3 2.78 2.37e-3 2.19 7.37e-4 3.02

27 3.32e-4 2.53 5.71e-4 2.05 9.19e-5 3.00

2

23 7.61e+0 1.04e+0 6.74e-1

24 1.43e-2 9.06 2.66e-3 8.61 1.54e-3 8.77

25 1.31e-3 3.45 3.22e-4 3.04 6.75e-5 4.51

26 1.44e-4 3.18 4.02e-5 3.00 3.64e-6 4.21

27 1.70e-5 3.09 5.03e-6 3.00 2.13e-7 4.09

43



For any integer k ≥ 1, let

V (K) = Qk(K), W (K) = Qk(K) +∇span{xk+1y, xyk+1},

M(∂K) = {µ : µ|F = n× pk, for some pk ∈ Pk(F ) and for each edge F ⊂ ∂K},

Ṽ (K) = Qk−1(K), W̃ (K) = ∇× V (K)⊕W0(K).

Then V (K) and W (K) admit an M -decomposition with respect the spaces

Ṽ (K) and W̃ (K).

Now, we give another construction: For any integer k ≥ 0, let

V (K) = Qk(K), W (K) = Qk(K) +∇span{xk+1y, xyk+1}+ span
{(

xkyk+1

xk+1yk

)}
,

M(∂K) = {µ | µ|F = n× Pk(F ) for each edge F ⊂ ∂K},

Ṽ (K) = Qk(K), W̃ (K) = ∇× V (K)⊕W0(K).

Then V (K) and W (K) admit an M -decomposition with respect the spaces

Ṽ (K) and W̃ (K).320

The next element family can be found in the third exact sequence in [47,

Theorem 3.1].

For any integer k ≥ 0, let

V (K) = Qk(K), W (K) = Qk(K) +∇span{xk+1y, xyk+1}+ span
{(
−xkyk+1

xk+1yk

)}
,

M(∂K) = {µ | µ|F = n× Pk(F ) for each edge F ⊂ ∂K},

Ṽ (K) = Qk(K), W̃ (K) = ∇× V (K)⊕W0(K).

Then V (K) and W (K) admit an M -decomposition with respect the spaces

Ṽ (K) and W̃ (K).

In Tables 9 and 10, we show the numerical results on unit square with325

rectangle mesh and we obtain optimal convergence rate for the solution u and

superconvergence rate for ∇×u using Enrichment Construction I elements when

the solution is smooth enough. In Tables 11 and 12, we show the numerical

results on unit square with rectangle mesh and we obtain optimal convergence

rate for both q and the postprocess of ∇× u using Enrichment Construction I330

elements when the solution is non-smooth.
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Table 9: Uniform square mesh with Enrichment case I on the unit square Ω = (0, 1) × (0, 1)

for smooth test

k
√
2

h

‖u− uh‖Th ‖∇ × (u− uh)‖Th ‖q − qh‖Th
Error Rate Error Rate Error Rate

1

23 1.78e-1 6.93e+0 1.41e-1

24 3.90e-2 2.19 3.05e+0 1.19 2.88e-2 2.29

25 9.19e-3 2.08 1.44e+0 1.09 6.83e-3 2.08

26 2.23e-3 2.04 6.98e-1 1.04 1.68e-3 2.02

27 5.51e-4 2.02 3.44e-1 1.02 4.20e-4 2.00

2

23 1.86e-2 8.44e-1 8.50e-3

24 1.10e-3 4.08 1.37e-1 2.62 8.76e-4 3.28

25 1.34e-4 3.05 3.31e-2 2.05 1.09e-4 3.00

26 1.65e-5 3.02 8.13e-3 2.02 1.36e-5 3.00

27 2.04e-6 3.01 2.02e-3 2.01 1.70e-6 3.00

Numerical results for Enrichment Construction II elements show that exactly

the same error as for Enrichment Case I and so we do not reproduce them here.

Results for Enrichment Construction III are shown in Tables 13 to 16. The

results exhibit the expected convergence rates from theory.335

6. Conclusion

In this paper we have shown that the M -decomposition, together with suffi-

ciently rich auxilary spaces, is sufficient to guarantee optimal order convergence

for the vector 2D problem arising from Maxwell’s equations. This can be used

to evaluate and construct HDG schemes on two commonly occurring elements340

(triangles and squares).

As pointed out by Cockburn and Fu [29], it is not possible to carry out the

construction of the spaces under consideration by using only polynomials for

more general elements K. Thus the extension of this theory to more general

elements is a challenging project.345

An interesting problem is to devise a similar theory for the full Maxwell’s
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Table 10: Uniform square mesh with Enrichment case I on the unit square Ω = (0, 1)× (0, 1)

for smooth test

k
√
2

h

‖u− u?
h‖Th ‖∇ × (u− u?

h)‖Th ‖q − q?h‖Th
Error Rate Error Rate Error Rate

1

23 4.09e-2 2.17e-1 1.00e-1

24 5.38e-3 2.93 5.11e-2 2.09 1.16e-2 3.11

25 9.12e-4 2.56 1.26e-2 2.02 1.39e-3 3.07

26 1.96e-4 2.22 3.14e-3 2.00 1.70e-4 3.03

27 4.70e-5 2.06 7.85e-4 2.00 2.10e-5 3.02

2

23 1.37e-2 2.44e-2 3.41e-3

24 4.76e-4 4.84 3.09e-3 2.98 2.07e-4 4.04

25 5.64e-5 3.08 3.88e-4 2.99 1.30e-5 3.99

26 6.90e-6 3.03 4.85e-5 3.00 8.16e-7 4.00

27 8.53e-7 3.02 6.07e-6 3.00 5.10e-8 4.00

Table 11: Uniform square mesh with Enrichment case I on the unit square Ω = (0, 1)× (0, 1)

for non-smooth test

k
√
2

h

‖u− uh‖Th ‖∇ × (u− uh)‖Th ‖q − qh‖Th
Error Rate Error Rate Error Rate

1

23 8.98e-1 1.77 1.91e+0 3.91 7.61e-1 2.25

24 4.53e-1 0.99 1.91e+0 -0.00 1.38e+0 -0.86

25 3.20e-1 0.50 1.36e+0 0.49 1.04e+0 0.41

26 2.45e-1 0.38 1.18e+0 0.21 7.98e-1 0.38

27 1.75e-1 0.49 1.78e+1 -3.92 5.60e-1 0.51

28 1.14e-1 0.62 1.29e+0 3.79 3.69e-1 0.60

2

23 1.27e+0 0.13 2.93e+1 -2.26 1.81e+0 1.27

24 5.91e-1 1.10 1.55e+1 0.92 1.28e+0 0.50

25 3.19e-1 0.89 1.84e+0 3.07 1.04e+0 0.31

26 2.69e-1 0.24 1.40e+1 -2.93 7.97e-1 0.38

27 2.33e-1 0.21 4.06e+1 -1.53 5.58e-1 0.51

28 1.16e-1 1.01 2.00e+0 4.35 3.69e-1 0.60
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Table 12: Uniform square mesh with Enrichment case I on the unit square Ω = (0, 1)× (0, 1)

for non-smooth test

k
√
2

h

‖u− u?
h‖Th ‖∇ × (u− u?

h)‖Th ‖q − q?h‖Th
Error Rate Error Rate Error Rate

1

23 8.95e-1 0.22 7.57e-1 2.26 7.56e-1 2.45

24 4.52e-1 0.99 1.38e+0 -0.87 1.38e+0 -0.87

25 3.20e-1 0.50 1.04e+0 0.41 1.04e+0 0.41

26 2.45e-1 0.38 7.98e-1 0.38 7.98e-1 0.38

27 1.72e-1 0.51 5.60e-1 0.51 5.59e-1 0.52

28 1.14e-1 0.59 3.69e-1 0.60 3.69e-1 0.60

2

23 8.56e-1 0.67 1.77e+0 1.30 1.78e+0 1.30

24 5.37e-1 0.67 1.27e+0 0.48 1.27e+0 0.48

25 3.19e-1 0.75 1.04e+0 0.30 1.04e+0 0.30

26 2.64e-1 0.27 7.97e-1 0.38 7.97e-1 0.38

27 2.19e-1 0.27 5.57e-1 0.52 5.57e-1 0.52

28 1.16e-1 0.92 3.69e-1 0.60 3.69e-1 0.60

Table 13: Results for a uniform square mesh with Enrichment case III on the unit square

Ω = (0, 1)× (0, 1)

k
√
2

h

‖u− uh‖Th ‖∇ × (u− uh)‖Th ‖q − qh‖Th
Error Rate Error Rate Error Rate

1

23 1.77e-1 6.93e+0 1.41e-1

24 3.90e-2 2.19 3.05e+0 1.19 2.88e-2 2.29

25 9.19e-3 2.08 1.44e+0 1.09 6.83e-3 2.08

26 2.23e-3 2.04 6.98e-1 1.04 1.68e-3 2.02

27 5.51e-4 2.02 3.44e-1 1.02 4.20e-4 2.00

2

23 9.68e-3 5.93e-1 7.14e-3

24 1.10e-3 3.13 1.37e-1 2.11 8.76e-4 3.03

25 1.34e-4 3.05 3.31e-2 2.05 1.09e-4 3.00

26 1.65e-5 3.02 8.13e-3 2.02 1.36e-5 3.00

27 2.04e-6 3.01 2.02e-3 2.01 1.70e-6 3.00

47



Table 14: Results for a uniform square mesh with Enrichment case III on the unit square

Ω = (0, 1)× (0, 1)

k
√
2

h

‖u− u?
h‖Th ‖∇ × (u− u?

h)‖Th ‖q − q?h‖Th
Error Rate Error Rate Error Rate

1

23 4.06e-2 2.17e-1 1.00e-1

24 5.37e-3 2.92 5.11e-2 2.09 1.16e-2 3.11

25 9.12e-4 2.56 1.26e-2 2.02 1.39e-3 3.07

26 1.96e-4 2.22 3.14e-3 2.00 1.70e-4 3.03

27 4.70e-5 2.06 7.85e-4 2.00 2.10e-5 3.02

2

23 4.54e-3 2.44e-2 3.24e-3

24 4.64e-4 3.29 3.09e-3 2.98 2.07e-4 3.96

25 5.60e-5 3.05 3.88e-4 2.99 1.30e-5 3.99

26 6.88e-6 3.03 4.85e-5 3.00 8.16e-7 4.00

27 8.52e-7 3.01 6.07e-6 3.00 5.10e-8 4.00

Table 15: Uniform square mesh with Enrichment case III on the unit square Ω = (0, 1)×(0, 1)

for non-smooth test

k
√
2

h

‖u− uh‖Th ‖∇ × (u− uh)‖Th ‖q − qh‖Th
Error Rate Error Rate Error Rate

1

23 1.07e+0 1.24 3.93e+0 2.53 1.89e+0 0.59

24 3.89e-1 1.46 1.73e+0 1.18 1.25e+0 0.61

25 3.14e-1 0.31 1.34e+0 0.36 1.02e+0 0.29

26 2.43e-1 0.37 1.17e+0 0.20 7.90e-1 0.37

27 1.71e-1 0.51 1.15e+0 0.03 5.55e-1 0.51

28 1.27e-1 0.42 2.65e+0 -1.21 4.09e-1 0.44

2

23 2.30e-1 2.56 1.67e+0 1.85 5.41e-1 2.99

24 4.67e+0 -4.34 1.62e+2 -6.61 1.99e+0 -1.88

25 3.17e-1 3.88 1.58e+0 6.68 1.03e+0 0.95

26 5.81e-1 -0.87 1.86e+1 -3.55 7.91e-1 0.38

27 1.72e-1 1.75 1.64e+0 3.50 5.57e-1 0.51

28 1.16e-1 0.57 1.96e+0 -0.26 3.68e-1 0.60
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Table 16: Uniform square mesh with Enrichment case III on the unit square Ω = (0, 1)×(0, 1)

for non-smooth test

k
√
2

h

‖u− u?
h‖Th ‖∇ × (u− u?

h)‖Th ‖q − q?h‖Th
Error Rate Error Rate Error Rate

1

23 1.02e+0 0.11 1.88e+0 0.59 1.89e+0 0.80

24 3.87e-1 1.40 1.25e+0 0.59 1.25e+0 0.60

25 3.14e-1 0.30 1.02e+0 0.29 1.02e+0 0.29

26 2.42e-1 0.37 7.90e-1 0.37 7.90e-1 0.37

27 1.71e-1 0.51 5.55e-1 0.51 5.55e-1 0.51

28 1.27e-1 0.43 4.09e-1 0.44 4.09e-1 0.44

2

23 2.21e-1 2.60 5.41e-1 2.99 5.42e-1 2.99

24 3.85e+0 -4.12 1.40e+0 -1.37 1.39e+0 -1.36

25 3.17e-1 3.61 1.03e+0 0.44 1.03e+0 0.44

26 5.66e-1 -0.84 7.91e-1 0.38 7.91e-1 0.38

27 1.72e-1 1.72 5.57e-1 0.51 5.57e-1 0.51

28 1.16e-1 0.57 3.68e-1 0.60 3.68e-1 0.60

equations in three dimensions. Not only is this more complicated, but it is also

essentially different compared to 2D. This will be explored in our future work.
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