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Abstract

The concept of the M-decomposition was introduced by Cockburn et al. in
Math. Comp. vol. 86 (2017), pp. 1609-1641 to provide criteria to guarantee
optimal convergence rates for the Hybridizable Discontinuous Galerkin (HDG)
method for coercive elliptic problems. In that paper they systematically con-
structed superconvergent hybridizable discontinuous Galerkin (HDG) methods
to approximate the solutions of elliptic PDEs on unstructured meshes. In
this paper, we use the M-decomposition to construct HDG methods for the
Maxwell’s equations on unstructured meshes in two dimension. In particular,
we show the any choice of spaces having an M-decomposition, together with
sufficiently rich auxiliary spaces, has an optimal error estimate and supercon-
vergence even though the problem is not in general coercive. Motivated by
the elliptic case, we obtain a superconvergent rate for the curl and flux of the
solution, and this is confirmed by our numerical experiments.
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1. Introduction

A large number of computational techniques have been developed for solving
Maxwell’s equations in both the frequency and time domains. In the frequency
domain, and in the presence of inhomogeneous penetrable media, the finite
element method is often used. It has an additional advantage compared to
finite differences in that it can handle complex geometries.

Methods using H (curl; Q)-conforming edge elements have been widely stud-
ied, see for example [1-6]. The implementation of the conforming method, par-
ticularly higher order elements, is complicated. Hence, non-conforming meth-
ods provide an interesting alternative for this kind of problem that may also be
attractive for nonlinear problems. In particular, Discontinuous Galerkin (DG)
methods have been used to approximate the solution of the Maxwell’s equations
for a long time. The first DG method for solving Maxwell’s equations with high
frequency was analyzed in [7]. A local discontinuous Galerkin (LDG) scheme
was proposed for the time-harmonic Maxwell’s equations with low frequency was
studied in [8] (see also [9] for this problem using mixed DG methods). These
methods tend to have many more degrees of freedom than conforming methods
so it is interesting to consider hybridizable methods.

This paper is concerned with developing a class of methods for Maxwell’s
equations in 2D. Obviously Maxwell’s equations are usually studied in three
dimensions, but if the domain and data functions are translation invariant in
one direction, the full problem can be decoupled into a pair of problems posed
in two dimensions. To see how this is possible, consider the usual time harmonic

Maxwell system for the electric field E (a complex valued vector function):
curl u tcurl E — k%¢,E = F.

Here p,. is the relative magnetic permeability, x > 0 is the wave number, e,
is the relative electric permittivity which may be complex valued. In addition
F = ikegj, where j is the given current density and € is the permittivity of

vacuum.
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If €., pr and F are independent of x3, and if we seek a solution E that
is also independent of x3 we obtain a simpler partial differential equation for
u = (Ey, E5)T given in (2a) below. To define the problem for u we need some
notation. Because we are now working in two dimensions the curl operator
can be defined in two ways depending on whether its argument is a scalar or a
vector. We therefore introduce the following standard definitions where v is a

smooth vector function and p is a smooth scalar function:
V xv=(-0,,0,)" v, V x p=(dy,—0:)"p, (1)

Similarly there are two definitions for the cross product again depending on the
use of scalar or vector functions. If m € R? is a unit vector (in practice the

normal vector to a domain in R?), we define
T T
nXxv=(-n2,n) v, n X p=(nz,—ni) p,

We can now state the problem we shall study. Let € be a bounded simply-
connected Lipschitz polygon in R? with connected boundary 0€2. Then we seek

to approximate the solution w of the following interior problem:

V x (1 'V x u) — k2e,u = f in Q, (2a)

nXxXu=yg on 09, (2b)

where the right hand side is f = (F}, F3)?. To ensure the uniqueness of the
solution to this problem (and hence existence via the Fredholm alternative),
we assume that p,. is real valued and positive. In addition, either (e,) > 0,
or §(e,) = 0 and % is not a Maxwell eigenvalue, where J(e,) denotes the
imaginary part of €, .

Note that an alternative approach is to solve directly for the scalar vari-

able ¢ := p 'V x u. Straightforward manipulation shows that ¢ satisfies the

1 1
V- <€Vq) + K2 puq=V- (Efl> .

Helmholtz equation
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where f+ = (fa, —f1)T. For studies of HDG applied to the Helmholtz equation
see for example [10, 11] although variable coefficients are not discussed there.
Our approach using (2) results in a different formulation of the HDG discretized
problem and is motivated by the numerical study in [12]. Note in addition that
using the vector form of the problem has also been advocated for example in
[13, 14] and those papers further motivate the current study.

In this paper we shall study hybridizable discontinuous Galerkin (HDG)
methods applied to Maxwell’s equations (2). HDG methods for elliptic problems
were first proposed in 2009 in [15] and an analysis using special projections was
developed in [16]. HDG methods have several distinct advantages including:
allowing static condensation and hence less global degrees of freedom, flexibility
in meshing (inherited from DG methods), ease of design and implementation,
and local conservation of physical quantities. As a result, HDG methods have
been proposed for a large number of problems, see, e.g., [17-23].

An important property of HDG methods is the superconvergence of some
quantities on unstructured meshes (after element by element post-processing).
One way to guarantee the existence of an HDG projection and superconvergence
is to ensure that the particular discretization spaces used in the HDG method
satisfy an M-decomposition [24]. This method of analysis has been extended to
other applications, see for example [25-29).

The HDG method has been applied to Maxwell’s equations in [12] but with-
out an error analysis. Later on, an error analysis was provided in [30, 31] for
zero frequency and in [32, 33] for impedance boundary conditions and high wave
number. These papers did not use the M-decomposition and only considered
simplicial elements.

The aim of this paper is to use the concept of the M-decomposition to
analyze the time-harmonic Maxwell’s equations with Dirichlet boundary condi-
tion in 2D. The main novelty of our paper is that we show that provided the
HDG spaces satisfy the conditions for an M-decomposition, and certain auxil-
iary spaces contain piecewise constant polynomials, an optimal error estimate

will hold as well as a super-convergence of the curl of the field (as was observed
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in [12]). Note that in our context superconvergence of the curl of the field is
important because this implies that both the electric and magnetic fields can be
approximated at the same rate. We then use the M-decomposition to exhibit
finite element spaces with optimal convergence on triangles, parallelograms and
squares. Our convergence theory is supported by numerical examples in each
case.

The outline of the paper is as follows. In Section 2, we set some notation and
give the HDG formulation of (2). In Section 3, we follow the seminal work [24]
to introduce the concept of the M-decomposition for Maxwell’s equation. The
error analysis is given in Section 4, we obtain optimal convergence rate for the
electric field u and superconvergence rate for Vxu. The construction of example
spaces and numerical experiments are provided to confirm our theoretical results

in Section 5. We end with a conclusion.

2. The HDG method

We start by defining some notation. For any sufficiently smooth bounded
domain A C R?, let H™(A) denote the usual m!"-order Sobolev space of scalar
functions on A, and || - |[;m.A, | - |m,a denote the corresponding norm and semi-
norm. We use (-,-)a to denote the complex inner product on L?(A). Similarly,
for the boundary A of A, we use (-,-)a to denote the L? inner product. Note
that bold face fonts will be used for vector analogues of the Sobolev spaces along
with vector-valued functions.

We define the negative norm | - || g-s(q) by

U, V)q
[ullzr-s@) = sup u
vEHS () [|v]

5,82

The negative norm || - || -+ (90) can be defined by the same way.

Recalling the definition of the curl operators in 2D in (1), for A C R? we



next define

H (curl; A we L*(A):V xuc L*(A)},

€ H(curl; A) : n x u =0 on OA}

(
Hy(curl; A

(

Ho(

curl; A

€ H(curl; A) : m x u =0 on 9A},

H(div,,; € L*(A) : V- (e,u) € L*(A)},

):
)
H(curl; A) :
)
A):
A) = {u € H(div,;A) : V- (eu) = 0}.

{
{u
{ue L*(A):V xue L*(A)},
{u
{u
{

(dlv6 ;

where 7 is the unit outward normal vector on JA and €, is a smooth enough
function.

Let 7, := {K} denote a conforming mesh of €, where K is a Lipschitz
polygonal element with finitely many edges. For each K € Tj, we let hx be
the infimum of the diameters of circles containing K and denote the mesh size
h := maxge7;, hx. We shall need more assumptions on the mesh to perform our
analysis. These assumptions replace the usual “shape regularity” assumption
but we delay a discussion of this point until Section 4.1. Let 07} denote the
set of edges FF C 0K of the elements K € T;, (i.e. edges of distinct triangles
are counted separately) and let £, denote the set of edges in the mesh 7. We
denote by hg the length of the edge F'. We abuse notation by using Vx, V- and
V for broken curl, div and gradient operators with respect to mesh partition
Trn, respectively. To simplify the notation, we also define a function h on 7j,

0Ty and &, which dependenting on circumstances:
h|K:hK7 VKEE, h|8K:hKa VKG%, h‘F:hF, VFGE}L.

For u,v € L?(T;) and p,0 € L*(97Ty,), we define the following inner product

and norm

(wo) = Y (wox, [olz = D lvllk,

KeTy KeTn
(0,001 = Y (0 0)or, 10137 = D 105k
KeTy, KeTn
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Given a choice of three finite dimensional polynomial spaces V(K) C H*(K),
W (K) C H(curl; K) and M(F) C L?(F), where K is an arbitrary element in
the mesh and F' is an arbitrary edge, we define the global spaces by

Vi i={v e L*(Th) :wlx € V(K),K € T},
W), = {w € L*(T},) : w|x € W(K),K € T},
My, :={p € L*(&) : plr € M(F),F € &}.

For later use, for any non-negative integer k, let Py (K) denote the standard
space of polynomials in two variables have total degree less than or equal to k.
Next, to give the HDG formulation of (2), we need to rewrite it into a mixed

form. Let ¢ = p7'V x w in (2) to get the following mixed form

rg—Vxu=0 in €, (3a)
Vxqg—regu=f in Q, (3b)
nxu=g on 0. (3¢)

As usual for HDG, the upcoming method and analysis are based on the above
mixed form.

For the convenience, we next give the following integration by parts formula
for each curl operator in two-dimensions. The proof is followed by a standard

density argument and hence we omit it here.

Lemma 2.1. Let K be an element in the mesh 7, and let u € H (curl; K) and
r € H(curl; K). Then we have
(Vxu,rg=Mnxu,rorx+ (u,V X7k, (4a)

(Vxru)g={nxru)gx+(r,Vxu)g, (4b)
where n is the unit outward normal to K.

We can now derive the HDG method for (3) by multiplying each equation
by the appropriate discrete test function, integrating element by element and

use integration by parts (see (4)) element by element in the usual way (c.f. [15]).
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Summing the results over all elements, the HDG methods seeks an approxima-

tion to (¢, w,ulg,), by (qn, un,r) € Vi, X W, x My, such that

(rqn, 1) 7, — (U, V X 13) 75 = (R X Up, 1)o7, =0, (5a)
(an, V X v3) 75 + (0 X Gn, v1)om, — (K2erwn, vi) 7 = (F,0)75, (5b)
(n X G, Vn) 7,00 =0, (5¢)

(n X Up,m X Up)aa = (9,1 X Vp)aq (5d)

for all (rp,vp,vp) € Vi x W), x M, and the choice of n x g, follows the usual

HDG pattern,
nXq,=mnXq,+7mnx (u, —up) xXn, (5e)

where 7 is a penalization parameter taken to be positive and piecewise constant
on the edges of the mesh (more details will be given later).

It is well-known that the 2D Maxwell’s equations can be rewritten as the
Helmholtz equation. For a given w := (w1, ws), let w* := (—wy,wy), then we

have that

V x u = (—0,,0:) - (u1,us) = (0,0,) - (ug, —uy) = V- (—ub),
nxu:= (—ng,nl)T : (uhuz) = (7117”2) : (U2, —Ul) =n: (_ul)

V x q:=(=0y,0:)q = V*(—q).

)

Hence, we can rewrite the equation (3) as

wre,ut +V(—q) = f* in Q, (6a)
Veut - pp(—q) =0 in ©, (6b)
n-(ut)=—g on Of). (6¢)

We can see that the Helmholtz equation is equivalent with the Maxwell
equation in 2D. The main goal of this paper is to follow paper [12], which
focuses on the 2D Maxwell equation written as in our paper. Furthermore, it is
pointed out in [13, 14], that for the 2D Maxwell equations, it maybe better not

to rewrite the problem as a Helmholtz equation.
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3. M-decompositions

In this section, we follow the seminal paper [24] to give the concept of the
M-decomposition for Maxwell’s equation in two dimensions. To do this, we
need an appropriate combined trace operator tr : V(K) x W(K) + L?(0K)

defined as follows:
tr(v,w) =M xXv+nxwxn)gk. (7)

Definition 3.1. We say that V(K) x W (K) admits an M-decomposition when

the following conditions are met:
nx V(K)C M(0K), nx W(K)xnC M(OK), (8a)

and there exists a subspace V(K) x W (K) of V(K) x W (K) satisfying

VxV(K)cW(K), VxW(K)cV(K), (8b)
tr: (‘N/J‘(K) X WJ‘(K)) — M(JK) is an isomorphism, (8¢)
for any p € M(0K), if n x p =0, it holds = 0. (8d)

Here V1 (K) and VA‘;J—(K) are the L2(K)-orthogonal complements of V(K) in
V(K), and W(K) in W (K), respectively.

Since the 2D Maxwell equation can be rewritten as a Helmholtz equation, we
can use the spaces which satisfy the M-decomposition for second-order elliptic
operators.

Let V. (K)xW,(K) admits an M. (K) decomposition for second-order elliptic
operators in 2D, then by [24, Definition 2.1] we must have

(a) tr(Vo(K)xW.(K)) C M.(K) and there exists a subspace V o (K)x W, (K)
of Vo(K) x W.(K) satisfying

(b) VWe(K) X V- Ve(K) - Ve(K) X We(K)

(c) tr: Vo (K): x Wo(K)* — M.(K) is an isomorphism.
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We define

V(K) := W.(K),
W(K) = {v! :v e V,(K)},
M (0K) := n* M, (0K).

It is easy to check that if V (K) x W.(K) admits an M.(K) decomposition
for second-order elliptic operators, then V(K) x W(K) admits an M (K)-

decomposition for 2D Maxwell operators.

4. Error Analysis

In this section, we present our main result, an error analysis for the HDG
approximation to Maxwell’s equations given by (5). To simplify the derivation
we shall assume that p, and €, are smooth functions and Re(p,) > 0. First
we discuss the extra conditions on the spaces V(K) and W (K') needed for this
analysis. These conditions arise because at this point each element K € 7T is
a general polygon, yet we need certain properties for functions in these spaces
(that hold for standard elements including triangles, parallelograms and squares
that are considered later in this paper). For triangles these conditions follow
if the mesh is assumed to be regular, and the spaces V(K) and W (K) are
sufficiently rich. After this discussion, we consider an adjoint problem needed
for the analysis and finally present the error analysis.

Throughout this section, we use C' to denote a positive constant independent

of mesh size, which may take on different values at each occurrence.

4.1. Additional assumptions on the approximation spaces

Throughout this section we assume that the following conditions on the local

spaces V(K) and W (K) hold:

1. Most importantly, we assume that the space V(K) x W (K) admits an

M-decomposition.

10



2. The spaces V(K) and W (K) must satisfy
Po(K) € V(K) and [Po(K)]*> € W (K) (9)

for all elements K. In addition, we assume that if IIy (respectively Ig)
140 denotes the L?(K) (respectively L?(K)) orthogonal projection onto V (K)
(respectively W (K)) then the following estimates hold:

o — Towlxc < Chicllwllere ) and [l — Mopllxc < Chicllpl e

for any sufficiently smooth w or p and 0 < s < 1.
3. Let 7,* be a refined mesh of 7}, consisting of simplices obtained by subdi-
viding each element K € 7T; using triangles. We assume that the number
145 of triangles used in each element is bounded independent of h (i.e. there is
a fixed maximum number of triangles covering each K independent of h).
Next we define Wy = {u € L*(Q) : u|gx € [P(K)]*2,VK € T;*} and £ > 1
is some integer such that Wj;, C W}. We assume that 7," is shape-regular.
This assumption implies that standard scaling estimates can be used for
150 V(K) and W (K), because scaling can be used triangle by triangle on the
7,;. In addition, standard finite element spaces constructed on this mesh
have the usual approximation properties.
Note that this notion of shape regularity for the general mesh is the ana-
logue of that used to define shape regularity for a quadrilateral mesh

155 in [34] .

4.2. The dual problems

To obtain the superconvergent rates of V x u and ¢, we need to consider the
following two dual problems. First, we find (¢, ¢) € H(curl; Q) x Hy(curl; Q)
such that

ey —Vxeo=2~0 in Q, (10a)
V x - k&P =0 in Q, (10Db)
nx¢p=0 on I (10c)

11
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Inserting (10b) into (10a) and (10c¢) to get the following Hemlholtz equation:

et =V x (k267 IV x ) =0 in Q,

nx (k26 'V x ) =0 on T.

By the standard regularity result for the equivalent Helmholtz equation, for

some s > 1/2 we have

19l 1+ < Cl0l L2

Next, we consider the following dual problem: find (¥, ®) € H(curl; Q) x
Hy(curl; Q) such that

WY —Vx®=0 in Q, (11a)
Vx VU —k’G® = 0O in Q, (11b)
nx®=0 on T, (11c)

where ©® € H(divg—T; Q), and € is the complex conjugate of €.. Under our
assumptions on u,, €, and &, this problem has a unique solution. Notice that
®cH (diV%; Q) implies that ® € H (divST; ). The regularity of the solution
of (11) is given in Theorem 4.5.
We recall the following result, where L2(Q) denotes the space of functions

in L?(Q) with average value zero.

Lemma 4.1 (c.f [34, Corollary 2.4]). Let © be a bounded connected Lipschitz
domain in R?, then for any f € L3(f2), there exists a v € H}(Q2) such that

V.ov=f, [l @) < Cllfll2(e)-
With the above result, we are ready to prove the following lemma;:

Lemma 4.2. Let Q be a bounded connected Lipschitz domain in R2, then for

any f € L?(), there exists a v € H'(Q2) such that

V-v=f, vl e @) < CllfllLz)-

12
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Proof. Let f = |Q71(f,1)q be the mean value of f, then f — f € LZ(Q2). By
Lemma 4.1, there exists a w = (wy,wz)T € HZ (), such that V-w = f — f,
and |lw||g(9) < CIIf — fllrz0)-
Let (20,y0) be a point in the domain 2. Define v = (v1,v2)? with v; =
wy + (z — x0) f, v2 = wo, then v € H' () and
Vo=V w+V-(z—-20)f0)" =/,
[vlle (@) < e @) + (@ = 20) flla @)

< CNf = fllzz) + Itz = z0) fllz2() + 1Fll 20

< C(Ifllz2 @) + 1 Fll )

< Cllfllz2e)-

O

The previous result can be used to prove the existence of a vector potential

as follows

Lemma 4.3. Let f € L?(Q), then there exists a function w € H'(Q), such
that

Vxw=f, lwllz @) < Clflle)-

Proof. By Lemma 4.2, there exists a v = (vy,v2)T € H(), such that V-v = f
and ||’UHH1(Q) < C||f||L2(Q) We take w = (wl,wg)T with wy = —wv9 and

wg = w1, hence
V xw = —0ywi + Ozwa = Oyva + 0yv1 =V - v = f,
|wle @) = vl @) < CllfllLz@)-
O

The proof of the next theorem follows that of [35, Proposition 3.7] and [4,
Theorem 3.50], which deal with the 3D case.

13



Theorem 4.4. Let © be a simply connected Lipschitz domain in R?, then the
space Hoy(curl; ) N H(div ;) is imbedded in the space H?*(2) with some
s € (1,1], and the following estimate holds

ullme@) < C(IV x ull2@) + IV - (eu)l2@) (12)

for all u € Hy(curl; Q) N H(div ;).

Proof. Let O be a smooth open set with a connected boundary (a circle for
instance), which contains Q2. Let u € Hy(curl; Q) N H(div . ;), we extend u
to O by zero, so u € H(curl; O), therefore V x w € L?(0). From Lemma 4.3,
there exists a function w € H'(O)/R such that V x w = V x u in O and
lwlleg o) £ ClIV X ul|r2(0y. Since V x (u —w) = 0 in O, then there is a
function y € H'(O)/R such that u — w = Vy in O. Since u = 0 in O/,
we have —w = Vy in O\ €, therefore, x € H*(O\ Q). Then x € H*(Q)/R

satisfies
V- (eVx)=V:(eu)—V-(ew) inQ,

where Vy|aq takes the exterior value of Vy = —w. So x|oq € H25(0Q) with
some s € (3,1]. By [36, Corollary 18.15], we have x € H'**(Q2) and

Ilzre@) < € (I - () = V- () lir-sm(@) + 19Xy 340 gy ) -
Therefore, using the fact that Vx = —w on O\ Q it holds

[uller: @) = [w+ Vx| &2 (0)

< |wllar o) +C (H V(&) = V- ()| g-1+0) + HVXHHf%H(aQ))

< C ([lwlaro) + | V- (6w L2q))
< C(lwllero) + | V- (eru)ll L2 @)
<C(IV xullpz@) + | V- (eu)L2@) -

Thus we finish our proof. O

175 Now we can state a complete regularity result for the adjoint problem:

14



Theorem 4.5. Under the assumptions on the domain and coefficients of (11),

we have the following regularity for the solution of problem (11)
1V 1) + 1@ e ) < ClIO[L2 @), (13)
for some s € (%, 1] depending on €.

Proof. To simplify the notation, we define
a+(u,v) = (N;lv X u,V X v)q + (u,v)q.

Let ® € Hy(curl; ) N H(div®, ;) be the solution of

€y

at(®,v) = (O,v)q, VYve Hy(curl; Q)N H(div°, ; Q). (14)

€

Let K : L?(Q2) — Hy(curl; Q) N H(div®, ; Q) be such that for any w € L?*(Q)

€

the function Kw satisfies

at (Kw,v) = —(k%&+1)(w, v)q, Vv € Ho(curl; Q) N H(div’ ;). (15)
Obviously, ® and K are well-defined and
o (Z+K)®,v) =at(®,v),
where 7 is the identity operator. This gives
(I+K)®=a. (16)

Form (14) and (15), we get

[@llL20) + [V X @[|L2(0) < C|O]|L2(0)s

K@ L2y + |V X K®||12(0) < C[|®[|L2(0)-

From Theorem 4.4, we know that Hy(curl; Q)ﬁH(divOEr ; ) is compactly imbed-
ded in the space L?(2). Using (15) we see that K is a self-adjoint and compact
operator on L?(2). Hence, since our assumptions on ¢, and k2 guarantee at

most one solution, by the Fredholm Alternative, (16) has a unique solution.

15
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Therefore,

1@ z20) = (T + K) '@ 1202 < ClIO|I 2
IV x @[ 120 < |V X K®||12(0) + |V x @120

< C (1020 + [@llz2(0) < ClI®lL2(0)-
By the Equation (11), we have
IV % (1 'V % @) 2(0) < Cl1O||12(02) + C| @ 12(0) < C1O]|12(00)-
Since p is smooth, then we have V x ® € H() and
IV x @z ) < Cl1O] L2

Since Theorem 4.4 ensures Hy(curl; Q) N H(div’; Q) is imbeded in the space
H*(Q) with (1, 1], then we have

@]l £rs() < C ([1BllL2) + IV X @ r2(0)) < OO L2(0)- (17)
This finishes our proof. O

Let Py, Py, Pw and Py, denote the L2- projections on the spaces V},, ‘7;“ Wy,
and W;L, respectively.

Now we state the main result of the paper. The proof is found in Section 4.4.

Theorem 4.6. Suppose the spaces (Vj,, Wy, M},) have an M-decomposition
and the assumptions in Section 4.1 are satisfied. Let (¢,u) € H(curl;Q2) x
H(curl; Q) and (gqp, un,up) € Vi, x W), x M}, be the solution of (3) and (5),
respectively. Then there exists an hg > 0 such that for all h < hgy, we have the

error estimate

lg — anll7n < C(lg — Pvall7 + |lu— Pwull7,),

lu —unllz < C(lg— Prallz, + llu— Pwullr,).

Furthermore, the post processed solution u} € W*(7;,) defined later in (66)
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satisfies the estimate

IV x (u—up)ll7 < C(lg = Prallz, + [lu = Pwull,

+ inf V x (u —w}, ,
o I (= il )

and the post processed solution g € V*(7}) defined later in (69) satisfies the

estimate

7 + lu — Dwul

7, < Ch* (|[Tlyq — ¢ T

g — g

inf V x (g — v}, Ch — .
+, IV = ai)l ) + Chllun ~ ull

4.3. The HDG Projection

An appropriate HDG projection plays a key role in the derivation of op-
timal error estimates and superconvergence (see for example [16, 37-43]). In
the case of Maxwell’s equations, we define the following HDG projection: find

(ITyq,Mwu) € V(K) x W(K) such that

(Ilvq,vn)k = (¢ vn) K, (18a)
(Mwu, ws)x = (u,wn) K, (18b)
Myqg—m™m xOwu,n X pp)p ={(qg— TN X U, N X @) F (18c¢)

for all v, € V(K), w, € W(K), pr, € M(F) and for all edges F C 0K.
The following theorem proves that the above definition uniquely specifies the

projections and provides optimal error estimates for this projection.

Theorem 4.7. System (18) defines a unique projection (IIy ¢, Iy u). More-

over, we have the following error estimate:

Mwu — ullx < Clu — Pwulx + hgl|V x ¢ — PV x gl
+ 1P x (u — Pyu)|ox), (19a)
Tvq —allx < Chl*lla — Prdllox + byl |ln x (Mwu —u)||ox

+llg = Pval k). (19Db)
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We only give a proof for (19a) in the following three lemmas, since (19b) is

very similar.

Lemma 4.8 (Existence and Uniqueness). System (18) defines a unique projec-

tion (TIyq, Mwu).
Proof. By Definition 3.1 we have
dim V(K) + dim W (K) = dim V (K) + dim W (K) + dim M (0K).

This means that system (18) is square, hence we only need to prove uniqueness.
We set the right hand sides of (18) to zero, i.e., ¢ = 0 and w = 0. By (18a) and
(18b), we have

MygeV(K) and Hyuec WH(K). (20)

Since n x W(K) xn C M(OK), then we can take pup, = n x IIyyu x n in (18¢)

to get

(tn x ODwu,n x (n x Hwu X n))sx
= (llyg,n x (n x Hwu X n))sx
= (lyg,n x Mwu)ox

= (Iyq,V x Owu)g — (V x Ilyq, Mwu) g

0.
Since T is piecewise constant and positive, then
nxIIwyuxn=0 on 0K. (21)

Moreover, n x IIyyu = 0 on OK. Since n x V(K) C M(0K), then we can take
pr =mn x Iyq in (18¢) to get

nxIlyg=0 on OJK. (22)

We combine (20), (21), (22) and (8c) to conclude that ITyyw = 0 and Iy g =
0. This proves the system (18) defines a unique projection (Ily ¢, My u). O

18



To estimate Iy u — u, we decouple the projection Iy, from ITy in (18) as

follows.

Lemma 4.9. The projection ITy u satisfies

(HWU7 Uh)K = (u7 vh>K7 3

(tn x Iwu X n,wp)ox = (VX g, wp)k + (T X u X 1, W)oK
for all v, € W(K), w;, € W(K).

Proof. Noticing that (18c) can be rewritten as

(tn x Owu,n X pp)ox = (yqg—q,n X pplox + (tn X u,n X ppdox. (24)

Since n X W(K) x n C M(9K), then we take pp, = n X wy, X n in (24) to get

(tn x Iwu X n,wp)ox = (N X (¢ —Hyq),wp)ox + (TN X u X n,wp)ok-

Then, for all w, € W(K), by (8b) and (18a), we have

(V X HVQ7wh)K - 07

(q — qu,V X wh)K =0.
Next, we use the integration by parts identity (4b) to get

(n x (¢ —yq), wn)ox

(
(Vx(¢g—1yq),wn)x — (¢ —Ilyq,V x wy)k
(
(

V X q.wn)x. by (26a)
Therefore, (18b), (25) and (27) gives the system (23).

195 Now we can give the proof of (19a).

19
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Proof of (19a). By the definition of Py and Py;, we can rewrite equation (23)

as follows:

(HWu - Pwu, vh)K = O, (29&)
(tn x (Ilwu — Pwu),n x wp)ox = (V X ¢ — Pz V X q, wn)x

+{(n x (u— Pwu),n X wp)ax, (29b)

for all (v, wy) € (W(K) X W/L(K). By the same arguments as in the proof of
Lemma 4.8, we can prove that IIyyu — Py u € W(K) is uniquely determined
by the right hand side of (29). Using a standard scaling estimate (this can be

used because of the assumption on 7,* in Section 4.1) we have

[Mwu — Pwullx < Chy|rH(V x ¢ = PV % q)|[x

+ Chi|n x (u — Pwu)|ox.
Thus, the triangle inequality gives the desired result. O

Next, we extend the error estimates (19) to fractional order Sobolev spaces.
To do this we use a local inverse inequality. For any function w, € W (K) or

pr € V(K) the following inverse estimate holds:

|wnll s (x) < Chi’lwnl x, and ||pall s () < Chllpnlx

with 0 < s < 1. The constant C is independent of the function, element
and mesh size. Note that this assumption follows from our assumption on the
auxiliary mesh 7, when s = 1 and trivially holds when s = 0. Hence by

interpolation it holds for general 0 < s < 1.

20



Lemma 4.10. For any s € [0, 1], we have

TMwu — ull s (k) < Chi’([lu — Pwulx + hillV x ¢ — Py V x qllx
il x (= Pwu)lor) + | Pats — .
(30a)
I0vq —allmey < O™ lla = Prallox + hilla = Prallx
+[lg = Pvallgs k) + lu — Pwul| g k)
+hi|lu — Pwullg + hiZ®||[V x ¢ — PV x gl i
+ 1270 I x (u — Pww)|ox)- (30D)
Proof. Using the fact that Py is the L? orthogonal projection on W (K) and ap-
plying the local inverse inequality discussed before the statement of the lemma,
we get
Mwu — u| gs (k) = |[Twu — Pwu + Pwu — ul| g (k)
< | TMwwu — Pwul s k) + |Pwu — u| g k)
< Chy’|Mwu — Pwulk + [Pwu — u|m=(x)
< Chil|MMwu — ul|x + Ch’||Pwu — ul|x

+ [[Pwu — (k)
Combining the estimate (19a) and the above inequality we have
||HWu — u||Hs(K) < Chl_(s(Hu - PWu||K + hKHV X q— Pﬁ;v X qHK
1/2

+ hy[n x (u — Pwu)llox) + | Pwu — u| ge(x)-

This proves (30a).

Next, we prove (30b). By the same arguments we have

Mvg = qllmex) < Chy’vg — gl + Chi’l[Prg — gl x + |1Pva = gllme )
By Lemma 7.2 in [44] to get
s—1/2

ITwu = ullox < C (R [T — ullic + by [Ty — w0 - (31)

205 Using estimates (19b), (19a), (31) and (30a), we can obtain (30b). O
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Since Py(K) € V(K) and [Py(K))2 € W(K) with appropriate projection
error bounds (see Section 4.1), by Theorem 4.6 and Lemma 4.10, we have the

following corollary.

Corollary 4.11. Let (¥, ®) € H(curl; Q) x [Ho(curl; Q) N H(div’; Q)] be the
solution of (11) and assume that the regularity result (13) holds, then for s €
(1/2,1], we have

[Mw @ — @7, + [y ¥ — V|7, < Cr7||O||7,, (32a)

1T ® — Bl 572 ) + [T — |17 < CLO7. (32b)
We can now prove our main result: Theorem 4.6.

4.4. Proof of Theorem 4.6
First, we define the following HDG operator 2 : [V}, x W}, x M}]? — C

%(QhauhathMUha Uh)

= (,U'T'qharh)Th - (uh7 V X Th)Th - <n X ﬁthh>87—h (33)

+ (V X qn, va) 75, + (qn, 0 X Op)oT;,
+ <T’I’L X (uh — 'E,h),n X (’Uh - '/U\h)>67’h~

By the definition of # in (33), we can rewrite the HDG formulation of the

system (5) in a compact form, as follows:

Lemma 4.12. The HDG method seeks (g, up, Up) € Vi X Wy, x M} such that
B(qn, wn, Up; T, vp, 0p) — (K2eun, vn) 7 = (F,00)7, (34)

for all (rp,vp,0p) € Vi, x W), X ME, in which M} and Mg are defined as

M ={p € My :n x ploo = (Prm(n x g)) x n},

My = {p € My, : n x plag = 0},

where Py denotes the L2-projection from L?(F) onto space M (F). Thus if
u € L%(F) then Pyyu € M(F) satisfies

(Prw,vp)p = (W, o) Vv, € M(F). (35)
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Next, we give some properties of the operator 4 below, the proof of the

following lemma is very simple and we omit it here.

Lemma 4.13. For any (g, wn, @n, Th, U, 0p) € [Vi x W), x M})%, we have

PB(qns Wh, Un; Thy —Vh, —0n) = B(Th, Vn, Ohs Gh, —Uh, —Up).

Lemma 4.14. If for all ry, € V3, (qn, un, ur) € Vi, X Wy, x M), satisfies
B(qn, wh, Up;71,0,0) = (G, 74) T3,
where G € L?(Q)), then we have
IV xun|7, <C (HQhHTh + b7 20 x (up, — @) o7, + ||G||Th) - (36)

Proof. By the definition of & in (33), we have

(ran, rn) 7, = (Wn, V X )75 — (0 X U, ra)or, = (Gorn)7,. (37)
We take 1, = V x uy, in (37) and integrate by parts to get

(rqn, V X up) 1, — (V X up, V X up)p, — (0 x (up, —un), V X up)ar,

= (G,V X uh)Th.

After apply the Cauchy-Schwartz inequality and the local inverse inequality can

get our desired result. O

Now, we give the proof of Theorem 4.6, splitting it into three steps.

4.4.1. Step 1: Error equations and energy arguments
Lemma 4.15. Let (¢,u) € H(curl; Q) x H(curl; Q) be the weak solution of
(3), then for all (rp,, v, o) € Vi, x Wj, x M?, we have

By q, My u, Pyrus; v, v, On) = (e(yg — q),rn) 7, + (VX g vn) 7. (38)
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Proof. By the definition of % in (33) and use (8a) we have

By q, My, Prgw; rh, vp, )

= (uva,rn)7, — (Mww, V X 14) 75, — (0 X Ppgu,mh)oT;,
+(V x yg, vn)7, + (Lvg,n X By)oT,
+ (tn x (IIwu — Ppru),m x (vy, — 0p))or,,

= (udva,rp)7m — (U, V X 1rp)75 — (N X Uu,Th) o7, by (18b), (35)
+ (Ivg, V x vp)7, + (Hvg, n X (0, — va))or, by (4a)
+ (tn x (Ilwu — u),n X (vy — Op))o7;

= (urllyqg =V x u,mp) 7, by (4a)
+(q,V x vp) 7, + (Ilyq,n x (Op, — vn))o7, by (18a)
+(mm x MMwu—u),n x (v, — Vp))a7,-

Since vy, is single valued on interior edges and equal to zero on boundary faces,

then (g, n X Up)s7;, = 0. Moreover, by (4a) we have

(¢, V xvp)7, + (Myg,n x (0, —vp))or,
=(V xqup)7, + (¢ —lyg,n x (v, — Vn))aT;,

=(Vxq,vp)7;, — (tn x (Iwu —u),n X (vy, — U)o, by (18c).
This implies

%(qu,ﬂwu,PMu;rh,vh,'Eh)
= (i llvg =V x u,mp)7, + (V X q,00)7;,

= (ur(Mvq — q),r)7, + (V X ¢, 00) 75,5 by (3)
and completes the proof. O

To simplify notation, we define
el =Myq—qn, e =Mwu — uy, sg = Pyu — Up,. (39)
We subtract (34) from (38) to get the following error equations.
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Lemma 4.16. Using the notation (39), for any (rj,, v, 0s) € Vi, xW), x M,

we have
‘@(525 6;;’ 627 Th, Uh, Ii)\h) - (’%267"5;:7 ’Uh)Th
= (ur(Mvg = @),rn)7, + (K*er(u — Twu), vp) 7, -

Proof. By the definition of % in (33) and Lemma 4.15, we get

%(E?N 5%7 E’}l?a Th,Uh, 'Eh) - (5267‘5’]‘—:’7 /Uh)Th

HQETHWU7’Uh)Th + (H2€ruh7vh)n

XMy q, Iy, Prgu, ry, Op, Un) — B(qn, Wi, Up, Th, Un, Op)
—(
By q, w, Pagu, mh, 01, 0n) — (K26, Mwu, vp) T,

— [B(an, wn, Un, i, vn, On) — (Kepun, vp)7, ]

(40)

= (/’LT(HVq - Q)7rh>Th + (V X q, vh)Th - (HQGTHWua'Uh)Th - (.fv’Uh)Th

= (ur(Myq — @), m) 75, + (K26 (w — Tywu), vp) 75,

where we used (3b) in the last inequality.

Lemma 4.17. Using definition (39), we have the error estimate

IVaireh iz + VT x (e} —ei)llor,

<C(llg—Oyqll7 + [[u - Myul

7 T lerll) -

Proof. First, we take (74, vs,v5) = (€7,0,0) in (40) to get
B ehoeiieh,0,0) = (e (vg — q).€f) 7.

Next, we take (rp,, vy, 0p) = (0,e%, &%) in (40) to get

93(5%’5%75;?; 075%76}?) - (“267'5%>5}f)ﬁ = (KQGT(U - HWU))‘E‘;;)T;L'

By the equations (42) and (43), we get

q u. 4 q _u _u, u U 2 u _u
Ble} e et e],0,0) + Bel,en e 0,en,€) — (K €el €1) T

= (1 (Ivq — q),€f) 7, + (e (u — Mwu), &) 7,

25
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On the other hand, by the definition of £ in (33) to get

q w. -9 q _u _u, w _u
Ble}, e e €l,0,0) + B(el, el e 0,en €x)

45
= [IWarehllF, + IV x (f — i) 157, - "
Hence, by the equation (44) and (45), we have
IVirebllF, + IV x ek — i)l3,
= (ur(Myq = q),ef) 7, + (K*er(u — Mwu), €))7,
< ClMvq — qll7 IVeregllz + Cllu — wull7, llei|l7 -
Use of Young’s inequality gives our desired result. O

4.4.2. Step 2: Duality argument

25 Similarly to Lemma 4.15, we have:

Lemma 4.18. Let (¥, ®) € H(curl; Q) x Hy(curl; ) be the weak solution of
(11), then for all (ry, vy, 0p) € Vi, x Wy, x M7, we have

By ¥, Iy ®, Ppy®;71, 05, 0p) = (e (IIy ¥ = V), mp) 75, + (V X W, 04) 75,
The next lemma gives a partial error estimate:

Lemma 4.19. Assume © € H (divo?r;Q), and that the regularity estimate
(13) holds, then we have

(ks &@O)7,| < Ch* (|lg — Uvqll7, + [[u — Dwul7,) 1©]7 + CL%|ei |7 1©]| 7,
Proof. First, we take (rp, v, 0p) = (—Iy ¥, Iy P, PpyP) in (40) we get

‘%(Et}lba 5;;" E;LAL; 7HV\I]7 HWCI)a PMq)) - (5267“5%’ HW@)Th

4
= —(ur(llyq — q), Iy )7, + (w2 (u — Mwu), My @) 7;,. w
By Lemma 4.13 and Lemma 4.18 and using (11b) we have
Bl ¥ el —Ty U, Uy ®, Py ®)
= By U, My ®, Py ®; —cl, e¥,cfh) )

= —(eh, pr(y ¥ = W))7, + (e}, V x ¥) 7,

= (e}, (v ¥ = V)7, + (e, &O + K@) 7,
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Comparing (46) with (47) to get

(ks &O)7;, = (ﬂrsgvHV\Ij —U)7, — (ur(Ilyq — q), Iy W) 7,
+ (ke (u — MMy u), My ®) 7, — (K2ecl, & — My @),

=T+ T+ T35+ Ty

Next, we estimate {T}}?_; one by one. For the terms T} and Ty, by (32a) and

estimate for €} in Lemma 4.17, we have

T < Cr2(1®] 7, (llg = Tvqll7, + [lu — Mwullz, + [l 7)),
Tu| < CR*(|®] 7, |||

Th-

For the remain two terms Ty and T, since Po(K) € V(K) and [Py(K)]2 €
W(K ) with appropriate estimates for the projection (see Section 4.1), then by
(32b) we have

Ty = [(Ilvq — q, pr Iy ¥ — o (p, Iy ¥)) 75, | < Ch*|lq — v q|| 7, [Ty ¥ || < ()
< Ch®lq — Ty q| 7 |©]l7;,,
T3] = [(u — Owu, *&IIw ® — I [<*6Iw ®])7, |
< Ch*|lu — Dwul|7, (| w @ g+ (0))

< OF’ |lu — Mwull7, [©]|7,.
By the above estimates of {T;}?_, we get

ek &O) 7| < Ch* ([lg — Ty

7 + llu — Iwull7,) 1O]l7,

+ Ch°|lek|

Th ®||Th'

This completes the proof. O

We cannot set ©® = e}* to get an estimate of ¢} since €} ¢ H (div%; ),
hence we need to modify the analysis.

Recall the shape-regular submesh 7,* defined in Section 4.1. We define W} =
{u € L*(Q) : ulx € [Pe(K)|>,VK € T;*} and £ > 1 is some integer such that
W, C Wi
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Next, we recall the H (curl; ©?) conforming element in 2D. For any v smooth
enough, with K being a simplex, find H‘j}‘fl}v € Py(K) such that
(n x v, p)p = (N X v,p0) 5, Vpe € Pe(E), (49a)
(H‘}?fév,v X pe—1)k = (v,V X pr_1) Kk, Vpe—1 € Pr1(K), (49b)
and, when ¢ > 2
(150, V(bxpe—2))x = (v, V(bgpe—2))k,  Ype—2 € Pe—1(K) (49¢)

for all edges F' of K, where by is the bubble function of K of order three.
Following a standard procedure in [45, Lemma 3.2, Theorem 3.1], we have

the following theorem:

Theorem 4.20. Equation (49) defines a unique H‘}}%lv € Pi(K), and the

following estimate holds:
T35 w — o, < ChR|[0lm,c, (50)

with v € H™(Q), and m € (3, + 1]. We define TI%} = TI;Y!x for all
K € 7, then HZ%I’U € H(curl; Q). In addition, n X v|gpo = 0 implies that

n X Hz‘fgl’l)‘gg =0.

Furthermore, the previously defined interpolation operator commutes with

curl.

Lemma 4.21. Suppose v € H(curl;2) is smooth enough that H‘j‘g’rl}v is well
defined. Let Il 1 be the L? projection onto space Pi—1(K), then we have the

commutativity property
V x v = g1V X 0. (51)
Proof. For any py_1 € Py_1(K), we have
(V x OG0, pr1)x = (R0, V X pro) i + (0 x TR0, pr1)ox
=(v,VXpri1)x +(nxv,pr1)ok

= (Vxv,pi_1)k.
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Following the same techniques in [46, Proposition 4.5] of 3D case, we have

the following result for 2D.

Lemma 4.22 (c.f [46, Proposition 4.5)). For any vj, € W}, there exists II;"™ v,
W} N Hy(curl; ) such that

o — I vy, < ChY2[n x vp]e, , (52a)
IV x (vp — IE"vy) |75, < Clh™2 [ x vg] e, , (52b)

where W = {u € L*(Q) : u|x € [P«(K)]*,VK € T;/} and ¢ is some integer
such that W), C W}'.

Definition 4.23. Suppose the solution of (3) is smooth enough. Let Q} =
H} () NPyi1(T;F) be a finite element space with respect to the mesh 7;* (there-
fore, V@3 C Ho(curl; ) N W) with oy, € H}(Q) N Q}, satisfy
(&Von, Va7 = (&I (uy, — Mwu), Vau) 7, (53)
for all ¢, € H} () N Q%. Then we define
Iy (w, up) = Dwu + Vop,. (54)
It is easy to check the following lemma using Definition 4.23 and Lemma 4.22,
hence we omit the proof.
Lemma 4.24. Suppose the solution of (3) is smooth enough, then we have
V x Oy (u,up) = V x My, [n x Iy (u, up)] = [n x IIwu], (55a)
V x H;“rl’c(uh — Iy (u,up)) = V x H‘;L“rl’c(uh — Mwu), (55b)
(&I (uy — T (w,wn)), Van)7, = 0, Van € HY(Q)NQ;.  (55¢)
In addition, we have the following estimates:
Lemma 4.25. We have the following estimates:

|V 5 (LIS (T, (w, wn ) — un)|| 7,

—~

<C

S

Ih="/2(g ~ Ty g)llz, + /2 (u — Thww) |, + 267, ) . (36a)

[(TI5 (w, un) — wp) — TL (T (w, un) — up)||75

SE

<C

S

I072(g = Ty )7, + [b/2(u — w7, + 0268 ]7,) . (56b)

29



Proof. We use definition Definition 4.23 and Lemma 4.22. By the definition of

IT{;, in (54) and the approximation property of qurl’c in Lemma 4.22 to get

h

IV > (T (T () — )7,
(

< ||V x (T (T (w, wn) — wa)) — V x (T (w, wn) — ) |75
+ IV x (g (w, wp) — un)|l7,
= ||V x (I (M u — wp)) = V x (Twu — w)| 7, by (55b)
IV x (Mwu —up)| 7, by (55a)
< Clh2[n x Mwu —wy)]lle, + IV x [Twu — uy)||7, by (52b)

= CIh2[n x ellle, + IV x |7

Since 5}:‘ is single valued on the interior faces and zero on the boundary, then

we have
IV 5 (T (T, (w, wn) — wn))ll7,
< CIb2[n x (ef — eb)lle, + IV x €5 l17.-

Hence, (36) and (41) give the proof of (56a).
Next, by the approximation of H;url’c in Lemma 4.22 and (55a) to get

m curl,c m
([(T5 (w, wp) — wn) — I07 (Mg (w, wn) — wa)|l7;,

< C|hY?[n x (T (w, up) — up)]|

En

= ClIn'[n x (e} —P)llle,.-
0 Finally, (41) gives the proof of (56b). O
Next, we prove the following lemma which is similar in [3, Lemma 4.5].
Lemma 4.26. Let ©® € Hy(curl; Q) N H(divoa; Q) satisfy
VxO=Vxw, inQ, (57)

where wy, € Ho(curl; Q) N W} and ( wp, Vgp)o = 0 for all ¢, € Q. Then

we have

lwn — Ol|L20) < Ch¥||V X Ol|12(q), (58)
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where s € (%, 1] is defined in Theorem 4.4. The following stability result also
holds:

1©L2(0) < Cllwn| L2 0)- (59)
Proof. We define II;_1|x := IIx ¢—1, then the following holds

V x (wy, —I%'0) =V x wy, — 1,1V x ©
:wathngxwh

=0.

Thus there is a gn € Q} = Prr1(T;) N Hg(Q) such that wy, — ;'O = Vgy,.

By a direct calculation, one can obtain

|lwp — ®||2L2(Q) < CRe(e(wp, — ©),w), — O)g

(
= CRe((er(wy, — ©),w), — IO + IO — O)q
= CRe((e(wy, — ©), Vg, + IO — ©)q

(

= CRe((&(wy, — ©),I15}'© — ©)q,

where we have used that wy, is discrete divergence free, and © is divergence

free. Now using Theorems 4.4 and 4.20 we get

[wh = Bl[72(q) < Ch*|Jwi — Ol| L2(0) 1O | &+ (02)
< Ch*||lwp, — Ol L2(0) |V X ©l|L2(q),

where s € (%, 1] is specified in Theorem 4.4.
By the Helmoltz decomposition in two dimensions, there is a ¢ € Hj(2) and

¥ € H*(Q) such that
©=¢Vo+V x1, ¢l @) < [1®llL2(0), [Vl @) < 1©]L2().-
Then we use the integration by parts and (57) to get

18|72y = (©,8)a = (6:Vo+V x9,0)0 = —(6,V-(G0O))o + (¥, V x O)o

= (¥, V xwp)o = (V x ¥, wn)a < [|O] g2 [|whl L2 (o)

Thus we obtain our result. O
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Lemma 4.27. Let (q,u) € H(curl; Q) x H(curl; Q) and (gn,up) € Vi x W}, be
the solution of (3) and (5), respectively. Then there exists an hg > 0 such that

for all A < hg, we have the error estimate

lg = anll7 < C(llg —vqll7 + [lu — Mwulr,),

lu = willz <€ (*/2g = Tval, + Cllu —Twul7, )
Proof. First, let © € Hy(curl; Q) N H(divg—r; Q) be the solution of
V x 0=V x (" (T, (u, uy) — up))  in Q.
By Lemma 4.26 and (56a), one has

1© — (T (T3 (w, wn) — wa))ll 7
< 0V s (T (I (w, wn) — un))ll7, (60)

< Ch*12(||g — My q|

7 + [[u = Mwullz, + leyl7) -

Therefore, by the triangle inequality, (59) and Definition 4.23 we have

I‘l7 m
[©]l7, < I(TL" (Thyy (w, up) — un))| 7, (61)
url,
< 21" (Twu — up) |7, < Clley |7,

Next, we rewrite ||e}||7. as follows:

ek |7, < CRe( el i),
= CRe[( & (I, (I, (w, wp) — wp) — ©),ef) 7, + (&O, &),
+ (& (T3 (w, up) — up) — TG (I (w, wp) — ), ef)7,
+ (& (Mwu — Iy (u, un)), i) 73]
= CRe|( & (T, (IT (w, wp) — uwp) — ©), 1) 7, + (@O, 27,
+ (& (T (w, wp) — wp) — T (T (w, wp) — i), €57,
— (&Von. €))7

=51+ S5+ 53+ 54
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The first three terms S, So and S3 have been estimated in (60), Lemma 4.19,
(61), and (56b), respectively. We next estimate the last term Sy by taking
(rp,vn,vn) = (0, Vo, Vo — (n-Vop)n) in (34) to get

(k*epun, Vop)r, = —(f,Vou)T, - (62)
Moreover, we have —(f, Vo), = (k?¢,u,Voy)T,, therefore
(&Vop,up, —u)7, =0.
This implies
1S4 = (& Von, up —u)7, + (&Von, u—Iwu)7,|

= [(&Von,u - Tlwu)7|

< Cllu = Owull7, |y l7.-

By the above estimations of {S;}?_;, there exists an hy > 0 such that for all

h < hg, we have
el < C (A7 2llg = Tlvally, + |u— Twull7, ). (63)
By the above estimate and Lemma 4.17 we get
el < C(lg = Mvallz, + lu - Twullz,) .

Combining the above estimates with the triangle inequality gives the desired

result. O

Similarly to Lemma 4.15, we have

Lemma 4.28. Let (¢, ¢) € H(curl; Q) x Hy(curl; ) be the solution of (10),

then for all (rp, v, 0p) € Vi, x W), x M}, we have

By 1y, MMy b, Prgp; rr, v, On) = (e (Mg — ) — 0,73) 75, + (V X ), 03) 75,

Lemma 4.29. Let (q,u) € H(curl; Q) x H(curl; Q) and (gn,up) € Vi, x W}, be
the solution of (3) and (5), respectively. Then there exists an hg > 0 such that

for all h < hg, we have the error estimate

lan — v qll7, < Ch*(IMvq — qll7 + [l — wul|7,).
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Proof. First, we take (rp,vp, vp) = (=Ily ), IIw ¢, Prpr¢) in (40) we get
Bef el ehts ~Tlve, Thw ¢, Pare) — (5°e,elt, Tiw ) 7,
= —(ur(lyq — ), Iy )75, + (K6 (u — Mwu), Hw ¢)7,.
On the other hand, using Lemma 4.13 we have
Bef elt et~y Ty ¢, Py )

= #(lly ¢, w ¢, Py —cj it €

= (e (vt =) = O) 7, + (€}, V x )7,

= —(eh, e (vt = )75, + (el £7& D) 75, + (€], )7,

We take 6 = £ in the above equation and use (64) to get

€817, = (eF, pr (v tp — )7, — (e}, K& (¢ — Tw )7,
- (;U’T(HVq - q>7 va)Th + (K2€T(u - HWU’)7 HW¢)Th
< CR*|lef 7 (0l sy + N0l e () + CR°llei I, (1l s ) + |l s ()

+Cr (v g — qll7, + [lu — Tlwu| 7).
Then, there exists an hg > 0 such that for all h < hg, we have
lenll < Ch* (llg = vall7, + [lu — w7y, + [lek(l7,) -
By the above estimate and (63) we get

lenllz < C(lg —vall, + v —Twullz,) .

O
4.4.8. Step 3: Post-processing for the vector variable
Let W*(K) be a finite element space, we first define the following space:
Q*(K)={v:Vve W*(K)}. (65)
The post-processing method reads: we seek u; € W*(K) such that
(Vxu;,VXxw)g =(qn,V Xw)gk, for all w € W*(K), (66a)
(ur, Vo)g = (up, Vo), for all v € Q*(K). (66D)

Now, we state the main result in this section.
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Lemma 4.30. Let (g, u) be the solution of (3). Then the system (66) is well-
defined and there exists an hg > 0 such that for all h < hg, we have the error

estimate

IV (=) )

Proof. Since the constraints for (66a) and (66b) are dim W*(K)—dim V*(K)+1

IV % (u— w7 < C (nqh —dlm+  inf
wp EW*

and dim Q*(K) — 1, then (66) is a square system. Therefore, we only need to
prove uniqueness for (66). Let g5, = 0 and u;, = 0 in (66) and we take w = u},
in (66a) to get V x u} = 0. Next, by the definition of Q*(K) in (65), there is
a v € Q*(K) such that Vv = u}. By (66b), we get uj = 0. This proves the
uniqueness.

For any wj;, € W*(K), we rewrite the system (66) into

(VX (u, —wy),Vxw)k =(q,—Vxw,Vxw)g Ywe W (K), (67a)

(uj, — wp, Vo) g = (up, — wp, Vo) g Yo € Q*(K). (67b)
By (67a) te get

IV x (uf, — w)|

70 < Cllan — V x wy| 75,

< C(llgn — gllm, + IV < (uw —wa)||7,) -
Using the above estimate and the triangle inequality gives the desired result. [

In practice, problem (66) is complicated to implement. The next lemma

provides a simple way to do this, that is equivalent to (66).

Lemma 4.31. The post-processing problem (66) is equivalent to the following
system: find (u}, nn,vn) € WH(K) x Q*(K) x Po(K), such that

(Vxup,Vxw)g + Vo, w)k = (g, VXw)g Ywe WH(K), (68a)
(’U;Z, VU)K + (’Wu U)K = (Uh, VU)K Yo € Q*(K)? (68b)

(1h, ) =0 Vs € Po(K).  (68c)

Proof. To prove this, we only need to prove (68) is well-defined and n, = v, = 0.

It is obvious to see that the system (68) is a square system, hence we only need
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to prove the uniqueness. We take w = Vny,, v = v, and s = 1 in (68) to get
Vi =0,v, =0 and (9, 1) = 0. Hence n, =, = 0. O

4.4.4. Step 4: Post-processing for the scalar variable
Let V*(K) be a finite element space defined on K which contains Py(K).
The post-processing method reads: we seek (g}, v) € V*(K) x Py(K) such that

(VX g,V xw)g + (yn,w)g = (f + £2eun, V x wy) k. Yw € V¥(K), (69a)
(a5, v) i = (qn, V) K, Vv € Po(K). (69b)

Lemma 4.32. Let (g, u) be the solution of (3). Then the system (69) is well-
defined and there exists an hg > 0 such that for all h < hg, we have the error

estimate
g = all7 < Chllun — ull7, + Chic[lTve —qll7,
+CP([lu = Twul7, + IV x (ra = d)l7.),
where rp,| ¢ € V*(K) be the L2-projection of g on the element K.

Proof. First, by the triangle inequality we get

lgh —rull7 < llai — gn + Tvq = rally, + llan — Tyl 7,
Since (g — gn, 1)7;, =0, then
(g5 —qn +Tyvq —rp, 1)7;, = 0.
This implies
g — an +lvq — rall7,
= llgp, — an + Ilvq —rn — Io(gh — qn + vg — 1) |75, (70)

< Ch|V x (g — qn + v g — 74)||7,,
where Il is the L? projection on Py(K). Next, we apply the equation (69a) to
get

(V x (g5 —qn +Tlyq — 1), V X wi) K + (Vh, Wh) T3,

= (f+r*eun +V x (=g +yq—11), V X wp) 75,
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We take wy, = qj; — g, + g — rp, in the above equation and use (69b) to get

IV > whl[F2(rey = (F + KPeun +V x (=gn +Tvg —14), V X wh) 7
=(Vxgq-— K2e,u + ke up + VX (—gqn + Iy g —rp), V X wp) 7,
< C(IVx(g=ru)lm + IV x (g —va)|7

+ lun — ul|5 )V x wh|l7,
which leads to

IV x (g5 — an +Tvg — 1) T3,
(71)

< COUV x (g =ra)ll7 + IV x (gn =Ty g)ll7 + lun — 7).

Finally, combining (70), (71), Lemma 4.29 and the triangle inequality can get

our result.

5. Numerical experiments

In this section, we shall present some concrete examples of spaces V(K),

W (K), M(OK) that satisfy the definition of the M-decomposition; see Defini-

tion 3.1 and hence that are predicted to have optimal convergence rate and even

superconvergence. The construction of the spaces can be found in [29]. In all

numerical experiments, we take u, = 1, the stabilization parameter 7 = 1, and
2

k%e, = 10.5. We test two kinds of problems: in the first case the exact solution

is smooth and is given by

uy = sin(27zx) sin(27y), wue = sin(wz) sin(wy),

q = 7 cos(ma) sin(my) — 27 sin(27wx) cos(27my),

and in the second case the solution is less regular:

2 2 2 2
uy = r# sin (39) , uy =0, ¢q= 757'7% (sin (36’) Yy + cos (39)) .

In this second case the solution is less regular and u = [u,us] € H?/37¢(Q)
with e arbitrarily small. Boundary data is chosen so that the above functions

satisfy (2)
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The post-processing spaces in all experiments are taken as
Q" (K) =Pry2(K),  WHK)=Pru(K),  V(K)="Prpi(K).

5.1. Triangle Mesh

We assume that the mesh 7; consists of shape regular triangles and choose
T =T, (see Section 4.1). We might hope that standard P}, polynomial spaces

could work. For any integer k > 1, let

V(K) =Pr(K),  W(K)="PrK),

M(OK) ={p: p|lr =n X pg, for some pj € Pi(F) and for each edge F' C 0K}.
285 In Tables 1 and 2, we show numerical results on the unit square with a

uniform triangular mesh for smooth solution, i.e., case 1. We obtain an optimal

convergence rate for the solution w and superconvergence rate for V x u.

Table 1: Uniform triangular mesh and degree k elements on the unit square

Q =1(0,1) x (0,1) for smooth test

L | v lw—wunllr, | IV x(uw—u)7, llg — qnll7
" Error Rate Error Rate Error Rate
2% | 2.14e-1 8.07e+0 1.71e-1

2% | 4.43e-2 | 2.27 | 3.53e40 1.19 3.58e-2 | 2.26
1| 2° | 1.03e-2 | 2.10 | 1.67e+0 1.08 8.46e-3 | 2.08
20 | 2.51e-3 | 2.04 | 8.10e-1 1.04 2.09e-3 | 2.02
27 | 6.18e-4 | 2.02 4.00e-1 1.02 5.20e-4 | 2.00

2% | 2.20e-2 1.47e+0 1.46e-2
24 | 2.51e-3 | 3.13 | 3.40e-1 212 | 1.81e-3 | 3.02
2| 25 | 3.00e-4 | 3.06 | 8.15e-2 2.06 | 2.26e-4 | 3.00
2% | 3.67e-5 | 3.03 | 2.00e-2 2.03 | 2.82-5 | 3.00
27 | 4.54e-6 | 3.02 | 4.94e-3 2.02 3.52e-6 | 3.00

In Tables 3 and 4, we show numerical results on the unit square with a
uniform triangular mesh for the non-smooth solution, i.e., case 2. The variable

< S 3 ~aQQE, < ] at] * A roroe ¢ oY 1 ‘ 1
20 @p and the post-processed approximation V x uj converge at the optimal with
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Table 2: Uniform triangular mesh and degree k elements on the unit square

Q= (0,1) x (0,1) for smooth test

L | v lw —upll7, IV x (u—up)7, llg — axllT,
h Error Rate Error Rate Error Rate
23 | 1.80e-1 1.71e-1 1.17e-1

2% | 3.64e-2 | 2.31 | 3.58e-2 2.26 1.44e-2 | 3.02
1| 2% | 8.44e-3 | 2.11 | 8.46e-3 2.08 1.76e-3 | 3.03
26 | 2.04e-3 | 2.05 | 2.09e-3 2.02 2.17e-4 | 3.02
27 | 5.03e-4 | 2.02 | 5.20e-4 2.00 2.69¢-5 | 3.01

2% | 1.80e-2 1.46e-2 4.38e-3
2% | 2.04e-3 | 3.14 | 1.81e-3 3.02 2.46e-4 | 4.15
2 | 2% | 2.44e-4 | 3.07 | 2.26e-4 3.00 1.47e-5 | 4.06
26 | 2.98¢-5 | 3.03 | 2.82e-5 3.00 9.04e-7 | 4.03
27 | 3.68e-6 | 3.02 | 3.52e-6 3.00 5.60e-8 | 4.01

respect to the regularity of the exact solution. However, the variable u is not
optimally convergent. This is also as predicted by by our numerical analysis,

see Theorems 4.6 and 4.7.

5.2. Parallelogram Mesh

205 The mesh 7j, is assumed to consist of parallelograms. For this mesh we
construct 7,° by subdividing each parallelogram into two subtriangles. The
triangular mesh is assumed to be shape regular so satisfying the requirements
from Section 4.1.

For any integer k£ > 0, let

V(K) = Pr(K), W(K)=Py(K)+ Vspan{z" "1y, ay"*1},
M(OK) ={p: plr =n X p, for some p; € Pr(F) and for each edge F' C 0K},
V(K)=Pra(K),  W(K)=VxV(K)®Wy(K).

Then V(K) and W(K) admit an M-decomposition with respect the spaces
w0 V(K) and W(K).
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Table 3: Uniform triangular mesh and degree k elements on the unit square

Q= (0,1) x (0,1) for non-smooth test

L | v l[w — unl|7, IV x (u —un)l7, lg — anll7,

Error Rate Error Rate Error Rate
23 | 4.59¢-1 | 6.08 | 2.86e4+0 | 6.08 1.32e+0 | 5.72
2% | 5.33e-1 | -0.22 | 2.57e+0 | 0.15 | 1.58e+0 | -0.26
25 | 3.29e-1 | 0.70 | 1.63e4+0 | 0.66 1.06e+0 | 0.57
1| 2° | 2481 | 041 | 1.59¢+0 | 0.03 8.06e-1 | 0.40
27 | 1.73e-1 | 0.52 | 1.52e4+0 | 0.06 5.6le-1 | 0.52
28 | 1.14e-1 | 0.60 | 1.76e+0 | -0.21 3.70e-1 | 0.60
29 | 7.43e-2 | 0.62 | 2.15e+0 | -0.29 2.37e-1 | 0.64

2% | 3.09e+0 | -1.29 | 1.56e+1 | -0.94 | 5.80e+0 | -0.69
2% | 3.75e-1 | 3.04 | 1.77e4+0 | 3.14 | 1.21e+0 | 2.26
25 | 3.16e-1 | 0.25 | 1.75e+0 | 0.01 | 1.03e+0 | 0.23
2| 2° | 2.45e-1 | 0.37 | 1.82e+0 | -0.05 | 7.97e-1 | 0.37
27 | 1.72-1 | 0.51 | 2.08e4+0 | -0.19 5.58e-1 | 0.51
28 | 1.15e-1 | 0.58 | 2.51e+0 | -0.27 | 3.69e-1 | 0.60
2% | 7.73¢-2 | 0.58 | 3.11le+0 | -0.31 2.37e-1 | 0.64

Now, we give another construction: For any integer & > 0, let

V(K) =Pp(K), W(K)=Pk(K)+ Vspan{z"*'y, ay"} + (V) Pr(K),
M(OK) ={p: plr =n X p, for some p; € Pr(F) and for each edge F' C 0K},
W(K) =V x V(K) ® W,(K).
Then V(K) and W(K) admit an M-decomposition with respect the spaces
V(K) and W (K).

In Tables 5 to 8, we show numerical results on a parallelogram with a uniform

parallelogram mesh. We obtain the optimal convergence rate for the solution u

s and superconvergence rate for V x u.

5.83. Rectangle Mesh

The mesh 7, is assumed to consist of squares. For this mesh we construct 7,*
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Table 4: Uniform triangular mesh and degree k elements on the unit square

Q= (0,1) x (0,1) for non-smooth test

L | V2 lu —uill7, [V x (w—uj)l7 la — a5l

Error Rate Error Rate Error Rate
2% | 4.53e-1 | 6.01 | 1.32e+0 5.72 1.32e+0 | 5.76
2% | 5.32-1 | -0.23 | 1.58e+0 | -0.26 | 1.58e+0 | -0.26
25 | 3.29e-1 | 0.69 | 1.06e4+0 | 0.57 | 1.06e+0 | 0.57
1| 2° | 2481 | 0.40 | 8.06¢e-1 0.40 8.06e-1 | 0.40
27 | 1.73e-1 | 0.52 | 5.6le-1 0.52 5.6le-1 | 0.52

28 1.14e-1 0.60 3.70e-1 0.60 3.70e-1 0.60
29 7.43e-2 0.62 2.37e-1 0.64 2.37e-1 0.64

2% | 3.07e+0 | -1.31 | 5.80e+0 | -0.69 | 5.79e+0 | -0.69
24 | 3.75e-1 | 3.04 | 1.21e+0 | 226 | 1.21e+0 | 2.26
25 | 3.15e-1 | 0.25 | 1.03e+0 | 0.23 | 1.03e+0 | 0.23
2| 20 | 2.45e-1 | 0.37 | 7.97e-1 0.37 7.97e-1 | 0.37
27 | 1.72e-1 | 0.51 | 5.58-1 0.51 5.58¢-1 | 0.51
2% | 1.15e-1 | 0.58 | 3.69e-1 0.60 3.69e-1 | 0.60
29 | 7.73e-2 | 0.58 | 2.37e-1 0.64 2.37e-1 | 0.64

by subdividing each square into two subtriangles. The triangular mesh is shape
regular so satisfying the requirements from Section 4.1 (for a general rectangular
a0 mesh, the triangular mesh must be shape regular).

In this section, we assume that all elements K are rectangles with edges
parallel to the coordinate axes. We denote by Qj the standard space of poly-
nomials in two variables with maximum degree k in each variable. Unlike in the
parallelogram case, we consider the use of Qj based elements as these are often

a5 used for square elements. Our first lemma shows that simple Q. elements alone

do not suffice.
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Table 5: Parallelogram mesh and enriched case T on Q = {(z,9) : 0 <z — 3y < 1,0 <y <
1/2} for smooth test

L | vz lu — wnl7, [V x (w—un)l7, g — qnll,
h Error Rate Error Rate Error Rate
2% | 1.30e+1 1.15e+2 4.35e+4-0

21 1.57e-1 6.37 | 5.11e40 4.49 6.49e-2 6.07
1| 2° 1.48e-2 3.41 | 2.11e+0 1.28 1.08e-2 2.59
26 2.52¢-3 2.55 | 1.02e+0 1.04 2.37e-3 2.19
27 5.23e-4 | 2.27 | 5.07e-1 1.01 5.7le-4 2.05

2% | 7.19-1 9.18e+0 1.40e-1
2* | 1.46e-2 | 5.62 | 8.16e-1 3.49 2.68¢-3 | 5.71
2| 2% | 1.35e-3 | 3.44 | 1.66e-1 2.29 3.23e-4 | 3.05
20 | 1.49e-4 | 3.18 | 3.85e-2 2.11 4.03e-5 | 3.00
27 | 1.76e-5 | 3.08 | 9.29e-3 2.05 5.04e-6 | 3.00

Table 6: Parallelogram mesh and enriched case Ton Q@ = {(z,9) : 0 <z — 3y < 1,0 < y <
1/2} for smooth test

L | v lw — up |7, IV x (u—up)l7, g — anll7,
h Error Rate Error Rate Error Rate
2% | 1.29e+1 4.35e4-0 4.35e+0

2% | 1.54e-1 | 6.39 | 6.49e-2 6.07 5.58¢-2 | 6.28
1| 2% | 1.32e-2 | 3.55 | 1.08e-2 2.59 5.97e-3 | 3.22
26 | 1.93e-3 | 2.77 | 2.37e-3 2.19 7.36e-4 | 3.02
27 | 3.34e-4 | 253 | 5.71le-4 2.05 9.18¢-5 | 3.00

2% | 7.15e-1 1.40e-1 1.13e-1
2 | 1.43e-2 | 5.65 | 2.68¢-3 5.71 1.54e-3 | 6.19
2| 2° | 1.31e-3 | 3.45 | 3.23e-4 3.05 6.75e-5 | 4.51
26 | 1.44e-4 | 3.18 | 4.03e-5 3.00 3.64e-6 | 4.21
27 | 1.70e-5 | 3.09 | 5.04e-6 3.00 2.13e-7 | 4.09
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Table 7: Parallelogram mesh and enriched case IT on Q = {(z,9): 0 <2 — 3y < 1,0 <y <
1/2} for smooth test

L | vz lu — wnl7, [V x (w—un)l7, g — qnll,
h Error Rate Error Rate Error Rate
2% | 1.20e+1 1.75e+2 3.61e+0

21 1.60e-1 6.23 | 5.18e+0 5.08 6.52e-2 5.79
1| 2° 1.47e-2 3.44 | 2.11e+0 1.30 1.08e-2 2.59
26 2.51e-3 2.55 | 1.02e+0 1.05 2.37e-3 2.19
27 5.22e-4 2.27 5.05e-1 1.01 5.7le-4 2.05

2% | 7.69¢+0 1.35e+2 1.04e+0
2% | 1.46e-2 | 9.04 | 8.17e-1 7.37 2.66e-3 | 8.61
2| 2% | 1.35e-3 | 3.44 | 1.66e-1 2.30 3.22¢-4 | 3.04
26 | 1.49e-4 | 3.18 | 3.84e-2 2.11 4.02¢-5 | 3.00
27 | 1.76e-5 | 3.08 | 9.27e-3 2.05 5.03¢-6 | 3.00

Table 8: Parallelogram mesh and enriched case IT on Q = {(z,9) : 0 <z — 3y < 1,0 <y <
1/2} for smooth test

L | v lw — up |7, IV x (u—up)l7, g — anll7,
h Error Rate Error Rate Error Rate
2% | 1.19e+1 3.61e+0 3.85¢+0

21 1.56e-1 6.24 6.52e-2 5.79 5.60e-2 6.10
1] 2° 1.31e-2 3.58 1.08e-2 2.59 5.98e-3 | 3.23
26 1.91e-3 2.78 2.37e-3 2.19 7.37e-4 | 3.02
27 3.32e-4 2.53 5.7le-4 2.05 9.19e-5 3.00

2% | 7.61e+0 1.04e+0 6.74e-1
24 | 1.43e-2 | 9.06 | 2.66e-3 8.61 1.54e-3 | 8.77
2| 25 | 1.31e-3 | 3.45 | 3.22¢-4 3.04 6.75e-5 | 4.51
20 | 1.44e-4 | 3.18 | 4.02e-5 3.00 3.64e-6 | 4.21
27 | 1.70e-5 | 3.09 | 5.03e-6 3.00 2.13e-7 | 4.09
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For any integer k > 1, let

V(K) = Qr(K), W(K) = Qu(K) + Vspan{z" "1y, 2y},
M(OK) ={p: p|lr =n X pg, for some p; € Pi(F) and for each edge F' C 0K},
V(K) = Qp1(K),  W(K)=V xV(K)& Wy(K).
Then V(K) and W(K) admit an M-decomposition with respect the spaces
V(K) and W (K).

Now, we give another construction: For any integer k > 0, let

V) = QuK), W(K) = @u(K) + Vspan{a"* 1y oy} + span { (1.%),1) ]
M(OK) ={p | plr =n x Px(F) for each edge F' C 0K},
V(K) = Qn(K), W(K)=VxV(K)®WyK).

Then V(K) and W(K) admit an M-decomposition with respect the spaces
2 V(K) and W (K).
The next element family can be found in the third exact sequence in [47,
Theorem 3.1].

For any integer k > 0, let

VK) = Qu(K), W(K) = Qu(K) + Vspan{a"*'y,ay* 1} +span { (11,7 )}
M(OK) ={p | p|lr = n x Pi(F) for each edge F C 0K},
V(K) = Qi(K), W(K)=V xV(K)a Wy(K).

Then V(K) and W (K) admit an M-decomposition with respect the spaces
V(K) and W (K).

325 In Tables 9 and 10, we show the numerical results on unit square with
rectangle mesh and we obtain optimal convergence rate for the solution w and
superconvergence rate for V x u using Enrichment Construction I elements when
the solution is smooth enough. In Tables 11 and 12, we show the numerical
results on unit square with rectangle mesh and we obtain optimal convergence

a0 rate for both ¢ and the postprocess of V x u using Enrichment Construction I

elements when the solution is non-smooth.
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340

345

Table 9: Uniform square mesh with Enrichment case I on the unit square Q = (0,1) x (0,1)

for smooth_test

L | vz lw—wunllr, | IV x(w—u)l7, lla = gnll7,
h Error Rate Error Rate Error Rate
2% | 1.78e-1 6.93e+0 1.41e-1

2 | 3.90e-2 | 2.19 | 3.05¢+0 1.19 2.88e-2 | 2.29
1] 2° | 9.19e-3 | 2.08 | 1.44e+0 1.09 6.83e-3 | 2.08
20 | 2.23e-3 | 2.04 6.98e-1 1.04 1.68e-3 | 2.02
27 | 5.51e-4 | 2.02 3.44e-1 1.02 4.20e-4 | 2.00

2% | 1.86e-2 8.44e-1 8.50e-3
24 | 1.10e-3 | 4.08 | 1.37e-1 262 | 8.76e-4 | 3.28
2 | 2% | 1.34e-4 | 3.05 | 3.31e-2 2.05 1.09e-4 | 3.00
26 | 1.65e-5 | 3.02 | 8.13¢-3 2.02 | 1.36e-5 | 3.00
27 | 2.04e-6 | 3.01 | 2.02e-3 2.01 1.70e-6 | 3.00

Numerical results for Enrichment Construction IT elements show that exactly
the same error as for Enrichment Case I and so we do not reproduce them here.
Results for Enrichment Construction III are shown in Tables 13 to 16. The

results exhibit the expected convergence rates from theory.

6. Conclusion

In this paper we have shown that the M-decomposition, together with suffi-
ciently rich auxilary spaces, is sufficient to guarantee optimal order convergence
for the vector 2D problem arising from Maxwell’s equations. This can be used
to evaluate and construct HDG schemes on two commonly occurring elements
(triangles and squares).

As pointed out by Cockburn and Fu [29], it is not possible to carry out the
construction of the spaces under consideration by using only polynomials for
more general elements K. Thus the extension of this theory to more general
elements is a challenging project.

An interesting problem is to devise a similar theory for the full Maxwell’s
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Table 10: Uniform square mesh with Enrichment case I on the unit square Q = (0,1) x (0,1)

for smooth tes

L | v lw—uilln | IV x(uw—up)l7 llg — a7
" Error Rate Error Rate Error Rate
2% | 4.09e-2 2.17e-1 1.00e-1

2% | 5.38¢-3 | 2.93 | 5.11e-2 2.09 1.16e-2 | 3.11
1| 2° | 9124 | 256 | 1.26e-2 2.02 1.39-3 | 3.07
20 | 1.96e-4 | 2.22 | 3.14e-3 2.00 1.70e-4 | 3.03
27 | 4.70e-5 | 2.06 | 7.85e-4 2.00 2.10e-5 | 3.02

2% | 1.37e-2 2.44e-2 3.41e-3
2% | 4.76e-4 | 4.84 | 3.09e-3 2.98 2.07e-4 | 4.04
2| 2° | 5.64e-5 | 3.08 | 3.88e-4 2.99 1.30e-5 | 3.99
26 | 6.90e-6 | 3.03 | 4.85e-5 3.00 8.16e-7 | 4.00
27 | 8.53e-7 | 3.02 | 6.07e-6 3.00 5.10e-8 | 4.00

Table 11: Uniform square mesh with Enrichment case I on the unit square = (0,1) x (0,1)

for non-smooth_test

v —unllz | IV X (u = w7, llg — anll7,

k V2
Error Rate Error Rate Error Rate

23 | 8.98-1 | 1.77 | 1.91e+0 | 3.91 7.61le-1 | 2.25
2% | 4.53e-1 | 0.99 | 1.91e40 | -0.00 | 1.38¢40 | -0.86
1| 2° | 320e-1 | 050 | 1.36e+0 | 049 | 1.04e+0 | 0.41
20 | 2.45e-1 | 0.38 | 1.18¢+0 | 0.21 7.98¢-1 | 0.38
27 | 1.75e-1 | 0.49 | 1.78e41 | -3.92 | 5.60e-1 | 0.51
2% | 1.14e-1 | 0.62 | 1.29e40 3.79 3.69e-1 | 0.60

23 | 1.27e+0 | 0.13 | 2.93e+1 -2.26 1.81e+0 | 1.27
24 5.91e-1 1.10 | 1.55e+1 0.92 1.28e+0 | 0.50
2| 2° 3.19e-1 0.89 | 1.84e+40 3.07 1.04e+0 | 0.31
20 2.69e-1 0.24 | 1.40e+1 -2.93 7.97e-1 0.38
27 2.33e-1 0.21 | 4.06e+1 -1.53 5.58e-1 0.51
28 1.16e-1 1.01 | 2.00e4-0 4.35 3.69e-1 0.60
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Table 12: Uniform square mesh with Enrichment case I on the unit square Q = (0,1) x (0,1)

for non-smooth _test

L | v v —uillz, | [V X (u—uj)l7, lg — anllm,

" Error Rate Error Rate Error Rate

23 | 8.95e-1 | 0.22 | 7.57e-1 2.26 7.56e-1 | 2.45
2% | 4.52e-1 | 0.99 | 1.38e4+0 | -0.87 | 1.38e+0 | -0.87
1] 2° | 3.20e-1 | 0.50 | 1.04e4+0 | 0.41 | 1.04e4+0 | 0.41
26 | 2.45e-1 | 0.38 | 7.98¢-1 0.38 7.98¢e-1 | 0.38
27 | 1.72e-1 | 0.51 | 5.60e-1 0.51 5.59e-1 | 0.52
2% | 1.14e-1 | 0.59 | 3.69e-1 0.60 3.69e-1 | 0.60

2% | 8.56e-1 | 0.67 | 1.77e+0 | 1.30 | 1.78¢+0 | 1.30
2% | 5.37e-1 | 0.67 | 1.27e4+0 | 048 | 1.27e+0 | 0.48
2 | 25 | 3.19e-1 | 0.75 | 1.04e+0 0.30 1.04e+0 | 0.30
26 | 2.64e-1 | 0.27 | 7.97e-1 0.38 7.97e-1 | 0.38
27 | 2.19e-1 | 0.27 | 5.57e-1 0.52 5.57e-1 | 0.52
2% | 1.16e-1 | 0.92 | 3.69e-1 0.60 3.69¢-1 | 0.60

Table 13: Results for a uniform square mesh with Enrichment case III on the unit square

Q=(0,1) x (0,1)

L | v lw—wunll, | IV X (uw—un)l7, llg — anll7,
h Error Rate Error Rate Error Rate
2% | 1.77e-1 6.93e+0 1.41e-1

2% | 3.90e-2 | 2.19 | 3.05¢+0 1.19 2.88e-2 | 2.29
1] 2° | 9.19e-3 | 2.08 | 1.44e+0 1.09 6.83e-3 | 2.08
26 | 2.23¢-3 | 2.04 | 6.98¢-1 1.04 1.68e-3 | 2.02
27 | 5.51e-4 | 2.02 3.44e-1 1.02 4.20e-4 | 2.00

23 | 9.68e-3 5.93e-1 7.14e-3
2* | 1.10e-3 | 3.13 | 1.37e-1 2.11 8.76e-4 | 3.03
2| 2° | 1.34e-4 | 3.05 | 3.31e-2 2.05 | 1.09e-4 | 3.00
2% | 1.65e-5 | 3.02 | 8.13e-3 2.02 | 1.36e-5 | 3.00
27 | 2.04e-6 | 3.01 | 2.02¢-3 2.01 | 1.70e-6 | 3.00
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Table 14: Results for a uniform square mesh with Enrichment case III on the unit square

Q=(0,1) x (0,1)

L | v lw—wuhlln, | IV (w—up)lz, llg — aill7
" Error Rate Error Rate Error Rate
2% | 4.06e-2 2.17e-1 1.00e-1

2% | 5.37e-3 | 2.92 | 5.11e-2 2.09 1.16e-2 | 3.11
1| 2° | 9124 | 256 | 1.26e-2 2.02 1.3%-3 | 3.07
20 | 1.96e-4 | 2.22 | 3.14e-3 2.00 1.70e-4 | 3.03
27 | 4.70e-5 | 2.06 | 7.85e-4 2.00 2.10e-5 | 3.02

23 | 4.54e-3 2.44¢-2 3.24¢-3
2% | 4.64e-4 | 3.29 | 3.09e-3 2.98 2.07e-4 | 3.96
2| 2° | 5.60e-5 | 3.05 | 3.88e-4 2.99 1.30e-5 | 3.99
26 | 6.88e-6 | 3.03 | 4.85e-5 3.00 8.16e-7 | 4.00
27 | 8.52e-7 | 3.01 | 6.07e-6 3.00 5.10e-8 | 4.00

Table 15: Uniform square mesh with Enrichment case III on the unit square Q = (0,1) x (0,1)

for non-smooth _test

v —unllz, | IV X (u—un)l7 lg — anll7,

k| 2

" Error Rate Error Rate Error Rate

2% | 1.07e+0 | 1.24 | 3.93e+0 | 2.53 | 1.89e+0 | 0.59
2% | 3.89-1 | 1.46 | 1.73e4+0 | 1.18 | 1.25e+0 | 0.61
1] 2° | 3.14e-1 | 0.31 | 1.34e+0 | 0.36 | 1.02e4+0 | 0.29
26 | 2.43e-1 | 0.37 | 1.17e+0 | 0.20 7.90e-1 | 0.37
27 | 1.7le-1 | 0.51 | 1.15e4+0 | 0.03 5.55e-1 | 0.51
28 | 1.27e-1 | 0.42 | 2.65e+0 | -1.21 | 4.09e-1 | 0.44

23 2.30e-1 2.56 | 1.67e+40 1.85 5.41e-1 2.99
2% | 4.67e+0 | -4.34 | 1.62e+2 -6.61 1.99e+0 | -1.88
2| 2° 3.17e-1 3.88 | 1.58e+0 6.68 1.03e+0 | 0.95
20 5.81le-1 | -0.87 | 1.86e+1 -3.55 7.91e-1 0.38
27 1.72e-1 1.75 | 1.64e+0 3.50 5.57e-1 0.51
28 1.16e-1 0.57 | 1.96e+0 -0.26 3.68e-1 0.60
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Table 16: Uniform square mesh with Enrichment case III on the unit square = (0,1) x (0, 1)

for non-smooth test

L | v lu —ujll7, IV x (u —ui)ll7, lg — aill7

Error Rate Error Rate Error Rate

23 | 1.02e+0 | 0.11 | 1.88e+0 | 0.59 | 1.89e+0 | 0.80
2% | 3.87e-1 | 1.40 | 1.25e+0 | 0.59 | 1.25e+0 | 0.60
1] 2° | 3.14e-1 | 0.30 | 1.02e4+0 | 029 | 1.02e+0 | 0.29
20 | 2.42e-1 | 0.37 | 7.90e-1 0.37 7.90e-1 | 0.37
27 | 1.71e-1 | 0.51 | 5.55¢-1 0.51 5.55e-1 | 0.51
28 | 1.27e-1 | 0.43 | 4.09e-1 0.44 4.09e-1 | 0.44

23 2.21e-1 2.60 5.41e-1 2.99 5.42e-1 2.99
21 | 3.85¢+0 | -4.12 | 1.40e+0 -1.37 1.39e+0 | -1.36
2| 2° 3.17e-1 3.61 | 1.03e+0 0.44 1.03e+0 | 0.44
20 5.66e-1 | -0.84 | 7.91e-1 0.38 7.91e-1 0.38
27 1.72e-1 1.72 5.57e-1 0.51 5.57e-1 0.51
28 1.16e-1 0.57 3.68e-1 0.60 3.68e-1 0.60

equations in three dimensions. Not only is this more complicated, but it is also

essentially different compared to 2D. This will be explored in our future work.
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