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ANALYSIS AND APPROXIMATIONS OF DIRICHLET BOUNDARY
CONTROL OF STOKES FLOWS IN THE ENERGY SPACE\ast 

WEI GONG\dagger , MARIANO MATEOS\ddagger , JOHN SINGLER\S , AND YANGWEN ZHANG\P 

\bfA \bfb \bfs \bft \bfr \bfa \bfc \bft . We study Dirichlet boundary control of Stokes flows in 2D polygonal domains. We
consider cost functionals with two different boundary control regularization terms: the \bfitL 2(\Gamma )-norm
and an energy space seminorm. We prove well-posedness, provide first order optimality conditions,
derive regularity results, and develop finite element discretizations for both problems, and we also
prove finite element error estimates for the latter problem. The motivation to study the energy space
problem follows from our analysis: we prove that the choice of the control space \bfitL 2(\Gamma ) can lead
to an optimal control with discontinuities at the corners, even when the domain is convex. This
phenomenon is also observed in numerical experiments. This behavior does not occur in Dirichlet
boundary control problems for the Poisson equation on convex polygonal domains, and it may not
be desirable in real applications. For the energy space problem, we show that the solution of the
control problem is more regular than the solution of the problem with the \bfitL 2(\Gamma )-regularization.
The improved regularity enables us to prove a priori error estimates for the control in the energy
norm. We present several numerical experiments for both control problems on convex and nonconvex
domains.

\bfK \bfe \bfy \bfw \bfo \bfr \bfd \bfs . Dirichlet boundary control, Stokes flows, energy space, regularity, finite element
method, error estimates
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1. Introduction. PDE-constrained optimal control is an active research area
and has been popular for the last several decades. Interest in analysis and computation
for problems in this area has been generated by a wide variety of applications and the
fast development of computational resources. There are already several monographs
and chapters devoted to various aspects of the field, including theoretical analysis,
computational methods, and application areas; see, e.g., [33, 44, 6].

Boundary control problems for PDEs are a very important part of this field since
for many applications control may only be applied at the boundary of the physical
domain. Dirichlet boundary control problems are especially important in application
areas, but the problems can be difficult to analyze mathematically---especially when
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the physical domain has a nonsmooth boundary. One of the key points in the study
of Dirichlet boundary control problems is the choice of the control penalty in the
cost functional. A natural goal in many applications is to minimize the ``amount"" of
control used, which naturally leads to a boundary control penalty using the L2(\Gamma )-
norm. This also appears to be a reasonable choice from a numerical approximation
point of view. However, in the analysis of such a problem the governing state equation
is typically understood in a very weak sense since the Dirichlet boundary condition is
only in L2(\Gamma ).

Despite this difficulty, many researchers have considered problems using the L2(\Gamma )
control penalty and developed numerical methods and numerical analysis results for
problems governed by elliptic scalar equations. See [19, 8, 47, 17, 28, 1, 2] for different
advances in the theory and classical finite element methods; in the recent works [10, 12,
36, 25, 11] the hybridizable discontinuous Galerkin (HDG) has been succesfully applied
to problems governed by elliptic scalar equations posed on convex polygonal domains.
We also refer to [23, 26] for error estimates for parabolic Dirichlet boundary control
problems, to [46] for state-constrained problems, and to [7] for a Robin penalization
approach.

On the other hand, H1/2(\Gamma ) appears to be a natural choice to study the state
equation in the standard variational formulation. There are also some numerical
analysis results in this direction. See [49, 48, 53]. In [13, 39] a different formulation of
this method is proposed where the control penalty now involves the harmonic exten-
sion of the control into the domain; a posteriori error estimates and the convergence
of the adaptive finite element method are studied in [27]. There are also other ways
to deal with the inhomogeneous Dirichlet boundary condition. In [41, 42, 43] elliptic
Dirichlet boundary control problems are studied in the energy space setting using
wavelet schemes for the spatial discretization and using a Lagrange multiplier for the
inhomogeneous Dirichlet boundary condition.

Dirichlet boundary control problems are of great interest for applications in fluid
dynamics; see, for example, [20, 21, 31, 30, 34, 35, 16, 37, 51]. Although many
numerical algorithms and simulation results can be found in the literature, there
are very few well-posedness, regularity, and numerical analysis results for Dirichlet
boundary control problems for fluid flows in polygonal domains.

In this work, we study Dirichlet Stokes flow control problems in 2D polygonal do-
mains using both L2 and H1/2 for the control spaces. We give precise well-posedness
and regularity results for both problems, and we show that the L2-regularized op-
timal control can be discontinuous at the corners of a convex domain. We prove
higher regularity for the energy space control problem. We also develop finite ele-
ment methods for both problems, present an efficient way to compute the gradient
of the objective functional, and prove a priori error estimates for the energy space
problem.

We believe that the present work is the first to give regularity results and also
convergence rates for standard finite element methods for a Dirichlet boundary flow
control problems on polygonal domains. The only other work that we are aware of
that proves convergence rates for a numerical method for a Dirichlet boundary flow
problem on a polygonal domain is our recent work [24], which considers a tangential
Stokes boundary control problem. We improve on this work in a number of ways.
First, we do not restrict to the case of a tangential control. Second, we do not require
the polygonal domain to be convex. Third, we use standard finite element methods
for Stokes flows in this work, instead of the HDG method considered in [24]. HDG
methods are very flexible and powerful and have many advantages (see [24] for more
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452 W. GONG, M. MATEOS, J. SINGLER, AND Y. ZHANG

information); however, standard finite element methods for Stokes flows are more
widely used and are readily available in many existing software packages.

Below, we give precise formulations of the Dirichlet Stokes control problems we
consider and give a brief overview of related work.

Let \Omega \subset R2 be an open bounded domain with polygonal boundary \Gamma . We let
Hm(\Omega ) denote the standard Sobolev space with norm \| \cdot \| m,\Omega and seminorm | \cdot | m,\Omega ,
and we use bold font to denote vector valued spaces. Set \bfitH m(\Omega ) = [Hm(\Omega )]2 and
\bfitH 1

0 (\Omega ) = \{ \bfitv \in \bfitH 1(\Omega ); \bfitv = 0 on \Gamma \} . We denote the L2-inner products on \bfitL 2(\Omega ),
L2(\Omega ), \bfitL 2(\Gamma ), and L2(\Gamma ) by

(\bfity , \bfitz ) =
2\sum 

j=1

\int 
\Omega 

yjzj , (p, q) =

\int 
\Omega 

pq, (\bfity , \bfitz )\Gamma =
2\sum 

j=1

\int 
\Gamma 

yjzj , (u, v)\Gamma =

\int 
\Gamma 

uv.

We use \langle \cdot , \cdot \rangle to denote the duality product between H - s(\Omega ) and Hs(\Omega ). We let Hs(\Gamma )
denote the space of traces of Hs+1/2(\Omega ) for 0 < s < 3/2, and we note that Hs(\Gamma ) for
1/2 < s < 3/2 is given by Hs(\Gamma ) = \{ u \in \Pi m

i=1H
s(\Gamma i) : u \in C(\Gamma )\} ; see [29, Theorem

1.5.2.8]. (This definition does not make sense for s = 3/2.) Here, \Gamma i are the sides of
the polygon. For 0 < s < 3/2, we use \langle \cdot , \cdot \rangle \Gamma to denote the duality product between
H - s(\Gamma ) and Hs(\Gamma ).

For the Stokes problem, we use the standard spaces

\bfitH (div; \Omega ) = \{ \bfitv \in \bfitL 2(\Omega ), \nabla \cdot \bfitv \in L2(\Omega )\} , L2
0(\Omega ) =

\bigl\{ 
p \in L2(\Omega ), (p, 1) = 0

\bigr\} 
,

as well as the velocity spaces (see [52, section 2.1])

\bfitV s(\Omega ) = \{ \bfity \in \bfitH s(\Omega ) : \nabla \cdot \bfity = 0, \langle \bfity \cdot \bfitn , 1\rangle \Gamma = 0\} , s \geqslant 0,

which are Banach spaces with the \bfitH s(\Omega )-norm. For 0 \leqslant s < 3/2, define

\bfitV s(\Gamma ) = \{ \bfitu \in \bfitH s(\Gamma ) : (\bfitu \cdot \bfitn , 1)\Gamma = 0\} ,

and let \bfitV  - s(\Gamma ) denote the dual space. A proper definition of \bfitV s(\Gamma ) for all 0 \leqslant s < 3/2
was needed to obtain the regularity results in [24].

For the control problem, consider a target state \bfity d \in \bfitH , a velocity penalty space
\bfitH \lhook \rightarrow \bfitL 2(\Omega ), and a control penalty space \bfitU \lhook \rightarrow \bfitV 0(\Gamma ). Let \alpha > 0 denote a Tikhonov
regularization parameter, and consider the optimal control problem

(1.1) min
\bfitu \in \bfitU 

J(\bfitu ) =
1

2
\| \bfity \bfitu  - \bfity d\| 2\bfitH +

\alpha 

2
\| \bfitu \| 2\bfitU ,

where \bfity \bfitu \in \bfitV 0(\Omega ) is the unique solution (either in the transposition sense---see
Definition 2.3 below---or standard variational solution) of the Stokes system

 - \Delta \bfity +\nabla p = \bfitf in \Omega , \nabla \cdot \bfity = 0 in \Omega , \bfity = \bfitu on \Gamma .(1.2)

We note that similar Dirichlet control problems with various choices of the spaces
\bfitH and \bfitU have been considered in the literature for both the Stokes and Navier--
Stokes equations. The choices \bfitH = \bfitL 4(\Omega ) and \bfitU = \bfitV 1(\Gamma ) were used in the early
work [31]. In [16], the spaces \bfitH = \bfitV 1(\Omega ) and \bfitU = \bfitL 2(\Gamma ) are used for the objective
functional; however, the optimal control problem looks for admissible optimal controls
in \bfitU ad = \bfitV 1/2(\Gamma ), which is the natural space for the controls to obtain a variational
solution of the state equation (1.2). In [37], the authors consider a smooth domain
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and choose \bfitH = \bfitV 0(\Omega ) and \bfitU = \bfitV 0(\Gamma ). We show in polygonal domains that this
approach leads to optimal controls that are discontinuous at the corners; see section 3
for the well-posedness and regularity results. However, a better regularity result for
these spaces is obtained if we consider tangential control, i.e., we impose the condition
\bfitu \cdot \bfitn = 0 pointwise instead of (\bfitu \cdot \bfitn , 1)\Gamma = 0; see [24] for more details.

Here we focus on the energy space method for the problem in polygonal domains.
In section 4 we formulate the Dirichlet boundary control problem of Stokes equation
with velocity space \bfitH = \bfitV 0(\Omega ) and control space \bfitU = \bfitV 1/2(\Gamma ), and we derive
the first order optimality condition by using the Steklov--Poincar\'e operator. Higher
regularity of the solutions is shown compared to the \bfitL 2(\Gamma ) setting. In section 5 we
give finite element approximations and error estimates for the energy space method.
Numerical experiments are carried out in section 6 for both choices \bfitU = \bfitV 0(\Gamma ) and
\bfitU = \bfitV 1/2(\Gamma ) in both convex and nonconvex polygonal domains.

As can be seen in the numerical experiments, our estimates are not sharp. Sharp
error estimates for Lagrange linear elements have been obtained for the case of the
Poisson equation in [2] for L2-regularization and in [53] for H1/2-regularization using
a detailed study of the regularity of the adjoint state: a splitting into a regular plus
a singular part in the first reference and regularity in the weighted Sobolev space
W 2,\infty 

\bfitalpha (\Omega ) in the second one. We have noticed that, for problems governed by the
Stokes equation, orders of convergence higher than the ones that could be obtained
using those techniques are possible using higher order elements; see Table 2. We do
not attempt those techniques in this paper and defer its study to a future work.

Remark 1.1. For \bfitf \in \bfitH  - 1(\Omega ), if we let \bfity f \in \bfitV 1(\Omega ) \cap \bfitH 1
0 (\Omega ) be the unique

solution of (1.2) for \bfitu = 0 and redefine \bfity d := \bfity d - \bfity f , we can formulate an equivalent
problem to (1.1) with \bfitf = 0, in the sense that the optimal control will be the same
for both problems and the optimal states will differ by \bfity f . Thus, in the rest of the
work, we assume \bfitf = 0.

Remark 1.2. The introduction of control constraints does not lead to any differ-
ences in the regularity of the solutions or the rates of convergence. Control-constrained
problems can be treated by means of variational inequalities instead of equalities, and
there are plenty of examples about this in the literature. We focus on the uncon-
strained problem in order to avoid additional technicalities.

2. Regularity results. We first summarize the result we presented in [24] about
the concept of solution for Dirichlet data in \bfitV 0(\Gamma ) and its precise regularity.

To introduce the definition of solution of the state equation, we first need some
results about the following compressible Stokes equation. For data (\bfitg , h) \in \bfitH  - 1(\Omega )\times 
\bfitL 2

0(\Omega ), we say that (\bfitz \bfitg ,h, q\bfitg ,h) \in \bfitH 1
0 (\Omega )\times L2

0(\Omega ) is a solution of

(2.1)  - \Delta \bfitz +\nabla q = \bfitg in \Omega , \nabla \cdot \bfitz = h in \Omega , \bfitz = 0 on \Gamma 

if

(\nabla \bfitz \bfitg ,h,\nabla \bfitzeta ) - (q\bfitg ,h,\nabla \cdot \bfitzeta ) = \langle \bfitg , \bfitzeta \rangle \forall \bfitzeta \in \bfitH 1
0 (\Omega ),

(\chi ,\nabla \cdot \bfitz \bfitg ,h) = (h, \chi ) \forall \chi \in L2
0(\Omega ).

Following [15], we define \xi , the singular exponent for the Stokes operator, as the
smallest nonzero real part of all roots of the equation

(2.2) (\lambda  - 1) - 1\lambda  - 2
\bigl( 
sin2(\lambda \omega ) - \lambda 2 sin2 \omega 

\bigr) 
= 0,
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where \omega denotes the greatest interior angle of \Gamma . It is known (see page 80 of [15]) that
\xi > \pi /\omega when \omega \in (0, \pi ) and \xi < \pi /\omega when \omega \in (\pi , 2\pi ). Let

s \star = min\{ \xi  - 1/2, 1/2\} .(2.3)

Theorem 2.1 ([15, Theorem 5.5(a)]).Let s satisfy  - 1/2<s<s \star . If \bfitg \in \bfitH s - 1/2(\Omega )
and h \in Hs+1/2(\Omega )\cap L2

0(\Omega ), then (2.1) has a unique solution (\bfitz \bfitg ,h, q\bfitg ,h) \in [\bfitH 3/2+s(\Omega )
\cap \bfitH 1

0 (\Omega )]\times [H1/2+s(\Omega ) \cap L2
0(\Omega )]. Moreover, we have

\| \bfitz \bfitg ,h\| \bfitH 3/2+s(\Omega ) + \| q\bfitg ,h\| H1/2+s(\Omega )/R \leqslant C
\bigl( 
\| \bfitg \| \bfitH s - 1/2(\Omega ) + \| h\| Hs+1/2(\Omega )/R

\bigr) 
.(2.4)

It is important to note that Theorem 2.1 only holds for s < 1/2. This means that
even in convex domains one cannot expect in general to have \bfitH 2(\Omega )-regularity of \bfitz .
Later, we also require a regularity result for the case h \equiv 0 in a convex domain. Let
(\bfitz (\bfitg ), q(\bfitg )) denote the solution of (2.1) for h = 0, i.e., \bfitz (\bfitg ) = \bfitz \bfitg ,0 and q(\bfitg ) = q\bfitg ,0.

Theorem 2.2 ([15, Theorem 5.5(b)(c)]). Suppose \bfitg \in \bfitH t - 1(\Omega ) for some 0 \leqslant 
t < \xi and h = 0. Then (2.1) has a unique solution \bfitz (\bfitg ) \in \bfitV t+1(\Omega ) \cap \bfitH 1

0 (\Omega ),
q(\bfitg ) \in Ht(\Omega ) \cap L2

0(\Omega ), and there exists a constant C > 0 independent of \bfitg such that

\| \bfitz (\bfitg )\| \bfitH 1+t(\Omega ) + \| q(\bfitg )\| Ht(\Omega ) \leqslant C\| \bfitg \| \bfitH t - 1(\Omega ).

Below, we define transposition solutions of the state equation (1.2) with \bfitf = 0
(see Remark 1.1) in the case \bfitu \in \bfitV  - s(\Gamma ) for 0 < s < s \star . Elements of this space do not
necessarily satisfy any condition analogous to (\bfitu \cdot \bfitn , 1)\Gamma = 0. In order to account for
the constants, we follow [52, equation (2.2)], and for (\bfitz , q) \in \bfitH 3/2+s(\Omega )\times H1/2+s(\Omega )
with s > 0 we define the constant

(2.5) \lambda (\bfitz , q) =
1

| \Gamma | 
(\partial \bfitn \bfitz \cdot \bfitn  - q, 1)\Gamma .

This constant satisfies

\| \partial \bfitn \bfitz  - q\bfitn \| L2(\Gamma )/R = \| \partial \bfitn \bfitz  - q\bfitn  - \lambda (\bfitz , q)\bfitn \| L2(\Gamma ),

and we have
\partial \bfitn \bfitz  - (q + \lambda (\bfitz , q))\bfitn \in \bfitV 0(\Gamma ).

This fact, the continuity of the normal trace in \bfitH 3/2+s(\Omega ), the continuity of the trace
in \bfitH s(\Omega ), and (2.4) give that for 0 < s < 1/2 we have

(2.6) \| \partial \bfitn \bfitz \bfitg ,h  - (q\bfitg ,h + \lambda (\bfitz \bfitg ,h, q\bfitg ,h))\bfitn \| Hs(\Gamma ) \leqslant C
\bigl( 
\| \bfitg \| \bfitH s - 1/2(\Omega ) + \| h\| Hs+1/2(\Omega )/R

\bigr) 
.

This allows us to give the following well-defined notion of transposition solution for
the state equation (again, with \bfitf = 0).

Definition 2.3. Suppose 0 \leqslant s < s \star and \bfitu \in \bfitV  - s(\Gamma ). We say that \bfity \bfitu \in \bfitV 0(\Omega ),

p\bfitu \in 
\bigl( 
H1(\Omega ) \cap L2

0(\Omega )
\bigr) \prime 

is a solution in the transposition sense of

 - \Delta \bfity +\nabla p = 0 in \Omega , \nabla \cdot \bfity = 0 in \Omega , \bfity = \bfitu on \Gamma (2.7)

if

(2.8) (\bfity \bfitu , \bfitg ) - \langle p\bfitu , h\rangle = \langle \bfitu , - \partial \bfitn \bfitz \bfitg ,h + (q\bfitg ,h + \lambda (\bfitz \bfitg ,h, q\bfitg ,h))\bfitn \rangle \Gamma 

for all \bfitg \in \bfitL 2(\Omega ) and h \in H1(\Omega ) \cap L2
0(\Omega ), where (\bfitz \bfitg ,h, q\bfitg ,h) \in \bfitH 1

0 (\Omega )\times L2
0(\Omega ) is the

unique solution of (2.1) and \lambda (\bfitz \bfitg ,h, q\bfitg ,h) is the constant given in (2.5).
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Furthermore, this definition can be rewritten in different forms when \bfitu is more
regular. First, if \bfitu \in \bfitV 0(\Gamma ), then (\bfitu , \lambda \bfitn )\Gamma = 0 for every constant \lambda \in R, and
therefore (2.8) can be written as

(\bfity \bfitu , \bfitg ) - \langle p\bfitu , h\rangle = (\bfitu , - \partial \bfitn \bfitz \bfitg ,h + q\bfitg ,h\bfitn )\Gamma .(2.9)

Second, if \bfitu \in \bfitV 1/2(\Gamma ), then the transposition solution is the variational solution of
the following problem: Find (\bfity \bfitu , p\bfitu ) \in \bfitH 1(\Omega )\times L2

0(\Omega ) satisfying

(\nabla \bfity \bfitu ,\nabla \bfitzeta ) - (p\bfitu ,\nabla \cdot \bfitzeta ) = 0 \forall \bfitzeta \in \bfitH 1
0 (\Omega ),

(\chi ,\nabla \cdot \bfity \bfitu ) = 0 \forall \chi \in L2(\Omega )/R,
\bfity \bfitu = \bfitu on \Gamma .

(2.10)

Next, we give a regularity result for the state equation (2.7) on polygonal domains
from [24, Theorem 2.2].

Theorem 2.4. If \bfitu \in \bfitV s(\Gamma ) for  - s \star < s < s \star + 1, then the solution of (2.7)
satisfies

\bfity \bfitu \in \bfitV s+1/2(\Omega ) and p\bfitu \in 

\Biggl\{ 
Hs - 1/2(\Omega )/R if s \geqslant 1/2,\bigl( 
H1/2 - s(\Omega )/R

\bigr) \prime 
if s \leqslant 1/2.

Also, the control-to-state mapping \bfitu \mapsto \rightarrow \bfity \bfitu is continuous from \bfitV s(\Gamma ) to \bfitV s+1/2(\Omega ).

We also recall here the concept of stress force on the boundary as used in [32]. Let
(\bfitpsi , \phi ) be the solution of the incompressible Stokes system with source \bfitg \in \bfitL 2(\Omega ) and
Dirichlet data \bfitu \in \bfitV 1/2(\Gamma ), i.e., \bfitpsi = \bfitz (\bfitg )+\bfity \bfitu and \phi = q(\bfitg )+p\bfitu , where (\bfitz (\bfitg ), q(\bfitg ))
is the solution of (2.1) with h = 0, and (\bfity \bfitu , p\bfitu ) is the solution of (2.10).

For \bfitg and \bfitu as above, we define the stress force on the boundary \bfitt (\bfitg ,\bfitu ) related
to (\bfitpsi , \phi ) to be the unique solution in \bfitH  - 1/2(\Gamma ) of the variational problem:

\langle \bfitt (\bfitg ,\bfitu ), \bfitzeta \rangle \Gamma = (\nabla \bfitpsi ,\nabla \bfitzeta ) - (\phi ,\nabla \cdot \bfitzeta ) - (\bfitg , \bfitzeta ) \forall \bfitzeta \in \bfitH 1(\Omega ).(2.11)

Notice that for \bfitu \in \bfitV r+1/2(\Gamma ) with r > 0, integration by parts shows that

\bfitt (\bfitg ,\bfitu ) = \partial \bfitn \bfitpsi  - \phi \bfitn .(2.12)

For 0 \leqslant s < s \star + 1, we define the solution operator \bfitE : \bfitV s(\Gamma ) \rightarrow \bfitL 2(\Omega ) by

\bfitE \bfitu = \bfity \bfitu .(2.13)

Directly from (2.9) with h = 0 and (2.12), the adjoint \bfitE  \star : \bfitL 2(\Omega ) \rightarrow \bfitV  - s(\Gamma ) is
defined by

\bfitE  \star \bfitg =  - \partial \bfitn \bfitz (\bfitg ) + q(\bfitg )\bfitn =  - \bfitt (\bfitg ,0).(2.14)

By Theorem 2.4 we know that \bfitE : \bfitV s(\Gamma ) \rightarrow \bfitL 2(\Omega ) is bounded, and hence \bfitE  \star :
\bfitL 2(\Omega ) \rightarrow \bfitV  - s(\Gamma ) is also bounded. Therefore, \bfitE  \star \bfitE : \bfitV s(\Gamma ) \rightarrow \bfitV  - s(\Gamma ) is bounded.
Furthermore, setting s = 1/2, [32, Theorem 4] gives that for all \bfitu \in \bfitV 1/2(\Gamma ) we have

\| \bfitE  \star \bfitE \bfitu \| \bfitH  - 1/2(\Gamma ) \leqslant C\| \bfitu \| \bfitH 1/2(\Gamma ).(2.15)
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3. Stokes Dirichlet boundary control in \bfitV \bfzero (\Gamma ). In this section, we inves-
tigate the case \bfitU = \bfitV 0(\Gamma ). For \bfity d \in \bfitL 2(\Omega ) and \alpha > 0, our control problem reads

(3.1) min
\bfitu \in \bfitV 0(\Gamma )

J0(\bfitu ) =
1

2
\| \bfity \bfitu  - \bfity d\| 2\bfitL 2(\Omega ) +

\alpha 

2
\| \bfitu \| 2\bfitL 2(\Gamma ),

where \bfity \bfitu \in \bfitV 0(\Omega ) is the solution of the state equation (2.9). By (2.13) we have

J0(\bfitu ) =
1

2
(\bfitE  \star \bfitE \bfitu ,\bfitu )\Gamma  - (\bfitE  \star \bfity d,\bfitu )\Gamma +

c\Omega 
2

+
\alpha 

2
\| \bfitu \| 2\bfitL 2(\Gamma ) =: \bfitF (\bfitu ) +

\alpha 

2
\| \bfitu \| 2\bfitL 2(\Gamma ),

(3.2)

where c\Omega = \| \bfity d\| 2\bfitL 2(\Omega ) and \bfitF (\bfitu ) = 1
2 (\bfitE 

 \star \bfitE \bfitu ,\bfitu )\Gamma  - (\bfitE  \star \bfity d,\bfitu )\Gamma +
c\Omega 
2

is the tracking

term. Notice that here we have used the solution operator defined in (2.13) for s = 0:
\bfitE : \bfitV 0(\Gamma ) \rightarrow \bfitL 2(\Omega ). It is straightforward to prove that

\bfitF \prime (\bfitu )\bfitv = (\bfitE  \star \bfitE \bfitu ,\bfitv )\Gamma  - (\bfitE  \star \bfity d,\bfitv )\Gamma \forall \bfitu \in \bfitV 0(\Gamma ) and \bfitv \in \bfitV 0(\Gamma ).(3.3)

Although we are mainly interested in this work in regularization in the energy
space \bfitV 1/2(\Gamma ), the solution properties of the problem with \bfitV 0(\Gamma )-regularization are
also of interest in order to more clearly see the advantages and disadvantages of energy
space control problem. It is also interesting to see the differences between the Dirichlet
boundary control of the Poisson equation (cf. [1]) and of the Stokes system.

Using the strict convexity of the functional and the continuity of the control-to-
state mapping, which follows from Theorem 2.4, it is standard to prove the existence
of a unique solution \bfitu 0 \in \bfitV 0(\Gamma ) of problem (3.1). We also prove regularity results
below, and we show that the optimal control can be discontinuous at the corners of a
convex polygonal domain.

Theorem 3.1. Let \xi be the singular exponent for the Stokes operator, and let s \star 

be the exponent defined in (2.3). Suppose \bfity d \in \bfitH m(\Omega ) for some 0 \leqslant m < s \star , and let
\bfitu 0 \in \bfitV 0(\Gamma ) be the solution of problem (3.1). Then \bfitu 0 \in \bfitV s(\Gamma ) for all 0 \leqslant s < s \star ,
and there exist \bfity 0 \in \bfitV s+1/2(\Omega ), p0 \in (H1/2 - s(\Omega ) \cap L2

0(\Omega ))
\prime , \bfitz 0 \in \bfitV 1+t(\Omega ) \cap \bfitH 1

0 (\Omega ),
and q0 \in Ht(\Omega ) \cap L2

0(\Omega ), for all t \leqslant 1 + m such that t < \xi , that satisfy the state
equation

(3.4)  - \Delta \bfity 0 +\nabla p0 = 0 in \Omega , \nabla \cdot \bfity 0 = 0 in \Omega , \bfity 0 = \bfitu 0 on \Gamma ;

the adjoint state equation

(3.5)  - \Delta \bfitz 0 +\nabla q0 = \bfity 0  - \bfity d in \Omega , \nabla \cdot \bfitz 0 = 0 in \Omega , \bfitz 0 = 0 on \Gamma ;

and the optimality condition

(\alpha \bfitu 0  - (\partial \bfitn \bfitz 0  - q0\bfitn ),\bfitv )\Gamma = 0 \forall \bfitv \in \bfitV 0(\Gamma ).(3.6)

Moreover, there exists \lambda 0 \in R such that

\bfitu 0 =
1

\alpha 
(\partial \bfitn \bfitz 0  - (q0 + \lambda 0)\bfitn )

and

\bfitu 0 \in 
n\prod 

i=1

\bfitH t - 1/2(\Gamma i) \forall t \leqslant m+ 1 such that t < \xi .

Finally, if m > 0 and \Omega is convex, then \bfitu 0 is continuous at a corner xj if and only
if q0(xj) + \lambda 0 = 0.
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Here, the state equation must be understood in the transposition sense (2.9),
while the adjoint state equation must be understood in the variational sense.

Proof. By the definition of J0(\bfitu ) in (3.2) and (3.3), the derivative of the objective
functional J0(\bfitu ) for \bfitu ,\bfitv \in \bfitV 0(\Gamma ) can be written as

J \prime 
0(\bfitu )\bfitv = (\alpha \bfitu +\bfitE  \star \bfitE \bfitu ,\bfitv )\Gamma  - (\bfitE  \star \bfity d,\bfitv )\Gamma = (\alpha \bfitu +\bfitE  \star (\bfitE \bfitu  - \bfity d),\bfitv )\Gamma 

= (\alpha \bfitu  - (\partial \bfitn \bfitz (\bfity \bfitu  - \bfity d) - q(\bfity \bfitu  - \bfity d)\bfitn ),\bfitv )\Gamma ,

where we used (2.13) and (2.14) in the last equality. The optimality conditions follow
in a standard way. For \bfitv \in \bfitV 0(\Gamma ) we have that (\lambda \bfitn , \bfitv )\Gamma = 0 for any \lambda \in R. Taking
\lambda 0 to equal the constant \lambda (\bfitz (\bfity 0 - \bfity d), q(\bfity 0 - \bfity d)), which is defined in (2.5), and using
(3.6), we also have that

(\alpha \bfitu 0  - (\partial \bfitn \bfitz 0  - (q0 + \lambda 0)\bfitn ),\bfitv )\Gamma = 0 \forall \bfitv \in \bfitV 0(\Gamma ).

This implies that \alpha \bfitu 0 is the \bfitL 2(\Gamma )-projection of \partial \bfitn \bfitz 0  - (q0 + \lambda 0)\bfitn onto \bfitV 0(\Gamma ).
Since \partial \bfitn \bfitz 0  - (q0 + \lambda 0)\bfitn \in \bfitV 0(\Gamma ), we have

\bfitu 0 =
1

\alpha 
(\partial \bfitn \bfitz 0  - (q0 + \lambda 0)\bfitn ).

The regularity follows from a bootstrapping argument: From Theorem 2.4 we
have that \bfity 0 \in \bfitV 1/2(\Omega ). Using this and taking into account that \bfity d \in \bfitH m(\Omega ), we
have from Theorem 2.2 that \bfitz 0 \in \bfitV 1+t(\Omega ), q0 \in Ht(\Omega )\cap L2

0(\Omega ) for all t \leqslant 1+m such
that t < \xi .

From trace theory, and since 1/2 < t, it is clear that

\partial \bfitn \bfitz 0  - (q0 + \lambda 0)\bfitn \in 
n\prod 

i=1

\bfitH t - 1/2(\Gamma i) \forall t \leqslant m+ 1 such that t < \xi .

For t < 1, and taking s = t - 1/2, we have that s < s \star and that
\prod n

i=1\bfitH 
s(\Gamma i) =\bfitH 

s(\Gamma ).
Therefore, (3.6) gives that u0 \in \bfitH s(\Gamma ) for all s < s \star . The regularity of the optimal
state follows from Theorem 2.4.

If m > 0 and \Omega is convex, then the gradient of the dual pressure q0 is a function
in Ht - 1(\Omega ) with t - 1 > 0. So we have that each component zi, i = 1, 2, of \bfitz 0 satisfies
\Delta zi \in Ht - 1(\Omega ) and zi = 0 on \Gamma . Therefore, we have that \partial \bfitn z

i(xj) = 0, i = 1, 2,
for every convex corner xj (cf. [7, Appendix A]); also, from [7, Lemma A2] and the
Sobolev embedding theorem we have that the normal derivative of \bfitz 0 is a continuous
function. For the pressure, the situation is slightly different. From trace theory we
have that q0 \in Ht - 1/2(\Gamma ), and by Sobolev embeddings we know q0 is a continuous
function. Nevertheless, the vector \bfitn is discontinuous at the corners, and hence the
(q0 + \lambda 0)\bfitn can only be continuous at xj if q0(xj) =  - \lambda 0.

Remark 3.2. This regularity of the optimal control in a convex domain is essen-
tially different from the regularity achieved by the optimal control of problems related
to the Poisson equation. The solution of a problem governed by the Poisson equation
must be a continuous function, which is also zero at the corners. In our case, the opti-
mal control may show discontinuities. See Figure 2 for an example with a continuous
control and Figure 3 for a problem example with discontinuous control.

Remark 3.3. Notice that the pressure is determined up to a constant. We choose
the pressure such that (q0, 1) = 0, but any other representative is of course possible.
The value of \lambda 0 would change accordingly, so that q0 + \lambda 0 does not vary.
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4. Stokes Dirichlet boundary control in the energy space. Next, we con-
sider Stokes Dirichlet boundary control with a different regularization term:

min
\bfitu \in \bfitV 1/2(\Gamma )

J1/2(\bfitu ) =
1

2
\| \bfity \bfitu  - \bfity d\| 2\bfitL 2(\Omega ) +

\alpha 

2
| \bfitu | 2\bfitH 1/2(\Gamma ),(4.1)

where again we assume \bfity d \in \bfitL 2(\Omega ) and \alpha > 0.
There are different kinds of definitions for the \bfitH 1/2(\Gamma )-norm; e.g., one may use

the Sobolev--Slobodeckii norm or the Fourier transform. The key point to the study
of the optimization problem (4.1) is to find an appropriate representation for the
\bfitH 1/2(\Gamma )-norm that enables us to derive the first order optimality condition. Here we
follow the idea of [49] and introduce a Stokes version of the Steklov--Poincar\'e operator
(cf. [3, 18]) associated with (2.9).

It follows from Theorem 2.4 that for any given control \bfitu \in \bfitV 1/2(\Gamma ), there exists
a unique state (\bfity \bfitu , p\bfitu ) \in \bfitV 1(\Omega )\times L2

0(\Omega ) that satisfies

\| \bfity \bfitu \| \bfitH 1(\Omega ) + \| p\bfitu \| L2(\Omega ) \leqslant C\| \bfitu \| \bfitH 1/2(\Gamma ).(4.2)

Given \bfitu \in \bfitV 1/2(\Gamma ), we define \bfitD \bfitu \in \bfitH  - 1/2(\Gamma ) by

\langle \bfitD \bfitu ,\bfitv \rangle \Gamma = (\nabla \bfity \bfitu ,\nabla \bfitR \bfitv ) - (p\bfitu ,\nabla \cdot \bfitR \bfitv ) \forall \bfitv \in \bfitH 1/2(\Gamma ),(4.3)

where \bfitR is any continuous extension operator from \bfitH 1/2(\Gamma ) to \bfitH 1(\Omega ).

Lemma 4.1. The definition of \bfitD is independent of the chosen extension \bfitR and

\bfitD \bfitu = \bfitt (0,\bfitu ),(4.4a)

\| \bfitD \bfitu \| \bfitH  - 1/2(\Gamma ) \leqslant C\| \bfitu \| \bfitH 1/2(\Gamma ) \forall \bfitu \in \bfitV 1/2(\Gamma ).(4.4b)

Proof. First of all, writing the PDE in divergence form as

 - \nabla \cdot 
\bigl( 
(\nabla +\nabla T )\bfity \bfitu  - p\bfitu \scrI 

\bigr) 
= 0

gives (\nabla +\nabla T )\bfity \bfitu  - p\bfitu \scrI \in \bfitH (div; \Omega ), and so this function has a well-defined normal
trace in \bfitH  - 1/2(\Gamma ). It is remarkable too that it is possible to define a variational
normal derivative \partial \bfitn \bfity \bfitu \in \bfitH  - 1/2(\Gamma ) (cf. [7, Lemma A6]), and hence p\bfitu \bfitn is also a
well-defined element in \bfitH  - 1/2(\Gamma ).

Next, for all \bfitu ,\bfitv \in \bfitH 1/2(\Gamma ), integrating by parts in the definition of \bfitD \bfitu gives

\langle \bfitD \bfitu ,\bfitv \rangle \Gamma =

\int 
\Omega 

\bigl( 
\nabla \bfity \bfitu \nabla \bfitR \bfitv  - p\bfitu \nabla \cdot \bfitR \bfitv 

\bigr) 
(4.5)

=

\int 
\Omega 

\bigl( 
 - \Delta \bfity \bfitu +\nabla p\bfitu 

\bigr) 
\bfitR \bfitv + \langle \partial \bfitn \bfity \bfitu  - p\bfitu \bfitn ,\bfitv \rangle \Gamma = \langle \partial \bfitn \bfity \bfitu  - p\bfitu \bfitn ,\bfitv \rangle \Gamma ,

where we used  - \Delta \bfity \bfitu +\nabla p\bfitu = 0. This proves that the definition of \bfitD is independent
of the chosen extension \bfitR , and (4.4a) holds by (2.12) and (4.5).

Finally, we prove (4.4b). Using the definition of \bfitD in (4.3), the bound in (4.2),
and the continuity of \bfitR :\bfitH 1/2(\Gamma ) \rightarrow \bfitH 1(\Omega ) gives

\| \bfitD \bfitu \| \bfitH  - 1/2(\Gamma ) = sup
\bfzero \not =\bfitv \in \bfitH 1/2(\Gamma )

\langle \bfitD \bfitu ,\bfitv \rangle \Gamma 
\| \bfitv \| \bfitH 1/2(\Gamma )

\leqslant C sup
\bfzero \not =\bfitv \in \bfitH 1/2(\Gamma )

(\| \bfity \bfitu \| \bfitH 1(\Omega ) + \| p\bfitu \| L2(\Omega ))| \bfitR \bfitv | \bfitH 1(\Omega )

\| \bfitv \| \bfitH 1/2(\Gamma )

\leqslant C(\| \bfity \bfitu \| \bfitH 1(\Omega ) + \| p\bfitu \| L2(\Omega ))

\leqslant C\| \bfitu \| \bfitH 1/2(\Gamma ).
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Lemma 4.2. The mapping \langle \bfitD \bfitu ,\bfitu \rangle 1/2\Gamma is a seminorm in \bfitV 1/2(\Gamma ) equivalent to
the \bfitH 1/2(\Gamma ) seminorm.

Proof. Let \bfitQ be the projection of \bfitH 1/2(\Gamma ) onto \bfitV 1/2(\Gamma ), and set \bfitR \bfitv = \bfity \bfitQ \bfitv .
Notice that \nabla \cdot \bfitR \bfitv = 0, and if \bfitv \in \bfitV 1/2(\Gamma ), then \bfitR \bfitv = \bfity \bfitv . By (4.3) we have

\langle \bfitD \bfitu ,\bfitv \rangle \Gamma = (\nabla \bfity \bfitu ,\nabla \bfity \bfitv ) \forall \bfitv \in \bfitV 1/2(\Gamma ),(4.6)

and thus we have that \langle \bfitD \bfitu ,\bfitu \rangle 1/2\Gamma is a seminorm in \bfitV 1/2(\Gamma ) equivalent to the\bfitH 1/2(\Gamma )
seminorm.

Proceeding similarly to the derivation of (3.2), the precise formulation of our
control problem is given by

min
\bfitu \in \bfitV 1/2(\Gamma )

J1/2(\bfitu ) =
1

2
\| \bfity \bfitu  - \bfity d\| 2\bfitL 2(\Omega ) +

\alpha 

2
\langle \bfitD \bfitu ,\bfitu \rangle \Gamma =

1

2
\langle \bfitT \bfitu ,\bfitu \rangle \Gamma  - \langle \bfitw ,\bfitu \rangle \Gamma +

c\Omega 
2
,

(4.7)

where c\Omega = \| \bfity d\| 2\bfitL 2(\Omega ) and

\bfitT = \alpha \bfitD +\bfitE  \star \bfitE , \bfitw = \bfitE  \star \bfity d \in \bfitV  - 1/2(\Gamma ).(4.8)

Notice that here we have used the solution operator defined in (2.13) for s = 1/2:
\bfitE : \bfitV 1/2(\Gamma ) \rightarrow \bfitL 2(\Omega ). The functional being convex and coercive implies that problem
(4.7) has a unique solution \=\bfitu \in \bfitV 1/2(\Gamma ).

We also note that, by (4.6), an alternative way to write the functional for \bfitu \in 
\bfitV 1/2(\Gamma ) is

J1/2(\bfitu ) =
1

2
\| \bfity \bfitu  - \bfity d\| 2\bfitL 2(\Omega ) +

\alpha 

2
\| \nabla \bfity \bfitu \| 2\bfitL 2(\Omega ).

Lemma 4.3. There exist constants C1, C2 > 0 such that for every \bfitu ,\bfitv \in \bfitV 1/2(\Gamma ),

\langle \bfitT \bfitu ,\bfitv \rangle \Gamma \leq C1\| \bfitu \| \bfitV 1/2(\Gamma )\| \bfitv \| \bfitV 1/2(\Gamma )

and
\langle \bfitT \bfitu ,\bfitu \rangle \Gamma \geq C2\| \bfitu \| 2\bfitV 1/2(\Gamma ).

Proof. The first property follows immediately from the definition of \bfitT . Notice
that \bfitD maps \bfitV 1/2(\Gamma ) into \bfitH  - 1/2(\Gamma ) which is continuously embedded in \bfitV  - 1/2(\Gamma )
by duality.

Next, by (4.8), (2.13), and (4.6) we have

\langle \bfitT \bfitu ,\bfitu \rangle \Gamma = \| \bfitE \bfitu \| 2\bfitL 2(\Omega ) + \alpha \langle \bfitD \bfitu ,\bfitu \rangle \Gamma = \| \bfity \bfitu \| 2\bfitL 2(\Omega ) + \alpha \| \nabla \bfity \bfitu \| 2\bfitL 2(\Omega )

\geqslant min(1, \alpha )\| \bfity \bfitu \| 2\bfitH 1(\Omega ) \geqslant C2\| \bfitu \| 2\bfitH 1/2(\Gamma ) = C2\| \bfitu \| 2\bfitV 1/2(\Gamma ),

where we used the trace theorem in the last inequality.

Next, we give more insights into the structure of the solution to problem (4.7).
The functional J1/2 in problem (4.7) is Fr\'echet differentiable with respect to \bfitu . Fur-

thermore, for all \bfitu ,\bfitv \in \bfitV 1/2(\Gamma ), by (4.7) and (4.8) we have

J \prime 
1/2(\bfitu )\bfitv = \langle \bfitT \bfitu  - \bfitw ,\bfitv \rangle \Gamma = \langle \alpha \bfitD \bfitu +\bfitE  \star (\bfitE \bfitu  - \bfity d),\bfitv \rangle \Gamma 

= \langle \alpha (\partial \bfitn \bfity \bfitu  - p\bfitu \bfitn ) - (\partial \bfitn \bfitz (\bfity \bfitu  - \bfity d) - q(\bfity \bfitu  - \bfity d)\bfitn ),\bfitv \rangle \Gamma ,

where we used (4.5), (2.13), and (2.14) in the last equality.
Now we are in the position to derive the regularity of the solution to the mini-

mization problem (4.7).
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Theorem 4.4. Let \xi be the singular exponent for the Stokes operator defined in
section 2. Assume \bfity d \in \bfitH m(\Omega ) for some 0 \leqslant m < min\{ 2, 1+\xi \} , and let \=\bfitu \in \bfitV 1/2(\Gamma )
be the optimal solution of problem ( 4.7). Then \=\bfitu \in \bfitV 1/2+r(\Gamma ) for all r < min\{ 1, \xi \} 
and there exist \=\bfity \in \bfitV 1+r(\Omega ), \=p \in Hr(\Omega ) \cap L2

0(\Omega ), \=\bfitz \in \bfitV 1+t(\Omega ) \cap \bfitH 1
0 (\Omega ), and

\=q \in Ht(\Omega ) \cap L2
0(\Omega ) for all t \leqslant 1 +m such that t < \xi that satisfy the state equation

 - \Delta \=\bfity +\nabla \=p = 0 in \Omega , \nabla \cdot \=\bfity = 0 in \Omega , \=\bfity = \=\bfitu on \Gamma ;

the adjoint state equation

 - \Delta \=\bfitz +\nabla \=q = \=\bfity  - \bfity d in \Omega , \nabla \cdot \=\bfitz = 0 in \Omega , \=\bfitz = 0 on \Gamma ;

and the optimality condition

\langle \alpha (\partial \bfitn \=\bfity  - \=p\bfitn ) - (\partial \bfitn \=\bfitz  - \=q\bfitn ),\bfitv \rangle \Gamma = 0 \forall \bfitv \in \bfitV 1/2(\Gamma ).

Moreover, there exists \=\lambda \in R such that

(4.9) \alpha (\partial \bfitn \=\bfity  - \=p\bfitn ) = \partial \bfitn \=\bfitz  - (\=q + \=\lambda )\bfitn .

Here, both the state equation and the adjoint state equation must be understood
in the variational sense.

Proof. The minimization problem, being a convex problem, is equivalent to the
following Euler--Lagrange equation:

J \prime 
1/2(\bfitu )\bfitv = \langle \bfitT \bfitu  - \bfitw ,\bfitv \rangle \Gamma = 0 \forall \bfitv \in \bfitV 1/2(\Gamma ).(4.10)

The existence of a unique solution follows immediately from the Lax--Milgram theorem
and Lemma 4.3. First order optimality conditions follow in a standard way. Taking
\=\lambda = \lambda (\=z, \=q), we deduce relation (4.9) as we did for the \bfitL 2(\Gamma )-regularized problem.

Since \=\bfitu \in \bfitV 1/2(\Gamma ), by Theorem 2.4 we have that \=\bfity \in \bfitV 1(\Omega ). From Theorems 2.1
and 2.2, we obtain \=\bfitz \in \bfitV 1+t(\Omega ) and \=q \in Ht(\Omega ) \cap L2

0(\Omega ) for all t \leqslant min\{ 2, 1 + m\} 
with t < \xi . Using the trace theorem (see [29, Theorem 1.5.2.1]) we arrive at

\bfite := \partial \bfitn \=\bfitz  - (\=q + \=\lambda )\bfitn \in 
n\prod 

i=1

\bfitH t - 1/2(\Gamma i) \subset 
n\prod 

i=1

\bfitH r - 1/2(\Gamma i) \forall r < min\{ 1, \xi \} .

From the trace theorem again on polygons (see [29, Theorem 1.5.2.1] and also [22,
Remark 1.1, Chapter 1]), we know that there exists some \bfitY \in \bfitH 1+r(\Omega ) such that
\partial \bfitn \bfitY = \bfite /\alpha on \Gamma . So we have that \bfitF = \Delta \bfitY \in \bfitH r - 1(\Omega ) and H =  - \nabla \cdot \bfitY \in Hr(\Omega ).
Using the state equation and the optimality condition (4.9), we deduce that the pair
(\=\bfity  - \bfitY , \=p) satisfies

 - \Delta (\=\bfity  - \bfitY ) +\nabla \=p = \bfitF in \Omega , \nabla \cdot (\=\bfity  - \bfitY ) = H in \Omega , \partial \bfitn (\=\bfity  - \bfitY ) - \=p\bfitn = 0 on \Gamma .

This problem has a variational solution, which is unique up to a constant. Noticing
that the singular exponents for the Stokes problem with Neumann boundary condi-
tions are the same as those for Dirichlet boundary conditions (see, e.g., [50, pages
191--192]), we deduce from Theorem 2.1 that \=\bfity \in \bfitH 1+r(\Omega ). From the standard trace
theorem, we have that \=\bfitu \in \bfitH r+1/2(\Gamma ).

Remark 4.5. In this case, the optimal control is a continuous function even for
problems posed on nonconvex domains; see the second subfigure of Figure 4 in Ex-
ample 6.3 below.

D
ow

nl
oa

de
d 

12
/2

1/
22

 to
 1

28
.1

75
.1

6.
24

0 
. R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

DIRICHLET BOUNDARY CONTROL OF THE ENERGY SPACE 461

In order to use the Aubin--Nitsche technique to obtain error estimates in \bfitL 2(\Gamma )
for the control variable, we are also going to study, for any given \bfiteta \in \bfitL 2(\Gamma ), the
regularity of the unique solution \bfitu \bfiteta \in \bfitV 1/2(\Gamma ) of the problem

\langle \bfitT \bfitu \bfiteta ,\bfitv \rangle \Gamma = (\bfiteta ,\bfitv )\Gamma \forall \bfitv \in \bfitV 1/2(\Gamma ).

A straightforward computation, using the definitions of \bfitT , \bfitD , and \bfitE , gives

\langle \bfitT \bfitu \bfiteta  - \bfiteta ,\bfitv \rangle \Gamma = \langle \alpha (\partial \bfitn \bfity \bfitu \bfiteta  - p\bfitu \bfiteta \bfitn ) - (\partial \bfitn \bfitz (\bfity \bfitu \bfiteta ) - q(\bfity \bfitu \bfiteta )\bfitn ) - \bfiteta ,\bfitv \rangle \Gamma 

for all \bfitv \in \bfitV 1/2(\Gamma ). So we have that there exists some \lambda \in R such that (\bfity \bfitu \bfiteta , p\bfitu \bfiteta )
solves the following Neumann problem:

 - \Delta \bfity \bfitu \bfiteta +\nabla p\bfitu \bfiteta = 0 in \Omega , \nabla \cdot \bfity \bfitu \bfiteta = 0 in \Omega ,

\alpha (\partial \bfitn \bfity \bfitu \bfiteta  - p\bfitu \bfiteta \bfitn ) = \partial \bfitn \bfitz (\bfity \bfitu \bfiteta ) - (q(\bfity \bfitu \bfiteta ) + \lambda )\bfitn + \bfiteta on \Gamma .

Now we can follow the reasoning of Theorem 4.4. In this case

\bfite := \partial \bfitn \bfitz (\bfity \bfitu \bfiteta ) - (q(\bfity \bfitu \bfiteta ) + \lambda )\bfitn + \bfiteta \in \bfitL 2(\Gamma ),

so we are in the same situation as before, but with t = 1/2, which leads to \bfitu \bfiteta \in \bfitH 1(\Gamma ).
Notice that we do not need convexity to obtain this result.

5. Finite element method for the Stokes Dirichlet energy space control
problem. In this section, we consider finite element approximations to the optimal
control problem (4.7). We also briefly mention finite element approximations to the
problem (3.1) in Remarks 5.5, 5.6, and 5.12.

5.1. Discretization of the problem. First, we assume that the finite dimen-
sional spaces \bfitY h \subset \bfitH 1(\Omega ) and Wh \subset L2(\Omega ) satisfy the inf-sup condition: For each
ph \in Wh there exists a \bfity h \in \bfitY h such that\int 

\Omega 

ph\nabla \cdot \bfity hdx = \| ph\| 2L2(\Omega ) and \| \bfity h\| \bfitH 1(\Omega ) \leqslant C\| ph\| L2(\Omega ).

It is well known that the \scrP 1+ bubble -\scrP 1 ``Mini"" element or the \scrP k+1  - \scrP k, k \geqslant 1,
``Taylor--Hood"" element satisfies the inf-sup condition.

Let \bfitY 0
h := \bfitY h \cap \bfitH 1

0 (\Omega ), W
0
h = Wh \cap L2

0(\Omega ), and \bfitY h(\Gamma ) \subset \bfitH 1/2(\Gamma ) be the trace
of \bfitY h. Let the discrete control space be given by

\bfitU h := \{ \bfitu h \in \bfitY h(\Gamma ) : (\bfitu h \cdot \bfitn , 1)\Gamma = 0\} .(5.1)

Next, we define the discrete optimization problem:

(5.2) min
\bfitu h\in \bfitU h

Jh(\bfitu h) =
1

2
\| \bfitE h\bfitu h  - \bfity d,h\| 2\bfitL 2(\Omega ) +

\alpha 

2
(\bfitD h\bfitu h,\bfitu h)\Gamma ,

where \bfity d,h \in \bfitY h is a suitable approximation of \bfity d in the sense that \| \bfity d,h - \bfity d\| \bfitL 2(\Omega ) \leqslant 
Chr, and the discrete operators \bfitD h and \bfitE h are given below. Here, and in the rest of
the paper, r < min\{ 1, \xi \} is the exponent obtained in Theorem 4.4.

We define the operators \bfitE h :\bfitH 1/2(\Gamma ) \rightarrow \bfitL 2(\Omega ) and Ph :\bfitH 1/2(\Gamma ) \rightarrow W 0
h by

\bfitE h\bfitu = \bfity h, Ph\bfitu = ph.(5.3)
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Here (\bfity h, ph)\in \bfitY h \times W 0
h is the finite element approximation of (\bfity \bfitu , p\bfitu ), i.e., (\bfity h, ph)

satisfies

(\nabla \bfity h,\nabla \bfitzeta h) - (ph,\nabla \cdot \bfitzeta h) = 0 \forall \bfitzeta h \in \bfitY 0
h ,

(\chi h,\nabla \cdot \bfity h) = 0 \forall \chi h \in W 0
h ,

\bfity h = \bfitQ h\bfitu on \Gamma ,

(5.4)

where \bfitQ h\bfitu is the \bfitL 2-projection of \bfitu onto \bfitU h.
Next, we give the discrete approximation of the stress force on the boundary, as

introduced in [32, section 3]. For any \bfitg \in \bfitL 2(\Omega ), we define (\bfitz h(\bfitg ), qh(\bfitg )) \in \bfitY 0
h \times W 0

h

to be the unique solution of

(\nabla \bfitz h(\bfitg ),\nabla \bfitzeta h) - (qh(\bfitg ),\nabla \cdot \bfitzeta h) = (\bfitg , \bfitzeta h) \forall \bfitzeta h \in \bfitY 0
h ,

(\chi h,\nabla \cdot \bfitz h(\bfitg )) = 0 \forall \chi h \in W 0
h .

For \bfitg \in \bfitL 2(\Omega ) and \bfitu \in \bfitV 1/2(\Gamma ), let \bfitpsi h = \bfitz h(\bfitg ) +\bfitE h\bfitu and \phi h = qh(\bfitg ) + Ph\bfitu . We
define \bfitt h(\bfitg ,\bfitu ) \in \bfitY h(\Gamma ) as the approximation of the stress force on the boundary of
the pair (\bfitpsi h, \phi h):

(\bfitt h(\bfitg ,\bfitu ), \bfitzeta h)\Gamma = (\nabla \bfitpsi h,\nabla \bfitzeta h) - (\phi h,\nabla \cdot \bfitzeta h) - (\bfitg , \bfitzeta h) \forall \bfitzeta h \in \bfitY h.(5.5)

Notice that this is exactly the concept of discrete normal derivative; see [8] or,
better suited for our purposes, [53].

Remark 5.1. It is also important to notice that, for \bfitv h \in \bfitY h(\Gamma ), we have that

(\bfitt h(\bfitg ,\bfitu ),\bfitv h)\Gamma = (\nabla \bfitpsi h,\nabla \bfitR h\bfitv h) - (\phi h,\nabla \cdot \bfitR h\bfitv h) - (\bfitg ,\bfitR h\bfitv h) \forall \bfitv h \in \bfitY h(\Gamma )
(5.6)

for any linear extension operator \bfitR h : \bfitY h(\Gamma ) \rightarrow \bfitY h. For instance, \bfitR h could be the
discrete harmonic extension, the operator \bfitE h as in Lemma 5.3, or the zero extension,
which we use in section 5.2.

For \bfitu \in \bfitV 1/2(\Gamma ) we define \bfitD h as the approximation of the stress force on the
boundary of the pair (\bfitE h\bfitu , Ph\bfitu ):

\bfitD h\bfitu = \bfitt h(0,\bfitu ).(5.7)

Lemma 5.2. The mapping \bfitu h \mapsto \rightarrow (\bfitD h\bfitu h,\bfitu h)
1/2
\Gamma is a seminorm in \bfitU h.

Proof. Notice that for \bfitu h \in \bfitU h \subset \bfitV 1/2(\Gamma ), using that \bfitE h\bfitu h \in \bfitY h and Ph\bfitu h \in 
W 0

h , by (5.7), (5.3), and (5.5) we have

(\bfitD h\bfitu h,\bfitu h)\Gamma = (\bfitt h(0,\bfitu h),\bfitE h\bfitu h)\Gamma = (\nabla \bfitE h\bfitu h,\nabla \bfitE h\bfitu h) - (Ph\bfitu h,\nabla \cdot \bfitE h\bfitu h)

= (\nabla \bfitE h\bfitu h,\nabla \bfitE h\bfitu h),

where we used (qh,\nabla \cdot \bfitE h\bfitu h) = 0 for all qh \in W 0
h in the last equality. The assertion

now follows trivially from the linearity of \bfitE h.

Lemma 5.3. For every \bfitg \in \bfitL 2(\Omega ) and \bfitv h \in \bfitU h, we have that

(\bfitg ,\bfitE h\bfitv h) = ( - \bfitt h(\bfitg ,0),\bfitv h)\Gamma ,

and the adjoint of the restriction of \bfitE h to \bfitU h is given by

\bfitE  \star 
h\bfitg =  - \bfitt h(\bfitg ,0).(5.8)
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Proof. We define \bfitG h\bfitg as the discrete approximation of the negative stress force
on the boundary of the pair (\bfitz h(\bfitg ), qh(\bfitg )):

\bfitG h\bfitg =  - \bfitt h(\bfitg ,0).

Consider \bfitv h \in \bfitU h; notice that \bfitE h\bfitv h \in \bfitY h, and by definition it equals \bfitv h on the
boundary. Using (5.6) for \bfitR h = \bfitE h and the facts qh(\bfitg ), Ph\bfitv h \in W 0

h , which imply
that both (qh(\bfitg ),\nabla \cdot \bfitE h\bfitv h) = 0 and (Ph\bfitv h,\nabla \cdot zh(\bfitg ) = 0, we obtain

(\bfitG h\bfitg ,\bfitv h)\Gamma =  - (\nabla \bfitz h(\bfitg ),\nabla \bfitE h\bfitv h) + (qh(\bfitg ),\nabla \cdot \bfitE h\bfitv h) + (\bfitg ,\bfitE h\bfitv h)

=  - (Ph\bfitv h,\nabla \cdot \bfitz h(\bfitg )) + (\bfitg ,\bfitE h\bfitv h)

= (\bfitg ,\bfitE h\bfitv h),

and the proof is complete.

Lemma 5.4. Problem (5.2) has a unique solution \=\bfitu h.

Proof. By Lemma 5.2, it is standard to deduce that Jh is coercive in \bfitU h. Since
it is also strictly convex, problem (5.2) has a unique solution \=\bfitu h.

Following the same notation in section 4, we define

\bfitT h = \alpha \bfitD h +\bfitE  \star 
h\bfitE h, \bfitw h = \bfitE  \star 

h\bfity d,h.(5.9)

Then the problem (5.2) can be rewritten as

Jh(\bfitu h) =
1

2
(\bfitT h\bfitu h,\bfitu h)\Gamma  - (\bfitw h,\bfitu h)\Gamma +

1

2
\| \bfity d,h\| 2\bfitL 2(\Omega ),(5.10)

and the unique solution \=\bfitu h of the discrete problem satisfies the first order optimality
condition

(\bfitT h \=\bfitu h,\bfitv h)\Gamma = (\bfitw h,\bfitv h)\Gamma \forall \bfitv h \in \bfitU h.(5.11)

Remark 5.5. The discretization of the problem (3.1) is done in the same way. The
solution of the discrete problem satisfies

(\alpha \bfitu 0h +\bfitE  \star 
h\bfitE h\bfitu 0h,\bfitv h)\Gamma = (\bfitw h,\bfitv h)\Gamma \forall \bfitv h \in \bfitU h.

Thanks to the remarkable result [4, Theorem 5.2], the approximation of the trans-
position solution can be done using the discrete weak formulation given to compute
\bfitE h.

5.2. Efficient computation of the gradient of the objective functional.
Define N = dim\bfitY h, M = dimWh, and N\Gamma = dim\bfitY h(\Gamma ). Let \scrT \in RN\Gamma \times N\Gamma be the
matrix representation of \bfitT h, i.e., v

T\scrT u = (\bfitT h\bfitu h,\bfitv h)\Gamma for all \bfitu h and \bfitv h \in \bfitY h(\Gamma ).
Let \scrM denote the mass matrix representing the standard inner product in \bfitL 2(\Omega ),

and let \scrK denote the stiffness matrix representing the vector Laplace operator on the
finite element space \bfitY h. Additionally, \scrB denotes the matrix representation of the
divergence operator on the involved finite element spaces \bfitY h and Wh. We impose
the condition pM = 0, and instead of \scrB , we use the corresponding \~\scrB eliminating row
M . For \scrX \in \{ \scrM ,\scrK , \~\scrB , \~\scrB T \} , denote \scrX 00, \scrX \Gamma \Gamma , \scrX \Gamma 0, \scrX 0\Gamma , respectively, the submatrices
whose entries are indexed in interior and/or boundary nodes and, following MATLAB
colon notation, \scrX 0:,\scrX :0, \scrX \Gamma : and \scrX :\Gamma denote the submatrices whose row or column
indexes are interior or boundary, respectively. Finally, we denote \scrS \Gamma \Gamma the mass matrix
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representing the standard inner product in L2(\Gamma ). Notice also that we will use the
conventions \~\scrB T

0: = ( \~\scrB :0)
T and \~\scrB T

\Gamma : = ( \~\scrB :\Gamma )
T .

Let w \in RN\Gamma be the vector representation of \bfitw h, and define b = \scrS \Gamma \Gamma w so that
uT b = (\bfitw h,\bfitu h)\Gamma for all \bfitu h \in \bfitY h(\Gamma ). Since the normal vector \bfitn is piecewise constant,
we know that there exists c \in RN\Gamma such that uT c = (\bfitu h,\bfitn )\Gamma for all \bfitu h \in \bfitY h(\Gamma ).
Then the problem (5.10) is equivalent to\left\{   min

1

2
uT\scrT u - uT b,

u \in RN\Gamma , uT c = 0.
(5.12)

We show how to compute b and \scrT u.
Given u, the vector representation of \bfitu h \in \bfitY h(\Gamma ), its related state and pressure

can be computed by solving, for (y
I
, \~p),

\scrK 00yI +
\~\scrB T
0:\~p =  - \scrK T

\Gamma 0u,
\~\scrB :0yI =  - \~\scrB :\Gamma u

and recovering y = (y
I
, u)T . Given y, the vector representation of \bfity h \in \bfitY h, the dual

state and pressure (\bfitz h(\bfity h), qh(\bfity h)) can be computed by solving

\scrK 00z + \~\scrB T
0:\~q = \scrM 0:y, \~\scrB :0z = 0.

For an efficient computation, it is important to consider the discrete extension
operator \bfitR h\bfitv h \in \bfitY h such that \bfitR h\bfitv h = \bfitv h on \Gamma and \bfitR h\bfitv h = 0 in the interior nodes
of \Omega ; see Remark 5.1.

By the definition of \bfitw h in (5.9) and using (5.8) and (5.6) we have

(\bfitw h,\bfitv h)\Gamma = (\bfitE  \star 
h\bfity d,h,\bfitv h)\Gamma 

=  - (\nabla \bfitz h(\bfity d,h),\nabla \bfitR h\bfitv h) + (qh(\bfity d,h),\nabla \cdot \bfitR h\bfitv h) + (\bfity d,h,\bfitR h\bfitv h)

= ( - \scrK \Gamma 0zd  - \~\scrB T
\Gamma :\~qd +\scrM \Gamma :yd) \cdot v,

where (zd, \~qd) is the vector representation of (\bfitz h(\bfity d,h), qh(\bfity d,h)). In the same way,
using (5.3) and denoting (z, \~q) the vector representation of (\bfitz h(\bfity h), qh(\bfity h)),

(\bfitE  \star 
h\bfitE h\bfitu h,\bfitv h)\Gamma = (\bfitE  \star 

h\bfity h,\bfitv h)\Gamma = ( - \scrK \Gamma 0z  - \~\scrB T
\Gamma :\~q +\scrM \Gamma :y) \cdot v.

Finally, to obtain the matrix representation of the perturbed Steklov--Poincar\'e oper-
ator \bfitD h we use (5.7) and (5.6) to obtain

(\bfitD h\bfitu h,\bfitv h)\Gamma = (\nabla \bfitE h\bfitu h,\nabla \bfitR h\bfitv h) - (Ph\bfitu h,\nabla \cdot \bfitR h\bfitv h) = (\scrK \Gamma :y + \~\scrB T
\Gamma :\~p) \cdot v.

The Lagrange multiplier related to the constraint, which plays a role in the case
of \bfitL 2(\Gamma )-regularization (see Remark 3.3), can also be recovered by means of

\lambda =
cT (\scrT u - b)

cT c
.

Remark 5.6. To solve the \bfitL 2-regularized problem, the procedure is very similar.
The only difference (cf. [45]) is the computation of \scrT u, which is done in the following
way:

\scrT u = \alpha \scrS \Gamma \Gamma u+\scrM \Gamma :y  - \scrK \Gamma 0z  - \~\scrB T
\Gamma :\~q.

An approximation of the quantity \lambda 0 can be done using the Lagrange multiplier by
means of \lambda 0 =  - \lambda /| \Gamma | .
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5.3. Error analysis. Now, we state the main result in this section.

Theorem 5.7. Let \=\bfitu \in \bfitV r+1/2(\Gamma ), with r < min\{ 1, \xi \} , be the unique solution
of problem (4.7), and let \=\bfitu h \in \bfitU h be the solution of (5.2). If the conditions in
Theorem 4.4 are all fulfilled, then

\| \=\bfitu  - \=\bfitu h\| \bfitH 1/2(\Gamma ) \leqslant Chr\| \=\bfitu \| \bfitH r+1/2(\Gamma ).

We recall that \xi is the singular exponent for the Stokes operator defined in section
2.

To prove Theorem 5.7, we assume that the following approximation properties
are satisfied (see [22, Chapter II, section 1.3]):

(H1) There exists an operator rh \in \scrL (\bfitH 2(\Omega ),\bfitY h) such that

\| \bfity  - rh\bfity \| \bfitH 1(\Omega ) \leqslant Ch\| \bfity \| \bfitH 2(\Omega ) \forall \bfity \in \bfitH 2(\Omega ),

rh preserves the boundary conditions, and

\| \bfitu  - rh\bfitu \| \bfitH 1/2(\Gamma ) \leqslant Ch\| \bfitu \| \Pi n
i=1\bfitH 

3/2(\Gamma i) \forall \bfitu \in trace \bfitH 2(\Omega ).

(H2) There exists an operator Sh \in \scrL (L2(\Omega ),Wh) such that

\| p - Shp\| L2(\Omega ) \leqslant Ch\| p\| H1(\Omega ) \forall p \in H1(\Omega ).

These assumptions are satisfied by typical finite element spaces used to solve the
Stokes equation, such as the \scrP 1+ bubble -\scrP 1 ``Mini"" element or the \scrP k+1 - \scrP k, k \geqslant 1,
``Taylor--Hood"" element; see [22, Chapter II, sections. 4.1 and 4.2], where we take rh
to be the corresponding Lagrange interpolation operator and Sh the L2(\Omega )-projection.
We note also that, for r \leq 1, the \bfitL 2(\Gamma )-projection \bfitQ h satisfies the following standard
estimate:

\| \bfitQ h\bfitu  - \bfitu \| \bfitH 1/2(\Gamma ) \leqslant Chr\| \bfitu \| \bfitH r+1/2(\Gamma ) \forall \bfitu \in \bfitV r+1/2(\Gamma ).(5.13)

Lemma 5.8. There exists a constant C > 0 independent of h such that for any
\bfitg \in \bfitL 2(\Omega ) and \bfitv \in \bfitV 1/2(\Gamma ) we have

\| \bfitt h(\bfitg ,\bfitv )\| \bfitH  - 1/2(\Gamma ) \leqslant C(\| \bfitg \| \bfitL 2(\Omega ) + \| \bfitv \| \bfitH 1/2(\Gamma )).

Moreover, if \bfitv \in \bfitV r+1/2(\Gamma ), with r < min\{ 1, \xi \} , we have the error estimate

\| \bfitt (\bfitg ,\bfitv ) - \bfitt h(\bfitg ,\bfitv )\| \bfitH  - 1/2(\Gamma ) \leqslant Chr(\| \bfitg \| \bfitL 2(\Omega ) + \| \bfitv \| \bfitH r+1/2(\Gamma )).

Proof. The results follow directly from [32, Proposition 17] and Theorems 2.2
and 2.4.

In the next lemma, we collect the approximation properties of \bfitE h, \bfitE 
 \star 
h, and \bfitD h

that will be used to obtain the final error estimate.

Lemma 5.9. The approximate solution operators \bfitE h : \bfitV 1/2(\Gamma ) \rightarrow \bfitL 2(\Omega ), \bfitE  \star 
h :

\bfitL 2(\Omega ) \rightarrow \bfitV  - 1/2(\Gamma ), \bfitD h : \bfitH 1/2(\Gamma ) \rightarrow \bfitH  - 1/2(\Gamma ) are bounded, i.e., there exists a
constant C > 0 independent of h such that

\| \bfitE h\bfitu \| \bfitL 2(\Omega ) \leqslant C\| \bfitu \| \bfitH 1/2(\Gamma ),(5.14a)

\| \bfitE  \star 
h\bfitg \| \bfitH  - 1/2(\Gamma ) \leqslant C\| \bfitg \| \bfitL 2(\Omega ),(5.14b)

\| \bfitD h\bfitu \| \bfitH  - 1/2(\Gamma ) \leqslant C\| \bfitu \| \bfitH 1/2(\Gamma ).(5.14c)
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Moreover, for \bfitu \in \bfitV r+1/2(\Gamma ) and \bfitg \in \bfitH r(\Omega ), with r < min\{ 1, \xi \} , the following error
estimates hold:

\| \bfitE \bfitu  - \bfitE h\bfitu \| \bfitL 2(\Omega ) \leqslant Chr\| \bfitu \| \bfitH r+1/2(\Gamma ),(5.15a)

\| \bfitE  \star \bfitg  - \bfitE  \star 
h\bfitg \| \bfitH  - 1/2(\Gamma ) \leqslant Chr\| \bfitg \| \bfitH r(\Omega ),(5.15b)

\| \bfitD \bfitu  - \bfitD h\bfitu \| \bfitH  - 1/2(\Gamma ) \leqslant Chr\| \bfitu \| \bfitH r+1/2(\Gamma ).(5.15c)

Proof. The boundness of \bfitE h and the approximation error follow directly from
[32, Theorem 15] and the continuous embedding \bfitH 1(\Omega ) \lhook \rightarrow \bfitL 2(\Omega ). The remaining
estimates can be easily obtained by Lemma 5.8, (5.8), and (5.7).

Next, we introduce the following auxiliary problem: find \widehat \bfitu h \in \bfitU h such that

\langle \bfitT \widehat \bfitu h,\bfitv h\rangle \Gamma = \langle \bfitw ,\bfitv h\rangle \Gamma \forall \bfitv h \in \bfitU h,(5.16)

where \bfitw = \bfitE  \star \bfity d \in \bfitV  - 1/2(\Gamma ).

Lemma 5.10. Let \=\bfitu \in \bfitV r+1/2(\Gamma ), with r < min\{ 1, \xi \} , be the unique solution of
problem (4.7) and \widehat \bfitu h \in \bfitU h be the solution of (5.16). If the conditions in Theorem 4.4
are all fulfilled, then

\| \=\bfitu  - \widehat \bfitu h\| \bfitH 1/2(\Gamma ) \leqslant Chr\| \=\bfitu \| \bfitH 1/2+r(\Gamma ).(5.17)

Proof. First, by (4.10), (5.16), and \bfitU h \subset \bfitV 1/2(\Gamma ), we have

\langle \bfitT (\=\bfitu  - \widehat \bfitu h),\bfitv h\rangle \Gamma = 0 \forall \bfitv h \in \bfitU h.(5.18)

Next, by Lemma 4.3, we know that \bfitT is \bfitV 1/2(\Gamma )-elliptic and continuous. For any
\bfitu  \star 
h \in \bfitU h, the error estimate follows in a standard way:

c\| \=\bfitu  - \widehat \bfitu h\| 2\bfitH 1/2(\Gamma ) \leqslant \langle \bfitT (\=\bfitu  - \widehat \bfitu h), \=\bfitu  - \widehat \bfitu h\rangle \Gamma = \langle \bfitT (\=\bfitu  - \widehat \bfitu h), \=\bfitu  - \bfitu  \star 
h)\rangle \Gamma 

\leqslant \| \bfitT (\=\bfitu  - \widehat \bfitu h)\| \bfitV  - 1/2(\Gamma )\| \=\bfitu  - \bfitu  \star 
h\| \bfitH 1/2(\Gamma )

\leqslant C\| \=\bfitu  - \widehat \bfitu h\| \bfitH 1/2(\Gamma )\| \=\bfitu  - \bfitu  \star 
h\| \bfitH 1/2(\Gamma ).

Therefore, there exists C > 0 such that

\| \=\bfitu  - \widehat \bfitu h\| \bfitH 1/2(\Gamma ) \leqslant C inf
\bfitu  \star 

h\in \bfitU h

\| \=\bfitu  - \bfitu  \star 
h\| \bfitH 1/2(\Gamma ).

The result follows by interpolation (see, e.g., [5, Theorem (14.3.3)]), taking \bfitu  \star 
h = \bfitQ h\bfitu ,

and using the regularity of \=\bfitu stated in Theorem 4.4 and estimate (5.13).

Now we give the proof of Theorem 5.7.

Proof of Theorem 5.7. Due to Lemma 5.10, it is enough to obtain the error esti-
mate for \| \=\bfitu h  - \widehat \bfitu h\| \bfitH 1/2(\Gamma ).

By the definition of \bfitT h in (5.9) and Lemma 5.2, we know that \bfitT h is coercive on
\bfitU h. By the first order conditions satisfied by \widehat \bfitu h and \=\bfitu h in (5.16) and (5.11) and by
Cauchy--Schwarz inequality, we know that there exists a constant \kappa independent of h
such that

\kappa \| \=\bfitu h  - \widehat \bfitu h\| 2\bfitH 1/2(\Gamma ) \leqslant \langle \bfitT h(\=\bfitu h  - \widehat \bfitu h), \=\bfitu h  - \widehat \bfitu h\rangle \Gamma 
= \langle \bfitw h  - \bfitw , \=\bfitu h  - \widehat \bfitu h\rangle \Gamma + \langle (\bfitT  - \bfitT h)\widehat \bfitu h, \=\bfitu h  - \widehat \bfitu h\rangle \Gamma 
\leqslant \| \bfitw h  - \bfitw \| \bfitH  - 1/2(\Gamma )\| \=\bfitu h  - \widehat \bfitu h\| \bfitH 1/2(\Gamma )

+\| (\bfitT  - \bfitT h)\widehat \bfitu h\| \bfitH  - 1/2(\Gamma )\| \=\bfitu h  - \widehat \bfitu h\| \bfitH 1/2(\Gamma ).
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Hence, dividing by \| \=\bfitu h  - \widehat \bfitu h\| \bfitH 1/2(\Gamma ) and using the definitions of \bfitT and \bfitT h in (4.8)
and (5.9) we have

\kappa \| \=\bfitu h  - \widehat \bfitu h\| \bfitH 1/2(\Gamma ) \leqslant \| \bfitw h  - \bfitw \| \bfitH  - 1/2(\Gamma ) + \| (\bfitT  - \bfitT h)\widehat \bfitu h\| \bfitH  - 1/2(\Gamma )

\leqslant \| \bfitw h  - \bfitw \| \bfitH  - 1/2(\Gamma ) + \| (\bfitD  - \bfitD h)\widehat \bfitu h\| \bfitH  - 1/2(\Gamma )

+ \| (\bfitE  \star \bfitE  - \bfitE  \star 
h\bfitE h)\widehat \bfitu h\| \bfitH  - 1/2(\Gamma )

= S1 + S2 + S3.

For the first term S1, using the approximation properties of \bfity d,h, (4.8), (5.9),
(5.15b), and (5.14b), we get

S1 = \| \bfitw h  - \bfitw \| \bfitH  - 1/2(\Gamma ) = \| \bfitE  \star 
h\bfity d,h  - \bfitE  \star \bfity d\| \bfitH  - 1/2(\Gamma )

\leqslant \| (\bfitE  \star 
h  - \bfitE  \star )\bfity d\| \bfitH  - 1/2(\Gamma ) + \| \bfitE  \star 

h(\bfity d,h  - \bfity d)\| \bfitH  - 1/2(\Gamma ) \leqslant Chr.

For the second term S2, by the definition of \bfitD h in (5.7) we know that \bfitD h\bfitQ h =
\bfitD h, where \bfitQ h is the L2-projection. We have

S2 = \| (\bfitD  - \bfitD h)\widehat \bfitu h\| \bfitH  - 1/2(\Gamma )

\leqslant \| \bfitD (\widehat \bfitu h  - \=\bfitu )\| \bfitH  - 1/2(\Gamma ) + \| \bfitD \=\bfitu  - \bfitD h\bfitQ h \=\bfitu \| \bfitH  - 1/2(\Gamma ) + \| \bfitD h(\bfitQ h \=\bfitu  - \widehat \bfitu h)\| \bfitH  - 1/2(\Gamma )

\leqslant C\| \widehat \bfitu h  - \=\bfitu \| \bfitH 1/2(\Gamma ) + \| \bfitD \=\bfitu  - \bfitD h \=\bfitu \| \bfitH  - 1/2(\Gamma ) + C\| \bfitQ h \=\bfitu  - \widehat \bfitu h\| \bfitH 1/2(\Gamma ),

where we used (4.4b) and (5.14c) in the last inequality. Next, by (5.17), (5.15c), and
(5.13) we have

S2 \leqslant C\| \widehat \bfitu h  - \=\bfitu \| \bfitH 1/2(\Gamma ) + \| \bfitD \=\bfitu  - \bfitD h \=\bfitu \| \bfitH  - 1/2(\Gamma ) + C\| \=\bfitu  - \widehat \bfitu h\| \bfitH 1/2(\Gamma )

+ C\| \bfitQ h \=\bfitu  - \=\bfitu \| \bfitH 1/2(\Gamma )

\leqslant Chr\| \=\bfitu \| \bfitH r+1/2(\Gamma ).

Next, for the term S3 we proceed similarly to S2. Using the fact that \bfitE h\bfitQ h = \bfitE h,
we have

S3 = \| (\bfitE  \star \bfitE  - \bfitE  \star 
h\bfitE h)\widehat \bfitu h\| \bfitH  - 1/2(\Gamma )

\leqslant \| \bfitE  \star \bfitE (\widehat \bfitu h  - \=\bfitu )\| \bfitH  - 1/2(\Gamma ) + \| (\bfitE  \star  - \bfitE  \star 
h)\bfitE \=\bfitu \| \bfitH  - 1/2(\Gamma )

+ \| \bfitE  \star 
h(\bfitE \=\bfitu  - \bfitE h\bfitQ h \=\bfitu )\| \bfitH  - 1/2(\Gamma ) + \| (\bfitE  \star 

h\bfitE h(\bfitQ h \=\bfitu  - \widehat \bfitu h)\| \bfitH  - 1/2(\Gamma )

\leqslant C\| \widehat \bfitu h  - \=\bfitu \| \bfitH 1/2(\Gamma ) + Chr\| \bfitE \=\bfitu \| \bfitH r+1(\Omega ) + C\| \bfitE \=\bfitu  - \bfitE h \=\bfitu \| \bfitL 2(\Omega )

+ C\| \bfitQ h \=\bfitu  - \widehat \bfitu h\| \bfitH 1/2(\Gamma ),

where we used (2.15), (5.15b), (5.14b), and (5.14a) in the last inequality. By (5.17),
(5.15a), and (5.13) we have

S3 \leqslant C\| \widehat \bfitu h  - \=\bfitu \| \bfitH 1/2(\Gamma ) + Chr\| \bfitE \=\bfitu \| \bfitH r+1(\Omega ) + C\| \bfitE \=\bfitu  - \bfitE h \=\bfitu \| \bfitL 2(\Omega )

+ C\| \bfitQ h \=\bfitu  - \=\bfitu \| \bfitH 1/2(\Gamma )

\leqslant Chr\| \=\bfitu \| \bfitH r+1/2(\Gamma ).

Collecting all the estimates completes the proof.

D
ow

nl
oa

de
d 

12
/2

1/
22

 to
 1

28
.1

75
.1

6.
24

0 
. R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

468 W. GONG, M. MATEOS, J. SINGLER, AND Y. ZHANG

Remark 5.11. The application of the Aubin--Nitsche technique to the intermedi-
ate problem leads easily to

\| \=\bfitu  - \widehat \bfitu h\| \bfitL 2(\Gamma ) \leqslant Chr+1/2\| \bfitu \| \bfitH r+1/2(\Gamma ).

However, using this to obtain error estimates in \bfitL 2(\Gamma ) for \=\bfitu h is not immediate because
\=\bfitu h satisfies a problem with a perturbed operator and perturbed second member.
Following [14, Remark 26.1], the error would be of the same order as

\| (\bfitT  - \bfitT h)\=\bfitu h\| \bfitH  - 1/2(\Gamma ) + \| \bfitw  - \bfitw h\| \bfitH  - 1/2(\Gamma ).

Using the improved error estimate for the discrete approximation of the stress
force on the boundary for regular solutions in [32, Proposition 17], we find that the
convergence order r + 1/2 for those terms can be achieved under the following two
assumptions: first, that \bfity d \in \bfitH r - 1/2(\Omega ), which is quite reasonable, but also that \=\bfitu h

is bounded in \bfitH 1+r(\Gamma ). But this second assumption requires a higher regularity of
the optimal solution; in such a case the order of convergence in \bfitH 1/2(\Gamma ) would be
increased by another 1/2.

In numerical experiments, this is the behavior usually observed with the ``Mini""
finite element: order 3/2 in \bfitH 1/2(\Gamma ) and order 2 in \bfitL 2(\Gamma ).

Remark 5.12. Although the discretizations of the \bfitL 2-regularized problem and the
\bfitH 1/2-regularized problem are very similar, the error analysis performed for the second
case cannot be carried out for the first because of the lack of regularity of the solution
\bfitu 0 \in \bfitH s(\Gamma ) for 0 \leqslant s < s \star , where s \star = min\{ 1/2, \xi  - 1/2\} .

Using the general discretization error estimate of [2, Theorem 3.2], we see that the
error is bounded by the best approximation error in the space, the error related to the
discretization of the state equation, and the error related to the discrete approximation
of the stress force on the boundary. While we have no results for the last two ones,
the first one is determined by the Sobolev exponent s, so one cannot expect more
than hs for the error.

6. Numerical experiments. In this section we carry out some numerical ex-
periments to compare the solutions of the two control problems (3.1) and (4.7), and
we also illustrate how the convergence orders can vary due to the shape of the do-
main and the problem data. We present two examples in a square domain, the first
one having a very regular solution, and one example in an L-shaped domain. We
discretize each problem using the ``Mini"" finite element [40] and a family of meshes
of size hi = 2 - i

\surd 
2 obtained by regular refinement of an initial coarse mesh of size

h0 =
\surd 
2. For one problem, we also discretize using Taylor--Hood elements. Since we

do not have the exact solution, we compare the obtained solutions for i = 2, . . . , I  - 2
with the reference solution obtained for i = I, where I = 9 for the square (a mesh
with 2 \times 22\times 9 = 524288 elements) and I = 8 for the L-shaped domain (a mesh with
6\times 22\times 8 = 393216 elements).

Let \bfite h = \bfitu  - \bfitu h; we report the \bfitL 2(\Gamma )-norm error and the \bfitH 1/2(\Gamma )-seminorm
error, both computed using the equivalent mesh-independent discrete norms obtained
in [9].

Example 6.1. We consider the unit square domain \Omega = (0, 1)2 and set the reg-
ularization parameter \alpha = 1.0e  - 3. We choose the forcing \bfitf = (1, 1), and for the
target state we choose the large vortex given in [38],

\bfity d = 200\times [x2
1(1 - x1)

2x2(1 - x2)(1 - 2x2); - x1(1 - x1)(1 - 2x1)x
2
2(1 - x2)

2];
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see the left of Figure 1. For a related example using tangential boundary control, see
[24]. The data size in terms of the tracking functional can be measured as \bfitF (0) =
0.302339. Notice that \nabla \cdot \bfity d = 0 and \bfity d = 0 on \Gamma , but it cannot be the solution of
the Stokes problem with data \bfitf = (1, 1) since \bfitf +\Delta \bfity d is not a conservative field.

For the\bfitH 1/2(\Gamma )-regularization, we obtain a value for the tracking term of \bfitF (\=\bfitu ) =
0.112264, while for the \bfitL 2(\Gamma )-regularization we obtain a slightly smaller value \bfitF (\bfitu 0) =
0.111576. A graph of the state, the optimal control in the energy space, and the so-
lution of the \bfitL 2(\Gamma )-regularized problem can be found in Figure 2. In this case, \bfitu 0 is
a continuous function. Numerically, we find that | q0(xj) + \lambda 0| < 3\times 10 - 8 for all four
corners xj .

The value of the singular exponent for this domain is \xi = 2.740; see [15, Table 1].
This means that the exponent giving the order of convergence of the energy regularized
problem in the\bfitH 1/2(\Gamma )-norm is r \approx 1 and the exponent giving the best possible order
of convergence of the \bfitL 2(\Gamma )-regularized problem in the \bfitL 2(\Gamma )-norm is s \approx 0.5. We
obtain the results summarized in Table 1 for the optimal control problem with \bfitH 1/2-
regularization and with \bfitL 2(\Gamma )-regularization. In this case the solution is very regular;
the results are similar for both approaches and better than predicted by the general
theory. This high regularity can also be noticed in the orders of convergence found
for the other variables using higher order Taylor--Hood elements; see Table 2.

Example 6.2. Set \Omega = (0, 1)2, \alpha = 1, \bfitf = 0, and \bfity d = (x1;x2  - x1). The data
size is \bfitF (0) = 0.25, and the target does not belong to \bfitV 0(\Omega ). A graph of the target
field is sketched in the middle of Figure 1.

For the energy regularization, we find \bfitF (\=\bfitu ) = 0.117607; see the first two subfig-
ures of Figure 3. For the \bfitL 2(\Gamma )-regularized problem, we have that \bfitF (\bfitu 0) = 0.158279.
The control is discontinuous at the corners (see the last subfigure of Figure 3) and
hence is not in \bfitH 1/2(\Gamma ). Finite element error results are summarized in Table 3.
Again we have r \approx 1 and s \approx 0.5. In this case, the observed experimental order of
convergence for the \bfitL 2(\Gamma ) error of the \bfitL 2(\Gamma )-regularized problem is quite close to s.

Fig. 1. Left is the target of Example 6.1, middle is the target of Example 6.2, right is the target
of Example 6.3.

Fig. 2. Solution of Example 6.1: The first two subfigures are for \bfitH 1/2(\Gamma )-regularization; the
last two subfigures are for \bfitL 2(\Gamma )-regularization.
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Table 1
Errors and experimental order of convergence for Example 6.1.

i
\bfitH 1/2-regularization

\| \bfite h\| \bfitH 1/2(\Gamma ) Rate \| \bfite h\| \bfitL 2(\Gamma ) Rate

2 4.93E+0 - 8.37E-01 -
3 1.62E+0 1.61 2.56E-01 1.71
4 4.82E-01 1.75 6.80E-02 1.91
5 1.39E-01 1.79 1.75E-02 1.96
6 4.07E-02 1.78 4.37E-03 2.00

i
\bfitL 2-regularization

\| \bfite h\| \bfitH 1/2(\Gamma ) Rate \| \bfite h\| \bfitL 2(\Gamma ) Rate

2 6.17E+0 - 9.78E-01 -
3 2.01E+0 1.62 3.03E-01 1.69
4 6.37E-01 1.65 8.00E-02 1.92
5 1.87E-01 1.77 2.01E-02 1.93
6 5.54E-02 1.75 5.31E-03 1.98

Table 2
Errors and experimental order of convergence for the state and adjoint state for Example 6.1.

i
\| \bfity  - \bfity h\| \bfitL 2(\Omega ) \| \bfitu  - \bfitu h\| \bfitH 1/2(\Gamma ) \| \bfitz  - \bfitz h\| \bfitL 2(\Omega )

Error Rate Error Rate Error Rate

\scrP 2  - \scrP 1

1 1.73E-03 - 2.36E-02 - 2.03E-03 -
2 2.76E-04 2.65 8.14E-03 1.54 3.79E-04 2.42
3 3.69E-05 2.90 2.20E-03 1.89 5.13E-05 2.89
4 5.12E-06 2.85 6.16E-04 1.83 6.61E-06 2.95
5 7.36E-07 2.80 1.81E-04 1.76 1.81E-07 2.98

\scrP 3  - \scrP 2

1 4.54E-04 - 9.56E-02 - 6.28E-03 -
2 4.17E-05 3.45 1.70E-03 2.49 5.67E-04 3.47
3 4.39E-06 3.25 3.98E-03 2.10 4.45E-05 3.67
4 6.50E-07 2.75 1.26E-04 1.65 3.75E-06 3.57
5 9.61E-08 2.76 3.85E-04 1.72 3.20E-07 3.55

Fig. 3. Solution of Example 6.2: The first two subfigures are for \bfitH 1/2(\Gamma )-regularization; the
last two subfigures are for \bfitL 2(\Gamma )-regularization.

Table 3
Errors and experimental order of convergence for Example 6.2.

i
\bfitH 1/2-regularization \bfitL 2-regularization

\| \bfite h\| \bfitH 1/2(\Gamma ) Rate \| \bfite h\| \bfitL 2(\Gamma ) Rate \| \bfite h\| \bfitL 2(\Gamma ) Rate

2 2.80E-02 - 3.77E-03 - 1.29E-01 -
3 9.88E-03 1.50 1.05E-03 1.85 8.90E-02 0.53
4 3.34E-03 1.57 2.81E-04 1.90 6.22E-02 0.52
5 1.10E-03 1.60 7.32E-05 1.94 4.37E-02 0.51
6 3.67E-04 1.59 1.86E-05 1.98 3.08E-02 0.51

Example 6.3. We take the same data as Example 6.2 but now consider the L-
shaped domain \Omega = ( - 1, 1)2 \setminus (0, 1)2. The results on this domain are \bfitF (0) = 1.75,
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Fig. 4. Solution of Example 6.3: The first two subfigures are for \bfitH 1/2(\Gamma )-regularization; the
last two subfigures are for \bfitL 2(\Gamma )-regularization.

Table 4
Errors and experimental order of convergence for Example 6.3.

i
\bfitH 1/2-regularization \bfitL 2-regularization

\| \bfite h\| \bfitH 1/2(\Gamma ) Rate \| \bfite h\| \bfitL 2(\Gamma ) Rate \| \bfite h\| \bfitL 2(\Gamma ) Rate

2 4.11E-01 - 7.40E-02 - 3.40E-01 -
3 2.49E-01 0.72 3.42E-02 1.12 2.38E-01 0.51
4 1.53E-01 0.71 1.55E-02 1.14 1.71E-01 0.48
5 9.12E-02 0.74 6.86E-03 1.18 1.24E-01 0.46
6 5.07E-02 0.85 2.83E-03 1.28 8.95E-02 0.47

\bfitF (\=\bfitu ) = 1.107016, \bfitF (\bfitu 0) = 1.044080. Graphs of the data and the solutions can
be found in the right subfigure of Figure 1 and the first two subfigures of Figure 4.
Experimental orders of convergence are in Table 4. The singular exponent for this
domain is \xi = 0.544, so r \approx 0.544 and s \approx 0.044. The observed orders of convergence
are higher.

One remarkable fact is that for the \bfitL 2(\Gamma )-regularized problem the optimal control
need not tend to \infty at a nonconvex corner, as happens with Dirichlet optimal control
problems governed by the Poisson equation in a nonconvex polygonal domain.
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