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Abstract—Utilizing perception for feedback control in combi-
nation with dynamic movement primitive (DMP)-based motion
generation for a robot’s end-effector control is a useful solution
for many robotic manufacturing tasks. For instance, while per-
forming an insertion task when the hole or the recipient part is
not visible in the eye-in-hand camera, a learning-based movement
primitive method can be used to generate the end-effector path.
Once the recipient part is in the field of view (FOV), image-
based visual servo (IBVS) can be used to control the motion of
the robot. Inspired by such applications, this article presents a
generalized control scheme that switches between motion gener-
ation using DMP and IBVS control. To facilitate the design, a
common state-space representation for the DMP and the IBVS
systems is first established. The stability analysis of the switched
system using multiple Lyapunov functions shows that the state
trajectories converge to a bound asymptotically. The developed
method is validated by three real-world experiments using the
eye-in-hand configuration of a Baxter research robot.

Index Terms—Image-based visual servo (IBVS) control, learn-
ing from demonstration, robot control, visual servoing.

I. INTRODUCTION

ROBOTS are required to perform fine manipulation, navi-
gation, and target tracking tasks in a variety of applications

ranging from manufacturing automation to space exploration.
To perform tasks involving fine manipulation, incorporating
visual feedback can be beneficial when the robot end effector
is close to the object being manipulated. To perform tasks such
as landing a quadcopter from a far away distance, incorporating
visual feedback is useful when image features are visible to
an onboard camera sensor. When the object is not in the field
of view (FOV) of the camera or reliable features cannot be
extracted or if there is a feature loss, learning-based motion

Manuscript received 23 February 2022; accepted 28 September 2022. This
work was supported in part by the Space Technology Research Institutes
through the NASA Space Technology Research Grants Program under
Grant 80NSSC19K1076, and in part by NSF under Grant SMA-2134367.
This article was recommended by Associate Editor G. Pandey. (Corresponding
author: Ashwin P. Dani.)

Ghananeel Rotithor, Iman Salehi, and Ashwin P. Dani are with
the Department of Electrical and Computer Engineering, University of
Connecticut, Storrs, CT 06269 USA (e-mail: ghananeel.rotithor@uconn.edu;
iman.salehi@uconn.edu; ashwin.dani@uconn.edu).

Edward Tunstel was with the Department of Autonomous and Intelligent
Systems, Raytheon Technologies Research Center, East Hartford, CT 06108
USA. He is now with Motiv Space Systems Inc., Pasadena, CA 91107 USA
(e-mail: tunstel@ieee.org).

This article has supplementary material provided by the
authors and color versions of one or more figures available at
https://doi.org/10.1109/TSMC.2022.3214756.

Digital Object Identifier 10.1109/TSMC.2022.3214756

generation methods, such as dynamic movement primitives
(DMPs), can be used to control the robot. For example, in a
wire pinning task for wire harness assembly, the robot holding
the wire should reach the pin by following a certain trajectory
that avoids collision with the fixtures holding the pin. The
pin may not always be in the FOV of the camera attached to
the robot end effector. In such cases, to insert the wire into
the pin, a learned DMP can be used to generate the motion
that takes the wire near to the pin before the visual feed-
back of the pin is available [1]. Motivated by such examples
and a need to ensure stable motion when switching between
learned and vision-based controllers, a new methodology that
unifies DMP [2] and image-based visual servoing (IBVS) [3] is
proposed in this article. The proposed algorithm enables stable
switching between DMP and IBVS controllers to reach the
goal location from an initial location when the visual feedback
is not continuously available. The proposed switched system
is referred to as a DMP-IBVS switched system.
Many approaches have been developed to design robot con-

trollers using visual feedback that keep the objects in the FOV
(see [4], [5], [6]). A trajectory planning and tracking con-
trol approach for mobile robots is developed in [7] that uses
virtual-goal-guided rapidly exploring random tree (RRT) for
trajectory planning and IBVS with the FOV constraints for
tracking. A constrained IBVS approach for helicopter land-
ing on a moving platform is proposed in [8] using a control
barrier function methodology to satisfy the FOV constraints.
A model predictive controller (MPC) for visual servoing of
a mobile robot is developed in [9] which handles visibility
constraints for IBVS and velocity limits of the robot. In con-
trast, a learning-based robot motion generation using DMP is
developed in this article to generate robot control commands
in the absence of visual feedback, and a switching control
law is developed to switch to the IBVS controller when visual
feedback is available.
It is known that switching arbitrarily between stable sub-

systems can lead to instability [10], [11]. In [12], an average
dwell-time condition based on multiple Lyapunov functions is
developed for stabilizing switched systems. Daafouz et al. [13]
proposed a linear matrix inequality-based condition to check
for the existence of a quadratic Lyapunov function for
proving the asymptotic stability of a switched discrete
system. In [14], LaSalle’s invariance principle is extended to
switched linear systems to deduce asymptotic stability using
multiple Lyapunov functions whose Lie derivatives are nega-
tive semidefinite. In [15], a survey of results for the stability of
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switched linear systems is presented, and the problem of stabi-
lizability of switched systems is analyzed. Multiple Lyapunov
functions for analyzing Lyapunov stability and iterated func-
tion systems as a tool for Lagrange stability are proposed
in [16]. Invariance-like results for nonautonomous nonlinear
switched systems are developed in [17]. Switched systems
analysis of output-feedback systems and observers have been
studied in the literature. The switching method in [18] ana-
lyzes switching between locally and globally converging
observers with asymptotic stability. A composite output-
feedback control law is derived in [19] that switches between
locally and globally asymptotically stable output-feedback
controllers.
Switched systems analysis has been used to solve chal-

lenging problems in robotics, including visual servo control
and vision-based trajectory tracking. In [20], an asymptoti-
cally stable hybrid switched systems visual servo controller is
proposed, which switches between IBVS and position-based
visual servo control (PBVS) based on multiple Lyapunov
functions. The switching between IBVS-PBVS control is
developed to switch between unstable systems and increase
the region of stability. An estimator that switches between
the state predictor and the image-based observer for object
localization is presented in [21] when the image feedback is
intermittently available. The stability of the switched system is
established using a common Lyapunov function. An estimator
for pose estimation of a moving target is developed in [22]
when measurements are available intermittently by learning
the motion model. In [23] and [24], an observer–predictor
framework is presented for target tracking and trajectory track-
ing in the presence of intermittent measurements by switching
between a global uniformly ultimately bounded (GUUB) and
an unstable system. The switched error system is shown to be
GUUB based on the dwell-time conditions. The approaches for
image-based tracking use switching between systems mainly
to accommodate feature track losses, occlusions, and limited
camera FOV of features. Switched systems analysis is also
developed for target tracking in the presence of intermittent
observations from a network of stationary cameras in [25].
In [26], consensus protocols of a distributed multiagent system
are developed using switched systems analysis wherein the
leader provides intermittent information to all the followers.
The application of the switched system to biped locomotion
is developed in [27] where the boundedness of input-to-
state (ISS) stable switched systems with multiple equilibria
is proven. The switched system results developed or applied
in these results switch between systems that are either globally
stable or locally stable.
In contrast to the switched systems approaches developed to

handle feature track losses, occlusions in object tracking and
localization, and approaches developed to improve the stability
in IBVS-PBVS switching, this article develops a new method
that switches between image-based control and learning-based
control when the image feedback is not available such as in
instances which may include limited camera FOV, occlusions,
and feature losses. In this article, a new switched systems anal-
ysis is developed for systems that switch between locally stable
(IBVS system) and globally stable (DMP system) modes. The

goal is to regulate the camera pose with respect to a tar-
get. When visual feedback is available, the IBVS controller
is used to generate camera accelerations. When visual feed-
back is not available, then DMP is used to generate camera
accelerations. DMP is implemented as an online end-effector
acceleration controller whose weights are trained using a pose
regulation task demonstration data. The method can be useful
in robotic tasks where a robot arm with eye-in-hand config-
uration is controlled using DMP and IBVS controllers for
achieving precision or when a ground robot is controlled using
a camera mounted on the robot with image and nonimage
feedback. The technical contributions of this article are as
follows.
1) A new common state-space representation is developed

to analyze the switched system stability of the IBVS and
DMP acceleration controllers.

2) A new IBVS acceleration control law is developed and
the corresponding closed-loop dynamics are proven to
be uniformly ultimately bounded (UUB) if the initial
state is sufficiently close to the goal state.

3) Combined position and orientation DMPs are presented
and the corresponding dynamics are proven to be glob-
ally asymptotically stable.

4) The switching between the locally stable IBVS con-
troller and globally stable DMP is analyzed using
multiple Lyapunov functions and the switched system
dynamics are proven to converge asymptotically to
a bound whose analytical expression is derived.
Furthermore, an algorithm is developed based on the
analysis of the switched system to ensure stable switch-
ing between the IBVS and DMP subsystems.

Compared to our preliminary development in [28], this article
provides rigorous stability analyses for the individual DMP
and IBVS systems along with a method for switching and sta-
bility analysis for the switched system. Experimental results
for a pose regulation task are presented using the eye-in-
hand configuration of the Baxter robot, and the switched
system results are validated in the presence of occlusions
in the image feedback and compared with a DMP-only
controller.
The remainder of this article is organized as follows. In

Section II, the coordinate frames attached to the robot base,
camera, the goal location, and its kinematics are discussed.
In Section III, an acceleration controller is presented for
IBVS and the error dynamics are proven to be UUB. In
Section IV, position and orientation DMPs are presented and
global asymptotic stability of the error dynamics is presented.
In Section V, the stability of the switched system is proven and
an average dwell-time condition is developed. Experimental
results of the switched system are presented in Section VI.
Notations: The set of real numbers and integers is denoted

by R and Z, respectively. The symbols R+ and Z+ denote
the set of non-negative real numbers and non-negative inte-
gers, respectively. The standard Euclidean norm of a vector is
denoted by ‖ · ‖ and for a p-dimensional real vector, the open
ball is defined as Bζ (x) = {x′ ∈ Rp | ‖x − x′‖ < ζ }, where
ζ > 0 is a constant. For a matrix A ∈ Rn×n, its symmetric
part is denoted by sym{A} = (1/2)(A+ AT).
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Fig. 1. Reference frames attached to the camera, the goal location, and the
inertial reference frame.

II. PROBLEM FORMULATION

Consider a fixed inertial reference frame Fw attached to the
robot base and a coordinate frame Fc attached to a moving
camera observing a static object shown in Fig. 1. The cam-
era frame Fc is attached to the camera in such a way that
the z-axis of the coordinate frame aligns with the optical axis
of the camera and the x- and y-axes form the basis of the
image plane. Thus, the coordinate frame attached to the camera
always moves along with it, as the camera undergoes motion.
Let Ra

b ∈ SO(3) and tab ∈ R3 be the rotation and translation
from a to b expressed in a, respectively. A quaternion rep-
resentation of the rotation matrix Ra

b is given by qa
b

∈ S4,
where Sp = {x ∈ Rp|xTx = 1} is the unit hypersphere. It
is assumed that the pose of the camera in the world refer-
ence frame Tw

c (t) can be measured. A coordinate frame Fc∗ is
attached to the desired goal location such that when Fc coin-
cides with Fc∗ the image feature error and the pose error are
zero. Additionally, the pose transformation between Fw and
Fc∗ , denoted as Tw

c∗ , is assumed to be known. The time-varying
pose transformation between the goal camera frame and the
current camera frame is denoted by Tc∗

c (t) and is represented
as [(tc

∗
c (t))T , (qc

∗
c (t))T ]T ∈ R3 × S4.

For designing a switching control law between DMP and
IBVS, a common state space is established between them. A
new common auxiliary state is defined as follows:

x(t) =
[
eTp (t) ξTc∗(t)

]T ∈ R12 (1)

where ep(t) = [(tc
∗
c (t))T , rT(t)]T ∈ R6 and r(t) =

2log(qc
∗
c (t)) = Θ(t)n(t) is the quaternion logarithm that trans-

forms a quaternion into the corresponding angle–axis product
where −π < Θ(t) < π . The pose transformation ep(t) can be
viewed as the pose error that indicates the deviation of the cur-
rent camera frame Fc from the goal camera frame Fc∗ . In (1),
ξc∗(t) = [ vTc∗(t) ω

T
c∗(t) ]

T ∈ R6 is the velocity of the camera
expressed in the desired frame Fc∗ , such that vc∗(t) ∈ R3 is
the linear velocity and ωc∗(t) ∈ R3 is the angular velocity.
Problem Description and Solution Approach: Given the
desired pose Tw

c∗ , and the current camera pose Tw
c (t),

the problem is to regulate the current camera frame Fc to the
goal camera frame Fc∗ using both the image feedback when
it is available and a learned DMP when image feedback is not
available. A stable switching controller is developed, which
switches between the DMP and the IBVS control. The switch-
ing is triggered when the image features are visible in the

Fig. 2. Block diagram of the DMP-IBVS switched system.

camera FOV. The feature points may or may not be visible
depending on the current camera pose. In such cases, the cam-
era motion control is switched to DMP. A block diagram of
the DMP and IBVS switching mechanism is shown in Fig. 2.
In the following sections, the details of the IBVS con-

troller and the DMP are first presented, followed by a stability
analysis of the switched controller.

III. IMAGE-BASED VISUAL SERVO CONTROL

The objective of IBVS is to regulate image plane feature
errors to zero. Let the state vector for the current image plane
features be denoted by si(t) = [ y1(t), · · · y2m(t) ]T ∈ R2m and
let the goal feature vector be denoted by s∗i = [ y∗

1, · · · y∗
2m ]T ,

where m is the number of feature points. Each feature is rep-
resented by its X and Y locations in the image plane. The
dynamics of the features si(t) can be expressed as

ṡi(t) = Li(si(t),Z(t))ξc(t) (2)

where Li(si,Z) ∈ R2m×6 is the interaction matrix and Z(t) =
[Z1(t) · · · Zm(t) ]T ∈ Rm is the time-varying depth of the
feature points with respect to the camera frame. In (2), the
vector ξc(t) = [ vTc (t) ω

T
c (t) ]

T contains the linear and angu-
lar camera velocities expressed in the camera frame Fc in
twist coordinates. The dependence of the variables on time
and other arguments is dropped in the rest of this arti-
cle unless stated. In (2), the interaction matrix is given by
Li(si,Z) = [LTi1(y1, y2,Z1) · · · L

T
im(y2m−1, y2m,Zm) ]T , where

Lij =
[−1

Zj
0 y2j−1

Zj
y2j−1y2j −

(
1+ y22j−1

)
y2j

0 −1
Zj

y2j
Zj

1+ y22j − y2j−1y2j − y2j−1

]

∀j = 1, . . . ,m. (3)

The corresponding error vector between the current and the
goal image features is defined as ei(t) = si(t) − s∗i . The error
dynamics are given by

ėi = Li(si,Z)ξc. (4)

Taking the time derivative of (4) yields the following second-
order dynamics:

ëi = Li(si,Z)ξ̇c + L̇i
(
si, ṡi,Z, Ż

)
ξc. (5)

Motivated by the stability analysis, the following acceleration
control law is designed:

ξ̇c = L̂+i
(
si,Z&

)(
−kpei − kv ˙̂ei

)
(6)
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where kp, kv > 0 are the controller gains, and ˙̂ei is an approx-
imation of ėi(t), which either can be computed numerically
or using an approximation of Z(t) in (4). In this article, the
depth is approximated by the constant desired depth Z& to
construct L̂i.

Assumption 1: The approximation error χ(t) = ė(t)− ˙̂ei(t)
is bounded by a constant, i.e., ∃χ̄ ∈ [0,∞) such that
supt≥0 ‖χ(t)‖ ≤ χ̄ .

Remark 1: The validity of Assumption 1 can be ensured
using a suitable numerical approximation to compute ˙̂ei. For
example, the finite difference method with smoothing or
polynomial regression method over a time window can be
used.
In (6), L̂+i = (̂LTi L̂i)

−1L̂Ti is the pseudoinverse of L̂i. Using
the relation ˙̂ei(t) = ėi(t) − χ(t), and (4)–(6), the resulting
closed-loop second-order dynamics can be written as

ëi = −kpLîL+i ei − kvLîL+i ėi + L̇iξc + kvLîL+i χ . (7)

To facilitate the stability analysis of the switched controller,
the dynamics of the state defined in (1) are first established. To
this end, a locally injective nonlinear function φ : R6 → R2m

which maps the pose error ep(t) to the image error ei(t) as
ei(t) = φ(ep(t)) is used as described in [20], where φ(0) = 0.
Let ρ(t) = [ eTi (t) ėi

T(t) ]T ∈ R4m. The following relation is
obtained using the result in (4):

ρ =
[
φ
(
ep

)

LiRξc∗

]
,R =

[
Rc
c∗ 03×3

03×3 Rc
c∗ .

]
. (8)

From (8), ρ(t) = 0 when x(t) = [eTp (t), ξ
T
c∗(t)]

T = 0. Using
the mean value theorem and the development in [29, Ch. 4]
for (8) at x(t) = 0 yields

ρ =
[

J1 02m×6
02m×6 J2

][
ep
ξc∗

]
+O(x)

ρ = Jx+O(x) (9)

where J ∈ R4m×12 is the Jacobian, J1 = (∂φ/∂ep)|ep=0,
J2 = Li(s∗i ,Z

&)R, the termO(x) satisfiesO(x) ≤ υ1‖x‖, where
υ1 ∈ R+. The Jacobian J is full-column rank in the neigh-
borhood of x(t) = 0 as φ(·) is locally injective and J2 can
be made full-column rank by selecting an appropriate desired
feature vector s∗i .

To facilitate the stability analysis of the switched system,
using the dynamics of ėp(t) derived in [20, Sec. II-B], the
dynamics of the common state x(t) for IBVS can be concisely
written as a first-order dynamical system of the form

ẋ = fv(x, t)+ gv(t) (10)

where fv : R12 × R+ → R12 is a locally Lipschitz function,
whose form can be derived using the injective function φ, (8),
and (4) and gv(t) = [ 0T1×6 (kvRT L̂+i χ(t))

T ]T is a perturbation
term. To facilitate the stability analysis of the system in (10),
the following remarks and assumptions are stated.
Remark 2: Using the relation in (4), the upper bound

on the norm of the velocity is given by ‖ξc‖ ≤
(inft≥0 σmin(Li))−1‖ėi‖, where σmin(Li) is the minimum
nonzero singular value of the matrix Li(si,Z).

Assumption 2: The matrices ˙̂L+i (si,Z&) and L̇i(si, ṡi,Z, Ż)
can be upper bounded using the constants l1, l2 > 0 as
supt≥0, ‖ė1‖=1 ‖ ˙̂L+i ‖ ≤ l1 and supt≥0, ‖ėi‖=1 ‖L̇i‖ ≤ l2 in a
sufficiently small neighborhood of the origin.
Remark 3: Assumption 2 is mild since it only requires

si(t), Z(t) to be bounded in a local region near s∗i
[30, Remark 1]. The bound on the matrix L̇i(si, ṡi,Z, Ż) holds
given that si(t), Z(t) are bounded, since Ż(t) is a function of
the bounded 3-D coordinates of the feature point and the veloc-
ity vector ξc(t) ([31, Ch. 12, p. 414]), which can be upper
bounded using Remark 2.
Assumption 3: The matrix L̂+i is constructed using suitable

feature points and a constant depth approximation such that in
a sufficiently small neighborhood of the origin, ei(t), ėi(t) /∈
Ker{̂L+i } , L̂+i Li > 0 and L̂+i has full-column rank as described
in [32].
Remark 4: Assumption 3 implies that if the matrix L̂+i is

suitably computed and the initial camera pose is in a local
neighborhood of the goal camera pose, then the feature motion
is realizable which ensures the final camera pose does not
reach a local minimum. In this local region, the matrix L̂+i Li
is positive definite [3], [32].
Theorem 1: If Assumptions 1–3 hold, then the dynamics

in (10) are UUB in the sense that for an initial time t0 ≥ 0 if

‖x0‖ <

√
γv

γv
δ1 ⇒ lim sup

t→∞
‖x(t)‖ ≤

√
γv

γv

η

β1
(11)

where x0 = x(t0), provided that δ1 >
√
γvη/γvβ1, and the

controller gains kp and kv satisfy the sufficient condition

λv = λmin

[
ε1kpk
2 k&

k& kvk − ε1 l̄
2

]

> 0 (12)

where k& = −(l̄/2) − (k̄/2)(kp + [ε1kv/2]) and ε1, k, l̄, k̄, γv,
γv, β1, η, δ1 are positive constants.
Proof: Using (9), the following upper and lower bounds

m‖x‖2 ≤ ‖ρ‖2 ≤ m̄‖x‖2 can be derived where m = λmin(JTJ)
and m̄ = λmax(JTJ) + ῡ1, where ῡ1 ∈ R+. The operators
λmin(·) and λmax(·) correspond to the minimum nonzero and
maximum eigenvalues of the matrix. Consider a candidate
Lyapunov function Vv(x, t) : Bδ1(0) × R+ → R+ such that
Bδ1(0) ⊂ R12 and

Vv(x, t) = xTPv(t)x+ Õ(x) = ρTQ(t)ρ (13)

with Õ(x) ≤ υ2‖x‖2 indicating the remaining terms, where
υ2 ∈ R+. In (13), Pv(t) = JTQ(t)J and Q is expressed as

Q =



1
2

(̂
L+i

)T L̂+i
ε1
4

(̂
L+i

)T L̂+i
ε1
4

(̂
L+i

)T L̂+i
1
2

(̂
L+i

)T L̂+i



 (14)

where ε1 > 0 is a suitably chosen constant. Although Q(t)
is positive semidefinite, it is known from Assumption 3 that
ei(t), ėi(t) /∈ Ker{̂L+i } if the initial pose of the camera is close
to the goal pose, which is enough to ensure that the quadratic
form in (13) is always nonzero in a local region near the origin
and is zero at the origin. The Lyapunov function in (13) can be
then upper and lower bounded as γv‖x‖2 ≤ Vv(x, t) ≤ γv‖x‖2,
where γv = inft≥0 λmin(Pv) and γv = supt≥0 λmax(Pv) + υ2.
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Taking the time derivative of (13), using (4) and (7), V̇v can
be written as

V̇v = eTi
(̂
L+i

)T L̂+i ėi + ėTi
(̂
L+i

)T L̂+i L̇iξc
− kpėTi

(̂
L+i

)T L̂+i LîL
+
i ei−kvėTi

(̂
L+i

)T L̂+i LîL
+
i ėi

+ kvėTi
(̂
L+i

)T L̂+i LîL
+
i χ + ε1

2
ėTi

(̂
L+i

)T L̂+i ėi

+ ε1

2
eTi

(̂
L+i

)T L̂+i L̇iξc−
ε1kp
2

eTi
(̂
L+i

)T L̂+i LîL
+
i ei

− ε1kv
2

eTi
(̂
L+i

)T L̂+i LîL
+
i ėi

+ ε1kv
2

eTi
(̂
L+i

)T L̂+i LîL
+
i χ

+ eTi
(̂
L+i

)T ˙̂L+i ei + ėTi
(̂
L+i

)T ˙̂L+i ėi
+ ε1

2
eTi

(̂
L+i

)T ˙̂L+i ėi +
ε1

2
eTi

( ˙̂L+i
)T

L̂+i ėi. (15)

Using Assumption 3, it can be ensured that
k‖ei‖2 ≤ eTi sym{(̂L+i )T L̂+i LîL+i }ei ≤ k‖ei‖2 and
k‖ėi‖2 ≤ ėTi sym{(̂L+i )T L̂+i LîL+i }ėi ≤ k‖ėi‖2 for some
k ≥ k > 0 in the local region near the origin. Using
Assumption 2 and defining the following upper bounds
in the considered local region as supt≥0 ‖(̂L+i )T L̂+i ‖ ≤ l̄,
(inft≥0 σmin{Li})−1 supt≥0 ‖(̂L+i )T L̂+i L̇i‖ ‖ėi‖ ≤ ϑ‖ėi‖2,
supt≥0 ‖(̂L+i )T ˙̂L

+
i ‖ ≤ ι‖ėi‖, ε̄ = max{1, ε1/2} such that

l̄, ϑ, ι > 0. Given that the gains kp and kv are chosen
according to the sufficient condition in (12), then (15) can be
upper bounded as

V̇v ≤ −λv‖ei‖2 − λv‖ėi‖2 + ε̄kkvχ̄(‖ei‖ + ‖ėi‖)
+ ι‖ei‖2‖ėi‖ + ε1

2
(ϑ + 2ι)‖ei‖‖ėi‖2 + (ι+ ϑ)‖ėi‖3.

(16)

Using the inequality ‖ei‖ + ‖ėi‖ ≤
√
2(‖ei‖2 + ‖ėi‖2) =√

2‖ρ‖, after some algebraic manipulations and using the
bounds on ‖ρ‖ and ‖x‖, (16) can be simplified to

V̇v ≤ −β1
γ v

Vv + η (17)

∀‖ρ‖ ≤ (λv/[2
√
2max{(ε1/2)(ϑ + 2ι), (ι+ ϑ)}]), where

β1 = (λvm/4) and η = ([2m(ε̄kkvχ̄)2]/[λvm]). The solu-
tion to the differential inequality in (17) can be obtained
using [29, Lemma 3.4] and is given by

Vv(x, t) ≤ Vv(x0, t0)e
− β1
γv

(t−t0) + γvη
β1

(
1 − e− β1

γv
(t−t0)

)
. (18)

From (18) and using the bounds on the Lyapunov function,
it can be concluded that x(t) ∈ L∞. Using [29, Th. 4.18],
the state is UUB for sufficiently small δ1 > 0 representing
the local region of convergence, where the relation in (9),
Assumptions 2 and 3, and (17) holds.
The ultimate bound on the state can be made arbitrarily

small by adjusting the controller gains kp and kv and by
choosing an appropriate approximation method for ˙̂ei(t), which
minimizes χ̄ .

IV. TASK SPACE DYNAMIC MOVEMENT PRIMITIVES

This section describes the position and orientation DMPs
which can generate goal reaching motions while retaining the
desired shape of the trajectory.

A. Combined Position and Orientation DMPs

To regulate the position and orientation error to zero, i.e.,
‖ep(t)‖ → 0 and to retain the desired shape of the trajectory,
the combined position and orientation DMPs are described by
the following acceleration law:

τ 2ξ̇c∗ = −6ep − τ7ξc∗ +8T9
(
zp, zo

)
(19)

where ξc∗(t) is the velocity of the camera in the frame Fc∗ ,
6 = diag{(αvβv)I3, (αωβω)I3}, 7 = diag{αvI3,αωI3} such that
αv,αω,βv,βω > 0 are constant positive gains and τ > 0 is the
temporal scaling constant. The third term on the RHS of (19)
is a nonlinear forcing function which encodes the shape of the
desired trajectory, 8 and 9 are defined as

8 =
[
θp 0Np×3

0No×3 θo

]
, 9 =

[
9p

(
zp

)
zp

9o(zo)zo

]
(20)

such that θp ∈ RNp×3 and θo ∈ RNo×3 are constant weight
matrices associated with the vectors of radial basis functions

9p
(
zp

)
=

[
ψ1

(
zp

)

∑Np
i=1 ψi

(
zp

) , . . . ,
ψNp

(
zp

)

∑Np
i=1 ψi

(
zp

)

]T

∈ RNp

and

9o(zo) =
[

ϕ1(zo)
∑No

i=1 ϕi(zo)
, . . . ,

ϕNo(zo)∑No
i=1 ϕi(zo)

]T

∈ RNo

with Np,No > 0 as respective basis numbers. The individual
basis functions are defined as ψi(zp) = exp(−hψi (zp(t)− ci)2)
and ϕi(zo) = exp(−hϕi (zo(t)− νi)2). The parameters ci, νi > 0
are centers of the basis functions and hψi , h

ϕ
i > 0 are the

variances, respectively. In (20), zp(t) ∈ R and zo(t) ∈ R are
solutions to first-order scalar differential equations given by

τ żp = −αzpzp, τ żo = −αzozo (21)

where αzp ,αzo > 0 are constant positive gains. To facilitate
the stability analysis, the initial conditions for the differential
equation in (21) are set to zp(t0), zo(t0) = 1.

Assumption 4: The nonlinear forcing term can be upper
bounded as ‖8T9‖ ≤ 8̄9̄e−α(t−t0), where α =
(1/τ )min{αzp,αzo} when the DMP is active between [t0, t).

Remark 5: The implication of Assumption 4 is that the
matrix 8 is bounded by a constant, i.e.,

√
λmax(8T8) ≤ 8̄.

This holds true since the analytical solution of the optimization
problem in (23) depends on the pseudoinverse of the column-
wise augmented 9 matrices and the demonstration trajectories
which are bounded.
Thus, based on (1), the dynamics of ėp(t) derived in [20,

Sec. II-B], and (19), the state dynamics for DMP can be
concisely written as

ẋ = fd(x, t)+ gd(t) (22)

where fd : R12 × R+ → R12 is a locally Lipschitz function
and gd(t) = [ 0T1×6 (8T9(zp, zo))T ]T is a perturbation term.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on October 28,2022 at 23:57:51 UTC from IEEE Xplore.  Restrictions apply. 



6 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS

B. Learning DMP Parameters

Given a demonstration trajectory with N data points
{ep(tk), ξc∗(tk), ξ̇c∗(tk)}N−1

k=0 sampled at the time instants
{tk}N−1

k=0 , the DMP weights are computed by solving the
following optimization problem:

8& = argmin
8

N−1∑

k=0

∥∥∥τ 2ξ̇c∗(tk)+ 6ep(tk)+ τ7ξc∗(tk)

− 8T9
(
zp(tk), zo(tk)

)∥∥∥
2

(23)

for suitably chosen values of τ , 6, and 7. The centers
and variances are calculated as ci = e−αzp (i−1/Np−1), hψi =
(1/[(ci+1 − ci)2]), h

ψ
Np

= hψNp−1 ∀i = 1, . . . ,Np − 1 and νj =
e−αzo (j−1/No−1), hϕj = (1/[(νj+1 − νj)2]), hϕNo

= hϕNo−1 ∀j =
1, . . . ,No − 1.

C. Stability Analysis of DMPs

This section presents the stability analysis of the DMP
described in Section IV-A.
Property 1 [33]: Based on the definition of r(t) defined

after (1), the following relations hold:

rT ṙ = rTωc∗ , ṙTωc∗ = ωTc∗ωc∗ . (24)

Theorem 2: Provided that Assumption 4 holds, then the
system in (22) is globally asymptotically stable in the sense
that

lim
t→∞

‖x(t)‖ = 0 (25)

given that the gains αv, βv, αω, and βω are chosen according
to the sufficient condition

αv = 4βv, αω = 4βω, βv >
3ε2
8τ

, βω >
3ε2
8τ

(26)

where ε2 ∈ (0,
√
4τ 2λmin(6)) is a positive constant.

Proof: Consider the candidate Lyapunov function
Vd(x) : R12 → R+ defined as

Vd(x) = xTPdx (27)

where

Pd =
[

1
26

ε2
4 I6

ε2
4 I6

τ 2

2 I6

]

.

The Lyapunov function in (27) is upper and lower bounded
as γd‖x‖2 ≤ Vd(x) ≤ γd‖x‖2, where γd = λmin(Pd) and
γd = λmax(Pd). Taking the time derivative of Vd(x), using the
definition of x(t) in (1), substituting (24), (19), and simplifying
yields

V̇d = −τξTc∗7ξc∗ + ξTc∗8T9 − ε2

2τ 2
eTp6ep − ε2

2τ
eTp7ξc∗

+ ε2

2τ 2
eTp8

T9 + ε2
2
ξTc∗ξc∗ . (28)

The DMP gain relations are selected as per [34] to be
αv = 4βv and αω = 4βω to make a proportional–
derivative-like part of the system critically damped. Defining
the constants c̄1 ≥ (ε28̄9/2τ 2), c̄2 ≥ (2τ 2c̄1/ε2), C =

max{c̄1, c̄2}, if βv and βw are chosen according to the suf-
ficient conditions in (26), then (28) can be upper bounded
as V̇d ≤ −λd‖x‖2 +

√
2Ce−α(t−t0)‖x‖, where λd =

min{(ε2β2v /τ 2), 4τβv − (3ε2/2), (ε2β2ω/τ
2), 4τβω − (3ε2/2)}.

Completing the squares and using the bounds on the Lyapunov
function yields

V̇d ≤ − λd

2γ̄d
Vd +

C2

λd
e−2α(t−t0)

≤ −β2Vd +?e−2α(t−t0) (29)

where β2 = (λd/2γ̄d) and ? = (C2/λd). The solu-
tion to the differential inequality in (29) can be obtained
using [29, Lemma 3.4] as

Vd(x(t)) ≤ Vd(x(t0))e−β2(t−t0) + @̄e−c3(t−t0) (30)

where c3 = min{2α,β2}, @̄ = (?/|β2 − 2α|), and β2 1= 2α
such that | · | denotes the absolute value of the argument.
Using (30) and the bounds on the Lyapunov function, it can
be concluded that ‖x(t)‖ ∈ L∞. The second term on the
right-hand side of (29) is a non-negative continuous pertur-
bation term which satisfies lim

t→∞?e−2α(t−t0) = 0 resulting in
the global asymptotic stability of the solution trajectories x(t)
(c.f. [29, Lemma 9.6]).

V. STABILITY ANALYSIS OF THE SWITCHED SYSTEM

In this section, the stability of the switched system is ana-
lyzed while switching between DMP and IBVS controllers. To
facilitate the stability analysis, the common state defined in (1)
and stability results, which are derived for the dynamics of the
common state using IBVS control and DMP, are used. The
switched system switches between the IBVS controller in (6)
and DMP in (19) based on the visibility of feature points.
The switching between the controllers leads to discontinuous
dynamics which can be mathematically expressed as

ẋ = fσ (x,t)(x, t)+ gσ (x,t)(t), σ : R12 × R+ → {v, d}. (31)

The switching signal σ (x, t) governs the dynamics of x(t).
Since the IBVS exponentially converges to a bound when
initialized in a local region near the goal state, a threshold
constant δ2 > 0 is selected for the IBVS controller to be active
such that, x(t) ∈ Bδ2(0) ⊂ Bδ1(0). The relation between the
positive constants δ1 and δ2 is established using the analysis
in Theorem 3.
Remark 6: In practice, a threshold for image pixel error

ei(t) and velocity ξc∗(t), which corresponds to δ2, can be cho-
sen based on the image size and feature visibility. The IBVS
system is active when all the features are detected, matched,
and ι ≤ ei(t) ≤ ι for some suitably chosen vector ι > ι, where
the inequalities are element-wise. No threshold is selected for
the velocities ξc∗(t), however, the constant τ in (19) can be
adjusted to generate slow velocities using the DMP.
Let κ̄ = max{γv, γd}, κ = min{γv, γd}, µ = (κ̄/κ) be

constants. The Lyapunov functions Vv(x, t) and Vd(x) in (13)
and (27) can then be related as follows:

Vv ≤ µVd, Vd ≤ µVv ∀x(t) ∈ Bδ1(0). (32)
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Definition 1 [10, Ch. 3, p. 58]: The switching signal σ (x, t)
has average dwell time τa, if there exist two numbers N0 ∈ Z+

and τa ∈ R+ such that

Nσ
(
t, t

)
≤ N0 +

t − t
τa

(33)

is satisfied, where N0 is known as the chatter bound and
Nσ (t, t) are the number of discontinuities on the interval [t, t).
Theorem 3: Provided that Assumptions 1–4 hold, the state

trajectories of the switched system generated by the family
of subsystems described by (31) and a piecewise constant,
right continuous switching signal σ : R12 × R+ → {v, d}
asymptotically converges to a bound in the sense that

lim sup
t→∞

‖x(t)‖ ≤
√
κN0+1η

κN0+2ε
(34)

provided that:
I. If x(t) ∈ R12 \ Bδ1(0) ⇒ σ (x, t) = d.
II. If σ (x(t−), t−) = 2 and x(t) ∈ Bδ2(0), then
σ (x(t), t) = 1.

III. The local region of convergence and the switching
threshold satisfy the following conditions:

√
κN0+2

κN0+2 δ1 > δ2, and δ1 >

√
κN0+1η

κN0+2ε
. (35)

IV. The condition in (33) is satisfied for

τa >
ln µ
β − ε (36)

where 0 < ε < β ≤ min{(β1/γv), c3}.
Proof: The proof of the theorem is divided into two cases to

characterize the behavior of the switched system in different
regions of the space. Consider the Lyapunov function defined
in (13) and (27)

Vσ (x,t)(x, t) =
{
xTPv(t)x+ Õ σ (x, t) = v
xTPdx σ (x, t) = d.

(37)

Case 1: When ‖x(t)‖ > δ2, the state x(t) ∈ R12 \ Bδ2(0)
is outside of the switching set for IBVS. If Condition I of
Theorem 3 is satisfied, then Vσ (x,t)(x, t) is differentiable and
decreases exponentially from any initial condition. Then ∀t ∈
[0, t0) for t0 > 0, the following upper bound holds:

Vσ (x(t), t) ≤ Vσ (x(0), 0)e−β2t + @̄e−c3t

≤ (Vσ (x(0), 0)+ @̄)e−βt (38)

where σ : R12 \ Bδ2(0)× [0, t0) → d and the arguments of σ
are dropped in (38) for brevity. The time required to reach the
set Bδ2(0) from any initial condition is finite and can be lower
bounded by t0 ≥ (1/β)ln(min{([γd‖x(t0)‖2 + @̄]/γdδ22), 1}).
The controller switches to IBVS when ‖x(t0)‖ < δ2. The
switched system state trajectories after switching to and oper-
ating in IBVS thereafter remain in a subset of the local region,
i.e., ‖x(t0)‖ < δ2 ⇒ ‖x(t)‖ < δ1, if σ (x, t) = v ∀ t ≥ t0, and
condition III is satisfied.
Case 2: Let t0 = inf{t ∈ R+|‖x(t)‖ < δ2} ≥ 0 be the first

time instance when ‖x(t)‖ < δ2 implying that x(t0) ∈ Bδ2(0).
Such a t0 < ∞ exists due to exponentially decaying upper

bound in (38). Using a recursion similar to the results in [35],
Lyapunov bounds in (18) and (30), and the average dwell-
time condition in (33) and (36), the conservative bound on the
solution of the Lyapunov function in (37) between the interval
[t0, t) for monotonically increasing sequence of switching
times {tn}Nσ (t0,t)n=0 can be given as

Vσ (x(t), t) ≤ µN0+1
(
(Vσ (x(t0), t0)+w̄)e−ε(t−t0)

+ η

ε

(
1 − e−ε(t−t0)

))
∀x(t) ∈ Bδ1(0) (39)

where w̄ = ?/(2α − ε). For large enough t, the solu-
tion x(t) never exits the region Bδ1(0). It can be concluded
from (39) that x(t) is continuous, x(t) ∈ L∞ and converges
asymptotically to the bound in (34).
The ultimate bound on the switched system is larger com-

pared to the bound on the individual IBVS system as switching
between subsystems can lead to the growth of the Lyapunov
function. Such a bound is commonly found in the litera-
ture in different contexts (c.f. [36, Th. 1], [27, Lemma 2],
and [37, Th. 1]). Algorithm 1 is developed based on the stabil-
ity analysis presented in Theorem 3 to ensure stable switching
by compensating for the fast switching occurring due to the
disturbances and occlusions in the IBVS subsystem. A com-
pensation time tc is calculated and the DMP subsystem is kept
active for additional time to ensure that the average dwell-time
condition is satisfied for a total of N̄ > 0 switches.
Remark 7: Theorem 3 establishes the general conditions for

switching between the subsystems and is useful in the case of
frequent perturbations or occlusions which can result in fast
switching which can make the combined system unstable if
the average dwell-time condition is not satisfied.
Remark 8: The constant β depends on the IBVS controller

gains kp and kv and the DMP gains αv, αω, βv, βω, αzp , and
αzo . Increasing the gains can increase β which enables the user
to choose ε from a wider range of values. Choosing a high
value of ε leads to a faster convergence of the bound in (39).
However, this increases the average dwell time τa in (36). On
the other hand, if ε is chosen to be small, the bound in (39)
converges slowly but allows for a lower τa.

VI. EXPERIMENTS

A. Experimental Setup

The camera in the wrist of the right arm of a Baxter research
robot is used to capture images of an ArUco marker with the
frame rate of 30 frames/s and image resolution 640 × 420.
The corners of the ArUco marker are used as feature points
(m = 4) for IBVS. The feature points are detected and matched
using OpenCV’s ArUco library. The processing is done at
30frames/s using a desktop with an Intel Core2Duo CPU with
a clock speed of 2.26 GHz and 4-GB RAM running Ubuntu
14.04. The experimental setup is shown in Fig. 3. The DMP-
IBVS switching algorithm is implemented in MATLAB 2018a.
The camera intrinsic parameters for Baxter’s right hand cam-
era are given by fx = fy = 407.1, cx = 323.4, and cy = 205.6,
where fx, fy represent the camera focal lengths in pixels and
(cx, cy) represents the camera center pixel.
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Algorithm 1: Algorithm for Switching Between IBVS and
DMP Based on Visibility of Feature Points and Average
Dwell-Time Condition
Select decay rates β, ε > 0, chatter bound N0 ≥ 1,
feature error thresholds ι > ι;
Compute µ = κ

κ and τa = ln µ
β−ε ;

Set td = 0 and tv = 0 to be the last time instant when
DMP and IBVS were active respectively;
Set te = 0 as the elapsed time and N̄ > 1 as the number
of switches over which the dwell time condition should
be satisfied;
Set the compensation time tc = 0 and current number of
switches Nσ = 0;
while data is available do

if features match & ι ≤ ei ≤ ι & t > tv + tc then
Run IBVS according to (6);
if td > tv then

te ← te + (td − tv);
Nσ ← Nσ + 1;
tc ← 0;

tv ← t;
else

Run DMP according to (19);
if tv > td then

Nσ ← Nσ + 1;
te ← te + (tv − td);
if Nσ ≥ N̄ then

tc ← (Nσ − N0)τa − te;
te ← 0;
Nσ ← 0;

td ← t;

end

Fig. 3. Experimental setup showing Baxter’s end effector with an eye-in-hand
configuration observing the ArUco marker.

The position DMP is trained on a demonstration trajectory,
which is collected by recording Baxter’s arm position, velocity,
acceleration, and filtered using a constant acceleration Kalman
filter. The orientation DMP is trained on a trajectory generated
by a minimum-jerk polynomial for quaternions. The goal pose
of the DMP is used to record the desired feature vector s∗i

for the IBVS system. The DMP acceleration commands are
computed from the Baxter robot pose feedback. The IBVS
and DMP controller-generated acceleration is integrated and
applied as a joint velocity controller using the pseudoinverse
of the Baxter manipulator Jacobian matrix.

B. Experiment 1

In this experiment, the convergence and stability of the
DMP-IBVS switched system is verified when switching occurs
only once. The DMP weights are computed by recording a tra-
jectory as described earlier. The DMP parameters are set to
αv = 140, βv = 35, αω = 4, βω = 1, αzp = 1, αzo = 1, and
τ = 25. The IBVS gains are empirically tuned to be kp = 5,
and kv = 10. The initial pose of the Baxter right-hand cam-
era is selected such that none of the desired feature points
are in the FOV of the camera. The feature threshold error
for switching is chosen as ι = [0.85, 0.42, · · · , 0.85, 0.42]T ,
ι = −ι which corresponds to pixel errors of 345 and 170
pixels in the X- and Y-directions of the image frame, respec-
tively. When the features are out of the FOV, the arm starts
approaching the goal location along the trained DMP trajec-
tory. The controller switches to IBVS once the features are
in the FOV of the camera and the feature error is less than
the selected threshold error, i.e., ι ≤ ei ≤ ι. This condition is
first satisfied at t = 16.4 s. Fig. 4(a) shows the acceleration
generated by the switched system with the discontinuity at
16.4 s, which is the switching instance. The pose error starts
converging to the desired pose as the DMP is active until
t = 16.4 s. Once the switch to IBVS happens, the pose error
in Fig. 4(b) converges to a bound. It is also observed that the
pose error is continuous as proven in Theorem 3. Fig. 4(c)
shows the image feature error ei(t), which is first computed
when all the features are visible and the threshold condition
is satisfied. The image feature error decreases exponentially
to a bound as the IBVS system converges. Fig. 4(d) shows
the Lyapunov function Vσ (x,t)(x(t), t) for the switched system.
The orange line shows Vv(x(t), t) and the right y-axis repre-
sents its values. Similarly, the blue line shows Vd(x(t)) and the
left y-axis represents its values. The Lyapunov functions are
only plotted for the active subsystem in the corresponding time
interval. The Lyapunov function asymptotically decreases for
both controllers when active individually, verifying the result
of Theorem 3. The error bounds obtained for the experiment
in Table I verify the convergence of the error for the switched
system. The error bounds are computed by taking the average
of the last five error data points.

C. Experiment 2

In the second experiment, the stability and convergence
of the DMP-IBVS switched system are tested when there
are multiple switches amongst these individual systems. Such
a case would occur practically when the feature points are
occluded or the features go out of FOV during the IBVS
system operation. The feature occlusion is simulated using
a piece of paper placed on the ArUco markers covering
the camera view. The parameters of the DMP-IBVS switch-
ing algorithm are selected empirically as follows: µ = 10.67,
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Fig. 4. Experimental results for the DMP and IBVS for a single switching instance at 16.4 s. (a) Camera acceleration generated by the DMP controller
till 16.4 s and camera acceleration generated by the IBVS controller after 16.4 s. (b) Pose error ep(t) converges to a bound. (c) Image feature errors ei(t)
computed after 16.4 s. (d) Value of Lyapunov function Vσ (x,t)(x(t), t), with the left y-axis showing the scale for Vd(x(t)) and the right y-axis showing the
scale for Vv(x(t), t).

Fig. 5. Experimental results for the DMP and IBVS with frequent feature occlusion. (a) Camera acceleration generated by the DMP controller and the
IBVS controller in the presence of occlusion with gray dashed-dotted lines showing the switching instances. (b) Pose error ep(t) converges to a bound in
the presence of multiple switching instances. (c) Image feature errors ei(t) computed when all the features are visible and satisfy the threshold condition in
Algorithm 1. (d) Value of Lyapunov function Vσ (x,t)(x(t), t) during multiple switching instances, with the left y-axis showing the scale for Vd(x(t)) and the
right y-axis showing the scale for Vv(x(t), t).

the decay rates are β = 0.77 and ε = 0.01β. The aver-
age dwell time is calculated as τa = 13.82 s. The individual
DMP and IBVS parameters are the same as those from
Experiment 1. The constants are selected as N̄ = 5 and
N0 = 2, which allows the total time between N̄ switches
to be 3τa. This also implies that if the first four switches
between IBVS and DMP controllers are fast, then the DMP-
IBVS system ensures that the average dwell-time condition
is met by keeping the DMP controller active for longer time
before the 5th switch occurs. The results of Experiment 2 are
summarized in Fig. 5(a)–(d). Fig. 5(a) shows the acceleration
generated by the switched system with the switching instants
marked with gray dashed-dotted lines. The switching occurs
at the following time instances t = 15.56 s, t = 16.44 s,
t = 19.12 s, t = 21.48 s, and t = 57.08 s with the DMP
controller active between 0 and 15.56 s. Fig. 5(b) shows the
convergence of the pose error to a bound for the switched
system using Algorithm 1. As verified by Theorem 3, the
pose error is continuous despite the switching between the
DMP and IBVS subsystems. Fig. 5(c) shows the exponential
decay of the image feature errors when the IBVS controller
is active and the conditions of Algorithm 1 are met. It can
be seen that, although all the features are visible and the fea-
ture error is below the selected threshold, the DMP controller
is active between t = 21.48–57.08 s to compensate for the
average dwell time to ensure the stability despite fast initial
switching. Fig. 5(d) shows the asymptotic convergence of the
Lyapunov function Vσ (x,t)(x(t), t) for the switched system. The
result of Theorem 3 is verified by the stability of the Lyapunov

TABLE I
ERROR BOUND INFORMATION FOR BAXTER

POSE REGULATION EXPERIMENTS

functions as shown in Fig. 5(d). The error bounds obtained for
the experiment in Table I verify the convergence of the error
for the switched system.

D. Experiment 3

In this experiment, the DMP-IBVS switched system
performance is compared with the performance of DMP for a
precision pose regulation task of the end effector when there
is an uncertainty in the goal pose. Precision positioning is
required in many fine manipulation tasks, such as assembly,
small hole insertions, or pinch grasping. A pinch grasp task
using parallel jaw grippers is considered in this experiment.
For successful pinch grasping the gripper needs to be posi-
tioned precisely to a certain pose (i.e., a goal pose) with respect
to the object. An ArUco marker is attached to an object which
is placed in a box for this task. The DMP-only control and
the DMP-IBVS control are implemented. Trajectory data start-
ing from a pose where the object is not visible in the camera
FOV due to the presence of the box and ending close to the
object before the gripper closes for pinching is collected for
training the DMP parameters. The object position in the box
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Fig. 6. Experimental results for end-effector positioning to complete the
pinch grasping task with changed object location. (a) Failed pinching opera-
tion with changed object location using the DMP-only system. (b) Successful
pinching operation despite changed goal location using the DMP-IBVS
switched system. (c) Pose error evolution for the DMP. (d) Pose error
convergence for the DMP-IBVS switched system.

is slightly changed during testing before the trajectory is gen-
erated using the DMP-only and DMP-IBVS switched system.
The changed goal pose due to the change of object location
is unknown to the DMP. Thus, the DMP-only system cannot
reach the new pose. In Fig. 6(a), the pinch grasp operation
fails using the DMP-only system because the gripper could
not position itself precisely before the parallel jaw gripper is
activated. However, the DMP-IBVS switched system is able
to adapt to the change in the goal pose of the gripper using
eye-in-hand image feedback once it is available. The success-
ful pinch using the DMP-IBVS switched system is shown in
Fig. 6(b). Fig. 6(c) and (d) shows the evolution of the pose
error ep computed with respect to the new goal pose for the
DMP-only and DMP-IBVS switched system. As seen by the
dashed-dotted gray line in Fig. 6(d), the DMP is active until
9.40 s and then the IBVS subsystem becomes active when
image features are visible. The IBVS ensures the convergence
of the pose error with respect to the object using image feed-
back. The DMP-only system on the other hand is not able to
adapt to the change in goal pose and converges to the goal
pose used during training. As a result, the pose error does not
converge to zero as seen from Fig. 6(c). The pose error com-
puted in terms of ‖ep‖ for the DMP system is 0.1105 whereas
for the DMP-IBVS switched system is 0.0092.

VII. CONCLUSION

In this article a switching strategy is presented, that utilizes
DMP and IBVS methodologies to combine learning-based
end-effector control and perception-based control. The
Lyapunov stability analysis of the proposed IBVS system
yields a UUB result in a local region around the origin, and
that of the DMP system yields global asymptotic stability.
The switched DMP-IBVS system analysis based on multiple

Lyapunov functions shows that the switched system asymptoti-
cally converges to a bound. A switching algorithm is presented
based on feature visibility while maintaining stability subject
to the average dwell-time condition. The method is tested on
a Baxter research robot using a pose regulation task of the
robot’s end effector over an ArUco marker placed on a table.
Future work will involve analysis of multiple equilibria when
the object is moved and applying the developed method in
various manufacturing and space robotics applications.

REFERENCES

[1] E. Tunstel et al., “Robotic wire pinning for wire harness assembly
automation,” in Proc. IEEE/ASME Int. Conf. Adv. Intell. Mechatronics
(AIM), 2020, pp. 1208–1215.

[2] A. J. Ijspeert, J. Nakanishi, and S. Schaal, “Learning attractor land-
scapes for learning motor primitives,” in Proc. Int. Conf. Adv. Neural
Inf. Process. Syst., 2003, pp. 1547–1554.

[3] F. Chaumette and S. Hutchinson, “Visual servo control. I. Basic
approaches,” IEEE Robot. Autom. Mag., vol. 13, no. 4, pp. 82–90,
Dec. 2006.

[4] G. López-Nicolás, N. R. Gans, S. Bhattacharya, C. Sagüés,
J. J. Guerrero, and S. Hutchinson, “Homography-based control scheme
for mobile robots with nonholonomic and field-of-view constraints,”
IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. 40, no. 4,
pp. 1115–1127, Aug. 2010.

[5] N. R. Gans, G. Hu, K. Nagarajan, and W. E. Dixon, “Keeping multiple
moving targets in the field of view of a mobile camera,” IEEE Trans.
Robot., vol. 27, no. 4, pp. 822–828, Aug. 2011.

[6] I. Salehi, G. Rotithor, R. Saltus, and A. P. Dani, “Constrained image-
based visual servoing using barrier functions,” in Proc. IEEE Int. Conf.
Robot. Autom., 2021, pp. 14254–14260.

[7] R. Wang, X. Zhang, Y. Fang, and B. Li, “Virtual-goal-guided RRT for
visual servoing of mobile robots with FOV constraint,” IEEE Trans.
Syst., Man, Cybern., Syst., vol. 52, no. 4, pp. 2073–2083, Apr. 2022.

[8] Y. Huang, M. Zhu, Z. Zheng, and K. H. Low, “Linear velocity-free
visual servoing control for unmanned helicopter landing on a ship with
visibility constraint,” IEEE Trans. Syst., Man, Cybern., Syst., vol. 52,
no. 5, pp. 2979–2993, May 2022.

[9] F. Ke, Z. Li, H. Xiao, and X. Zhang, “Visual servoing of constrained
mobile robots based on model predictive control,” IEEE Trans. Syst.,
Man, Cybern., Syst., vol. 47, no. 7, pp. 1428–1438, Jul. 2017.

[10] D. Liberzon, Switching in Systems and Control. Boston, MA, USA:
Birkhauser, 2003.

[11] D. Liberzon and A. S. Morse, “Basic problems in stability and design of
switched systems,” IEEE Control Syst. Mag., vol. 19, no. 5, pp. 59–70,
Oct. 1999.

[12] J. P. Hespanha and A. S. Morse, “Stability of switched systems with
average dwell-time,” in Proc. 38th IEEE Conf. Decis. Control, vol. 3,
1999, pp. 2655–2660.

[13] J. Daafouz, P. Riedinger, and C. Iung, “Stability analysis and control syn-
thesis for switched systems: A switched Lyapunov function approach,”
IEEE Trans. Autom. Control, vol. 47, no. 11, pp. 1883–1887, Nov. 2002.

[14] J. P. Hespanha, “Uniform stability of switched linear systems: Extensions
of LaSalle’s invariance principle,” IEEE Trans. Autom. Control, vol. 49,
no. 4, pp. 470–482, Apr. 2004.

[15] H. Lin and P. J. Antsaklis, “Stability and stabilizability of switched
linear systems: A survey of recent results,” IEEE Trans. Autom. Control,
vol. 54, no. 2, pp. 308–322, Feb. 2009.

[16] M. S. Branicky, “Multiple Lyapunov functions and other analysis tools
for switched and hybrid systems,” IEEE Trans. Autom. Control, vol. 43,
no. 4, pp. 475–482, Apr. 1998.

[17] R. Kamalapurkar, J. A. Rosenfeld, A. Parikh, A. R. Teel, and
W. E. Dixon, “Invariance-like results for nonautonomous switched
systems,” IEEE Trans. Autom. Control, vol. 64, no. 2, pp. 614–627,
Feb. 2019.

[18] D. Astolfi, R. Postoyan, and D. Nešić, “Uniting observers,” IEEE Trans.
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