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State-selective electromagnetically induced transparency for quantum error correction
in neutral atom quantum computers
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We propose a way to measure the qubit state of an arbitrary subensemble of atoms in an array without
significantly disturbing the quantum information in the unmeasured atoms. The idea is to first site-selectively
transfer atoms out of the qubit basis so that one of the two states at a time is put into an auxiliary state.
Electromagnetically induced transparency (EIT) light will then protect most states while detection light is
scattered from atoms in the auxiliary state, which is made immune to the EIT protection by angular momentum
selection rules and carefully chosen light polarization. The two states will be measured in turn, after which it is
possible to recool and return the atoms to a qubit state. These measurements can be the basis of quantum error
correction.
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I. INTRODUCTION

There has been substantial recent progress in developing
neutral atom qubits. Along with better control of atom lo-
cations and better vibrational cooling in systems with more
than 50 atom qubits [1–9], there have been advances in
high-fidelity state detection [10,11], single-qubit gate fidelity
[12–15], and two-qubit gate fidelity [11,16–21]. Continued
progress is necessary on all these technical fronts, but it is
not too early to think seriously about the remaining element
needed for universal quantum computation: the ability to cor-
rect errors [22–24]. Quantum error correction requires being
able to measure the states of selected qubits while preserv-
ing the quantum information in the rest. One-way quantum
computation, where entanglement is initially encoded into
the system, also requires site-specific measurements [25].
The challenge on this front for neutral atoms, as well as for
trapped ions, is that their qubit states are typically detected by
scattering photons, which can be rescattered by surrounding
spectator atoms, randomly changing their quantum states. The
challenge is greater when the atoms are more closely spaced
and it is especially large in three-dimensional (3D) arrays,
where there are typically atoms in the path of all scattered
photons.

A few ideas have been previously suggested for meet-
ing the selective measurement challenge. Two atomic species
can be used, one for computation and one for measurement
[26–28]. In ion systems, the quantum logic clock is based
on this concept and has yielded very precise state detection
[29,30]. However, it has not been implemented in systems
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with many qubits or in neutral atom systems. Alkaline-earth-
like atoms present the possibility of storing qubit states in
metastable triplet levels that do not rescatter light from singlet
scattering transitions. These atoms could obviate the need for
the type of spectator protection proposed here, but perhaps
at the cost of extra, routine manipulation of the states of
spectator atoms, which would come with its own error costs.
Another viable approach that can be applied in some trapping
configurations is to move the atoms to be measured far enough
away from the other atoms to sufficiently suppress rescattering
when their states are being detected [31,32].

Spatially selective measurement of an alkali-metal atom
has been demonstrated using electromagnetically induced
transparency (EIT) to suppress repumping from all but well-
localized spatial positions [33–35]. Such an approach has not
been adapted for qubit state measurements. The idea that we
propose here combines site-selective state transfers and EIT to
yield high-fidelity localized state detection while minimally
affecting surrounding quantum information. Such detection
can be lossless and allows for recooling the measured qubits.

The general approach we propose starts with identifying
a subsample of atoms to be measured and site-selectively
mapping the qubit states of those atoms onto two auxiliary
states. Then the two auxiliary states will be detected in turn
in the presence of EIT light that suppresses light scattering
from all other states, including the qubit basis. Having thus
performed a state measurement on the selected atoms, they
can be transferred back to one of the qubit basis states.

All the elements of this proposal have been previously
demonstrated with high fidelity except for this particular use
of an EIT protection beam. Starting with any apparatus that
is capable of implementing neutral atom quantum compu-
tation, the experimental addition required to implement this
proposal consists only of adding an EIT protection beam. As
we will see, the required EIT power can be easily achieved
with existing technology and the effect of the EIT light on the
coherence and trapping of the unmeasured atoms is minimal.
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Although it is rather complicated to calculate all aspects of
the performance of the measurement approach proposed in
this paper, the experimental implementation of this proposal
should be straightforward.

In the next section we will expand on this overview and
the need for protection. Section III delves into the core part of
the procedure, the implementation of state-selective EIT. Sec-
tion IV describes how we numerically analyze the full model.
In Sec. V we characterize the performance of an implementa-
tion that involves a cycling transition, which we call scheme
1. Our analysis takes into account all relevant hyperfine states.
In Sec. VI we present a similar analysis for an implementation
without a cycling transition, scheme 2. The lack of a cycling
transition for detection adds some complications, but also
allows atoms to be cooled and reused. Finally, in Sec. VII
we consider the effects of polarization imperfections and how
they will impact real experiments and thereby demonstrate the
practical feasibility of these proposals.

II. OVERVIEW

The proposed measurement starts with an array of atomic
qubits in arbitrary states, a 3D version of which is shown in
Fig. 1(a), where the blue spheres represent atoms that can have
any superposition in the qubit basis. Stage 1 of our approach
will be to coherently map the internal states of selected atoms,
illustrated by the red spheres in Fig. 1(b), out of the qubit basis
into a basis that includes a stretched state. Figure 1(c) shows
an example, for Cs atoms, of possible states to use for both
the qubit basis and the new basis. To reach the new basis, the
atoms to be measured will first be transferred out of the qubit
basis using site-specific addressing [36], either in series or in
parallel. Once out of the qubit basis, one qubit state will be
mapped onto the stretched state and the other qubit state will
be mapped onto an intermediate state, as shown in Fig. 1(c)
(see Appendix A for a particular example of a pulse sequence
for making this mapping). Since the intent is to measure the
probability of being in each initial state, it is not necessary to
maintain the coherence between the two states during these
transfers.

Stage 2 is to detect atoms in and only in the stretched state.
The central idea is to use EIT to suppress the scattering of
detection light from all occupied magnetic sublevels in the up-
per hyperfine level except the stretched state (and sometimes
the adjacent sublevel), as illustrated in Fig. 1(c). The lower
hyperfine states will be protected by their detuning. There are
several ways to accomplish this state-selective EIT protection,
which we will discuss in the next section.

Stage 3 consists of using stimulated pulses, either mi-
crowave or Raman, to exchange the magnetic sublevels into
which the selected atoms were originally placed, as shown in
Fig. 1(d). The EIT-protected detection from the stretched state
can then be repeated. Detecting both states allows atom loss
to be monitored.

Finally, stage 4 consists of a reversal of stage 1, returning
each of the measured atoms to one of the qubit states. The
particular state each atom is returned to will depend, in a
known way, on the result of the measurement. As in stage 1,
the transitions need only be made site specific for the final
transfer.

FIG. 1. Overview of the measurement. (a) Initially, atoms in a
3D optical lattice are in random superpositions in the qubit basis
(shown in blue). (b) A select group of atoms is transferred to states
out of the qubit basis (shown in red, with a red beam going through
them). (c) Qubit and nonqubit bases in the Cs ground state. The open
(closed) circle dark blue states are transferred to the open (closed)
circle light red states using a series of stimulated pulses. The red
state population in the green dotted sublevel is detected, the other
F = 4 states are EIT protected, and the F = 3 states are protected
from light scattering by being far from resonance. (d) Another series
of stimulated pulses exchanges the open and closed circle red states,
allowing the other state population to be detected.

Before delving into the details of our proposed protection
scheme, we will elaborate on the need for such protection
and its requirements. Direct illumination of nontarget atoms
causes too large an error, even with EIT protection, so it must
be minimized. The main concern is rescattering of the light
emitted by imaged atoms, although there may also be a small
amount of stray detection light due to imperfect beams or
scattering from surfaces. For resonant light, the reabsorption
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cross section is given by [37]

σ = λ2

2π
. (1)

The probability of rescattering resonant light by a single
Cs atom 5 μm away is 0.0004 per photon. The number of
photons needed for detection, γ , depends on the detection
scheme. Using resonant cavities [38,39] or phase-sensitive
imaging techniques [40,41] allows atom detection with tens of
scattered photons, while more traditional approaches need at
least several hundred scattered photons [42–45]. Here we will
assume that atom detection can be achieved with 100 scattered
photons; the expected error in any particular experiment can
be rescaled accordingly. For γ = 100, the error rate on the
adjacent atom is 0.04, obviously too high.

Since the spectator atom is not illuminated with the de-
tection light, rescattering can be decreased by increasing the
detuning of the detection light. However, the reduction is
proportional to the required detection light intensity, making
beam imperfection and surface scattering a proportionally
worse problem. Furthermore, off-resonant detection leads to
more hyperfine changing spontaneous emission, compromis-
ing most state detection schemes. So generally, and by a large
margin, protection against rescattering is needed.

A complete analysis of rescattering in an array would have
to take into account details like the specific geometry of the
array, the position of the target atoms inside the array, and
the polarization of the imaging light. To simplify the problem,
we will assume that the imaged atom is in the middle of the
array and emits light spherically symmetrically. We will limit
the discussion to large enough 2D and 3D arrays that we can
ignore the specific lattice configuration and approximate the
surrounding distribution of atoms as shells.

It is useful to define a target maximum total error caused by
imaging a single atom, E , which can be E < 10−4, a conserva-
tive error rate for quantum error correction [24]. If secondary
rescattering can be ignored, then the total error caused by
rescattering can be approximated by the sum of the errors at
all potentially affected atoms, which is given by

E =
∑

i∈spectators

piγ , (2)

where pi is the probability that a spectator atom i rescatters
a photon from the imaged atom. Assuming spherical light
emission, the equation can be recast as

E =
∑

shells

σ

4πr2
i

Niγ , (3)

where ri defines a shell of atoms at a given radius around the
imaged atom and Ni is the number of spectator atoms in this
shell.

We will characterize the effect of the EIT light with the fac-
tor R, which is the suppressed scattering rate normalized to the
scattering rate with no protection. Thus R is the suppression
factor for the reabsorption of scattered photons, which will be
the main figure of merit throughout the paper. The total error
becomes

E =
∑

shells

λ2

8π2r2
i

RNiγ . (4)

The number of atoms in a given shell depends on the
dimension of the array. For 2D arrays with lattice spacing L,
the number of atoms in a given radius is approximately

Ni,2D = 2πri
L

, (5)

so the total error in two dimensions is given by

E2D =
∑

shells

λ2

4πriL
Rγ , (6)

which grows with array size, but very slowly. A given maxi-
mum allowed error dictates the maximum size the array can
have.

Three-dimensional arrays offer benefits for quantum com-
putation, such as enhanced connectivity and favorable scala-
bility [46]. The number of atoms in a shell in 3D is given by

Ni,3D = 4πr2
i

L2
, (7)

and therefore the error is given by

E3D =
∑

shells

λ2

2πL2
Rγ. (8)

Since each new shell adds the same amount of error, the
expression can be simplified further:

E3D = λ2

2πL2
Rγ nshells. (9)

Imaging single atoms in a 3D array is not possible without
direct illumination of spectator atoms, so columns of atoms
need to be addressed at a time. Because there is no way for
light to exit without passing through spectator atoms, rescat-
tering is more of a problem than in two dimensions, making
EIT protection even more necessary.

For Cs, scattering from the hyperfine state that is not reso-
nant with the imaging light is typically three to four orders of
magnitude lower than scattering from even the EIT-protected
resonant state. Therefore, the error rates due to rescattering
could be reduced by temporarily transferring all the spectator
atoms from the typical qubit basis to a basis with states only
in the off-resonant hyperfine manifold. However, this would
come at the expense of errors in the transfer and also errors
accumulated in this new basis, which would usually be more
sensitive to magnetic-field noise. We will not further consider
this approach in this paper, but simply note it as a possibility.

III. STATE-SELECTIVE EIT PROTECTION

There are many ways to implement EIT protection for this
purpose, which can generally be categorized into two types:
those with and those without cycling transitions for detection.
We will present detailed examples of a scheme of each type.
In our scheme 1, the unprotected transition used for detection
is a cycling transition. Our scheme 2 lacks a cycling transition
for detection and so requires the use of extra stimulated pulses
to avoid dark states. These extra stimulated pulses allow for a
natural way to incorporate cooling.

We consider ladder-type EIT systems in Cs. The general
configuration is as follows: A detection beam is resonant
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FIG. 2. Scheme 1 EIT-protected detection on the D2 line. The
imaging light uses σ+ polarization and the EIT protection beam uses
π polarization. With this configuration all F = 4 sublevels are EIT
protected except |4, 4〉, which can be imaged on the cycling transition
|4, 4〉 → |5′, 5′〉. For clarity, in this and all similar figures, we do not
show the Zeeman shifts of hyperfine levels. EIT protection is quite
insensitive to these shifts, as long as they are very small compared to
�EIT, which they are in the regime of interest. The wavelength of the
imaging light should be chosen to match the imaging transition.

with the transition between a ground state (6S1/2,F = 4) and
an intermediate state, which can be either 6P3/2,F = 5 or
6P1/2,F = 4. An EIT protection beam is resonant with the
transition between the intermediate state and an excited state,
which can be either 7S1/2,F = 3 or 4. We will refer to the
hyperfine states as |F,mF 〉, with no prime for the ground
state (e.g., |4, 4〉), a single prime for the intermediate states
(e.g. |4′, 4′〉), and double prime for the excited state (e.g.,
|4′′, 4′′〉). Our calculations are for particular electronic levels
in Cs atoms, but we expect the ideas to carry over to other
states and other systems.

Scheme 1 is shown in Fig. 2. The qubit states are |3, 0〉
and |4, 0〉. The transition from |4, 4〉 to |5′, 5′〉 is not EIT
protected, so atoms in |4, 4〉 can scatter light. The nonresonant
F ′ and F ′′ levels significantly impact EIT performance, and
sorting out their impact constitutes much of this paper. Before
addressing the real system, it is useful to start with a stripped-
down toy Cs model, with perfect polarization and only the
F ′ = 5′ intermediate state and the F ′′ = 4′′ excited state.

In this toy model there are five sublevels of primary in-
terest. The |4, 4〉 and |5′, 5′〉 sublevels form a closed cycling
transition for detection. The |4, 0〉, |5′, 1′〉, and |4′′, 1′′〉 states
form a ladder-type three-level system. The three-level Hamil-
tonian can be diagonalized after making the rotating-wave
approximation. On two photon resonance, the (nearly) non-
absorbing energy eigenstate is given by

|ψ〉na = cos θ |4, 0〉 − sin θ |4′′, 1′′〉, (10)

where

tan θ = �image

�EIT
. (11)

FIG. 3. EIT protection of an idealized three-level system.
(a) Non-ground-state population of the EIT-protected qubit state as
a function of the detection beam detuning and the protection beam
intensity. The red dashed line marks where the detection beam is
resonant with the cycling transition. (b) Suppression factor for the
reabsorption of scattered photons (R) as a function of intensity of the
protection beam.

Here �image is the detection light Rabi frequency and �EIT is
the protection Rabi frequency. Light scatters from the nonab-
sorbing state to the extent that it contains the finite-lifetime
excited state. In the limit �EIT � �image, the scattering
rate from |ψ〉na decreases linearly with protection beam in-
tensity. Figure 3(a) shows 1 − max{|〈ψi|4, 0〉|2}, the total
intermediate- and excited-state populations for the eigenstate
that has the highest projection onto the ground state, as a
function of the protection beam intensity (vertical axis) and
the detection beam detuning (horizontal axis). The detection
beam detuning range between the two bright green lines is
the range where there is EIT protection against absorbing
the imaging light. Figure 3(b) shows R as a function of
EIT protection beam intensity when the detection transition
is resonant [along the red line in Fig. 3(a)]. In the limit
of infinite protection intensity, there is perfect EIT protec-
tion of |4, 0〉, while detection on the cycling transition is
unaffected.
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FIG. 4. Scheme 1 simulation results. (a) Non-ground-state population of the nominally EIT-protected qubit state as a function of the
detection beam detuning and the protection beam intensity. The red dashed line marks where the detection beam is resonant with the cycling
transition. (b) Scattering rate in the upper qubit state as a function of time for different intensities. (c) Scattering rate of the population in the
stretched state as a function of time. All the curves overlap completely since scattering on the cycling transition is unaffected by the EIT beam
intensity. (d) Suppression factor for the reabsorption of scattered photons (R) as a function of the intensity of the protection beam. The result
is proportional to the non-ground-state populations shown along the red dashed line in (a).

In any real atom, the presence of other intermediate and
excited levels like hyperfine levels prevents this ideal limit
from being approached. The rest of this paper is devoted to
analyzing in detail the full model for Cs.

IV. METHODOLOGY

We use the QUTIP PYTHON package [47] to solve the master
equation and extract populations in various magnetic hyper-
fine sublevels. For transition frequencies, energies, and matrix
elements, we adapted the ARC package [48] to include the hy-
perfine splittings. The atoms are initially prepared in different
sublevels depending on whether we want to characterize pro-
tection or detection. The simulation includes the full hyperfine
structure of the ground, intermediate, and excited states in
the presence of the two light fields (detection and protection
beams). The Hamiltonian can be made time independent by
using unitary transformations similar to the well-known three-
level EIT scheme and the rotating-wave approximation. Only
one of the P fine-structure manifolds is considered at a time.
Since this is not enough to account for the entire spontaneous
emission from the 7S1/2 state (which requires the other 6P
state), the spontaneous emission from 7S1/2 to the simulated
6P state is scaled up to match the experimentally known
lifetime of the 7S1/2 state. For all simulations, we keep the
detection beam intensity fixed and vary the protection beam

intensity. We useda beam of 12.7 μW/cm2 for the detection
beam. This is an order of magnitude below the saturation
intensity, so all our results for scattering rates scale linearly
in this regime.

V. EIT PROTECTION SCHEME 1

In order to calculate the performance of the proposed de-
tection scheme, it is necessary to take into account all 64 states
shown in Fig. 2. Since the light is far detuned for transitions
from |3, 0〉, EIT is not needed for its protection. The main
concern is the protection of |4, 0〉. The full Hamiltonian can
be diagonalized to obtain the dressed states. Figure 4(a) shows
the extent of mixing of |4, 0〉 with other short-lived states
as a function of both probe beam detuning and protection
beam intensity. It is clear that the situation is considerably
more complicated than the simple three-level EIT shown in
Fig. 3(a). In Appendix B, by adding one level at a time, we
are able to explain the various features. Since the detection
transition remains unaffected by the EIT protection, our con-
cern here continues to be the behavior of this graph along the
red dashed line.

While the dressed states accurately predict the behavior for
adiabatic preparation, we also solve the master equation to
further validate the result, as well as to simulate a situation
closer to actual experiments. To this end we have performed
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the simulation with the population starting in |4, 0〉 and letting
the state evolve for up to a few microseconds. The scattering
rate from |4, 0〉 as a function of time can be seen in Fig. 4(b).
After an initial transient, within a few hundred nanoseconds
the rate settles to a constant on this timescale. The population
slowly leaks away from |4, 0〉 to |3, 0〉, |3, 1〉, |3, 2〉, |4, 1〉,
and |4, 2〉.

The scattering from the detected state |4, 4〉 follows the
behavior of a simple cycling transition [see Fig. 4(c)], settling
to a steady-state value after an initial Rabi flop. Combining
the results of Figs. 4(b) and 4(c), we find R, which is shown in
Fig. 4(d) as a function of the protection beam intensity. There
are two salient features: the dramatic peak at 400 W/cm2 and
the saturation of R as the protection beam power is increased.
The peak in Fig. 4(d) corresponds to where the red dashed
line crosses the sloped line in Fig. 4(a), where the eigenstate
has a large fraction of population in the excited states. The
saturation in Fig. 4(d) is also visible in the uniform color in
Fig. 4(a) along the upper part of the red dashed line.

The best protection available in scheme 1 is R = 8×10−5.
Referring to Eqs. (6) and (9), for a lattice spacing of 5 μm,
γ = 100, and a total error per detection of 10−4, the array
size can be 62 500 atoms in two dimensions and only 125
in three dimensions. If 10−3 error per detection is allowed,
a 3D geometry would support 157 000 atoms, while in two
dimensions the array size would almost certainly never be
limited by this source of error. Unlike in scheme 2, there
is no straightforward way to incorporate cooling during the
detection.

From Fig. 4(d) we see that the EIT light intensity re-
quired to reach the best protection is 103 W/cm2. The effect
of EIT light on the undetected atoms is quite modest. The
off-resonant EIT light will cause spontaneous emission from
those qubit states and it will ac Stark shift them. The spon-
taneous emission rate is a negligible 3 mHz and the ac Stark
Shift is 70 kHz. The difference in the ac Stark shift of the
two qubit states is approximately 5 Hz, scaled down from
the total ac Stark shift by the ratios of the hyperfine split-
ting to detunings. The associated phase shift on the qubit
coherence is much smaller than typical trapping shifts and is
easily corrected with a standard spin echo sequence. Such spin
echo sequences are necessarily already part of any quantum
computing sequence.

A 62 500-atom 2D array would extend over 1.25 mm. One
could illuminate the atoms with an elliptical Gaussian beam
propagating in the plane of the array. We consider an elliptical
Gaussian beam with a long (short) waist of 1 mm (20 μm).
For this beam, the power required to protect all the atoms
would be around 2.4 W, readily achievable throughout the
visible and infrared spectra, including for the 1470-nm wave-
length of the Cs EIT transition considered here. With this type
of beam, the peak intensities would be five times higher than
what is required for optimal EIT protection; five times higher
spontaneous emission rates and differential ac Stark Shifts are
still insignificant.

In the tightly focused direction, the spring constant from
the EIT beam would be roughly 4 × 10−4 of the typical axial
trapping spring constant in tweezer arrays. Turning the EIT
beam on suddenly would only heat a ground-state atom by
3.3 × 10−9 of a vibrational energy spacing. Axial heating

EIT
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FIG. 5. EIT-protection scheme 2. In this case both the imaging
and EIT protection light are σ+ polarized. The unprotected state is
|3, 3〉, with imaging on the open transition |3, 3〉 → |4′, 4′〉. A set of
stimulated pulses can be used to get the population out of the dark
|4, 3〉 and |4, 4〉 states in order to continue imaging the atoms. These
pulses can additionally drive sideband transitions to simultaneously
cool the atoms.

would thus be negligible for all atoms, as would radial heating,
which depends on the much smaller curvature of the EIT beam
in the long direction.

The beam considered here would protect over 60 000
atoms, far more than the number in state of the art in neutral
atom arrays. If need be, one could decrease the required power
with more elaborate illumination techniques, like using flat-
top instead of Gaussian beams. Note also that for comparable
atom numbers in three dimensions, the required EIT power
is further reduced. In short, the EIT protection beam can be
readily implemented with no adverse effect on stored quantum
information.

VI. EIT PROTECTION SCHEME 2

Scheme 2, shown in Fig. 5, is an example of imaging using
an open transition. Here the |3, 0〉 → |4′, 1′〉 transition is pro-
tected. We take 6P1/2 to be the intermediate state because the
larger hyperfine splitting and the reduced number of hyperfine
levels compared to 6P3/2 greatly reduce multilevel effects. We
note, however, that 6P3/2 could also be used, albeit with worse
performance. As can be seen in Fig. 5, the imaging transition
|3, 3〉 → |4′, 4′〉 is not closed, so for a long enough imaging
time, all of the population will end up in |4, 3〉 and |4, 4〉,
which are dark to the imaging light.

Imaging on an open transition

To repeatedly scatter photons from |3, 3〉, it is necessary
to recover the population from |4, 3〉 and |4, 4〉. The idea is
to image the atoms for some time τ , losing the population to
|4, 3〉 and |4, 4〉. Then stimulated pulses can be used to shuffle
the populations among the three sublevels, before proceeding
with the imaging again. In particular, the sequence can be as
follows.
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Step 1. The σ+-polarized detection beam is turned on for
some time τ and scattering N photons. Since both the signal
and total error are proportional to each other, the protection
is independent of τ . Therefore, the pulse can be made long
enough to significantly deplete the population in |3, 3〉.

Step 2. A pulse is applied to exchange the populations
between |4, 3〉 and |3, 3〉. The imaging light is turned on for τ ,
again depleting the population in |3, 3〉. This can be repeated
until the population is overwhelmingly in |4, 4〉.

Step 3. Another pulse is applied to exchange the popula-
tions between |4, 4〉 and |3, 3〉.

Step 4. The entire sequence is repeated.
This sequence of steps leads to a closed-loop imaging,

where the atoms are effectively pumped to |4, 4〉 and the
imaging can be restarted, so that the atoms can be efficiently
detected. The key advantage of scheme 2 is that the reshuf-
fling pulses can be used to drive sideband transitions to cool
the atoms. Because cooling is compromised when there are
initially atoms in the final state, it is best to significantly empty
|3, 3〉. To steadily scatter photons, the steady-state population
during detection must be clearly above the vibrational ground
state. However, once enough photons have been detected, a
final cooling sequence can focus on transferring only vibra-
tionally excited atoms back to |3, 3〉, ultimately leaving most
of the atoms in the vibrational ground state of |4, 4〉. Having
this efficient way of cooling and ending with the atoms in a
well-defined state after detection allows atoms to be reset for
further quantum computation after the imaging.

We follow a methodology similar to that in the previous
section to characterize the EIT protection. As expected, the
population in |3, 3〉 settles to an exponential decay after an
initial Rabi flop, while the |3, 0〉 can be characterized by a
linear decay. States |4, 4〉 and |4, 3〉 are both far detuned from
the imaging light and are therefore orders of magnitude better
protected than |3, 0〉. This means that any population that ends
in either of these states remains there and any error caused
by them can be safely neglected. Using this information, we
proceed to characterize R as shown in Fig. 6. The similar
performance to scheme 1 and the atom reusability make this
scheme the preferred choice despite it being more technically
and conceptually complicated.

Having an open transition for imaging allows for the
possibility of using a forbidden transition that offers better
protection of the qubit states from direct or stray light. The
idea is to, for example, protect through the forbidden |4, 0〉 →
|4′, 0′〉 transition and image on the open |4, 4〉 → |4′, 4′〉 tran-
sition [49]. The zero matrix element means that the qubits
will be better protected from the π -polarized detection beam.
However, it does not offer significantly better protection for
randomly polarized rescattered light, which we are mainly
concerned about here. In practical cases where direct or stray
light is a major problem, this protection could be beneficial.
It does come at the expense of a more elaborate detection
procedure and an extra source of protection errors. For a
longer discussion about this possibility, which we call scheme
3, see Appendix C.

The optimal EIT protection beam intensities are similar for
schemes 1–3. In all cases the beam can be readily experi-
mentally implemented and would minimally affect the stored
quantum information.

FIG. 6. Scheme 2 results. (a) Non-ground-state population of the
EIT-protected qubit state |3, 0〉 as a function of the detection beam
detuning and the protection beam intensity. The red dashed line
marks where the detection beam is resonant with the open transition
for imaging. (b) Suppression factor for the reabsorption of scattered
photons (R) as a function of intensity of the protection beam.

VII. POLARIZATION IMPERFECTIONS

In any real experiment, residual polarization errors will
compromise the proposed detection. Since scheme 2 seems
like the best choice, we will analyze this case. There are
two different types of polarization errors that can affect the
detection scheme: imperfect protection beam polarization and
imperfect detection beam polarization.

For the first type of error (see Fig. 5), if some σ−- or
π -polarized light is added, state |3, 0〉 remains protected.
However, π - or σ−-polarized light could potentially cause
|3, 3〉 to become EIT protected, interfering with detection. A
careful examination reveals that this will not be a problem.
Consider Fig. 7, where there is a little bit of π polarization.
State |4′, 4′〉 cannot be coupled to |4′′, 4′′〉 because |4′′, 4′′〉
is already very strongly coupled to |4′, 3′〉. The π-polarized
light is prevented from accidentally EIT protecting the detec-
tion transition because it is itself EIT protected on its own
transition.

The main source of error comes from the fact there
is a possible four-photon Raman transition |3, 3〉 → |3, 2〉.
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FIG. 7. Scheme 2 possible error caused by a small amount of
the wrong π polarization in the protection beam. The π polarization
(denoted by the thin red arrow), which would otherwise resonantly
couple |4′, 4′〉 to a bare |4′′, 4′′〉 (upper right gray dashed line), is
off-resonant due to the strong σ+ (denoted by the thick red arrow),
which Rabi splits |4′′, 4′′〉 (upper right black solid lines).

However, two of these transitions (|4′, 4′〉 → |4′′, 4′′〉 and
|4′, 3′〉 → |3, 2〉) are single-photon off-resonant and involve
weak beams. As can be seen in Fig. 8(a), this fourth-order
process causes only a small error.

Loss to |3, 2〉 can be suppressed by using a magnetic field
to make this four-photon transition off-resonant. In order to
characterize this source of error we compute the error as
a function of fractional power in the wrong π polarization
and in different magnetic fields, as shown in Fig. 8. For an
experimentally achievable fractional power with the wrong
polarization of approximately 10−4, the error can be kept
below 10−4 even with no additional magnetic field (again
assuming 100 photons for imaging). However, if the fractional
power is significantly higher, a magnetic field can be used to
further suppress this source of error.

Imperfect detection beam polarization does not cause un-
wanted transitions to the intermediate state because all those
states are EIT protected, nor does it lead to any Raman transi-
tions to the adjacent level. For the previous error, although the
|3, 2〉 → |4′, 3′〉 transition is EIT protected, the two-photon
|3, 2〉 → |4′′, 4′′〉 transition can still happen, which enables
the four-photon process. Here, on the other hand, the |3, 2〉 →
|4′, 3′〉 EIT light directly suppresses the error. We see no such
transitions in our simulation with up to 5×10−3 of the wrong
polarization.

From this discussion it is clear that polarization imper-
fections only moderately impact the EIT scheme. Residual
effects can be mitigated by controlling adjustable experimen-
tal parameters like magnetic fields.

VIII. CONCLUSION

We have presented a way to measure the states of selected
qubits in an atom array while preserving the surrounding
quantum information. Such a capability is needed for quan-
tum error correction and one-way quantum computation. To
a first approximation, one can detect selected atoms by only

FIG. 8. Scheme 2 polarization error in EIT protection beam.
(a) Varying fractional power is applied in the wrong π polarization
in the protection beams (with no magnetic field). The main source
of error is population transfer |3, 3〉 → |3, 2〉 through a four-photon
Raman transition. (b) Keeping the fractional power at 5 × 10−4, a
magnetic field of varying size is applied in order to reduce the error.

shining detection light at those atoms. Our approach, EIT
protecting the unselected atoms, addresses the problem that
they can rescatter detection light, as well as the limitation that
imperfect beam quality or scattering from surfaces can also
lead to some direct illumination of what are supposed to be
the spectator atoms. One type of scheme we considered allows
for cooling while detecting, so that the detected atoms can be
reused.

In summary, assuming that 100 scattered photons are
needed for detection, we found that for 2D arrays, EIT protec-
tion is sufficient to allow for having more than 60 000 atoms
while maintaining an error per measurement below 10−4.
Only about 125 atoms can be used in a 3D array before that
measurement threshold is exceeded, at least for measurement
of the central atom. Relaxing the error threshold to 10−3

would allow for more than 275 000 atoms in the array. Without
relaxing the error threshold, a similar number of atoms could
be used if the required number of scattered photons needed for
detection was reduced to 10, for instance, by phase contrast
measurement techniques.

The EIT-protected measurement scheme proposed here
can be implemented in essentially any apparatus capable of
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neutral atom quantum computing, using only a single addi-
tional laser beam. There are other possible ways to selectively
measure atoms, such as using a second species or moving
atoms to a more distant location for measurement. Even in
the same apparatus, one can imagine a role for each of these
approaches.
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APPENDIX A: MAPPING OUT OF THE QUBIT BASIS

For Cs, where the clock states (|3, 0〉 and |4, 0〉) are a
convenient qubit basis, a possible mapping proceeds as in
Fig. 9. The first step, to |4, 1〉 and |3, 1〉, is the only one
that requires spatial selectivity (sequentially or in parallel). In
three dimensions this can be accomplished as in [36], using
microwave adiabatic fast passage pulses and a pair of crossed
ac Stark shifting addressing beams. In one or two dimensions,
it can be accomplished either with microwave pulses and a
single addressing beam or with two-photon Raman transi-
tions. The frequency selectivity afforded by Zeeman shifts
will then allow all subsequent transfers to be accomplished us-
ing only microwaves. Two pulses will map the states to |4, 3〉
and |3, 3〉. Then one pulse will map |3, 3〉 → |4, 4〉. A final
pulse will map |4, 3〉 → |3, 2〉, where it will remain protected
while the first state is measured. After the measurement of
the first state, the two states will be swapped to measure the
second one. Although somewhat redundant, the measurement
of the second state will reveal if atoms have been lost. After
both measurements, the atom, now in a known state, can be
returned to a state in the qubit basis by essentially reversing
Fig. 9. The returning sequence will again only necessitate one
single spatially selective transfer per atom.

APPENDIX B: EIGENSTATE CALCULATIONS
FOR SIMPLIFIED SYSTEMS

We numerically calculate the eigenstates of some sim-
pler Hamiltonians to get insight into the behavior of EIT
protection. The essential features we would like to explain
are the saturation of the EIT protection, as well as the

FIG. 9. Selective transfer of an atom out of the qubit basis. The
first step (1) in the sequence requires site specificity, while the re-
maining steps do not, as they are not resonant with atoms in the qubit
states.

6S1 2

6P3 2

7S1 2

4,0

4',1'

5',1'

4'',1''

3'',1''

3',1'

image

EIT

2.18 GHz

0.25 GHz

FIG. 10. Level diagram for simplified EIT-protection systems
discussed in Appendix B. The basic four levels (black solid lines)
|4, 0〉, |4′, 1′〉, |5′, 1′〉, and |4′′, 1′′〉 are discussed in Fig. 11. Figure 12
adds in the level |3′′, 1′′〉 (green dashed line). Finally, Fig. 13 adds in
another level |3′, 1′〉 (brown dash-dotted line).

scattering resonance that is observed in Fig. 4(d), which
is why for these calculation we use 6P3/2 as the interme-
diate state. We calculate the eigenstates (ψi) for several
Hamiltonians with increasing complexity and plot the quan-
tity 1 − max{|〈ψi|4, 0〉|2}, i.e., the total intermediate- and
excited-state populations for the eigenstate that has the highest
projection on the ground state, while varying the detection
beam detuning and the protection beam intensity. For adia-
batic preparation, this quantity is directly proportional to the
scattering rate from the ground state.

We start with a four-level system containing only the states
|4, 0〉, |4′, 1′〉, |5′, 1′〉, and |4′′, 1′′〉, and protection and detec-
tion beam configurations shown by the black levels in Fig. 10.
Figure 11 shows the results of this calculation. As the pro-
tection beam intensity is increased, the usual three-level EIT
splitting is observed until the EIT window gets close to twice
the hyperfine splitting of the intermediate state [Fig. 11(a)].
This is also evident in the initial linear decay with a slope of
−1 in the log-log plot in Fig. 11(b) at zero detection beam
detuning. The linear decay is followed by a saturation of the
excited-state population due to the existence of a constant
bright eigenstate at a fixed detuning from the detection beam.

One can get insight into this behavior by considering the
case where the two intermediate states are degenerate, in
which case the two intermediate states and the excited state
themselves form a 
-type three-level system. The dark state
of this three-level system is also given by Eq. (10), where the
mixing angle θ is simply the ratio of the matrix elements of
the two intermediate states to the excited state (because they
are coupled by the same field). Since that ratio is fixed, this
dark state is also fixed. However, in general, this dark state can
couple to the ground state in the presence of a detection field.
This reasoning can also be extended to the case of a nonzero
hyperfine splitting δ. In the limit �EIT � δ, such a fixed state
still exists, but is simply detuned from the probe beam.
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FIG. 11. EIT protection of the four-level system with states
|4, 0〉, |4′, 1′〉, |5′, 1′〉, and |4′′, 1′′〉. (a) Compared to the results in
Fig. 3, the new bright state has constant detuning from the resonant
detection beam (red dashed line) at high protection beam intensities.
(b) The addition of the new level causes the saturation of R.

Next we add the state |3′′, 1′′〉 to the previous Hamilto-
nian (see the black and green levels in Fig. 10), with the
results shown in Fig. 12. Figure 12(a) shows that the pre-
viously constant bright state will be shifted into resonance
as the protection beam power is increased. The shift is due
to the competing (different sign of detunings) ac Stark shifts
of the |4′, 1′〉 state due to the coupling with the |3′′, 1′′〉 and
|4′′, 1′′〉 states. Although the protection beam is much further
detuned from the |4′, 1′〉 → |3′′, 1′′〉 transition (1936 MHz)
than the |4′, 1′〉 → |4′′, 1′′〉 transition (−250 MHz), since the
matrix element for the former is larger, it eventually overpow-
ers the Stark shift due to the latter. Since the detuning is no
longer fixed, the linear decrease in error with protection beam
intensity is recovered after the peak. It is intriguing that one
can get this desired linear error decrease even for a five-level
system. The lack of |5′, 1′〉 to |3′′, 1′′〉 coupling seems to be
critical. Unfortunately, the real Cs atom has another relevant
level. It would be possible to achieve this situation for a spin- 1

2
atom with a P − D′ − P′′ ladder, which is not available in
typical cold-atom systems.

FIG. 12. EIT protection of the five-level system with the same
states as the previous four-level system plus |3′′, 1′′〉. (a) The new
bright state compared to Fig. 3 has a varying detuning in this case,
with the positive slope causing it to cross 0 detuning (red dashed line)
at around 800 W/cm2. (b) The addition of the new level causes the
peak of R at the crossing point in (a).

To explain the saturation in the full system the final relevant
level, |3′, 1′〉 needs to be added to the Hamiltonian (see all lev-
els in Fig. 10). Figure 13 shows that the fixed bright eigenstate
is recovered, which yields a combination of the two features
previously explained.

APPENDIX C: SCHEME 3

As mentioned at the end of Sec. VI, there exists the pos-
sibility to further suppress errors from direct light through a
variation of scheme 2, which we will call scheme 3, that takes
advantage of a forbidden transition. For instance, when the
intermediate state is F ′ = 4′ and π -polarized detection light is
used, the |4, 0〉 → |4′, 0′〉 transition is forbidden. Electromag-
netically induced transparency protection of the |4, 0〉 state is
only needed to protect against excitation due to imperfectly
polarized light, such as rescattered light. Electromagnetically
induced transparency also protects other mF levels, especially
the |4, 3〉 state, which gets populated because the imaging
occurs on an open transition. The best choice for the EIT
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FIG. 13. EIT protection of the six-level system with the same
states as the previous five-level system plus |3′, 1′〉. (a) There are
two new bright states compared to Fig. 3. One of these two states
has a constant detuning at high protection beam intensities, while
the other has a positive slope and crosses 0 detuning (red dashed
line) at around 800 W/cm2. (b) The combination of these two new
bright states cause the peak of R at the crossing point in (a) and the
saturation at high protection beam intensities.

protection transition is 6P1/2,F ′ = 4′ to 7S1/2,F ′′ = 4′′ with
a σ+-polarized beam, as shown in Fig. 14. Another possible
choice would be to use the 6P1/2,F ′ = 4′ to 7S1/2,F ′′ = 3′′
transition with a π -polarized beam, but in that case, off-
resonant scattering of the imaged state from the 7S1/2,F ′′ =
4′′ state compromises the detection fidelity.

For the detected atoms, as light is scattered on the |4, 4〉 →
|4′, 4′〉 transition, population accumulates in |4, 3〉 and |3, 3〉.
While |3, 3〉 is extremely well protected because it is far-
off-resonance, imperfect EIT protection of |4, 3〉 means that
population can find its way to mF < 3 levels, a loss from
the qubit basis. Therefore, we need to characterize not only
the scattering rate from |4, 0〉 for the spectator atoms, but
also a new source of error that comes from population loss
from |4, 3〉 for the detected atoms, which we call Eleakage.
We follow a methodology similar to that in the main text to
characterize the EIT protection. However, for this scheme,
the exact calculation of this error rate depends on the imag-

EIT

image

stimulated

7S1 2 F 4
F 3

6P1 2 F 4
F 3

6S1 2 F 4
F 3

FIG. 14. EIT protection using a forbidden transition. The qubit
state |4, 0〉 is protected from the π -polarized imaging light by selec-
tion rules. All other F = 4 states are EIT protected except |4, 4〉.

FIG. 15. Scheme 3 protection and leakage error results. (a) Sup-
pression factor for the reabsorption of scattered photons (R) as
a function of intensity of the protection beam, for |4, 0〉 with
π -polarized light [in red, corresponding to the level structure in
Fig. 16(a)] and σ+ + σ− light (in blue). In general, the protection
will be some linear combination of these results depending on the
polarization of the scattered light. (b) Leakage error from |4, 3〉 [cor-
responding to Fig. 16(b)] as a function of protection beam intensity.
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FIG. 16. Scheme 3 dressed states results. The non-ground-state
population of the nominally EIT-protected states (a) |4, 0〉 and
(b) |4, 3〉 as a function of the detection beam detuning and the protec-
tion beam intensity. The red dashed line marks where the detection
beam is resonant with the cycling transition.

ing time τ , with different optima for minimizing the errors
for detected and spectator atoms. Here we show the result
assuming a τ that reasonably minimizes both errors. Also,
for |4, 0〉 we separate the protection between π polarization

and any other polarization in order to show the enhanced
protection for direct or stray light. The results can be seen in
Fig. 15.

Assuming perfect π polarization, the |4, 0〉 state does not
need EIT protection, although there is a small amount of
off-resonant scattering from |3′, 0′〉. Increasing the EIT power
initially enhances scattering from the two-photon channel
|4, 0〉 → |3′, 0′〉 → |4′′, 1′′〉. Ultimately, EIT protection kicks
in for that transition, and the same kind of saturated EIT
protection occurs as in scheme 2, but at a roughly 2.5 times
lower error level.

The loss for other polarizations and for |4, 3〉 are sup-
pressed by EIT protection (red circles) and decrease with
increasing EIT intensity. Similar to schemes 1 and 2, the EIT
suppression eventually saturates. Insight into this saturation
can be obtained from the structure of the dressed states shown
in Fig. 16. In both Figs. 16(a) and 16(b), the energy of the
nearest dressed state with significant excited-state populations
reaches a fairly constant value at high protection beam inten-
sity, which can be seen by the asymptotically vertical yellow
lines at slightly negative detuning. Therefore, the detuning
of the resonant detection beam from those states saturates,
saturating the EIT protection.

Since the EIT protection is not perfect for |4, 3〉, there is a
cost for keeping the imaging light on for too long. It is best
to image for only one period τ , apply a pulse to exchange
the populations between |4, 4〉 and |3, 3〉 and then one to
exchange the populations between |3, 3〉 and |4, 3〉, and then
reimage.

This sequence of steps eventually leads to a pseudosteady
state, where the initial population in each of the relevant
sublevels after an iteration is roughly the same as the previous
one. The steady state depends on τ , the exact optimization of
which requires consideration of the array geometry and the
fraction of qubits measured. It should also be noted that it
may be possible to recover the population loss associated with
Eleakage by using a repumping beam and microwave pulses so
that this error could be mitigated. This is may also be true for
the error in Sec. VII.
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