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Abstract — The reliability of results generated by state
estimation are heavily impacted by measurement errors, topology
errors, system transients and bad data injections. Detection and
identification of such errors in a power system is important not
only to monitor instrumentation performance but also to ensure
system resilience. Despite their extensive application in power
system state estimation research, the context and potency of WLS
based bad data detection techniques is often overlooked. A better
knowledge and implementation of such techniques will
significantly improve the results by such work.

This paper discusses the theoretical background and efficacy
for the same. Results of simulation performed on a wide variety
of systems to analyze the performance of each are presented.

I. INTRODUCTION

The purpose of state estimation algorithms’ is to
generate accurate estimates of a given set of measurements
using a well-defined mathematical model. The presence of any
errors or bad data in the measurement set affects the
estimations derived from them which. in turn, would have an
adverse influence on the decisions based on the same.

State estimation algorithms should be resilient to a)
measurement errors b) parameter errors, ¢) structural error and
d) bad data. Multiple research groups across the world have
been deploying the Weighted Least Squares (WLS) based state
estimation for their varied applications including work on
identifying generation and load islands. tie-line flow
verification and so on. However. such an extensive bank of
derivative work often leads to research that while being
accurate, do not hold true to statistical basis.

This article discusses the WLS state estimation method
and the relevant Chi-squares test and the Largest Normalized
Residual (LNR) test for error and bad data detection and
identification. The mathematical basis, the advantages, and the
shortcomings of the same are discussed with the hope that the
future work in this domain will be more precise and have
greater applicability when deployed in real-time applications.

II. PROBLEM FORMULATION

The purpose of a static state estimator, as defined by
Handschin et. Al [5] can be expressed using Fig. 1. To impart
more clarity to this definition, the following terms are
defined:

System state: bus voltage and angle measurements
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Fig 1: Function of Static State Estimator

Model structure: Telemetered switch and circuit breaker
positions to determine network structure and meter location

Measurement error: Zero mean random vector error

Parameter error: Zero mean random vector pertaining to
a small deviation of assumed values of a parameter
measurement

Structure error: Error in system structure

Bad data: Large measurement error added to one or more
measurements

Detection: Test to determine the presence of erroneous or
bad data

Identification: Determination of erroneous or infected
measurement

Redundancy: Ratio of number of measurements to the
number of states

It can thus be declared that a properly designed
state estimator should perform the following functions: a)
excogitate structure b) estimate ¢) detect and d) identify.
This article focuses on data collected at a single-time stamp
with a focus on identifying that when is a measurement
classified as erroneous or a bad data. While the paper does
not explicitly work with the different kinds of error, it
discusses the impact of the magnitude of an error or a bad
data on different parameter measurements, and how the size
of the system impacts the same.
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ITT. MATHEMATICAL MODEL

A. The Model

Consider a linear model of the form:

y=Axte (1
where

v = (n x 1) vector of linear, uncorrelated measurements
with different measurements
A= (n x k) matrix of coefficients
X= (k x 1) vector of unknown parameters
€ =(n x 1) vector of ‘error’ random variables

The first and second order moment of € are given as:

E(e)=0
E(eet) = o’R 2@

Where :

R = diagonal matrix of the model’s measurement
variances. The diagonal nature of the matrix signifies that the
measurements are uncorrelated.

o? is a scaling constant that impacts detection.

B. Least Squares Estimation

The objective of least squares estimation is to minimize
the function:

J) =@ -A0)TR(y - Ax) €)

Solution of Eq. (2) can be obtained using the
orthogonality condition of the residual as:

ARy — Ax)=0
The best estimate of parameter x, ¥, is given by:
xX=(AtR7'A) (AR y) (€]

C. Expected values of X and y
The expected value of ¥, designated by E(X) is given

as:
X=(ARA) AR Y (Ax + €)
E(x) = E[(AR'A) AR Y(Ax + €)]
E(X)=E {x+ ((A'R4) AR 'e)}
E() =x + M*0=x

Where
M= (AtRA) AR

The expected value of y, E(¥), can be calculated as:
E(y)=E[Ax +t€]=y
The calculated value of the measured quantities is:
y=AxX

Using equation (1), we can write the expected value of

(). as:
EG)=AE@ =y (5)

Thus, an unbiased estimate of y can be generated.

IV. CHI-SQUARED TESTING

A. Expected value of J(xX)
The expected value of J(X) can be expressed as:
JO =@ -A)TR (v - AX)
y—AX=Ax+e€— A(AtR'A) AR Y (Ax + €)
=€ {I - A(AtR™'A) AR} 6)

Putting Eq (6) in Eq. (3) and using the properties of
idempotency, we get:

J(x)=€t[R"'— R'A(A'R™'A) AtR™] € )

Letting B=R"'— RA(A'R™'A) AtR™,

J(x)=€tBe (8)

Taking the expected values of Eq. (8). and assuming all
the € are uncorrelated, we get:

E(J(x)) = & trace(RB)
Since. RB =1 — A(A®R™A) AtR™,
E(J()) = 0* (n — trace(RB)) ©
Trace (RB) = trace (BR), so:
E(J(x)) = o® trace (n — trace(I))
E[J@)] =’ (n—k) (10)

Thus. an unbiased estimator can be constructed to estimate
the value of 2. This estimator is considered unbiased.
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B. Chi-squared property of | (%)

A chi-squared distribution is obtained when the sum
of the squares of multiple random normally distributed
variables is calculated.

For a set of m independent normally distributed
random variables X3, X3 ..... Xp.

% (1

Where m becomes the degrees of freedom of the chi-
squared distribution.

If all the error variables €, and hence the measurement
residuals, follow a normal probability distribution, the
transformation:

€E—E
oR
Produces a unit normal variable, where € is the mean
of the error variables.

Thus

J® 1 (12)

7 o [e!tR €]
Is then chi-square.

And,

—SEU®]=n—k=2Z 13

Where Z becomes the degrees of freedom for the
given system. By extension, therefore ’:E—z): is chi- squared with

(n-k) degrees of freedom.

C. Hypothesis testing of ] (%)

Based on the normal distribution of the residuals, a
statistical test based on hypothesis testing can be devised. The
test 1s designed to test the validity of the null hypothesis H,
against the alternative hypothesis H;such that the system is
free of type-1 errors, i.e., Hy is declared rejected when it was
true.

If there is:

Hy: o2=1 (14)

H1:0—2>1

= : 2
J(%) can be compared against x*, _, ..

If
J% = S (15)

for a given level of confidence. b, on the set of measurements,
then it can be said that the probability of a type-1 error is b.

Alternatively, the probability of Hy being accepted is (1-b).

V. RESIDUAL BASED TESTING

A. Properties of measurement residual

The WLS estimate, X. is based on:
J&@ = —A)"R(y — Ax)

X is based on the optimality condition:

af = Tp—-1 = T (]6)
| _ =H R —A)=HR'r=0

where H= dA/dx is the Jacobian matrix.

The residual vector ¥
r=y—y=Ax)+e— A(X) = Qse (17)

with the residual sensitivity matrix Qs as:
Q.=(I-HHR'H) V) e

And the residual covariance matrix Q. as:
Q.= R — H(HTR'H) ‘HT= Q.R (18)

The weighted residual rw and normalized residual rr are:

ry =+ diag(R) r,r, = /diag(Q.)r

The normalized residual sensitivity matrix Qs» is given by:

Qo = [diag(2)]* (19)
It can be proven that:
|Qen, k| = [Qsn_ kil (20)

Where |Qsn_jk| is the element in Qsr at the jth column
and kth row and |[Qsn kx| is the element in Qsn at the kth
column and kt row.

Thus, the value of the largest normalized residual would
always correspond to the bad data point.
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B. Hypothesis testing of n

The detection of errors and bad data is designed as a
hypothesis testing problem given as:

Ho: no bad data or errors are present

Hi : Hg is not true

If

Hp is true and the threshold y can be chosen.
Otherwise Hy is rejected or H; is accepted.

IV. NUMERICAL TESTS

Extensive simulations have been carried out to test
the performance and reliability of all the testing methods
discussed here. The objective was to identify the error
detection and identification precision of each algorithm. Tests
are performed on the 6,9.14,24, 39,57 and 118 bus system.

To ensure that the estimates generated were
extremely accurate, high measurement redundancy was used.
For any bus system, the number of states is always the sum of
the number of bus voltage and angle measurements, except for
the reference bus voltage. Work has been conducted [3] to
reduce this dependency, but that is subject to presence or
access to PMU measurements and requires further validation.

Error is added to one measurement at a time, of each
type, for each bus case, as a multiplier of the corresponding
measurement type’s standard deviation. Larger error values are
easier to detect those easier values and can often be removed
by basic data pre-processing. For the sake of fairness, all
parameter measurements of each type were subject to the
analysis. This becomes even more relevant when working with
reference bus measurements because all system parameter
measurements are made based on that reference. Dependent
parameters such as power injection and line flow also show
considerable promise in this domain because this would
highlight the impact of the independent measurements on the
same, and the impact of error on the former for the same.

V. ANALYSIS & RESULTS

For best results, it becomes very important to design
a state estimator with high accuracy as the generated estimates
influence the whole error identification process. By carefully
choosing the covariance matrix and proper Jacobian
calculation, this can be easily achieved.

Different measurements were considered for each bus
system, and it was found that, for a single erroneous parameter
measurement. the threshold would enable detection of bad
data greater than a standard deviation multiplier of 7.5. This
result was consistent for all the bus cases.

As shown in Figure 2(a), each voltage measurement,
taken one at a time, follows a similar pattern of impacting the
values of the chi-squared statistic, when the error added to the

same is varied. Active power measurements, as shown in
figure 2(b), while following a similar pattern, show significant
differences in the amount of influence based on them being a
PV bus or a PQ bus or slack bus.

©

Fig. 2. For 118 bus case and one measurement at a time, a) Chi
square statistic variation with variation of ervor signal added to
each voltage measurement b) Chi-square statistic variation with
variation of error signal to each active power injection
measurement c) Variation of residue corresponding to each active
power injection measurement when the error signal added to each
is varied.

The residual test, when considered for voltage and angle
measurements, revealed that that the corresponding injection
and flow measurement residuals are impacted when the former
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is subject to an error. For a standard deviation multiplier
greater than or equal to 0.1, the residual corresponding to the
erroneous measurement, was significantly higher than the
others, having at least a difference of a magnitude of 10. For
multiplier greater than 5. the corresponding residue becomes
significantly larger. The dependent residuals increase too, but
still maintain a notable difference from the impacted
measurement. For multipliers less than 0.1, the impact on the
residue is very small, and in certain cases, the residue is greater
on the dependent injection measurement than on the actual
measurement, thereby causing wrong erroneous measurement
identification.

When line flow and injection measurements
were considered as show in figure 2(C), both the active and
reactive power measurements, in each case, were considered
together as the same sensor and telemetry device would be
under question. Since they don’t influence other
measurements, the impact of error/bad data from them on the
system only due to them is minimal. For standard deviation
multiplier less than 0.1, it points to the inflicted measurement.
The rest of the findings were like that of voltage and angle
measurements.

VI. CONCLUSIONS

This article discusses the statistical basis behind the
WLS based state estimation and the classically used techniques
for detection and identification of measurement error and bad
data. The tests have been subject to extensive simulation
studies and thus implemented on a wide number of bus systems
with varying number of parameter measurements. To ensure
estimate accuracy, high fidelity was enforced on the models.
The Chi-square test does not detect the bad data point thereby
limiting its application. The LNR test holds superior to the
former because it can detect the presence of bad data as well as
identify the corresponding measurement number. Based on the
definitions of errors and bad data explained in this paper, it was
found that the chi-square test and LNR test can identify the
presence of all bad data, but it failed to identify any errors.
However, most of the measurements in question are in per unit
values, and a minor digression in such measurements can lead
to more gross errors.

A better understanding of these techniques would
help current researchers in the domain of state estimation and
thereby generate more exciting results, subject to
computational complexity, level of trust on measurement
devices and the expanse of the test network.
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