
Practical Convex Formulations of One-hidden-layer Neural Network
Adversarial Training

Yatong Bai1, Tanmay Gautam2, Yu Gai3, Somayeh Sojoudi4

Abstract—As neural networks become more prevalent in
safety-critical systems, ensuring their robustness against adver-
saries becomes essential. “Adversarial training” is one of the
most common methods for training robust networks. Current
adversarial training algorithms solve highly non-convex bi-level
optimization problems. These algorithms suffer from the lack of
convergence guarantees and can exhibit unstable behaviors. A
recent work has shown that the standard training formulation
of a one-hidden-layer, scalar-output fully-connected neural
network with rectified linear unit (ReLU) activations can be
reformulated as a finite-dimensional convex program, address-
ing the aforementioned issues for training non-robust networks.
In this paper, we leverage this “convex training” framework to
tackle the problem of adversarial training. Unfortunately, the
scale of the convex training program proposed in the literature
grows exponentially in the data size. We prove that a stochastic
approximation procedure that scales linearly yields high-quality
solutions. With the complexity roadblock removed, we derive
convex optimization models that train robust neural networks.
Our convex methods provably produce an upper bound on the
global optimum of the adversarial training objective and can be
applied to binary classification and regression. We demonstrate
in experiments that the proposed method achieves a superior
robustness compared with the existing methods.

I. INTRODUCTION

Neural networks, as one of the most powerful and popular
machine learning tools, are vulnerable to adversarial attacks.
In the field of computer vision, for instance, slight manipula-
tions of the input images can elicit misclassifications in neural
networks with high confidence [1]–[3]. Neural networks have
found a wide range of applications, especially in control
theory [4], where robustness is a high priority. For example,
deep reinforcement learning has been used to control highly
non-linear and complex systems [5], [6]. An adversarial attack
on the underlying neural network may cause the control
system to completely fail [7]. Thus, it is crucial to analyze
the adversarial robustness of neural networks, especially when
they are applied to safety-critical systems.

While there have been studies on robustness certifications
[8]–[10], researchers have also been working extensively on
training classifiers whose predictions are robust to adversarial

*This work was supported by grants from ONR, NSF and C3.ai Digital
Transformation Institute.

1Department of Mechanical Engineering, University of California, Berke-
ley. yatong_bai@berkeley.edu

2Department of Electrical Engineering and Computer Science, University
of California, Berkeley. tgautam23@berkeley.edu

3Department of Electrical Engineering and Computer Science, University
of California, Berkeley. yu_gai@berkeley.edu

4Department of Electrical Engineering and Computer Science and
Department of Mechanical Engineering, University of California, Berkeley.
sojoudi@berkeley.edu

inputs [3], [11]–[13]. “Adversarial training” is one of the most
effective methods to train robust networks, compared with
other methods such as obfuscated gradients [14]. Adversarial
training replaces the standard loss function with a robust
loss function and solves a bi-level min-max optimization
problem. More recently, [15] and [16] proposed “randomized
smoothing”, complementing adversarial training by achieving
certified robustness at test time. Prior works have applied
convex relaxation techniques to adversarial training. These
works use weak duality to upper-bound the inner maximum of
the adversarial training formulation and develop upper-bound
loss functions that can be optimized with back-propagation
[17], [18]. While these works rely on convex relaxations, the
resulting training formulations are still non-convex.

Training neural networks involves optimizing non-convex
objectives. In practice, training usually relies on Stochas-
tic Gradient Descent (SGD) back-propagation, which only
guarantees convergence to a local minimum for non-convex
programs. While gradient descent can converge to a global
optimizer for one-hidden-layer ReLU networks when the
network is wide enough [19], [20], spurious local minima
still exist in general. Moreover, the non-convexity of the
optimization landscape results in poor interpretability and
excessive sensitivity to hyperparameters. These issues become
worse when adversarial training is incorporated: adversarial
training can be highly unstable in practice.
Convex programs have the favorable property that all

local minima are globally optimal. To overcome the issue
of arriving at spurious local minima when training neural
networks, existing works have considered convexifying the
neural network training problem [21], [22]. More recently,
[23] proposed a convex optimization problem with the same
global minimum as the non-convex cost function for a one-
hidden-layer fully-connected ReLU neural network.

Therefore, extending “convex training” to adversarial train-
ing has become a natural solution to the optimization difficulty
issues. Unfortunately, the size of the convex program proposed
in [23] grows exponentially in the training data matrix rank,
leading to an exponential overall complexity. While [23]
proposed a heuristic method to reduce the computation
through approximation, it did not provide theoretical insights
into the approximation quality. To bridge this gap, we
theoretically bound the quality and show that the scale of
this approximation is linear in the training data size.
With these roadblocks cleared, we build upon the afore-

mentioned works to develop “convex adversarial training”,
explicitly focusing on the hinge loss (binary classification) and
the squared loss (regression). We mathematically show that

2022 American Control Conference (ACC)
Atlanta, USA, June 8-10, 2022

978-1-6654-5196-3/$31.00 ©2022 AACC 1535

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on December 21,2022 at 19:49:55 UTC from IEEE Xplore. Restrictions apply.

solving the proposed robust convex programs trains robust
neural networks and empirically demonstrate the advantages
over traditional methods. The theoretical analysis focuses on
one-hidden-layer neural networks but can extend to more
complex architectures.

The novelties of this paper include a convex robust neural
network training analysis (Sections IV-VI) and a probabilistic
bound on the suboptimality of a relaxation method that
was previously known as a heuristic (Section III). Due to
space restrictions, some of the proofs are moved to the
technical report [24], which also includes additional numerical
experiments.

II. BACKGROUND

A. Notations

Throughout this work, we focus on fully-connected neural
networks with one ReLU-activated hidden layer and a scalar
output, defined as by =

Pm
j=1(Xuj)+↵j , where X 2 Rn⇥d

is the input data matrix with n data points in Rd and by 2 Rn

is the corresponding output vector. We denote the target
output used for training as y 2 Rn. u1, . . . , um 2 Rd are the
weight vectors of the m neurons in the hidden layer while
↵1, . . . ,↵m 2 R are the weights of the output layer. The
symbol (·)+ = max{0, ·} indicates the ReLU activation.
Furthermore, let k·kp denote the `p-norm within Rn and

� denote the Hadamard product. For P 2 N+, we define
[P] as the set {a 2 N+|a  P}, where N+ is the positive
integer set. For q 2 Rn, sgn(q) 2 Rn denotes the sign of each
entry of q and [q � 0] denotes a boolean vector in {0, 1}n

that represents the non-negativeness of each entry of q. The
symbol diag(q) denotes a diagonal matrix Q 2 Rn⇥n, where
Qii = qi for all i, and Qij = 0 for all i 6= j. The symbol 1
defines a column vector with all entries being 1. For a 2 Rn

and b 2 R, the inequality a � b means ai � b for all i. The
notation ⇧S(·) denotes the projection onto the set S and |S|

denotes the cardinality of the set. For r 2 Rn, r ⇠ N (0, In)
indicates that r is a standard normal random vector.

B. Adversarial training

Adversarial training is the main problem under study in
this paper. A classifier is considered adversarially robust if it
assigns the same label to all inputs within an `1 bound with
radius ✏ [3]. The perturbation set can be defined formally as

X =
n
X +� 2 Rn⇥d

��� (1)

� = [�1, . . . , �n]
>, �k 2 Rd, k�kk1  ✏, 8k 2 [n]

o
.

One standard method for training robust classifiers mini-
mizes the “robust cost”, defined as the maximum loss within
the perturbation set. The process of “training with adversarial
data” is often referred to as “adversarial training”, as opposed
to “standard training” that trains on clean data. Formally, this
method solves the min-max problem

min
(uj ,↵j)mj=1

0

B@
max

�:X+�2X
`

✓ mX

j=1

�
(X +�)uj

�
+
↵j , y

◆

+�
2

Pm
j=1

�
kujk

2
2 + ↵2

j

�

1

CA (2)

(see [12] for more details). In the prior literature, Fast
Gradient Sign Method (FGSM) and Projected Gradient
Descent (PGD) are commonly used to numerically solve the
inner maximization of (2) and generate adversarial examples
[12]. The outer minimization of (2) is still solved with SGD
back-propagation. We abbreviate these traditional methods as
GD-FGSM and GD-PGD. More specifically, PGD generates
adversarial examples x̃ by running the iterations

x̃t+1 = ⇧X

✓
x̃t + � · sgn

⇣
rx`

� mX

j=1

(x>uj)+↵j , y
�⌘◆

(3)

for t = 0, 1, . . . , where xt is the perturbed data vector at
iteration t, the initial vector x̃0 is the unperturbed data x,
⇧X denotes the projection onto the set X , and � > 0 is the
step size. The projection step can be performed by simply
clipping the coordinates that deviate more than ✏ from x.
FGSM can be regarded as running PGD for a single step
with a large step size.

While GD-FGSM and GD-PGD have demonstrated their
capabilities of training robust networks in various settings
[3], [11], [12], they suffer from the following issues:

• Poor interpretability: With GD-PGD and GD-FGSM,
it is hard to monitor the training status. For example,
when the training loss is high, it can be unclear whether a
satisfactory robustness has been achieved or the training
was unsuccessful.

• Sensitivity to hyperparameters: The hyperparameters
of GD-PGD include the number of epochs, batch size,
and step size of SGD (for outer minimization), and the
step size and the number of steps of PGD (for inner
maximization). The value of each parameter affects the
the performance, but is challenging to design. SGD
back-propagation is also sensitive to the initializations.

• Lack of optimality guarantees: The inner maximiza-
tion problem of (2) is non-concave, and the outer
minimization is non-convex in general. Convergence
guarantees are lacking for both subproblems.

• Vanishing / exploding gradients: For back-propagation,
the gradients at shallower layers depend on deeper layers,
thus susceptible to vanishing or exploding gradients.

Moreover, iteratively solving the bi-level optimization (2)
requires an algorithm with an inefficient nested loop structure.

C. Convex training

Here, we introduce our main analysis framework – convex
training. Consider the optimization for training a one-hidden-
layer network with a regularized convex loss `(by, y):

min
(uj ,↵j)mj=1

`

✓ mX

j=1

(Xuj)+↵j , y

◆
+

�

2

mX

j=1

�
kujk

2
2+↵2

j

�
, (4)

where � > 0 is a regularization parameter. Consider a set of
diagonal matrices {diag([Xu � 0]) | u 2 Rd

}, and denote
the distinct elements of this set as D1, . . . , DP . The constant
P is the total number of partitions of Rd by hyperplanes
passing through the origin that are also perpendicular to the

1536

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on December 21,2022 at 19:49:55 UTC from IEEE Xplore. Restrictions apply.

rows of X [23]. Intuitively, the Di matrices represent the
ReLU activation patterns associated with X .
Consider the convex optimization problem

min
(vi,wi)Pi=1

`

✓ PX

i=1

DiX(vi � wi), y

◆
+ �

PX

i=1

�
kvik2 + kwik2

�

s. t. (2Di � In)Xvi � 0, (2Di � In)Xwi � 0, 8i 2 [P]
(5)

and its dual formulation

max
v

�`⇤(v) s. t. |v>(Xu)+|  �, 8u : kuk2  1, (6)

where `⇤(v) = maxz z>v � `(z, y) is the Fenchel conjugate
function. Note that (6) is a convex semi-infinite program. The
next theorem borrowed from [23, Theorem 6] explains the
relationship between the non-convex training problem (4),
the convex problem (5), and the dual problem (6) when the
neural network is sufficiently wide.

Theorem 1. Let (v?i , w
?
i)

P
i=1 denote a solution of (5) and

define m?
as |{i : v?i 6= 0}| + |{i : w?

i 6= 0}|. Suppose that

the neural network width m is at least m?
, where m?

is

upper-bounded by n+1. If the loss function `(·, y) is convex,
then (4), (5), and (6) share the same optimal objective. The

optimal network weights (u?
j ,↵

?
j)

m
j=1 can be recovered using

the formulas

(u?
j1i ,↵

?
j1i) =

⇣ v?ip
kv?i k2

,
q

kv?i k2
⌘

if v?i 6= 0;

(u?
j2i ,↵

?
j2i) =

⇣ w?
ip

kw?
i k2

,�
q

kw?
i k2

⌘
if w?

i 6= 0.
(7)

where the remaining m � m?
neurons are chosen to have

zero weights.

While Theorem 1 requires an over-parameterized neural
network, convex training can be applied to networks much
narrower than m?, as will be proved in Theorem 2.

III. PRACTICAL CONVEX TRAINING

Unfortunately, the worst-case computational complexity
of solving (5) is O

�
d3r3(nr)

3r
�
using standard interior-point

solvers [23], prohibitively high for many practical applications.
Here, r is the rank of the data matrixX and in many cases r =
d. This high complexity makes convex training impractical.
Before we use this framework to address the problems of
adversarial training, we need to break down the complexity
bottleneck of convex training.
The high complexity arises because the total number of

Di matrices is upper-bounded by min
�
2n, 2r

� e(n�1)
r

�r . To
reduce this number, [23, Remark 3.3] introduced Algorithm
1. Algorithm 1 approximately solves (5) by independently
sampling a subset of the Di matrices. However, [23] did
not provide theoretical insights regarding the approximation
quality, and therefore the approximation remains a heuristic.
The following theorem bridges this gap by providing a
probabilistic bound on the suboptimality of the neural network
trained with Algorithm 1.

Algorithm 1 Practical convex training
1: Via Di diag([Xai � 0]) where ai ⇠ N (0, Id) i.i.d.

for all i, generate Ps distinct diagonal matrices.
2: Solve

p?s1 = min
(vi,wi)

Ps
i=1

`
⇣PPs

i=1 DiX(vi � wi), y
⌘

+�
PPs

i=1

�
kvik2 + kwik2

�

!
(8)

s. t. (2Di � In)Xvi � 0, 8i 2 [Ps],

(2Di � In)Xwi � 0, 8i 2 [Ps];

3: Recover u1, . . . , ums and ↵1, . . . ,↵ms from the
solution (v?si , w

?
si)

Ps
i=1 of (8) using (7).

Theorem 2. Consider an additional diagonal matrix DPs+1

uniformly sampled, and then construct

p?s2 = min
(vi,wi)

Ps+1
i=1

`
⇣PPs+1

i=1 DiX(vi � wi), y
⌘

+�
PPs+1

i=1

�
kvik2 + kwik2

�

!
(9)

s. t. (2Di � In)Xvi � 0, 8i 2 [Ps + 1],

(2Di � In)Xwi � 0, 8i 2 [Ps + 1].

It holds that p?s2  p?s1. Furthermore, if Ps �
n+1
 ⇠ � 1,

where and ⇠ are preset confidence level constants between

0 and 1, then with probability at least 1 � ⇠, it holds that

P{p?s2 < p?s1}  .

Proof sketch: It can be shown that a dual problem of (5) is
an instance of “uncertain convex program (UCP)”. Similarly,
it can be shown that a dual problem of the approximation
(8) is a “sampled convex program (SCP)”, which relaxes the
UCP by randomly dropping some of the constraints. The
quality of the SCP relaxation can then be bounded using the
analysis presented in [25], which introduces the confidence
level constants and ⇠. ⇤
The formal proof is presented in [24, Appendix B].

Intuitively, Theorem 2 states that independently sampling
an additional DPs+1 matrix will not reduce the training cost
with high probability. One can recursively apply this bound
T times to show that when Ps is large, the solution with Ps

matrices is close to the solution with Ps + T matrices for an
arbitrary number T . So, the optimality gap due to sampling
will be small, and the trained network is nearly optimal.

Compared with P , which is exponential in r, Ps is on the
order of n

⇠� , linear in n and independent of r. When r is large,
solving the approximated formulation (8) is exponentially
more efficient than solving (5). On the other hand, Algorithm
1 is no longer deterministic due to the stochastic sampling
of the Di matrices, and yields upper bounds to the global
optimum of (5). We have verified empirically (shown in
Section VII-A) that even when Ps is much smaller than P ,
Algorithm 1 still reliably returns a low training cost.

IV. CONVEX ADVERSARIAL TRAINING

To conquer the drawbacks of traditional adversarial training,
we leverage Theorem 1 to recast (2) as robust, convex upper
bound problems that can be efficiently minimized globally.

1537

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on December 21,2022 at 19:49:55 UTC from IEEE Xplore. Restrictions apply.

We first develop a result about adversarial training involving
general convex loss functions.

The connection between the convex training objective (5)
and the non-convex true training cost (4) holds only when the
linear constraints in (5) are satisfied. For adversarial training,
we need this connection to hold at all perturbed data matrices
X + � 2 X . Otherwise, if some matrix X + � violates
the constraints, then this perturbation � can correspond to a
low convex objective but a high actual loss. To ensure the
meaningfulness of the convex reformulation throughout X ,
we introduce the robust constraints (10b) and (10c).

Since the Di matrices in (5) reflect the ReLU patterns of X ,
the Di matrices can change as X is perturbed. Therefore, we
include all distinct diagonal matrices diag([(X +�)u � 0])
that can be obtained for all u 2 Rd and all � : X +� 2 U ,
denoted as D1, . . . , D bP , where bP is the total number of such
matrices. Since D1, . . . , D bP include D1, . . . , DP in (5), we
have bP � P . While bP is at most 2n in the worst case, since
✏ is often small, we expect bP to be relatively close to P ,
where P  2r

� e(n�1)
r

�r as discussed above.
Finally, we replace the objective of (5) with its robust

counterpart, giving rise to the optimization

min
(vi,wi)

bP
i=1

0

BB@
max

�:X+�2U
`

✓ bPX

i=1

Di(X +�)(vi � wi), y

◆

+�
P bP

i=1

�
kvik2 + kwik2

�

1

CCA

(10a)

s. t. min
�:X+�2U

(2Di � In)(X +�)vi � 0, 8i 2 [bP], (10b)

min
�:X+�2U

(2Di � In)(X +�)wi � 0, 8i 2 [bP], (10c)

where U is any convex additive perturbation set. The next
theorem shows that (10) is an upper bound to the robust loss
function (2).

Theorem 3. Let (v?
robi

, w?
robi

)
bP
i=1 denote a solution of (10)

and define bm?
as |{i : v?

robi
6= 0}| + |{i : w?

robi
6=

0}|. When the network width m satisfies m � bm?
, the

optimization (10) provides an upper bound on the non-convex

adversarial training problem (2). The robust network weights

(u?
robj

,↵?
robj

)bmj=1 can be recovered using (7). Moreover, if �?
rob

denotes a solution to the inner maximization in (10a), then

X +�?
rob

corresponds to the worst-case adversarial inputs

for the recovered neural network.

Proof sketch: Since the linear constraints in (5) are
satisfied by all matrices X +�, the relationship between (5)
and (4) holds for all matrices X +�. Thus, �?

rob is optimal
for the inner maximization of (4). Since (u?

robj ,↵
?
robj)

bm
j=1 may

not be optimal for the outer minimization of (4), (10) is an
upper bound. ⇤

The formal proof is provided in [24, Appendix C]. When
the perturbation set is zero, Theorem 3 reduces to Theorem
1. Rather than an exact reformulation, (10) is an upper
bound problem because the robust constraints (10b) and (10c)
enforce that the ReLU activation pattern of the perturbed data
X +� remains the same within X , effectively reducing the

Algorithm 2 Practical convex adversarial training
1: for i = 1 to Pa do
2: ai ⇠ N (0, Id) i.i.d.
3: Di1 diag([Xai � 0])
4: for j = 2 to S do
5: Rij [r1, . . . , rd], where rh ⇠ N (0, In), 8h
6: Dij diag([Xijai � 0]), where Xij X + ✏ ·

sgn(Rij)
7: Discard repeated Dij matrices
8: break if Ps distinct Dij matrices have been sampled
9: end for
10: end for
11: Solve

min
(vi,wi)

bP
i=1

0

B@
max

�:X+�2U
`

✓ PsX

i=1

Di(X +�)(vi � wi), y

◆

+�
PPs

i=1

�
kvik2 + kwik2

�

1

CA

s. t. min
�:X+�2U

(2Di � In)(X +�)vi � 0, 8i 2 [Ps]

min
�:X+�2U

(2Di � In)(X +�)wi � 0, 8i 2 [Ps]

(12)
12: Recover u1, . . . , ums and ↵1, . . . ,↵ms from the solution

(v?robsi , w
?
robsi)

Ps
i=1 of (12) using (7).

feasible space of neural networks and causing suboptimality.
The optimality gap between (10) and (2) is solely due to this
suboptimality of the outer minimization, whereas the inner
maximization is exact.
In light of Theorem 3, we use optimization (10) as a

surrogate for optimization (2) to train the neural network. We
will show that the new problem can be efficiently solved in
important cases.

For the `1 perturbation set X , the constraints in (10b) and
(10c) can be equivalently replaced by the algebraic constraints

(2Di � In)Xvi � ✏kvik1, 8i 2 [bP],

(2Di � In)Xwi � ✏kwik1, 8i 2 [bP].
(11)

To understand this, observe that for the `1 set, (10b) and
(10c) become linear programming (LP) subproblems. Solving
the LPs in closed forms yields (11). The detailed derivation
is provided in [24, Appendix D].

A. Practical algorithm for convex adversarial training

Since Theorem 2 does not rely on any assumption on
the matrix X , it applies to an arbitrary matrix X + �,
and naturally extends to the convex adversarial training
formulation (10). Therefore, an approximation to (10) can
be applied to train robust neural networks with widths
much less than bm?. Similar to the strategy rendered in
Algorithm 1, we use a subset of the Di matrices for practical
adversarial training. Since the Di matrices depend on the
perturbation �, we also add randomness to the data matrix
X in the sampling process to cover Di matrices associated
with different perturbations, leading to Algorithm 2. Pa and

1538

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on December 21,2022 at 19:49:55 UTC from IEEE Xplore. Restrictions apply.

S are preset parameters that control the number of times we
run the random weight sampling procedure, with Pa ·S � Ps.

V. CONVEX HINGE LOSS ADVERSARIAL TRAINING

While the inner maximization of the robust problem (10)
is still hard to solve in general, it is tractable for some loss
functions. The simplest case is the piecewise-linear hinge loss
`(by, y) = (1�by�y)+, which is widely used for classification.
Here, we focus on binary classification with y 2 {�1, 1}n.

Consider the adversarial training problem for a one-hidden-
layer neural network with `2 regularized hinge loss:

min
(uj ,↵j)mj=1

(13)
0

B@
max

�:X+�2X

1

n
· 1>

✓
1� y �

mX

j=1

�
(X +�)uj

�
+
↵j

◆

+

+�
2

Pm
j=1

�
kujk

2
2 + ↵2

j

�

1

CA

Applying Theorem 3 leads to the following formulation as
an upper bound on (13):

min
(vi,wi)

bP
i=10

BB@
max

�:X+�2X

1

n
· 1>

✓
1� y �

bPX

i=1

Di(X +�)(vi � wi)

◆

+

+�
P bP

i=1

�
kvik2 + kwik2

�

1

CCA

s. t. (2Di � In)Xvi � ✏kvik1, 8i 2 [bP], (14)

(2Di � In)Xwi � ✏kwik1, 8i 2 [bP].

When generating the Di matrices, instead of enumerating
an infinite number of points in X as suggested in Theorem 3,
we only need to enumerate all vertices of X , which is finite.
This is because the solution �?

hinge to the inner maximum is
always at a vertex of X , as will be shown in Theorem 4.

Theorem 4. For binary classification, the inner maximum of

(14) is attained at �?
hinge

= �✏ · sgn
⇣P bP

i=1 Diy(vi�wi)>
⌘
,

and the bi-level optimization problem (14) is equivalent to

the classic convex optimization

min
(vi,wi)

bP
i=1

0

BB@

1

n

nX

k=1

1� yk

P bP
i=1 dikx

>
k (vi � wi)

+✏
��P bP

i=1 dik(vi � wi)
��
1

!

+

+�
P bP

i=1

�
kvik2 + kwik2

�

1

CCA

s. t. (2Di � In)Xvi � ✏kvik1, 8i 2 [bP],

(2Di � In)Xwi � ✏kwik1, 8i 2 [bP], (15)

where dik denotes the kth diagonal element of Di.

Proof sketch: Observe that the regularizations in (14)
are independent from � and the rest of the objective is
piecewise linear. Using the fact that max�(·)+ is equivalent
to (max� ·)+, one can reform the inner maximization of (14)
into an LP. The optimal �?

hinge is then obtained by solving
the LP in closed form. Plugging �?

hinge back yields (15). ⇤
The formal proof is provided in [24, Appendix E]. The

problem (15) is a finite-dimensional convex program that
provides an upper bound on (13). We can thus solve (15) to

robustly train the neural network. The `1 norm term in (15)
explains the regularization effect of adversarial training.

VI. CONVEX SQUARED LOSS ADVERSARIAL TRAINING

The squared loss `(by, y) = 1
2kby�yk22 is another commonly

used loss function in machine learning. It is widely used for
regression tasks, but can also be used for classification.
Consider the non-convex adversarial training problem of

a one-hidden-layer ReLU neural network trained with the
`2-regularized squared loss:

min
(uj ,↵j)mj=1

0

B@
max

�:X+�2X

1

2

����
mX

j=1

�
(X +�)uj

�
+
↵j � y

����
2

2

+�
2

Pm
j=1

�
kujk

2
2 + ↵2

j

�

1

CA .

(16)

Applying Theorem 3 leads to the following formulation as
an upper bound on (16):

min
(vi,wi)

bP
i=1

0

BB@
max

�:X+�2X

1

2

����

bPX

i=1

Di(X +�)(vi � wi)� y

����
2

2

+�
P bP

i=1

�
kvik2 + kwik2

�

1

CCA

s. t. (2Di � In)Xvi � ✏kvik1, 8i 2 [bP], (17)

(2Di � In)Xwi � ✏kwik1, 8i 2 [bP].

Theorem 5. The optimization problem (17) is equivalent to

the convex program:

min
(vi,wi)

bP
i=1,a,z

a+ �

bPX

i=1

(kvik2 + kwik2) (18)

s. t. (2Di � In)Xvi � ✏kvik1, 8i 2 [bP],

(2Di � In)Xwi � ✏kwik1, 8i 2 [bP],

zn+1 �
��2a�

1
4

��, kzk2  2a+ 1
4

zk �

����

bPX

i=1

Dikx
T
k (vi � wi)� yk

����+ ✏

����

bPX

i=1

Dik(vi � wi)

����
1

,

8k 2 [n].

Proof sketch: We rewrite (17) in the form of a robust
second-order cone program (SOCP) and show that the robust
SOCP is equivalent to the classic convex optimization (18)
using the procedures outlined in [26]. ⇤

The formal proof is provided in [24, Appendix F]. Problem
(18) is a convex optimization that can train robust neural
networks. However, directly using (18) for adversarial training
can be intractable due to the large number of constraints
that arise when we include all D matrices associated with
all � such that X + � 2 X . To this end, we can use
the approximation in Algorithm 2 and sample a subset of
the diagonal matrices. The optimality gap again can be
characterized with Theorem 2.

VII. NUMERICAL EXPERIMENTS

In this section, we focus on experimenting with the hinge
loss. The experiment results with the squared loss convex
adversarial training formulation (18) are provided in [24,
Appendix A.1]. For all experiments, CVX [27] with the

1539

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on December 21,2022 at 19:49:55 UTC from IEEE Xplore. Restrictions apply.

4 8 16 32 64 128 256 512 1024 2048
Number of D Matrices

10-1

10-0.5

100

100.5

101

Lo
ss

Fig. 1: The left figure is a randomized 2-dimensional dataset. The red crosses are positive training points and the white circles
are negative points. The region classified as positive is in blue, whereas the negative region is in black. The right figure is the
optimized training loss for each Ps. When Ps reaches 128, the mean and variance of the optimized loss become very small.

Standard Training (Alg 1) Adversarial Training (Alg 2)

Fig. 2: Visualization of binary decision boundaries in 2-dimensional space. The red crosses ⇥ are positive training points
while the red circles � are negative points. The region classified as positive is in blue, whereas the negative region is in
black. The white box around each training data is the `1 perturbation bound. The white dot at a vertex of each box is the
worst-case perturbation. Algorithm 2 fitted the perturbation boxes, while the standard training fitted the points.

MOSEK [28] solver was used for solving the optimizations
in Algorithm 1 and Algorithm 2 on a laptop computer.

A. Approximation quality of Algorithm 1

We use numerical experiments to demonstrate the quality of
the neural networks trained using the convex standard training
algorithm (Algorithm 1). The experiment was performed on
a randomly-generated dataset with n = 40 and d = 2. The
upper bound on the number of ReLU activation patterns
is P  4

� e(39)
2

�2
= 11239. We ran Algorithm 1 to train

neural networks using the hinge loss with the number of Di

matrices equal to 4, 8, 16, . . . , 2048, and with � chosen as a
commonly-used value 10�4. We repeated this experiment 15
times for each setting, and plotted the mean optimized loss
in Figure 1. The error bars show the loss achieved in the best
and the worst runs. When there are more than 128 matrices
(much less than the theoretical bound on P), Algorithm 1
yields consistent and favorable results. Further increasing
the number of Di matrices does not produce a significantly
lower loss. This result supports the findings of Theorem 2.

By Theorem 2, Ps = 128 corresponds to a confidence level
of ⇠ = 0.318.

B. Convex adversarial training on 2-dimensional data

To analyze the decision boundaries obtained from convex
adversarial training, we ran Algorithm 1 and Algorithm
2 on 34 random points in 2-dimensional space for binary
classification. The algorithms were run with the parameters
� = 10�9, Ps = 360 and ✏ = 0.08. A bias term was included
by concatenating a column of ones to the data matrix X .
The decision boundaries shown in Figure 2 confirm that
Algorithm 2 fits the perturbation boxes as designed, coinciding
with the theoretical prediction [12, Figure 3]. For illustration
purposes, the regularization parameter � is small to reduce
the smoothing of `2 regularization. Experiments with different
choices of � [24, Appendix A.2] show that larger � values
yield similar behaviors, and that the decision boundaries by
Algorithm 2 are more robust than GD-PGD boundaries.

1540

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on December 21,2022 at 19:49:55 UTC from IEEE Xplore. Restrictions apply.

Fig. 3: `convex � `nonconvex for k�k1  0.3 (left) and zoomed in to k�k1  0.08 (right).

TABLE I: Mean optimal objective and accuracy on clean and adversarial data (PGD and FGSM) over seven runs on the
CIFAR-10 database. The numbers in the parentheses are the standard deviations over the seven runs.

METHOD CLEAN FGSM ADV. PGD ADV. OBJECTIVE

GD-STD 79.56 % (.4138%) 47.09 % (.4290%) 45.60 % (.4796%) .3146 (.01101)

GD-FGSM 75.30 % (3.104%) 61.03 % (4.763%) 60.99 % (4.769%) .8370 (6.681 ⇥ 10�2)

GD-PGD 76.56 % (.6038%) 62.48 % (.2215%) 62.44 % (.1988%) .8220 (3.933 ⇥ 10�3)

ALGORITHM 1 81.01 % (.8090%) .4857 % (.1842%) .3571 % (.1239%) 6.910⇥ 10�3
(3.020 ⇥ 10�4)

ALGORITHM 2 78.36 % (.3250%) 66.95 % (.4564%) 66.81 % (0.4862%) .6511 (6.903 ⇥ 10�3)

C. Convex adversarial training – the optimization landscape

This subsection visualizes that for a neural network trained
with Algorithm 2, the convex landscape and the non-convex
landscape overlap for an `1-norm bounded perturbation �
with radius ✏ added upon a training point xk. We use the
same data and parameters as in Section VII-B to train a neural
network. We then randomly pick one of the training points
xk, and plot the loss around xk for the convex objective (10a)
and the non-convex objective (2). Specifically, we define

`convex =
⇣
1� yk ·

PX

i=1

dik(xk + �)>(v?i � w?
i)
⌘
;

`nonconvex =
⇣
1� yk ·

mX

j=1

�
(xk + �)>u?

j

�
+
↵?
j

⌘
,

where dik is the kth entry of Di, yk is the training label
corresponding to xk, and v?i , w?

i are the optimizers returned
by Algorithm 2. Moreover, u?

j and ↵?
j are the neural network

weights recovered from v?i and w?
i with (7).

We plot `convex � `nonconvex for k�k1  0.3 and zoom in
to k�k1  0.08 in Figure 3. When `convex � `nonconvex is
zero, the convex objective provides an exact certificate for
the non-convex loss function. The right figure shows that the
difference is zero for k�k1  0.08, and thereby verify that
the convex objective (10a) provides an exact certification of
the non-convex loss function (2) around the training points.

D. Convex adversarial training on CIFAR-10

We then verified the real-world performance of the pro-
posed convex training methods on a subset of the CIFAR-

10 image classification dataset [29] for binary classification
between the second class and the eighth class. The subset
consists of 600 images downsampled to d = 147. The
parameters were chosen as ✏ = 10, � = 10�4, and Ps = 36,
so the widths of the recovered neural networks were at most
72. For back-propagation methods, the network width m was
set to 72.

The hinge loss has a flat part with zero gradient. To generate
adversarial examples even in this part, we treat it as “leaky
hinge loss”: max(⇣(1 � ŷ · y), 1 � ŷ · y), where ⇣ ! 0+.
Hence, the FGSM calculation evaluates to

x̃ = x� ✏ · sgn
⇣
y ·
P

j: x>uj�0

�
uj↵j

�⌘
.

and the PGD iterations (3) evaluates to

x̃t+1 = ⇧X

⇣
x̃t
�� ·sgn

�
y ·
P

j: x>uj�0(uj↵j)
�⌘

, x̃0 = x.

Algorithm 1 and Algorithm 2 are compared with traditional
back-propagation methods GD-FGSM and GD-PGD. For GD-
PGD, we used � = ✏/30 and ran PGD for 40 steps.
Table I presents the CIFAR-10 experiment results. Algo-

rithm 1 achieved a slightly higher clean accuracy compared
with GD-std, and returned a much lower training cost. Such
behavior supports the findings of Theorem 2. The convex
adversarial training algorithm (Algorithm 2) achieved better
accuracy on clean data and adversarial data compared with
GD-FGSM and GD-PGD. While Algorithm 2 solves the upper
bound problem (15), it returned a lower training objective
compared with GD-FGSM and GD-PGD, showing that the
back-propagation methods failed to find an optimal network.
Moreover, the back-propagation methods are highly sensitive

1541

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on December 21,2022 at 19:49:55 UTC from IEEE Xplore. Restrictions apply.

to initializations and hyperparameter choices. In contrast,
since Algorithm 1 and Algorithm 2 solve convex programs,
they are much less sensitive and are guaranteed to converge to
their global optima. Compared with Algorithm 1, Algorithm 2
retains the advantage in the absence of spurious local minima
while vastly improving adversarial robustness.

VIII. CONCLUSION

This paper proposes a novel “convex adversarial training”
method that solves convex programs to train robust neural
networks. Compared with traditional adversarial training meth-
ods, the favorable properties of convex optimization endow
convex adversarial training with the following advantages:

• Global convergence to an upper bound: For the hinge
loss and the squared loss, convex adversarial training
provably converges to an upper bound on the globally
optimal cost, offering superior interpretability.

• Guaranteed adversarial robustness on training data:
As shown in Theorem 4, the inner maximization over
the robust loss function is solved exactly.

• Hyperparameter-free: In practice, Algorithm 2 can
automatically determine its step size with line search,
not requiring any preset parameters.

• Immune to vanishing gradients: The convex training
method avoids this problem completely because it does
not rely on back-propagation.

Overall, convex adversarial training makes it easier to
train robust and interpretable neural networks, potentially
facilitating their applications in the control of safety-critical
systems. While this work explicitly focuses on one-hidden-
layer fully-connected networks, the same robust optimization
analysis extends to more sophisticated architectures, since
deeper networks [30], vector-output networks [31], and
certain ConvNets [32] also have similar convex training
representations.

REFERENCES

[1] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. J.
Goodfellow, and R. Fergus, “Intriguing properties of neural networks,”
in 2nd International Conference on Learning Representations, 2014.

[2] S. Moosavi-Dezfooli, A. Fawzi, and P. Frossard, “Deepfool: A simple
and accurate method to fool deep neural networks,” in 2016 IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), 2016.
[3] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing

adversarial examples,” in 3rd International Conference on Learning

Representations (ICLR), 2015.
[4] W. Miller, R. Sutton, and P. Werbos, Neural networks for control. MIT

Press, 1995.
[5] J. Schulman, P. Moritz, S. Levine, M. I. Jordan, and P. Abbeel, “High-

dimensional continuous control using generalized advantage estimation,”
in 4th International Conference on Learning Representations, 2016.

[6] S. Levine, C. Finn, T. Darrell, and P. Abbeel, “End-to-end training
of deep visuomotor policies,” Journal of Machine Learning Research,
vol. 17, pp. 39:1–39:40, 2016.

[7] S. H. Huang, N. Papernot, I. J. Goodfellow, Y. Duan, and P. Abbeel,
“Adversarial attacks on neural network policies,” in 5th International

Conference on Learning Representations (ICLR), 2017.
[8] B. G. Anderson, Z. Ma, J. Li, and S. Sojoudi, “Tightened convex

relaxations for neural network robustness certification,” in 59th IEEE

Conference on Decision and Control (CDC), 2020.
[9] Z. Ma and S. Sojoudi, “A sequential framework towards an exact SDP

verification of neural networks,” in International Conference on Data

Science and Advanced Analytics, 2021.

[10] B. G. Anderson and S. Sojoudi, “Data-driven assessment of deep
neural networks with random input uncertainty,” arXiv preprint

arXiv:2010.01171, 2020.
[11] A. Kurakin, I. J. Goodfellow, and S. Bengio, “Adversarial machine

learning at scale,” in 5th International Conference on Learning

Representations (ICLR), 2017.
[12] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu, “Towards

deep learning models resistant to adversarial attacks,” in International

Conference on Learning Representations (ICLR), 2018.
[13] Y. Bai, B. G. Anderson, and S. Sojoudi, “Avoiding the accuracy-

robustness trade-off of classifiers via local adaptive smoothing,”
2022. [Online]. Available: https://github.com/Bai-YT/Public-Papers/
blob/main/Adaptive_Smoothing_Preprint.pdf

[14] A. Athalye, N. Carlini, and D. Wagner, “Obfuscated gradients give a
false sense of security: Circumventing defenses to adversarial examples,”
in Proceedings of the 35th International Conference on Machine

Learning (ICML), 2018.
[15] J. Cohen, E. Rosenfeld, and Z. Kolter, “Certified adversarial robustness

via randomized smoothing,” in Proceedings of the 36th International

Conference on Machine Learning (ICML), 2019.
[16] B. Anderson and S. Sojoudi, “Certified robustness via locally biased

randomized smoothing,” Conference on Learning for Dynamics and

Control, 2022.
[17] A. Raghunathan, J. Steinhardt, and P. Liang, “Certified defenses

against adversarial examples,” in International Conference on Learning

Representations (ICLR), 2018.
[18] E. Wong and Z. Kolter, “Provable defenses against adversarial examples

via the convex outer adversarial polytope,” in Proceedings of the 35th

International Conference on Machine Learning (ICML), 2018.
[19] Y. Wang, J. Lacotte, and M. Pilanci, “The hidden convex optimization

landscape of regularized two-layer reLU networks: an exact characteri-
zation of optimal solutions,” in International Conference on Learning

Representations, 2022.
[20] S. S. Du, X. Zhai, B. Poczos, and A. Singh, “Gradient descent prov-

ably optimizes over-parameterized neural networks,” in International

Conference on Learning Representations (ICLR), 2019.
[21] F. Bach, “Breaking the curse of dimensionality with convex neural

networks,” Journal of Machine Learning Research, vol. 18, no. 19, pp.
1–53, 2017.

[22] Y. Bengio, N. Roux, P. Vincent, O. Delalleau, and P. Marcotte, “Convex
neural networks,” in Advances in Neural Information Processing

Systems, 2006.
[23] M. Pilanci and T. Ergen, “Neural networks are convex regularizers:

Exact polynomial-time convex optimization formulations for two-layer
networks,” in Proceedings of the 37th International Conference on

Machine Learning (ICML), 2020.
[24] Y. Bai, T. Gautam, Y. Gai, and S. Sojoudi, “Practical convex

formulations of one-hidden-layer neural network adversarial training,”
Technical Report, 2021. [Online]. Available: https://people.eecs.
berkeley.edu/~sojoudi/Convex_NN.pdf

[25] G. Calafiore and M. C. Campi, “Uncertain convex programs: random-
ized solutions and confidence levels,” Mathematical Programming, vol.
102, no. 1, pp. 25–46, 2005.

[26] S. Boyd and L. Vandenberghe, Convex optimization. Cambridge
university press, 2004.

[27] M. Grant and S. Boyd, “CVX: Matlab software for disciplined convex
programming, version 2.1,” Mar. 2014.

[28] M. ApS, The MOSEK optimization toolbox for MATLAB manual.

Version 9.0., 2019.
[29] A. Krizhevsky, “Learning multiple layers of features from tiny images,”

University of Toronto, 05 2012.
[30] T. Ergen and M. Pilanci, “Global optimality beyond two layers: Training

deep ReLU networks via convex programs,” in Proceedings of the 38th

International Conference on Machine Learning (ICML), 2021.
[31] A. Sahiner, T. Ergen, J. M. Pauly, and M. Pilanci, “Vector-output ReLU

neural network problems are copositive programs: Convex analysis of
two layer networks and polynomial-time algorithms,” in International

Conference on Learning Representations (ICLR), 2021.
[32] T. Ergen and M. Pilanci, “Implicit convex regularizers of CNN

architectures: Convex optimization of two- and three-layer networks
in polynomial time,” in International Conference on Learning Repre-

sentations (ICLR), 2021.

1542

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on December 21,2022 at 19:49:55 UTC from IEEE Xplore. Restrictions apply.

