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Abstract— In this paper, we study the Instantaneously Con-
strained Reinforcement Learning (ICRL) problem, in which we
are tasked to find a reward-maximizing policy while satisfying
certain constraints at each time step. We first extend a result
on the strong duality of Constrained Markov Decision Process
(CMDP) in the literature and propose a sufficient condition for
strong duality of the ICRL problem. Inspired by the Augmented
Lagrangian Method in constrained optimization, we propose
a new surrogate objective function for ICRL, which could
be efficiently optimized by common policy-gradient based RL
algorithms. We show theoretically that a feasible and optimal
policy could be obtained by optimizing this surrogate function,
under certain conditions related to the feasible policy set. Our
empirical results on a tabular Markov Decision Process and two
nonlinear optimal control problems, a constrained pendulum
and a constrained half-cheetah, justify our analysis, and suggest
that our method could promote safety during learning and
converge in a smaller number of iterations compared to the
existing algorithms.

I. INTRODUCTION

Deep reinforcement learning algorithms have achieved
state-of-the-art performance in many domains [1–3]. In stan-
dard reinforcement learning (RL), the ultimate goal is to
optimize the expected sum of rewards or costs, and the agent
can freely explore in order to improve the current policy. RL
methods have been widely used to learn optimal policies for
agents with complicated or even unknown dynamics. RL has
successfully solved a wide range of tasks, including the game
of Go [4], robotic control [5], and traffic control [6].

There is a well-known trade-off between exploration and
exploitation in RL. To optimize the overall reward, the agent
must balance whether to take a sequence of actions similar
to what it has already tried (i.e., exploitation) or to try a
new combination of actions (i.e., exploration). Since most
RL problems are non-convex, pure exploitation leads to a
suboptimal policy leading to a poor local maximum of the
reward function. To encourage the agent to find a better
policy, various methods have been proposed for promoting
exploration, such as using an Upper Confidence Bound [7],
Inverse Entropy [8], or designing a Variational Auto-encoder
[9]. Nevertheless, in many applications such as autonomous
driving [10] and surgical robotics [11], exploration can be
dangerous because violating certain constraints even by a
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small amount may have significant consequences. Thus,
ensuring safety is of great importance in real-world appli-
cations.

A natural way of encoding safety in RL is through con-
straints. Here, there are two types of constraints: cumulative
constraints (e.g., average vehicle speed) and instantaneous
constraints (e.g., collision avoidance at each time). A cu-
mulative constraint requires that an infinite-horizon or a
finite-horizon discounted sum of a constraint cost function
lie within a certain bound. By contrast, an instantaneous
constraint must hold at all time instants. For both problems,
the horizon could be either infinite or finite.

One common formulation of RL with cumulative con-
straints is the Constrained Markov Decision Process (CMDP)
framework [12], where the agent optimizes an objective
while satisfying constraints on the expectation of an infinite-
horizon discounted sum of auxiliary costs. A classical ap-
proach to solving CMDPs is the Lagrangian dual method
[12]. The Lagrangian approach allows us to transform a
constrained control problem to an equivalent minmax uncon-
strained control problem. Recently, it has been shown that
under certain regularity conditions there is no duality gap
for infinite-horizon RL problems with cumulative constraints,
despite their non-convex nature [13]. This result theoretically
justifies the effectiveness of popular Lagrangian-relaxation-
based CMDP algorithms, such as Constrained Policy Op-
timization (CPO) [14], Primal-Dual Policy Optimization
(PDO) [15] and Lyapunov-based safe learning [16].

As will be shown in Section II, the satisfaction of cu-
mulative constraints may not lead to the satisfaction of
instantaneous constraints. Therefore, it is crucial to develop
methods for solving instantaneously constrained RL prob-
lems. The authors of [17] propose to solve instantaneously
constrained RL problems by optimizing a smoothed version
of the worst constraint violation rather than an explicitly
constrained objective. One line of work devoted to safe RL
with instantaneous constraints is projection-based Safe RL
[18–20], where at each step the agent selects one action
from a pre-computed safe action set. However, one potential
drawback of this approach is that the pre-computed safe
action set could be conservative, leading to a suboptimal
policy [21, 22].

In this paper, we consider an infinite-horizon optimal con-
trol problem with instantaneous safety constraints. We adapt
the classical Augmented Lagrangian method [23] to obtain a
safe policy satisfying instantaneous safety constraints. Our
work is closely related to [24], where an interior-point
method is adapted to solve the safe RL problem. One major
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difference is that we relax the assumption of an initial safe
policy, which is required in [24].

We first extend the strong duality results in [13] to instan-
taneously constrained RL, and propose a sufficient condition
for the strong duality of the instantaneously constrained RL
problem. Inspired by the Augmented Lagrangian method, we
then design a surrogate objective function, and we show that
under certain conditions on the feasible policy set, the policy
returned by optimizing the surrogate function converges to
an optimal policy for the original problem. We propose a
primal-dual algorithm for optimizing this surrogate function
and our empirical results show that the proposed method is
more data-efficient than the existing Lagrangian dual method.
Our empirical results also suggest that this method reduces
the total constraint violation, highlighting the potential of our
method for promoting safety throughout learning.

The rest of the paper is organized as follows. In Section II,
we formulate the Instantaneously Constrained RL problem.
We present our main theoretical results in Sections III and
IV, with proofs provided in the Appendix. In Section V,
we present three illustrative examples: a tabular learning
example, and an OpenAI constrained pendulum and half-
cheetah example. Finally, we conclude and discuss future
directions in Section VI.

II. FROM CUMULATIVE TO INSTANTANEOUS
CONSTRAINTS

In this section, we first review Constrained Markov Deci-
sion Processes, and then motivate and introduce our instan-
taneously constrained RL problem formulation.

A Markov Decision Process (MDP) is a tuple
(Z,A, γ, r, pz, p0), where Z and A are compact state
and action spaces, γ ∈ [0, 1) is a discounting factor,
r(z, a) : Z × A → R is the immediate cost function,
pz(·|z, a) is the transition probability distribution density,
and p0 is the initial state distribution density. In addition,
let g(z, a) : Z × A → R be the constraint function. A
function f : Z × A → R is bounded if there exists a
constant c ∈ R such that f(z, a) ≤ c, for ∀(z, a) ∈ Z × A.
The agent chooses actions sequentially based on a policy
π ∈ P(Z), where P(Z) is the space of probability measures
on (A,B(A)) parametrized by elements of Z , where B(A)
are the Borel sets of A.

A Constrained Markov Decision Process was introduced
in [25] by incorporating an additional inequality constraint:

max
π

E

[ ∞∑
t=0

γtr(zt, at)

∣∣∣∣∣π
]

s.t. zt+1 ∼ pz(·|zt, at), at ∼ π(zt), ∀t ∈ {0, 1, . . . },
z0 ∼ p0,

E

[ ∞∑
t=0

γtg(zt, at)

∣∣∣∣∣π
]
≤ 0.

(1)
where E[·] is the expectation operator. The zt and at are state
and action at time t ∈ {0, 1, . . . }, respectively.
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Fig. 1: State trajectories comparison between the two controllers at = K∗zt
and ãt = K̃z̃t.

In what follows, we will illustrate with a simple 2D exam-
ple that a cumulative constraint does not generally provide
any guarantees for the associated instantaneous constraints,
i.e., solving CMDPs may not be sufficient to ensure the
satisfaction of instantaneous constraints.

Example 1. Consider a linear dynamical system zt+1 =
Azt + Bat, where A ∈ R2×2 and B ∈ R2×1 are specified
as

A =

[
0 1
−1 1

]
, B =

[
1
0

]
. (2)

Let K ⊆ R2 be the feasible policy class. Given an initial
point ž0 ∈ R2, we consider the infinite-horizon constrained
optimal control problem

K∗ := arg max
K∈K

[
−
∞∑
t=0

(
z>t Qzt + a>t Rat

)]
s.t. zt+1 = Azt +Bat, ∀t ∈ {0, 1, . . . },

at = Kzt, ∀t ∈ {0, 1, . . . },
z0 = ž0,
∞∑
t=0

zt ≤ 0

(3)

and the instantaneously constrained RL problem

K̃∗ := arg max
K∈K

[
−
∞∑
t=0

(
z>t Qzt + a>t Rat

)]
s.t. zt+1 = Azt +Bat, ∀t ∈ {0, 1, . . . },

at = Kzt, ∀t ∈ {0, 1, . . . },
z0 = ž0,

zt ≤ 0, ∀t ∈ {0, 1, . . . }.

(4)

with the parameters Q = I2 and R = 1. If we assume the
policy class to be K = R2, then the optimal feedback matrix
K∗ may be found by solving the well-known LQR Riccati
equation and recognizing that the constraint

∑∞
t=0 zt ≤ 0 in

(3) is inactive for K∗. Pick K̃ ∈ R2 such that (A + BK̃)
has real positive eigenvalues with magnitude strictly smaller
than 1 and (A + BK̃) has two eigenvectors v1 ≤ 0 and
v2 ≤ 0 whose convex hull contains ž0. By Proposition 4 in
the Appendix, we can show that K̃ is a feasible solution for
(4). We plot the state trajectories under the two feedback
controllers at = K∗zt and ãt = K̃z̃t. In Figure 1, the
state trajectory under the controller at = K∗zt violates the
constraint zt ≤ 0 at time t = 2 while the trajectory under
ãt = K̃z̃t does not. �
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As illustrated in Example 1, enforcing a constraint cu-
mulatively does not imply that it holds at each time. We
emphasize that constraints may be arbitrary functions of
state. In this way, an instantaneous constraint may be un-
derstood to encode desired safety configurations, such as in
collision avoidance [26], human-robot interaction [27], and
aerospace control [28]. Motivated by the above discussion,
we formulate the Instantaneously Constrained RL problem
as follows.

Problem 1 (Instantaneously Constrained RL Problem). Con-
sider an MDP with transition dynamics zt+1 ∼ pz(·|zt, at)
and initial state distribution p0, along with a bounded reward
function r(z, a) and a bounded constraint function g(z, a).
The objective is to find a policy π∗ that solves the following
constrained optimization problem over the infinite horizon:

max
π

E

[ ∞∑
t=0

γtr(zt, at)

∣∣∣∣∣π
]

s.t. zt+1 ∼ pz(·|zt, at), ∀t ∈ {0, 1, . . . },
at ∼ π(zt), ∀t ∈ {0, 1, . . . },
z0 ∼ p0,
E[g(zt, at)|π] ≤ 0, ∀t ∈ {0, 1, . . . }.

(5)

We remark here that an optimal policy feasible for (5)
could be a conservative but feasible solution for (1). There-
fore, a policy learned from (5) is also safe with respect to the
constraint in (1). In addition, although we only consider one
set of instantaneous constraints in (5), the results of this paper
could be extended to the general case with multiple sets of
instantaneous constraints, by associating each constraint with
a Lagrange multiplier and carrying out an analysis similar to
the single constraint case (5).

III. AUGMENTED LAGRANGIAN SURROGATE FUNCTION

In this section, we introduce our Augmented Lagrangian
Surrogate Function. We first propose a sufficient condition
under which strong duality holds for (5), and then design a
new surrogate function which could promote safety during
the learning phase.

Since most of the existing results on RL deal with
unconstrained problems, it is beneficial to work with the
unconstrained Lagrangian dual of the primal problem (5)
given below,

min
{λt}∞t=0
λt≤0

max
π

E

[ ∞∑
t=0

γt(r(zt, at) + λtg(zt, at))

∣∣∣∣∣π
]

s.t. zt+1 ∼ pz(·|zt, at), ∀t ∈ {0, 1, . . . },
at ∼ π(zt), ∀t ∈ {0, 1, . . . },
z0 ∼ p0.

(6)

where λt is the Lagrange multiplier associated with the scalar
constraint E[g(zt, at)|π] ≤ 0.

It is known that strong duality holds in the case of cumu-
lative constraints [13]. For completeness, we first introduce
Assumption 1, and then build on the result of [13].

Assumption 1. Suppose that the feasible policy set for (5)
has a non-empty relative interior. Furthermore, suppose that
for any π satisfying E[

∑∞
t=0 γ

tg(zt, at)|π] ≤ 0, π also
satisfies E[g(zt, at)|π] ≤ 0, ∀t ∈ {0, 1, . . . }.
Remark 1. We note that, under Assumption 1, Problem
1 could be equivalently considered as a special subclass
of CMDPs in which the cumulative constraints could ap-
proximate instantaneous constraints. In what follows, we
will show that Assumption 1 permits us to characterize
the strong duality of Problem 1, and thereby design a new
surrogate objective for (5) which yields superior empirical
performance than existing primal-dual approach.

Proposition 1. Under Assumption 1, strong duality holds
for (5).

A natural question that arises is whether Assumption 1
is stringent. To ensure that E[

∑∞
t=0 γ

tg(zt, at)|π] ≤ 0
implies E[g(zt, at)|π] ≤ 0, for all t ∈ {0, 1, . . . }, we
propose two approaches. First, we propose a “clipping”
method whereby constraint values at safe states are set to
zero. For example, suppose that we have an instantaneous
constraint E[h(zt, at)|π] ≤ 0 with a bounded function
h(zt, at) : Z × A → R, computing only the positive part,
i.e., E[Relu(h(zt, at))|π] ≤ 0, where Relu(·) : R → R is
defined as Relu(x) = x if x ≥ 0 and 0 if x < 0. The choice
of the Relu function is not strictly necessary, i.e., it could be
replaced by other non-negative activation functions such as
Softplus or Sigmoid [29]. The other approach is to restrict
the feasible policy class, as highlighted in the following 2D
example:
Example 1 (Continued). Suppose that the policy class K ⊆
R2 is such that for any K ∈ K, the closed loop dynamics
(A + BK) ∈ R2×2 has two real positive eigenvalues, and
it has two eigenvectors v1 ≤ 0 and v2 ≤ 0 whose convex
hull contains the point z0. We will show in Proposition 4 in
the Appendix that under any policy K ∈ K, the constraint∑∞
t=0 zt ≤ 0 and the condition zt ≤ 0, ∀t ∈ {0, 1, . . . }, are

always satisfied. In this simple instance where g(zt, at) ≡
zt, the constraint E[

∑∞
t=0 γ

tg(zt, at)|π] ≤ 0 implies the
constraint E[g(zt, at)|π] ≤ 0, for all t ∈ {0, 1, . . . }.

Remark 2. However, as indicated in [13], strong duality
is only proved for CMDPs with arbitrary stochastic policies.
Characterizing strong duality in parametric, restricted policy
classes such as that of Problem 1 is an important direction
for future research.

Building upon the Lagrangian dual (6), by the linearity
of the expectation operator, at each time t ∈ {0, 1, . . . },
(6) suggests an instantaneous reward function rt(zt, at) =
r(zt, at) + λtg(zt, at). This function depends upon the
Lagrange multiplier λt and hence is time-varying. How-
ever, infinite-horizon RL algorithms typically assume time-
invariant reward functions. We next show that, under As-
sumption 1, a set of optimal Lagrange multipliers {λ∗t } could
share the same value. That is, we may presume that all
{λt}∞t=0 are equal to some constant λ, and therefore obtain a
time-invariant reward function. This time-invariance permits
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us to apply existing RL algorithms to find the best policy
maximizing the time-invariant instantaneous reward function.

Proposition 2. Let ({λt}∞t=0, π
∗) be an optimal solution of

(6). Let (λ∗, π̃∗) be a pair of optimal solutions to

min
λ≤0

max
π

E

[ ∞∑
t=0

γt

(
r(zt, at)+

λ>

( ∞∑
t=0

γtg(zt, at)

))∣∣∣∣∣π
]

s.t. zt+1 ∼ pz(·|zt, at), ∀t ∈ {0, 1, . . . },
at ∼ π(zt), ∀t ∈ {0, 1, . . . },
z0 ∼ p0.

(7)

Let λ̃t = λ∗, for all t ∈ {0, 1, . . . }. Under Assumption 1,
we have that ({λ̃t}∞t=0, π̃

∗) is also a pair of optimal solution
to (6).

Remark 3. Proposition 2 does not preclude the existence
of optimal Lagrange multipliers {λ∗t }∞t=0 of (6) which are
time-varying.

Building upon the above results and by assuming λt = λ,
for all t ≥ 0, we design the time-invariant instantaneous
reward inspired by Augmented Lagrangian Method [23],

r̃(zt, at) := r(zt, at)+λ·Relu(g(zt, at))−
ρ

2
·Relu(g(zt, at))

2,

(8)
and subsequently we obtain the infinite-horizon objective
function

R(π, λ, ρ) := E

[ ∞∑
t=0

γt(r(zt, at) + λ · Relu(g(zt, at))

−ρ
2
· Relu(g(zt, at))

2
)∣∣∣∣∣π
]
.

(9)

Remark 4. Under Assumption 1, (9) can be interpreted as
a new surrogate function for a special subclass of CMDPs
in which the cumulative constraints could approximate in-
stantaneous constraints. We will show in Section IV that
by optimizing (9), we can find a high-quality policy within
fewer iterations and smaller constraint violation throughout
learning than a current primal-dual method. That is, for
this special subclass of CMDPs, (9) serves as an alternative
surrogate function with a superior empirical performance
than the existing primal-dual method.

Notice that R(π, λ, 0) is not equivalent to the objec-
tive function in (7), E[

∑∞
t=0 γ

t(r(zt, at) + λg(zt, at))|π],
because the constraint E[Relu(g(zt, at))|π] ≤ 0, is a
sufficient but not necessary condition for the constraint
E[g(zt, at)|π] ≤ 0.

We will show in Section IV that under certain conditions,
as ρ → ∞, any infeasible policy would become sub-
optimal when we maximize the function R(π, λ, ρ), with
λ fixed. Thus, an optimal policy returned by optimizing
(9) for both π and λ would eventually become safe and
optimal as we increase ρ. In addition, we remark here that
the introduction of the Relu function or other non-negative

Algorithm 1: Augmented Lagrangian RL

1 Pick cρ ∈ [1,∞), dual ascent stepsize ` ∈ R+, and
convergence tolerance ε > 0;

2 Initialize ρ(0) ∈ R+, λ(0) = 0;
3 Randomly initialize the policy π0;
4 for k = 0, 1, 2, . . . do
5 πk ← arg maxπ R(λ(k), ρ(k), π);
6 λ(k+1) ←⌊

λ(k) − `
(
E
[∑∞

t=0 γ
tRelu(g(zt, at))|πk

])⌋
−

7 ρ(k+1) ← cρρ
(k);

8 return πk if ||πk − πk−1||∞ ≤ ε.
9 end

activation functions in (9) is necessary because otherwise, it
is not generally true that an optimal policy for (9) is also
optimal for (5), due to the fact that under an optimal policy
π∗ of problem (5), E

[
g(zt, at)

2
∣∣π∗] may be nonzero and

therefore R(π, λ, ρ)→ −∞, as ρ→∞.
Following the same spirit of the primal-dual algorithm

in constrained optimization [13, 15, 23], we propose Algo-
rithm 1.

In Algorithm 1, we initialize λ(0) = 0 and ρ(0) ∈
R+, where R+ denotes the set of non-negative real
numbers. At the k-th iteration, we first find a policy
πk ∈ arg maxπ R(λ(k), ρ(k), π), which could be done by
any unconstrained RL algorithm in the literature (e.g.,
SAC [30], DDPG [31], TRPO [32]). Then, we up-
date the Lagrange multiplier by dual ascent λ(k+1) =
bλ(k)−`(E[

∑∞
t=0 γ

tRelu(g(zt, at))|πk])c−, where the func-
tion b·c− : R→ R− is defined as follows:

bxc− =

{
0 if x > 0,

x otherwise.
(10)

We also update ρ(k+1) = cρρ
(k), where cρ ∈ [1,∞) is the

increasing rate of the quadratic penalty coefficient ρ(k) as
the iteration index k grows.

IV. CONVERGENCE ANALYSIS

In this section, we show that under certain conditions on
the feasible policy set, by optimizing the surrogate function
(9) we recover an optimal policy for (5).

Proposition 3. Under Assumption 1, consider the primal
maximization of (7), denoted by dρ(λ) : R→ R and defined
as

dρ(λ) := max
π

E

[ ∞∑
t=0

γt(r(zt, at) + λ · Relu(g(zt, at))

− ρ

2
· Relu(g(zt, at))

2)

∣∣∣∣∣π
]

s.t. zt+1 ∼ pz(·|zt, at), ∀t ∈ {0, 1, . . . },
at ∼ π(zt), ∀t ∈ {0, 1, . . . },
z0 ∼ p0.

(11)
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Let λ∗ρ := arg minλ≤0 dρ(λ). Suppose that under an optimal
policy π∗ of problem (5), g(zt, at) ≤ 0, ∀t ∈ {0, 1, . . . }. We
define a policy π∗ρ(λ) as

π∗ρ(λ) := arg max
π

E

[ ∞∑
t=0

γt
(
r(zt, at) + λ · Relu(g(zt, at))

− ρ

2
· Relu(g(zt, at))

2
)∣∣∣∣∣π
]

s.t. zt+1 ∼ pz(·|zt, at), ∀t ∈ {0, 1, . . . },
at ∼ π(zt), ∀t ∈ {0, 1, . . . },
z0 ∼ p0.

(12)
Then, as ρ→∞, we have,∣∣∣∣∣

∣∣∣∣∣E
[ ∞∑
t=0

γtr(zt, at)

∣∣∣∣∣π∗
]

− E

[ ∞∑
t=0

γtr(zt, at)

∣∣∣∣∣π∗ρ(λ∗ρ)

]∣∣∣∣∣
∣∣∣∣∣
2

→ 0.

(13)

The condition that under an optimal policy π∗ in the origi-
nal problem (5), g(zt, at) ≤ 0, ∀t ∈ {0, 1, . . . }, is equivalent
to the condition E[g(zt, at)|π∗] ≤ 0, ∀t ∈ {0, 1, . . . }, if
we have a deterministic dynamical system. In addition, this
condition could be easy to meet for safety-critical systems,
due to the fact in many control applications we have a safe
but sub-optimal base controller, e.g., Autopilot [33], safe
robot-human interaction [34], autonomous driving [35].

We remark here that the analysis in Proposition 3 is con-
servative. However, in Section V we consider instantaneous
constraints g which we do not know a priori are deterministi-
cally satisfiable for each t. That is, we consider g for which
there may not be a policy π for which g(zt, at) ≤ 0, ∀t.
Still, our empirical results suggest that when the parameter
ρ is sufficiently large, Algorithm 1 returns a high-quality safe
policy.

V. EXPERIMENTS

In this section, we validate Algorithm 1 in experiments
with different initial values of ρ in the settings of a tabular
MDP [36], inverted pendulum [37], and half-cheetah [37].
In all experiments, we assume that the constraints are of
the form E[Relu(h(zt, at))|π] ≤ 0 for some function h :
Z×A → R, and therefore when ρ0 = 0, R(π, λ, 0) recovers
the classical Lagrangian dual method adopted in [12–16].

We first consider a constrained tabular MDP in Figure 2a,
where we have 10 × 3 states, each corresponding to a grid
cell of a table. The agent starts from an initial state and
tries to reach the goal state. At each grid cell, the agent can
stay at the same cell or move up, down, left, or right. For
those grid cells on the boundary, no action moving out of the
table is permitted. The constraint function g(zt, at) takes the
value 1 if zt is considered unsafe and 0 otherwise. The agent
receives a reward r(s, a) = 10 for reaching the goal state
(which is terminal) and a reward r(s, a) = −1 otherwise.

In this experiment, we keep the quadratic penalty coefficient
fixed at each iteration in Algorithm 1, and therefore we pick
the parameter cρ = 1. At the k-th iteration of Algorithm 1,
we apply the classical tabular Policy Iteration [36] to find
the policy πk.

In Figure 2b, we show that the duality gap eventually goes
to zero as we update the Lagrange multiplier at each iteration,
which empirically validates Proposition 1. In Figure 3a, we
observe that as ρ0 grows, the speed at which the policy
returned by Algorithm 1 converges to the optimal policy
increases. In Figure 3b, we measure the accumulated con-
straint

∑∞
t=0 E[g(zt, at)|π], and we observe that it decreases

as we increase ρ0. This implies that the surrogate function (9)
could promote safety during learning, compared with the
case ρ0 = 0, i.e., the Lagrangian dual approach in [12–16].

Subsequently, we consider a constrained pendulum exam-
ple, where we add an additional constraint corresponding to
avoiding collision with an obstacle near the pendulum, i.e.,
θt /∈ [π2 , π], to the OpenAI Gym "Pendulum-v0" environment
[37]. To satisfy Assumption 1, we reformulate this constraint
as E[g(θt)|π] ≤ 0, where g(θ) = 1 if θ ∈ [π2 , π] and g(θ) = 0
otherwise. Unlike the previous tabular MDP example where
we can find a globally optimal policy, we may only obtain
a locally optimal policy due to the non-convexity of RL
problems. In line 5 of Algorithm 1, we find a locally optimal
policy by running a fixed number of steps of Deterministic
Deep Policy Gradient (DDPG) [31]. By picking cρ = 1.15,
we slowly increase the quadratic penalty coefficient ρ as the
iteration number grows. We update the parameters λ and ρ
almost after 6 × 104 steps of DDPG, as indicated by the
vertical dashed lines in Figure 4.

We run experiments with different random seeds and
show the average performance and the standard deviation
in Figure 4. We see that as ρ0 increases, the rate at which
the policy converges increases and the constraint violations
decreases in Figure 4. In particular, we observe that the
standard deviation of the constraint violations dramatically
decreases as ρ0 grows in Figure 4b, which suggests that
optimizing the surrogate function (9) promotes both safety
and stability during learning.

Finally, we consider the constrained half-cheetah example
[24], which is adapted from the OpenAI gym "Half-cheetah-
v0" environment [37] by adding an additional constraint
|vx(t)| ≤ 1 on the horizontal velocity of the cheetah. We
reformulate the constraint as E[Relu(|vx(t)| − 1)|π] ≤ 0.
In line 5 of Algorithm 1, we find a locally optimal policy
by running a fixed number of steps of Soft Actor Critic
(SAC) [30]. By picking cρ = 1.5, we rapidly increase
the quadratic penalty coefficient ρ as the iteration number
grows. Similar to the constrained Pendulum experiments, we
update λ and ρ every 1.6 × 105 steps of SAC, as indicated
by the vertical dashed lines in Figure 5. As we increase
ρ0, we see in Figure 5 that the speed at which the policy
converges increases and the constraint violations decreases.
However, when ρ0 is too large, e.g., ρ0 = 2.0 in Figure 4a,
we observe that the exploration is inhibited, which suggests
that by tuning ρ0 we could control the trade-off between
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0 3 6 9 12 15 18
iterations

0

5

10

15

20
without quadratic penalty
with quadratic penalty, ρ0 = 1
with quadratic penalty, ρ0 = 2

(a) distance between the learned policy and
the optimal policy vs. iterations

0 3 6 9 12 15 18
iterations

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5
without quadratic penalty
with quadratic penalty, ρ0 = 1
with quadratic penalty, ρ0 = 2

(b) constraint violations vs. iterations

Fig. 3: Tabular MDP Results
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Fig. 5: Constrained half-cheetah results

exploration and safety. We also plot the state trajectory under
polices learned from Algorithm 1 with different values of ρ0
in Figure 6. We observe that as long as ρ0 is sufficiently
large, the learned policies perform safely with a similar
performance quality. When ρ0 is too large, the learned policy
becomes conservative possibly due to poor exploration.

VI. CONCLUSION

In this paper, we considered Instantaneously Constrained
RL problems. We first extended a recent result on Cu-
mulatively Constrained RL problems to characterize the
strong duality of Instantaneously Constrained RL problems.
Inspired by the Augmented Lagrangian method, we pro-
posed a new surrogate function that can promote safety

0 2 4 6 8 10
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v x
 / 

m
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without quadratic penalty
ρ0 = 0.05
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Fig. 6: The state trajectory vx(t) of constrained half-cheetah under learned
policies corresponding to different values of ρ0. The horizontal black dashed
line indicates the constraint |vx| ≤ 1.

for instantaneous constraints, i.e., reducing the constraint
violations during learning. Our surrogate function can be
optimized using common unconstrained RL algorithms. We
provided theoretical results to justify the use of unconstrained
algorithms, which requires stationary Lagrange multipliers to
yield time-invariant rewards in the (augmented) Lagrangian.
Theoretical results also show that under certain conditions we
can recover an optimal policy. Finally, our empirical results
suggested that our surrogate function could promote safety
during learning. Additionally, we observed that our surrogate
function reliably yielded a faster convergence relative to a
standard Lagrangian dual approach.

APPENDIX

Proposition 4. Consider a linear system zt+1 = Azt, where
A ∈ R2×2. Consider a fixed initial condition z0 ≤ 0.
Suppose that the eigenvalues of A are real and positive, and
there exist two eigenvectors v1 ≤ 0 and v2 ≤ 0 whose convex
hull contains z0. Then, we have zt ≤ 0, ∀t ∈ {0, 1, . . . } and∑∞
t=0 zt ≤ 0.

Proof. Denote by λi the i-th eigenvalue of A. Let vi =
[vi1, vi2] be an eigenvector associated with λi. Consider
initial condition z0 = [z01, z02] ≤ 0. Construct

c1 =
v22z01 − v12z02
v22v11 − v12v21

, c2 =
v11z02 − v21z01
v22v11 − v12v21

. (14)

We can verify that z0 = c1v1 + c2v2. Suppose that there
exists a t′ ∈ {0, 1, . . . } such that zt′ ≤ 0 is not true. Then,
it follows that zt′ = c1λ

t′

1 v1 + c2λ
t′

2 v2 ≤ 0 is not true, i.e.,
either c1 < 0 or c2 < 0. However, since z0 is in the convex
hull of v1 and v2, we have v21

v22
≤ z01

z02
≤ v11

v12
, which yields

v22z01−v12z02 ≥ 0 and v11z02−v21z01 ≥ 0. Recall that v1
and v2 are in the third quadrant. We have v22v11−v12v21 ≥
0. This suggests that c1 ≥ 0 and c2 ≥ 0, which presents a
contradiction. Thus, we have zt ≤ 0, for all t ∈ {0, 1, . . . },
and it also yields

∑∞
t=0 zt ≤ 0.

Proof of Proposition 1. By definition, the condition
E[g(zt, at)|π] ≤ 0, ∀t ∈ {0, 1, . . . }, implies the condition
E[
∑∞
t=0 γ

tg(zt, at)|π] ≤ 0. By combining the condition
in Proposition 1, we have that E[g(zt, at)|π] ≤ 0,
∀t ∈ {0, 1, . . . }, if and only if E[

∑∞
t=0 γ

tg(zt, at)|π] ≤ 0.
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Let π∗ be an optimal policy for (5). Define p∗ :=
E[
∑∞
t=0 γ

tr(zt, at)|π∗]. From Theorem 1 in [13], we have

p∗ = min
λ

max
π

E

[
∞∑
t=0

γt(r(zt, at) + λg(zt, at))

∣∣∣∣∣π
]

s.t. zt+1 ∼ pz(·|zt, at), ∀t ∈ {0, 1, . . . },
at ∼ π(zt), t ∈ {0, 1, . . . },
z0 ∼ p0.

(15)

By construction, for any non-positive Lagrange Multipliers
{λt}∞t=0, we have

max
π

E

[ ∞∑
t=0

γt(r(zt, at) + λtg(zt, at))

∣∣∣∣∣π
]

≥E

[ ∞∑
t=0

γt(r(zt, at) + λtg(zt, at))

∣∣∣∣∣π∗
]

≥E

[ ∞∑
t=0

γtr(zt, at)

∣∣∣∣∣π∗, z0
]

+
∞∑
t=0

γtλtE[g(zt, at)|π∗]

≥p∗
(16)

which also implies

min
{λt}∞t=0

max
π

E

[ ∞∑
t=0

γtr(zt, at) + λtg(zt, at)

∣∣∣∣∣π
]
≥ p∗. (17)

Let λ∗ be an optimal solution of (15). Subsequently, suppose
λ̃t := λ∗, ∀t ∈ {0, 1, . . . }. Then, we have

max
π

E

[ ∞∑
t=0

γt(r(zt, at) + λ̃tg(zt, at))

∣∣∣∣∣π
]

= p∗, (18)

which implies that

min
{λt}∞t=0

max
π

E

[ ∞∑
t=0

γt(r(zt, at) + λtg(zt, at))

∣∣∣∣∣π
]
≤ p∗

(19)
It follows from (17) and (19) that strong duality holds for
(5).

Proof of Proposition 2. Observe that the problem (7) is the
Lagrangian relaxation of

max
π

E

[ ∞∑
t=0

γtr(zt, at)

∣∣∣∣∣π
]

s.t. zt+1 ∼ pz(·|zt, at), ∀t ∈ {0, 1, . . . },
at ∼ π(zt), ∀t ∈ {0, 1, . . . },
z0 ∼ p0,

E

[ ∞∑
t=0

γtg(zt, at)

∣∣∣∣∣π
]
≤ 0.

(20)

Recall that the condition E[g(zt, at)|π] ≤ 0, ∀t ∈ {0, 1, . . . },
yields E[

∑∞
t=0 γ

tg(zt, at)|π] ≤ 0. Suppose that under
any closed-loop dynamics zt+1 ∼ pz(·|zt, at) with at ∼
π(zt), the constraint E[

∑∞
t=0 γ

tg(zt, at)|π] ≤ 0 implies that
E[g(zt, at)|π] ≤ 0, ∀t ∈ {0, 1, . . . }. Then, the problem
(20) shares the same feasible domain with problem (6).
From Theorem 1 in [13], strong duality holds for (7). By
Proposition 1, strong duality also holds for (6). Therefore,

a pair of optimal solutions to problem (7) implies that
({λ̃t}∞t=0, π̃

∗) is a pair of optimal solutions to (6).

Before we present the proof of Proposition 3, we first
introduce the following Lemma, which builds the foundation
for the proof of Proposition 3.

Lemma 1. Under Assumption 1, consider the function d(λ) :
R− → R defined as

d(λ) := max
π

E

[ ∞∑
t=0

γt(r(zt, at) + λ(g(zt, at))

∣∣∣∣∣π
]

s.t. zt+1 ∼ pz(·|zt, at), ∀t ∈ {0, 1, . . . },
at ∼ π(zt), ∀t ∈ {0, 1, . . . },
z0 ∼ p0,

(21)

and the function dρ(λ) : R− → R defined as

dρ(λ) := max
π

E

[ ∞∑
t=0

γtr(zt, at) + λ · Relu(g(zt, at))

−ρ
2
· Relu(g(zt, at))

2
∣∣∣π]

s.t. zt+1 ∼ pz(·|zt, at), ∀t ∈ {0, 1, . . . },
at ∼ π(zt), ∀t ∈ {0, 1, . . . },
z0 ∼ p0.

(22)

Let λ∗ := arg minλ≤0 d(λ) and λ∗ρ := arg minλ≤0 dρ(λ).
Suppose that under an optimal policy π∗ of problem (5),
g(zt, at) ≤ 0 for all t ≥ 0 under an optimal policy π∗.
Then, we have d(λ∗) ≤ dρ(λ∗ρ) ≤ dρ(λ∗) ≤ d(λ∗).

Proof. On one hand, we observe that for any ρ ≥ 0,
dρ(λ) ≤ dρ=0(λ) ≤ d(λ), and therefore, dρ(λ∗) ≤ d(λ∗).
By definition, dρ(λ∗ρ) ≤ dρ(λ

∗). Moreover, observe that π∗

is a feasible solution to problem (22), and under the policy
π∗,

dρ(λ
∗
ρ) ≥E

[ ∞∑
t=0

γt
(
r(zt, at) + λ∗ · Relu(g(zt, at))

− ρ

2
· Relu(g(zt, at))

2
)∣∣∣π∗]

=E
[ ∞∑
t=0

γtr(zt, at)
∣∣∣π∗] = d(λ∗).

(23)

Thus, d(λ∗) ≤ dρ(λ∗ρ) ≤ dρ(λ∗) ≤ d(λ∗).

Proof of Proposition 3. We aim to show that as ρ → ∞,
any infeasible policy π′ will become suboptimal for problem
(12). Given ρ ≥ 0, suppose that π∗ρ(λ∗ρ) is infeasible. Then,

E
[ ∞∑
t=0

γtg(zt, at)
∣∣∣π∗ρ(λ∗ρ)

]
> 0, (24)

because otherwise π∗ρ(λ∗ρ) would be feasible.
Define the function

J(π) := E
[ ∞∑
t=0

γtr(zt, at)
∣∣∣π]. (25)

There are only two cases: either λ∗ρ < λ∗ or λ∗ρ ≥ λ∗.
For the first case that λ∗ρ < λ∗, since π∗ρ(λ∗ρ) is an optimal

policy in problem (12), we have
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d(λ∗) ≥E
[ ∞∑
t=0

γt(r(zt, at) + λ∗g(zt, at))
∣∣∣π∗ρ(λ∗ρ)]

=J(π∗ρ(λ
∗
ρ)) + λ∗E

[ ∞∑
t=0

γtg(zt, at)
∣∣∣π∗ρ(λ∗ρ)]

>J(π∗ρ(λ
∗
ρ)) + λ∗ρE

[ ∞∑
t=0

γtg(zt, at)
∣∣∣π∗ρ(λ∗ρ)]

>dρ(λ
∗
ρ)

(26)

which contradicts that d(λ∗) = dρ(λ
∗
ρ), as shown in

Lemma 1.
For the second case that λ∗ρ ≥ λ∗, we can pick ρ′ ≥ 0

such that

J(π∗ρ(λ∗ρ))−
ρ′

2
E
[ ∞∑
t=0

γtRelu(g(zt, at))
2
∣∣∣π∗ρ(λ∗ρ)

]
< J(π∗).

(27)
Subsequently, we have
dρ′(λ

∗
ρ′) =J(π∗)

>J(π∗ρ(λ∗ρ))−
ρ′

2
E
[ ∞∑
t=0

γtRelu(g(zt, at))
2
∣∣∣π∗ρ(λ∗ρ)

]
≥J(π∗ρ(λ∗ρ))− λ∗ρ′E

[ ∞∑
t=0

Relu(γtg(zt, at))
∣∣∣π∗ρ(λ∗ρ)

]
− ρ′

2
E
[ ∞∑
t=0

γtRelu(g(zt, at))
2
∣∣∣π∗ρ(λ∗ρ)

]
(28)

which implies that π∗ρ(λ∗ρ) becomes a sub-optimal solution
in problem (12), as ρ increases to ρ′.

For any infeasible policy π′, there exists a sufficiently large
but finite ρ′ such that π′ is sub-optimal for problem (12),
∀ρ ≥ ρ′. Recall that π∗ is an optimal policy. Thus, as ρ →
∞, it holds that∥∥∥E[ ∞∑

t=0

γtr(zt, at)
∣∣∣π∗]−E[ ∞∑

t=0

γtr(zt, at)
∣∣∣π∗ρ(λ∗ρ)

]∥∥∥
2
→ 0.

(29)
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