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Energy relaxation dynamics in a nodal-line semimetal
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We study the temperature relaxation dynamics of nodal-line semimetals after a sudden excitation in the
presence of acoustic and optical phonon modes. We find that the nodal line constrains the electron momenta
in scattering processes, and as a result, the temperature relaxation due to acoustic phonons is exponential as
a function of time. However, depending on initial conditions, other functional forms are possible. In typical
pump-probe experiments, the temperature relaxation is linear due to acoustic phonons with rates that vary as

~n'/2 with density. The temperature relaxation due to optical phonons is also linear with rates ~n
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I. INTRODUCTION

Energy dissipation via phonon scattering is the main path-
way to thermalization in electronic systems [1-5]. Energy
relaxation in metals has been extensively studied in the con-
text of pump-probe experiments where electrons are excited
via short laser pulses. After the initial excitation, electrons
lose energy to the lattice degrees of freedom and eventually
reach equilibrium.

In a typical pump-probe experiment, the temperature ini-
tially falls rapidly due to optical phonon emission. Below a
certain crossover temperature, optical phonon emission be-
comes less efficient, and a slower decay associated with
acoustic phonons sets in. While this scenario is understood,
the effects of the Fermi surface (FS) topology on the re-
laxation dynamics are just beginning to be explored. For
example, it is known that at low temperature, the so-called
phonon cooling power scales as P o« T, — T} with the instan-
taneous electron temperature 7, and the lattice temperature 77
For a conventional three-dimensional (3D) metal [1,4], x = 5,
but for thin films [6,7], k = 6. If the phonon phase space is
constrained [8], k = 3, and for graphene [9], x = 4.

Of recent interest is the relaxation dynamics of Dirac
materials which have zero-energy manifolds embedded in
the Brillouin zone [10]. For example, graphene and topo-
logical insulators are two-dimensional (2D) semimetals with
zero-energy points (Dirac points). Near the Dirac point the
quasiparticle dispersion is linear in momentum. As a conse-
quence of its small FS, graphene exhibits strong suppression
of electron-phonon scattering below the Bloch-Griineisen
temperature [11,12] and novel disorder-mediated electron-
phonon scattering [13-15]. Graphene also exhibits 7, ~ 1//t
temperature relaxation as a function of time due to acoustic
phonon relaxation [16—18].

Weyl (or Dirac) semimetals (SMs) are different Dirac ma-
terials in that they are 3D SMs with zero-energy (Weyl) points.
Near Weyl points, the FS is a sphere instead of a circle.
They exhibit asymmetric Fano line shapes [19] and a strong
electron-phonon coupling constant [20]. The temperature
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—12 or ~n.

relaxation in Weyl SMs varies as T, ~ 1 /% (at long times)
due to acoustic phonon scattering [21].

The discovery of nodal-line semimetals (NLSMs) [22,23]
added another member to the family of Dirac materials.
NLSMs are 3D semimetals with zero-energy lines in mo-
mentum space. NLSMs can also be classified by topological
invariants [23-25] and were demonstrated experimentally in
PbTaSe, [26], PtSny [27], and ZrSiS [28,29] with other ma-
terials being investigated [30,31]. NLSMs exhibit unusual
magnetoresistance [32], strong light-matter interactions [33],
and correlation-induced reduction of free carrier Drude weight
[34]. They are predicted to exhibit a quasi-topological electro-
magnetic response [35], enhanced excitonic instability [36],
low Coulomb screening [37], and diverging mobility [38].

In this paper, we investigate the temperature relaxation
dynamics of NLSMs and, in particular, the role of the nodal
line. We find that despite the complex FS topology of NLSMs
the relaxation due to acoustic phonons is exponential, just as
in typical 3D metals. In a NLSM, phonon scattering events
constrain the electron’s initial and final momenta to be close
to the nodal line. This has two important consequences: (a)
at high temperatures the acoustic phonon cooling power is

TABLE I. Temperature scaling of the cooling power P, and the
heat capacity C for NLSMs, graphene, and Weyl SMs. C is sensitive
to the volume of the FS, whereas P, is sensitive to the topology of the
FS. NLSMs have small P, and small C, which result in exponential
temperature relaxation. Graphene and Weyl SMs, on the other hand,
have slower 1/+/f and 1//t temperature relaxations, [see Eq. (1)].

NLSM Graphene Weyl
Spatial dimension 3 2 3
Nodal dimension 1 0 0
C~Tfc= 2 2 3
P.~TP, p= 3 5 7
P./C ~Tpr= 1 3 4°

4Reference [16].
bReference [21].
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TABLEII. Electron temperature as a function of time in NLSMs, graphene, and Weyl SMs for various limits. 7, is the electron temperature,
wy is the optical phonon energy, w is the chemical potential, 7; is the lattice temperature, exp indicates exponential, lin indicates linear, and
inv log indicates the inverse log. By low density we mean u < kg7, and by high density u > kgT,. Only the tails of the relaxation functions
are shown. The reference indicates the relevant equation in the text. For clarity we omit /i and kg.

NLSM Weyl SM Graphene
Spatial dimension 3 3 2
Nodal dimension 1 0 0

Optical phonon relaxation

Low density: wy > T, > T, inv log, (20)

inv log, (D6) inv log, (20)
1/t, (D7) exp, (22)
inv log, (D11) inv log, (27)
lin, (D14) lin, (29)

Acoustic phonon relaxation

Low density: T, > wo, Tp, 4 exp, (22)
High density: pu, wo > T, > T;. inv log, (27)
High density: u > T, > wo, Ty lin,  (29)
Low density: T, > Ty, u exp, (32)
Low density: 7, > Ty, (u = 0) exp, (32)
High density: u > T, > T lin,  (33)
High density: u > T, > T;, exp, (33)

/31, (D19) [21] /1, (E5)[16]

exp, (D19)[21] exp, (ES)[16]
lin, (D21)[21] lin,  (E6)[16]
exp, (D21)[21] exp,  (E6)[16]

much lower than that of Weyl SMs or graphene (see Fig. 5
below), and (b) at low temperatures it gives the exponential
temperature relaxation, which is different from a power-law
relaxation obtained in Weyl SMs and graphene. To understand
this, we write the relaxation equation as

Ae . P _gre, o))
dt C ¢
where C = d€/dT, is the heat capacity and P, is the phonon
cooling power. As can be seen from Table I, p — ¢ =1 for
NLSMs, p —c =3 for graphene, and p — c =4 for Weyl
SMs.

In a typical pump-probe experiment with an initial temper-
ature Ty ~ 100 meV, Fermi level € ~ 300 meV, and optical
modes around 7wy ~ 30 meV, the predicted relaxation is
linear in both the acoustic and optical phonon regimes (see
Table II). The density dependence is different in each case
(see Secs. III and IV). In fact, linear temperature relaxation is
common to all Dirac materials in this regime. To obtain these
results we use a simple two-band model consisting of a ring
(nodal line) in momentum space [23]. Our main assumptions
are: (a) the electrons are in equilibrium among themselves
at temperature T, (b) the phonons are in equilibrium among
themselves at a fixed temperature 7;, and (c) the temperature
is higher than the Bloch-Griineisen temperature.

This paper is organized as follows. We first consider optical
and acoustic phonon branches separately, obtaining analytic
solutions in various limits (Secs. II, III, and IV). The solutions
are then used to give expressions for the crossover temperature
between the optical- and acoustic-phonon regimes in Sec. V.
In Sec. VI we give numerical solutions including both phonon
branches. A simple scaling argument is given in Sec. VII to
intuitively understand temperature relaxation due to acoustic
phonons, and we conclude in Sec. VIII. The Appendixes in-
clude some calculation details.

II. PHONON COOLING POWER

A simple mathematical model of the electron’s energy loss
is

d&
_——= = 2
7 P, @

where £(t) is the energy of the ensemble assumed to depend
on temperature and chemical potential £(r) = E(u(t), T,(t))
and P is the rate of energy transfer from the electrons to the
lattice, i.e., cooling power [1],

1
&= V E Enkfnks (3)
nk
1 df
=) ew . 4
& Vv — Erk dt @)

Importantly, P depends on w(¢) and 7,(¢) via the collision
integral. €,k is the quasiparticle energy. This hydrodynamic
approach [39,40] assumes that the chemical potential and
temperature are well defined at all times, a reasonable assump-
tion if electron-electron interactions thermalize the electron
ensemble much faster than phonons. The collision integral for
phonon scattering is

daf,
I _ mzp[fnka—fmp)vvnk,mp—(nk smp)l, ()

with scattering rate

2
Wiknp = = D~ Mal(Ne+ 18k p g3 (€nkc—€mp —Ticoq)
q

+ NL(Sk,p—q(s(Enk_Gmp'i‘hwq)]‘ (6)

Here fx = f(en) = [e Wkl £ 1171 is the Fermi dis-
tribution function, Ny = Ny (fiwg) = [ef®a/ksT — 1171 is the
Bose distribution function evaluated at the lattice tempera-
ture Ty, T, is the electron temperature, My = 7*D*q*(1 +
Sum €08 0)/4pV hiwg is the amplitude of electron-phonon scat-
tering, q is the phonon momentum, wq is the phonon
dispersion relation, D is the deformation potential of acoustic
phonons, p is the ion mass density, V is the volume, 6 is the
angle between k and p, and s,,, = 1(—1) is intraband (inter-
band) scattering. The quasiparticle dispersion of the NLSM
near the ring is

e = nvhi[k? + (k — 0)*]"%, )
where n = 1 (—1) denotes the conduction (valence) band, v
is the velocity of nodal quasiparticles, and Q is the radius of
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FIG. 1. (a) Nodal line (red ring) in a nodal-line semimetal
(NLSM) model. (b) Quasiparticles have linear dispersion near points
(k, ¢k, k;) = (O, ¢x, 0), 0 < ¢ < 2. In the plane k-k, the states
within radius kr are occupied, and the Fermi surface is a torus in
momentum space. (¢) and (d) Two limiting cases considered ana-
Iytically. The low-density regime is defined by u < kT, and the
high-density regime is defined by u > kpT,.

the nodal ring [see Fig. 1(a)]. We consider spinless fermions.
From Egs. (5) and (6), we write Eq. (4) as [16,17]

P = 27” > wq(fak = fop)(NL — Ne)My
nkmp

X 8(enk — €mp — hwq)v (®)
(see also Appendix A). We define q = p — k. We assume
Eq. (5) does not vanish even when we have equilibrium
distributions of bosons and fermions. The nonvanishing equa-
tion (8) for T, # T} is consistent with this assumption [3]. The
radius of the nodal line Q is assumed to be the largest momen-
tum scale in the system, i.e., Q > |kr — Q|, kgT,/vh, wp/v.
We also assume phonons with momenta 2Q are always ther-
mally excited. This requires a minimum temperature, the
Bloch-Griineisen temperature Tpg; that is, we require kg7, >
kpTsg = hc2Q, where c is the speed of sound.

III. OPTICAL PHONON RELAXATION

In this section, we analytically calculate the temperature
relaxation of a NLSM due to optical phonons. We consider a
single optical phonon branch with constant energy dispersion
wq = wo and constant electron-phonon matrix element My =
g*/V. From Eq. (8), we obtain

d&
E = _Pus (9)
where
g0
Po = s F(u, T,)(N, — Nr) (10
F(u,T,) = / dx|x(x — D|[f (hwox—hiwo)— f (Fiwpx)].
(11)

low density high density

(a) kT, (c)

FIG. 2. Instantaneous electron distribution f(€,x) (blue curve) as
a function of energy in various limits. In (a), i (dashed line) is at the
nodal line or slightly above it; that is, the system is half filled. The
width of the distribution kg7, and the optical mode energy (red line)
are indicated. In (b), %wy is of the order of w but smaller than kzT,.
(a) and (b) are low-density regimes in the sense that u < kg7,. In
(c), w is large and of the order of hiwy. Both p and kg7, are larger
than kgT,. (d) is similar to (c), but Zwy ~ 0. (c¢) and (d) are called
high-density regimes in the sense that p > kgT,. kT} is assumed to
be zero or close to zero.

N, = N,(hwyp), and Ny, = N (hwy) (see Appendix B). As seen
from the factor in parentheses in Eq. (10), Py is exponen-
tially suppressed at temperatures kg7, < fiwy, and hence, in
this regime, we expect acoustic phonon scattering to domi-
nate. The energy is a function of u (assumed to be positive)
and T,, which, in turn, are functionally related due to the
constant-density condition. In our NLSM model the energy
and electron density are

1 vhQ
£ = V %{:Gnkfnk = ?124»7 (12)
1 0
= — 7l = —I — 13
n v ;fk o (13)
where
I = / k[ + (= £ (14)
0

= [ePik-1) 4 1171 and B = 1/ksT,. The density is
measured with respect to the nodal line.

A. Low-density limit

By low density we mean u < kgT, and u 2 0; that is, the
system is half filled. kz7; is assumed to be zero or close to
zero. However, the relative sizes of kg7, and hiwg give various
relaxation behaviors which we now consider in detail.

Case 1: hwy > kgT, > kgTy, . Figure 2(a) illustrates this
situation. The dashed line indicates the position of y, and the
red line shows the position of fwy; 0 indicates the position
of the nodal line. In this scenario, high-energy electrons at
the tail of the distribution lower their energy by emitting
optical phonons and dropping to unoccupied states. A rapid
thermalization among electrons (not included here) creates
a new Fermi distribution at lower temperature. If the en-
ergy of the optical phonon is too large, the cooling becomes
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inefficient. Interestingly, the temperature at which optical
phonon cooling stops is not of the order 7wy but could be an
order of magnitude smaller (see Sec. V).

To begin, we note that if u = 0, Eq. (11) is a function of
only B = fiwy/kgT, and can be integrated analytically in terms
of polylogarithm functions. The first two terms for large B are

1 6£(3)
FO.T)~ g+ =2
The total time derivative of the energy (3) has two contribu-
tions: one from the density d€ /90 = 2n and one from the heat
capacity 0£/9T,. Now, the energy and chemical potential in
the limit of low density u < kgT, are

k3T 30(3)  QkgT, log (2
g QBLHG) OksTelog@) b r o

+-, B> 1. (15)

27 v2h? Tv2h?
kgT, log (2

p= Qolelog@ kT (17)
wv2h

From Eq. (17), we see that the contribution from the density
vanishes in the limit © — 0, and hence, Eq. (9) becomes
(0E/0T,)(0T,/0t) = —P,. In the variable g, it takes the form

d _ _ -

d—f ~ Yot (B* +3603)B + - )e P, (18)
where we assume T, > T;. The initial condition is By =
hawo/kpTy > 1 and v,y = ngwo/v2h254§(3)L The right-
hand side of Eq. (18) has a local maximum at 8 ~ 1 and an
exponential tail for large B. In the limit 8 >> 1, Eq. (18) gives

_ _ 2 T
B~ log (yan Bt + ) + 4log 2 (19)

e

or the inverse log

- fla)()
log (Vo Bt + €0)

In the last expression, we drop a small (for T, < Tp) logarith-
mic correction. The relaxation timescale is e /y,, B;. Note
that 8 increases monotonically with time (as 7, decreases),
and hence, it is enough to require By >> 1. Figure 3(a) shows
a numerical (see Sec. VI) example of optical phonon re-
laxation in the low-density regime (brown curve) with By =
3 > 1. The temperature relaxation is approximately given by
Eq. (20).

Case 2: kgT, > hwo, kgTy, . Figure 2(b) illustrates this
situation. In this regime, many electrons have energy above
the optical phonon mode, and hence, we expect enhanced
optical phonon emission and subsequent fast relaxation. In-
deed, we find an exponential relaxation in this regime. To
see this, note that for kzT, > hiwy (or B < 1), Eq. (11) is
approximated by

roty= Ly B _F B< 1. (1

(0, e)—332 6+12 360+ , B 1. (21
If, in addition, T, > T;, then N,(fiwy)— Np(hwy) ~
kgT,/hwy — kgTy /hiwy ~ 1/B, and to leading order the
relaxation is exponential,

drT,
dt

kgT,

(20)

= —VYon2 Te . (22)

(b) 50

(a) e 106 cmM*3

10" cm3 ‘ 1
10" cm3 :
e 5%10"° cm-?

200 400 600 800

T’

acoustic
2

L L L L

200 400 600 800
Time (ps)

20 . N
optical J

0 2 4 6 8
Time (ps)

FIG. 3. Numerical solution for the electron temperature relax-
ation in a NLSM with acoustic and optical phonon modes. (a) and
(b) differ only by the time resolution of the horizontal axis. Various
electronic densities are considered. The initial temperature is Ty =
100 meV, and the lattice temperature is 7, = 1 meV. The optical
phonon mode is at iwy = 300 meV, which corresponds to the regime
fiwy > kpT,. The rest of the parameters are given in Table III. From
(a) we see a timescale of 7, = 1 — 4 ps for optical phonon relaxation,
and from (b) 7, = 50 — 400 ps, for acoustic phonon relaxation. The
brown curve exhibits inverse log — exponential behaviors as 7,
decreases. The orange curve exhibits inverse log — linear — ex-
ponential behaviors as T, decreases. 7" is the crossover temperature
separating the optical- and the acoustic-phonon regimes. 7, marks
the transition from linear to exponential.

Here, y,» = ngworrz / v2h227§(3), and the relaxation
timescale is 1/y,,». Figure 4(a) shows the relaxation of a
NLSM with the optical phonon mode energy half of the initial
temperature of the electron ensemble, By = 1/2 (brown and
green curves). The temperature relaxation is approximately
exponential, in agreement with Eq. (22).

B. High-density limit
By high density we mean p >> kgT,. Since u is bounded
from above by Fermi energy € = (7T, = 0), high density
means €r > kgT,. However, the relative sizes of kgT, and Fiw
give various relaxation behaviors which we now consider in
detail.

Case 1: w, hwy > kgT, > kgT;. Figure 2(c) illustrates this
situation. To start, note that for p > kg7, Eq. (11) becomes
12t 2121

FiuT)~ |-+ — |+ —
(n, Te) ( ) e

- kgT,, (23
6 3 + W > Kp (23)
which is obtained from the Sommerfeld expansion in variables
L= p/hwy and B = hwy/kpT, and is valid for g > 1 (or,
equivalently, i > kgT,). In this limit, the energy and electron
density become

2
Q <M3+nu+---),u>>kBTe’ (24)

= om i B2
0 2 n?
— 4. ks T, 25
n 4nv2h2<'u +3,32+ > kg (25)
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FIG. 4. Same as in Fig. 3, but with Ziwy = 50 meV, i.e., hiwy <
kpTy. The timescales are 7, = 10-50 ps and 7, = 0.5-1 ps for acous-
tic and optical phonon relaxations, respectively. The low density
green curve exhibits transition from exponential — exponential as
T, decreases. The high density blue curve exhibits transitions linear
— linear — exponential as 7, decreases.

and hence, u(T,) = €f — nzkéTf/66p +---. Also, if B> 1,
then N, — Ny ~ e~ feo/ksle _ p=heo/ksTi ~ o= and Eq. (9) be-
comes

0B _ (1 2@ 27'R 5
- St LTI . 26
or = VenP (6 3 3p2 ¢ (26)

Now, if i > 7, the leading behavior is an inverse log func-
tion,

Fla)o
log (VmBSt + eB“) ’

where Y,q1 = 3g2Qa)(2,(1/6 +273/3)/m%v?uh. The relax-
ation timescale e /y,q1B3 is ~n'/? for i < 1 and ~n~!
for 1 > 1; n is the electron density. Note that the timescale
increases or decreases with increasing electron density. Fig-
ure 3(a) illustrates the high-density regime with parameters
Bo =3, ji ~ er/hwy ~ 1 (blue curve). The relaxation is ap-
proximately given by Eq. (27).

Case 2: > kpT, > hwy, kgTy. Figure 2(d) illustrates this
situation. Since u > kgT,, we can use Eq. (23). In addition,
if B« 1and T, > T;, then N, — N; ~ 1/B, and Eq. (9) be-
comes

kpT, = 27

dp (1 2@
dl_ 0d2ﬂ <6+

27
T ) (28)

Now, if 18 > 7, the leading behavior is linear,
kpT, = kgTo — hiwoYoart, (29)

where Yo = 3g2Qw%(l/6 +2i3/3)/m%v?hp is ~n~'/? for
<1 and ~n for 1 > 1. The rate can increase or de-
crease with increasing electron density. Figure 4(a) illustrates
the high-density regime with parameters By = 1/2 (blue or
orange curve). The relaxation is approximately linear for tem-
peratures above ~40 meV.

IV. ACOUSTIC PHONON RELAXATION

We now calculate the temperature relaxation due to acous-
tic phonons in the low- and high-density regimes. To obtain
analytical expressions, we evaluate Eq. (8) to lowest order
in ¢/v < 1, where c is the speed of sound, assumed to be
isotropic. In this limit, acoustic phonon scattering is quasielas-
tic, and we obtain (see Appendix C)

d&é
— =-P,, 30
7 (30
where
D2Q4kB
= ————0L (T, — Tp). 31
oot =T 31

A. Low-density limit

Setting w = 0 and using Egs. (16), (17), and (31), we
obtain

drt,
dt

where y,, = m2D*Q3/pv*h108¢ (3). Hence, the temperature
relaxes exponentially with timescale 1/y,,. This should be
compared with the slower ~1/4/tf power law found in
graphene [16], which has nodal points instead of nodal lines,
and the even slower ~1/./t power law found in Weyl nodes
[21]. Figure 3(b) shows an example of the low-density relax-
ation in a NLSM (brown curve). The exponential dependence
is more evident in the log plot inset.

= _Van(T:e - TL)v (32)

B. High-density limit
In this limit, we can use Eqgs. (24), (25), and (31) to obtain

ST =~y (T~ T, (33)
where y,; = 3D*Q3er /4m*phv?. We find linear relaxation
for 7, > T; with a relaxation rate that scales as y,q ~ n'/?
with electron density. This is different from graphene, where
the relaxation rate scales as ~ n>/2 [16]. Finally, the relaxation
is exponential for 7, 2 T; with timescale Ty /y,q.

Figure 3(b) shows the temperature relaxation in the high-
density regime of a NLSM (orange or blue curve). The
appearance of a linear relaxation in the temperature range
T* > T > T, is evident and is in agreement with Eq. (33).
T)* is the crossover temperature between optical relaxation
and acoustic relaxation (see Sec. V). T;* marks the regime
transition from linear to exponential relaxation. There is an
exponential relaxation for T < T,*.

V. CROSSOVER TEMPERATURE
The temperature 7;* at which
Pa(T}") = Po(T7) (34)

defines the boundary between the regime dominated by op-
tical phonons (> 7}*) and the regime dominated by acoustic
phonons (<7*). If the initial temperature is Ty > T}*, the
decay is initially fast, followed by a slower decay. If Ty < T7*,
the decay is slower, and the electron plasma is longer lived.
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FIG. 5. Percentage of acoustic phonon cooling power as a func-
tion of electron temperatures for a NLSM, graphene, and a Weyl SM.
Parameters are given in Table I11.

Hence, an estimate of the crossover temperature is important
for experimental design, device design, and as a control knob
in probing microscopic mechanisms in materials. We consider
two limiting cases in detail.

A. Low-density limit

Case 1: hwy > kpT, > kpTy,, . From Egs. (10), (15), and
(31) we find that 8* = liwy/kgT}* satisfies

72D*Q%h
2pg*ay

The left-hand side is a constant that depends on materials’
properties. The right-hand side depends on 8*. The intersec-
tion of the two gives the solution. Note that if «; < 36¢(3)
and B* >> 1, there is a solution.
Case 2: kgT, > hwy, kgTr, u. From Egs. (10), (21), and
(31), we find that B* = hawo/kpT* satisfies
B*S

a1=27t2—[3*2+7+~-. (36)

There is a solution when «; < 272 and 8* < 1.

=[(B*)’ +36¢3)e ™.  (35)

o =

B. High-density limit
Case 1: u, liwy > kpT, > kpTr. From Egs. (10), (23), and
(31), we find that 8* = hiwy/kpT|"* satisfies
3D20% 12 B
m——gi_ﬁm+m%wﬁ

- _ ~
- 2pgwih B

ﬂ*
Using the parameters in Table III, o; = 0.0042, and the in-
tersection with the term on the right is at kgT}" = liwy/p* =

34 meV, which is close to the full numerical solution kgT{* =
35 meV shown in Fig. 5.

]ef’*. (37)

TABLE III. Parameters of a prototypical NLSM from Ref. [41],
a Weyl SM, and doped graphene. The electron-phonon coupling
constants for NLSMs are unknown. For a Weyl SM, we take the
known parameters of TaAs [10].

NLSM Weyl Graphene
p (kg/m?, kg/m?) 4.86 12.03 3.7 x 1077
n(cm™3, cm™?) 5% 10" 10 103
er (meV) 300 6 370
0 (1/A) 0.3
liwy (meV) 300 31 196
D (eV) 5 4 20
v (10° m/s) 1 0.5 1
a(A) 4 6.3 1.42
g (Wi J a2/ phax) 56.6 42 14
T, (meV) 1 1 1

Case 2: 0 > kgT, > hwy, kgTr.. From Egs. (10), (23), and
(31)and N, — Ny ~ 1/B, we find

DOR (3u\'?
kgT" = i(ﬁ) ~ nl/4. (38)
2rg \ 2p

VI. ACOUSTIC AND OPTICAL PHONON RELAXATION:
NUMERICAL SOLUTION

In this section, we solve numerically for 7,(¢) and w(t)
in the presence of acoustic and optical phonons. The basic
equations are

a€
—V = —VFa— Fo 39
7 Po—P. (39)
1
= fue 40
n=y Sk (40)

nk

The first equation gives the energy dynamics, and the second
gives the constant electron density condition. P, and P, are
the acoustic and optical phonon cooling power in Egs. (10)
and (31), and & is the energy,

1
&= V §6nkfnk~ (41)

More explicitly, Eq. (39) becomes

91 9 1
—30Twh( — — )b, + 207, =2 )\1,_
Qv <8rTe>”+ e <8t7;>l

D?>Qkg g0
=——NL.(T,—-Tp) — F (N, —Np), (42
47tpv2h l+( e L) 27_[1)4}‘1 ( e L) ( )

and the constant-density condition

n= gll_. (43)
2

The initial conditions are u(t = 0) = g, which is given by
the electron density and T,(r = 0) = Tj. Figure 3 shows the
electron temperature as a function of time for a NLSM with
parameters given in Table III. The initial temperature is Ty =
100 meV = 1200 K. Note the sharp change in behavior at
temperature 77*. For T, > T}* ~ 35 meV, there is a fast relax-
ation associated with optical phonons. At these temperatures,
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P, K P, (see Fig. 5). For T, < T*, acoustic phonons saturate
the cooling power and dominate the relaxation process. In
the optical phonon regime, the relaxation timescale is pi-
coseconds, but in the acoustic phonon regime, the relaxation
timescale is nanoseconds. As expected, the optical phonon
relaxation is faster than acoustic phonon relaxation [1].

Note that the higher the density is, the faster the relaxation
is. In the optical phonon regime at any density, the relax-
ation is of the inverse log form, as indicated in Eq. (20) or
Eq. (27), even though By is only 3. In the acoustic phonon,
low-density regime, the relaxation is exponential for 7, < T}*
[brown curve; Eq. (32)] and linear-exponential (orange curve)
in the high-density regime [Eq. (33)]. The relaxation timescale
depends weakly on density in the optical phonon regime and
strongly in the acoustic phonon regime. Although not shown,
the chemical potential increases monotonically towards €r as
time increases.

In the optical phonon regime, P, is expected to be low.
What is interesting is that P, in NLSMs is lower than in
Weyl SMs and graphene (see Fig. 5). In fact, in NLSMs,
there is a clean separation of scattering processes at 7;*, which
justifies considering optical and phonon scattering separately
in Secs. III and IV.

Figure 4 shows the relaxation of a NLSM in the regime
kgT, > hwy. Since emission of optical phonons is readily
available, we expect a faster relaxation, as shown.

VII. ACOUSTIC PHONON RELAXATION IN DIRAC
MATERIALS

The role of the nodal line is most critical in the acoustic
phonon, low-density regime. This is expected because at low
density (u = 0) acoustic phonons probe quasiparticles near
the nodal line in NLSMs or nodal points in Weyl SMs or
graphene. In this regime, the NLSM has exponential relax-
ation, Weyl SMs have ~1/./t relaxation, and graphene has
~1/J/t. To understand this, we write the energy relaxation
equation as CdT,/dt = —P,, where the heat capacity C =
d&(u(T,), T,)/dT,. By power counting, we can write

dT,
dt
with k = dim (P, — 1) — dimC or

k=020 —-d)—1+42[qgl—1}—(D—d+a—1). 45)

~ ~TN(T, — Tp), (44)

To obtain dim C, we can inspect Eq. (12). We first subtract d
nodal (frozen) directions from D spatial dimensions and add
the power of the quasiparticle dispersion k“ (1 in this case).
The temperature derivative of the energy gives the last —1.
The electronic heat capacity scales as 7, with a power of 3 in
Weyl nodes and with a power of 2 in graphene and NLSMs.
In this sense, NLSMs and graphene are similar.

To obtain dimP, — 1, we can inspect Eq. (8). We have
2(D — d) powers from the integrals, subtract 1 from the en-
ergy conservation, and add 2 if momentum transfer [g] is not
constrained, i.e., in Weyl nodes and graphene. Finally, we sub-
tract 1 from the Fermi function differences. The last two steps
occur because we expanded the integrals to lowest order in
c/v. The role of the nodal line is now explicit. From Eq. (45),
dim P, — 1 = 6 for Weyl SMs, dim P, — 1 = 4 for graphene,

TABLE IV. Cooling power and heat capacity scaling with tem-
perature for Dirac materials (see Sec. VIII). D is the spatial
dimension, d is the nodal manifold dimension, dimC is the scale
dimension of the heat capacity, and dim P, is the scale dimension of
acoustic phonon cooling power.

NLSM Weyl Graphene

D 3 3 2

d 1 0 0
2[q] 0 2 2
dimC 2 3 2
dimP, — 1 2 6 4

K 0? 3b 2¢
2Equation (32).

"Equation (D19).

“Equation (ES).

and dimP, — 1 = 2 for NLSMs (see Table IV). It is lowest
in NLSMs. There are two consequences: (a) a large decrease
in P, in a NLSM at high temperature compared with Weyl
SMs and graphene (see Fig. 5), and (b) at low temperatures, it
gives the exponential temperature relaxation in NLSMs and a
slower power law in graphene and Weyl SMs.

VIII. DISCUSSION AND CONCLUSIONS

We calculated the electron temperature relaxation as a
function of time after a sudden excitation. We used a two-
band model of a NLSM with a single acoustic branch and a
single optical branch. Among our findings, we point out that
acoustic phonon relaxation is exponential, which is similar
to standard 3D metals [3] but different from Weyl SMs and
graphene. This is because a particular combination of FS
volume and topology in NLSMs. Other relaxation behaviors
were obtained depending on initial conditions and density and
were summarized in Table II . Our results point to possible
ways to engineer thermalization timescales, e.g., by tuning
either density, spatial dimension, or the shape of the FS.

We assumed that phonons of large momenta ~2Q can be
thermally excited, and this puts a lower bound on T,, kg7, >
hc2Q = kpTpg. For ZrSiS [41] with ¢ = 4.3-6.8 km/s and
0~03 A1 we obtain kgTgg = 17-26 meV = 197-300 K.
For PbTaSe; [26,42] with roughly the same sound speed and
half of the Q we obtain kgTgg = 98 — 150 K.

We have assumed particle-hole symmetry, time rever-
sal symmetry, and a highly symmetric nodal line. Our
conclusions will not change for small deviations of these
symmetries. If there is more than one ring or if we consider
the spin of the electrons, the total cooling power is multiplied
by the number of equivalent rings and by the spin degeneracy,
but 7,(t) will not change. In this work we assumed a clean
system; future work is needed to understand impurity effects.
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APPENDIX A: PHONON COOLING POWER
From Egs. (4), (5), and (6) we obtain

1
P= v %: ;p:(enk - Emp)fnk(l - fmp)Wnk,mp (Al)
=P1+ Pa, (A2)

where

2 1
P = 7 ZZ(Gnk Emp)(fnk fmp)M N

nk mp

X 8(€k — €mp

2m 1
Pr= T3 ek — em k(1 = fup)My

nk mp

— Tiog), (A3)

X 8(€nk — €mp — liwg). (A4)
In obtaining Egs. (A3) and (A4), we assumed w_q = wq,
which holds for time reversal symmetric systems or inversion
symmetric systems. Using the identity

Sue(1 — fmp)a(enk — €mp — hwq)
=—(fuk — fmp)Ne(hwq)8(6nk — €mp — ha)q)a (AS)
P, becomes
2 1
Pr= =22 3 (e — em)fok = Sup)MoNe
nk mp
X 8(€x — — hwq)
=-Pi(L — e). (A6)

This relation (noted in Ref. [17]) means Eq. (4) in the main
text becomes

2
= _]; Z(E"k - Emp)(fnk - fmp)(NL - Ne)Mq

nkmp

X 8(€nk — €mp — liwg), (A7)

which is Eq. (8) in the main text.

APPENDIX B: OPTICAL PHONON COOLING IN NLSMs

We start from Egs. (A3) and set My = &/Vv, wq = wy to
obtain

Por =2ng2NLwo% D (k= fup)S(Enc—emp— ).
nk mp
(B1)
Now, we write the sums over momenta as integrals in cylin-
drical coordinates. Then we define a new variable k' = k — Q.
The integral over k" is now from —Q to co. Next, we extend
the integration of £’ to the whole real line and parametrize the

plane k’-k, in polar coordinates &, @1 to obtain
1 I
Py = gZNLwOm > / kdkdg; / pdpde;

x (ksin ¢ + Q)(Psin g + Q) f (nvhk) — f(mvhp)]

X 8(€,; — €np — havp) (B2)

- hZ/kdk/pdp

nm

= g Nywo

x[f(nvhk) — f(mvhp)|s(nk — mp — wo/v), (B3)

where in the last equality we use the fact that the § function
fixes mp = nk + wy/v and that the Fermi function differ-
ence is very small for k > w/v. This justifies extending the
limits of integrals to the whole real line as long as Q >
wp /v, kgT,/vh. After some algebra

— FNp, B4

2mvn ¢ B4
where F is given by Eq. (11). Finally, P, =P, (L) —
Poi(L — e) gives Eq. (10) in the main text.

APPENDIX C: ACOUSTIC PHONON COOLING IN NLSMs

Starting from Eq. (A3), we substitute My, wq =cqg =
clk — p| and assume the lattice temperature is such that
kgT; > hwq. This requires 7 > Tgg, as discussed in the main
text. We obtain

ZJTD kBTL
Pa =iz 4pV22 %%wq(f"k fmp)

X (1 + 8y, €08 0)8(€pk — €mp — hwg). (ChH

Now, we write the sums over momenta as integrals in cylin-
drical coordinates and define k' = k — Q. The integral over
k' is now from —Q to co. The Fermi functions limit the size
of k' to values near |kr — Q| < Q. Hence, we can extend the
limits of integration of the radial component &k’ to the whole
real line with small error as long as Q > |kr — Q|, kgT,. Now
we transform the k' and k, variables to polar coordinates
k, ¢z In terms of these variables, k' = k sin o5, k, = k cos o1,
and the dispersion relation €,k is that of a Dirac cone in

two dimensions. The energy difference becomes €,x — €,,p =
vhi(nk — mp), and the delta function
1 -
S(enk — €mp — fiwg) = —hS(nk —mp —rq) (C2)
v

1
= —8umd(p — po)[1 + O(r)], (C3)
vh

fixes pto pp = k — nrl(gl;_i (to firstorder in r = ¢/v). [q];_;
is the phonon momentum to zeroth qrder, i.e., equal to g =
|k — p| with p = k. In the limit Q > kg

q* ~20%*(1 — cos p), (C4)

1 + Sy COS @, (C5)

where ¢ = ¢ — ¢p. This means that the phonon momentum
is effectively 2D in the plane k.-k,. Finally, we note /iwg and

1+ 5,,cos0 ~
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the Fermi fu~nction difference are both O(r), and hence, we
can set p = k in the rest of the factors of Eq. (C1). Note that

it =y = g2 + 0% (©6)
is peaked at k ~ kr. As a result Eq. (C1) becomes
Pur = —ﬁ—zlj‘;hﬂb (&)
where
It = /0 N k'dklf.p (1= f,0l, (C8)
and f,z = [e"R=F 4 1)1,

APPENDIX D: PHONON COOLING POWER
IN A WEYL NODE

The quasiparticle energy near a Weyl node is €,x = nviik,
where k = |k| is the magnitude of a 3D momentum and n =
+1 denote the conduction (+1) and valence (—1) bands. The
FS is a sphere in momentum space.

1. Optical phonon relaxation

Following the steps outlined in Appendix B, the cooling
power of optical phonons in a Weyl node is

g’

Puo = o

—2° _H(N,—N,), (DD

where
H= / ” dx x*(x — 1)*[f (hwox — Fiwy) — f(Fiwox)]

27%p? Tt
_ 1 I D2
30 +at+ T 7 15 (D2)

has a simple closed form valid in all regimes of B = hiwy/kzT,
and it = u/hwy.

a. Low-density limit

Case 1: hawgy > kT, > Ty, . If B> 1 and T, >> Ty, then

N, — Ny ~ e~ #. The energy and density,
4pdm 2 272,,2
== 'fvfe;’;‘ +oo 1 < KT, (D4)
together with Eq. (D2) and d€/dt = —P,, give
W Gy + 147y D3)
To leading order as B > 1, the relaxation is an inverse log,
kT, = e — (D6)

log(Yuwon Byt + €Po)’

where By = hwo/kzTy > 1, Yuont = g2w3/14n5v3h2, and the
relaxation timescale is €% /Y001 B3

Case 2: kgT, > hwy, Ty, (. In this limit, N, — N ~ 1/,3,
and hence, to leading order
rla)()
kpT, = ———, (D7)
VwonZt + ,30

where Yyon2 = gzw(z)/n3v3fzz.

b. High-density limit

Case 1: u, hiwg > kT, > Tp. In the limit of a large chem-
ical potential u > kgT, the energy and density are

1 . 27
=8n2v3h3<“+ B +) n > kgT, (D8)

= : ( + il + ) > kgT,
- 67T2U3ﬁ3 w ,32 ) 123 Ble
The last equation implies u(7;) = €F — w2 k2T?/3ep + - -
and together with N, — N, ~ ¢~# and Eq. (D2) gives

B R S S - S
8t ywudlﬂ <30+ + ,32 +1SB4 e .

D9)

(D10)

If B > /2, the leading behavior is given by the first two
terms on the right, and we obtain
h

ksT, = o (D11)

IOg(Vwodllg()t + eﬁo)

with  Yyea1 = 3803(1/30 + a*)/m?v3pu?  and

€™ [ Vodt Bg . The timescale is ~n?/3 for <1 and ~n~

for o > 1. _

Case 2: ;v > kgT, > hwy, Ty, In this case N, — N, ~ 1/8,

and from Egs. (D2), (D8), and (D9) we obtain

d,B 2 1 +_4+27r2 a* It
ar ~ TP\ 55 B2 15p4

timescale
2/3

). (D12)
If i > m+/2, the leading behavior is

(D13)
or

kT, = kT — hwoYwoedrt s (D14)

where the relaxation rate yy,0q2 = 3g2a)é(1/30 + /w23’
scales as ~n~2/3 for i <« 1 and as ~n*/3 for i > 1.

2. Acoustic phonon relaxation

The cooling power of acoustic phonons in a Weyl SM was
studied in Ref. [21]. Here, we reproduce those results for
comparison. Following the same steps as in Appendix C, we
obtain

(D15)

and hence, the cooling power of acoustic phonons is [21]
2

Pwa = 7)wal(L) - 2h 3

73wal(L - 6’) 15+(T )

(D16)
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where

Ie = fo Kdk(fu£(1— f0l.  (DI7)

and fy = [/ 4 1],

a. Low-density limit
If © = 0, we can integrate (D16) analytically to obtain
_ D’kjT317°

Poa = ————(1, = T1).
wa pU8h7126 (e L)

(D18)
The energy and density of a Weyl node are given by Eqs. (D3)
and (D4), and with d€/dt = —P,,, we obtain

dT,
dt

where yyun = 1557TD2k§/147,ov5h4. If T, > T;, T, relaxes as
a power law [21],

= YT (T, — Tp), (D19)

—_ TO
A+ 3Ty

(D20)

e

with timescale 1/ 3ywa,,7b3, butif T, 2 T, T, relaxes exponen-
tially with timescale 1/¥yan T}

b. High-density limit
Using Egs. (D8), (D9), and (D16), we have to leading order

(21]

d 1
ZrkeTe ~ =Vuwaa 7 (Te = 1), (D21)

dt

where Yyua = D*ut / 33 pv5h4. So for T, > T; the relaxation
is linear,

kT, ~ kgTo — Vwaat, (D22)

with a rate that scales as ~n*3 with the electron density. In

the limit 7, 2 T}, the relaxation is exponential with timescale

i/ Ywaa ~n~*>.

APPENDIX E: PHONON COOLING POWER
IN GRAPHENE

In this Appendix, we calculate the temperature relaxation
in graphene due to acoustic and optical phonons. The dis-
persion relation of quasiparticles near a nodal point is €, =
nvhk, where k = |K| is a 2D wave vector.

1. Optical phonon relaxation
Following the same steps as in Appendix B and using wq =
wo and My = g*/V, we obtain [16]
g
2rvth

where F' is given in Eq. (11) and Eqgs. (15) and (21) are valid
for graphene too.

Peo = F(u, T.)(Ne — N), (EL)

a. Low-density limit

Case 1: hwo > kgT, > Ty, u. The energy and particle
density, &€ = vhl,y /27w and n = I,_ /27w, are the same as for
NLSMs [Egs. (16) and (17)] except for a trivial factor of Q,
which is absent in graphene. Defining as before § = hiwy/kgT,
and using (E1), we find

9 _ B* +36¢(3)P P E2

E_ygonl(ﬂ—i_ CBB A+ e, (E2)
where Yeon1 = g2w0 /54¢ (3)1)21&2 and to leading order in B>
1 we obtain an inverse log form,

_ Fla)()
10g()/gon1/§3t + eﬁo).
Case 2: kgT, > hwy, kgTy, . In the opposite regime

where kgT, > hwy the same considerations apply as in

NLSMs, and we obtain an exponential relaxation [see
Eq. (22)], but the factor of Q is absent in graphene.

(E3)

kgT,

b. High-density limit

The considerations in Sec. III B apply for graphene as well.
We obtain the same relaxation forms as in Eqs. (27) and (29),
but the factor of Q is absent in graphene.

2. Acoustic phonon relaxation

The temperature relaxations due to acoustic phonon scat-
tering in NLSMs and graphene are different because the nodal
line affects NLSMs in a nontrivial way (see Appendix C). The
temperature relaxation in graphene due to acoustic phonons
was presented by Bistritzer and MacDonald [16] and is in-
cluded here for comparison with NLSMs. From Eq. (8) we
obtain

D*k
Pea = WIH(E - 1), (E4)

where I3, is given in Eq. (C8) and in closed form in Ref. [17].

a. Low-density limit
Equations (16) and (17) in the limit u < kg7, are also valid
for graphene if we omit the factor of Q. From the equation of
motion (0€/97,)(3T,/0t) = —Pgy, we obtain
dT,
dt
where Vg, = D*k377%/540¢ (3)pv*i’. This means T, =
To/(1 + 1t /Tgan)'/? for T, > T;. T, is an exponential function
with timescale 1/ T} for T, = T;.

= Ve THT, — Tp), (ES)

b. High-density limit
Equations (24) and (25) are also valid for graphene after
omitting the factor of Q, and we obtain
daT, 1
ye _ygadi(Te —1p), (E6)

where Ve = 3D*u3 /A kg p v*7i3. This means the relaxation
is linear for 7, > T, and the rate scales as ~n>/? with electron
density. The relaxation is exponential for 7, 2> 7.
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